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Summary. In this paper a new distance on the set of multivariate Gaussian linear stochastic pro-
cesses is proposed based on the notion of mutual information. The definition of the distance is
inspired by various properties of the mutual information of past and future of a stochastic pro-
cess. For two special classes of stochastic processes this mutual information distance is shown
to be equal to a cepstral distance. For general multivariate processes, the behavior of the mu-
tual information distance is similar to the behavior of an ad hoc defined multivariate cepstral
distance.

1 Introduction

This paper is concerned with realization and identification of linear stochastic proces-
ses, topics that are central in Giorgio Picci’s research interests. With his work in the
last decennia he is one of the great inspirators for the development of subspace identi-
fication for stochastic processes, to which he also contributed several papers [24, 27].
Within our research group quite some work was done in subspace identification in the
nineties [33, 34]. Through this way, Giorgio, we would like to thank you for the count-
less interesting insights you shared with us and other researchers, but especially for
your great friendship. Ad multos annos!
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In some of our recent work [8, 9] we have established a nice framework with in-
teresting relations between notions from three different disciplines: system theory, in-
formation theory and signal processing. These relations are illustrated in a schematic
way in Figure 1. The processes considered in the framework are scalar Gaussian linear
time-invariant (LTI) stochastic processes. Centrally located in Figure 1 are the principal
angles and their statistical counterparts, the canonical correlations. These notions will
be explained in Section 3. Through a first link in the figure, expressions are obtained for
the mutual information of past and future of a process as a function of its model param-
eters, by computing the canonical correlations between past and future of the process.
Secondly, the notion of subspace angles between two stochastic processes allows to find
new expressions for an existing cepstral distance as a function of the model description
of the processes. And finally, the definition of a distance between scalar stochastic pro-
cesses based on mutual information was proven to result in exactly this same cepstral
distance.
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Fig. 1. A schematic representation of the relations between system theory, information theory
and signal processing for scalar stochastic processes
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In this paper we wish to give a start to the extension of the framework in Figure 1
to multivariate processes. We mainly focus on one aspect of the figure, namely the
mutual information distance. More specifically, we define in this paper a new mutual
information based distance on the set of multivariate Gaussian LTI stochastic processes.

The idea of defining a distance for this kind of processes is not new. Many distances
have been considered in the past, both for scalar and multivariate processes. Specifically
for scalar processes a lot of distances are defined directly on the basis of the power
spectrum, the log-power spectrum or the power cepstrum of the processes [3,13,14,18].
A difficulty with these distances is that some of them can not be generalized in a trivial
manner to multivariate processes. Cepstral distances for instance in their definition
involve some definition of the logarithm of the power spectrum of the processes.

Several of the distances defined for both scalar and multivariate stochastic processes
are based on information-theoretic measures. By considering a stochastic process as
an infinite-dimensional random variable, one can define e.g. the (asymptotic) Kullback-
Leibler (K-L) divergence, Chernoff divergence and Bhattacharyya divergence of two
processes [22, 25, 29, 30, 31, 32]. Often, the processes are assumed to be Gaussian, in
which case computationally tractable formulas can be derived.

Mutual information is an information-theoretic measure too. However, it is not ap-
plicable in the same sense as the above measures. The difference is that the mutual
information of two random variables does not measure the similarity (or dissimilarity)
of their probability densities. Instead it is a measure for the dependence of two random
variables. Since the goal in this paper is to achieve a distance on the set of stochastic
processes (without assuming information on their mutual dependencies), several inter-
mediate steps must be taken. These steps are explained in the paper and are inspired by
previous work in [6, 8, 9] (see Figure 1).

Distances between stochastic processes or time series have been used in many dif-
ferent areas. Among the most common are speech recognition [3, 13, 14], biomedical
applications [2,12,23] and video processing [4,11]. The distances are typically applied
in a clustering or classification context.

The paper is organized as follows. In Section 2 we describe the model class we
work with: Gaussian LTI stochastic dynamical models. Section 3 recalls the notions of
principal angles between two subspaces, canonical correlations and mutual information
of two random variables, and applies these notions in the context of stochastic proces-
ses. In Section 4 a new distance between multivariate Gaussian processes is proposed
based on the notion of mutual information, and its properties are investigated. Section 5
shows several additional relations that hold in the case of scalar processes. In Section 6
we investigate whether the newly defined distance admits a cepstral nature by defining
an ad hoc power cepstrum and cepstral distance for multivariate stochastic processes.
Section 7 states the conclusions of the paper and some remaining open problems.

2 Model Class

In this paper we consider stochastic processes y = {y(k)}k∈Z whose first and second
order statistics can be described by the following state space equations:
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x(k + 1) = Ax(k) +Bu(k) ,

y(k) = Cx(k) +Du(k) , (1)

E {u(k)} = 0 , E
{
u(k)u�(l)

}
= Ipδkl . (2)

with Ip the identity matrix of dimension p and δkl the Kronecker delta, being 1 for k = l
and 0 otherwise. The variable y(k) ∈ Rp is the value of the process at time k and is
called the output of the model (1)-(2). The state process {x(k)}k∈Z ∈ Rn is assumed
to be stationary, which implies that A is a stable matrix (all of its eigenvalues lie strictly
inside the unit circle). The unobserved input process {u(k)}k∈Z ∈ Rp is a stationary
and ergodic (normalized) white noise process. Both x and u are auxiliary processes
used to describe the process y in this representation. The matrixD ∈ Rp×p is assumed
to be of full rank. We assume throughout this paper that u and consequently also y is a
Gaussian process. This means that the process y is fully described by (1)-(2).

The infinite controllability and observability matrix of the model (1) are defined as:

C =
(
B AB A2B · · ·

)
,

Γ =
(
C� (CA)� (CA2)� · · ·

)�
,

respectively. The model (1) is assumed to be minimal, meaning that C and Γ are of full
rank n. The Gramians corresponding to C and Γ are the unique and positive definite
solution of the controllability and observability Lyapunov equation, respectively:

CC� = P = APA� +BB� ,
Γ�Γ = Q = A�QA+ C�C . (3)

The controllability Gramian P is also equal to the state covariance matrix, i.e. P =
E

{
x(k)x�(k)

}
.

The model (1) is further assumed to be minimum-phase, meaning that its zeros
(eigenvalues of A − BD−1C) lie strictly inside the unit circle. The inverse model
can then be derived from (1) by rewriting it as{

x(k + 1) = (A−BD−1C)x(k) + BD−1y(k) ,
u(k) = −D−1Cx(k) + D−1y(k) , (4)

and is denoted with a subscript (·)z :

(Az , Bz, Cz , Dz) = (A− BD−1C,BD−1,−D−1C,D−1).

Analogously, the controllability and observability matrices and Gramians of the inverse
model (4) are denoted by Cz, Γz, Pz andQz . The matrixQz , for instance, is the solution
of

Qz = (A−BD−1C)�Qz(A−BD−1C) + C�D−�D−1C . (5)

Along with the descriptions (1) and (4), a transfer function can be defined from u to
y and from y to u, respectively:

h(z) = C(zI −A)−1B +D , (6)

h−1(z) = −D−1C(zI − (A−BD−1C))−1BD−1 +D−1 .
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Modulo a similarity transformation of the state space model (A,B,C,D) into (T−1AT,
T−1B,CT,D) with nonsingular T , there is a one-to-one correspondence between the
descriptions (1) and (6). From each of both descriptions, augmented with (2), the sec-
ond order statistics of the process y can be derived, i.e. its autocovariance sequence

Λ(s) = E
{
y(k)y�(k − s)

}
=

⎧⎪⎨⎪⎩
CPC� +DD� s = 0 ,
CAs−1G s > 0 ,
G�(A�)|s|−1C� s < 0 ,

(7)

with G = E
{
x(k + 1)y�(k)

}
= APC� + BD�, or equivalently its spectral density

function

Φ(z) =
+∞∑

s=−∞
Λ(s)z−s = h(z)h�(z−1) . (8)

As stated before, Gaussian processes (which we assume) are fully described by their
first and second order statistical properties. Therefore a zero-mean process {y(k)}k∈Z

is also fully described by (7) or (8). From equation (8) it can thus be seen that h(z) is
not uniquely defined for the process y since the transfer functions h(z) and h(z)V with
V a unitary p× p matrix correspond to the same spectral density function Φ(z). This is
the only non-uniqueness in h(z) under the given assumptions and must be kept in mind
while we denote a process in this paper by one of its foursomes (A,B,C,D) or one of
its transfer functions h(z).

We also define doubly infinite block Hankel matrices of data:

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

... . .
.

y(−2) y(−1) y(0) · · ·
y(−1) y(0) y(1) · · ·
y(0) y(1) y(2) · · ·
y(1) y(2) y(3) · · ·
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Yp
Yf

)
, (9)

corresponding to the processes y = {y(k)}k∈Z, yp = {y(−k)}k∈N0 and yf =
{y(k)}k∈N, where the subscript p stands for ‘past’ and f for ‘future’. The block Hankel
matrices U , Up and Uf are analogously defined for the processes u, up and uf .

3 Principal Angles, Canonical Correlations and Mutual
Information

In this section the definitions of principal angles between two subspaces, canonical
correlations of two random variables and their mutual information are recalled in Sec-
tions 3.1, 3.2 and 3.3 respectively. In Section 3.4 these notions are applied in the context
of the stochastic processes defined in the previous section. Attention is drawn in partic-
ular to the mutual information of past and future of the output process y.
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3.1 Principal Angles and Directions

The principal angles between two subspaces [21] are a generalization of the angle be-
tween two vectors. Suppose we are given two linear subspaces S1 and S2 of the ambient
vector space Rn of dimension d1 < n and d2 < n, respectively. A natural extension
of the one-dimensional case is to choose a unit vector u1 from S1 and a unit vector v1
from S2 such that the angle between u1 and v1 is minimized. The vectors u1 and v1 so
obtained, are called the first principal directions and the angle between them is the first
principal angle θ1. Next, choose a unit vector u2 ∈ S1 orthogonal to u1 and v2 ∈ S2
orthogonal to v1 such that the angle θ2 between them is minimized. This is the second
principal angle and u2 and v2 are the corresponding principal directions. Continue in
this way until min(d1, d2) angles and corresponding principal vectors have been found.
This informal description is now formalized.

Definition 1. Principal angles and directions
The principal angles 0 ≤ θ1 ≤ θ2 ≤ . . . θmin(d1,d2) ≤ π/2 between the subspaces S1
and S2 of the ambient space Rn of dimension d1 and d2, respectively, and the corre-
sponding principal directions ui ∈ S1 and vi ∈ S2 are defined recursively as

cos θ1 = max
u∈ S1
v∈ S2

u�v = u�
1 v1 ,

cos θk = max
u∈ S1
v∈ S2

u�v = u�
k vk , for k = 2, . . . ,min(d1, d2) ,

subject to ‖u‖ = ‖v‖ = 1 and for k > 1: u�ui = 0 and v�vi = 0, where i =
1, . . . , k − 1.

Let A ∈ Rp×n be of rank d1 and B ∈ Rq×n of rank d2. Then, the ordered set of
min(d1, d2) principal angles between the row spaces of A and B is denoted by(

θ1, θ2, . . . , θmin(d1,d2)
)

= [A � B] .

In case A and B are of full row rank with p ≤ q, the squared cosines of the principal
angles between row(A) and row(B) are equal to the eigenvalues of (AA�)−1AB�

(BB�)−1BA�:

cos2 [A � B] = λ
(
(AA�)−1AB�(BB�)−1BA�)

. (10)

3.2 Canonical Correlations

In canonical correlation analysis [16] the interrelation of two sets of random variables
is studied. It is the statistical interpretation of the geometric tool of principal angles
between and principal directions in linear subspaces. The aim is to find two bases of
random variables, one in each set, that are internally uncorrelated but that have maximal
correlations between the two sets. The resulting basis variables are called the canonical
variates and the correlation coefficients between the canonical variates are the canonical
correlations.
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Let V be a zero-mean p-component and W a zero-mean q-component real random

variable with joint covariance matrixQ = E
{(
V
W

)(
V � W�)}

=
(
Qv Qvw

Qwv Qw

)
. In

case Qv andQw are full rank matrices, and p ≤ q, the p squared canonical correlations
of V and W , which we denote by cc2(V,W ), can be obtained as the eigenvalues of
Q−1
v QvwQ

−1
w Qwv:

cc2(V,W ) = λ(Q−1
v QvwQ

−1
w Qwv) . (11)

3.3 Mutual Information

Let V be a zero-mean p-component andW a zero-mean q-component random variable.
If V and W are mutually dependent, then observing W reduces the uncertainty (or
entropy) in V . Otherwise formulated, we gain information about V by observing W .
Thus, the variableW must contain information about V . For the same reason V must
also contain information about W . Both amounts of information are equal and are
quantified as the mutual information of V andW , denoted by I(V ;W ).

Definition 2. The mutual information of two continuous random variables [7]
Let V and W be random variables with joint probability density function f(v, w) and
marginal densities fV (v) and fW (w), respectively. Then, the mutual information of V
andW is defined as

I(V ;W ) =
∫∫

f(v, w) log
f(v, w)

fV (v)fW (w)
dv dw ,

if the integral exists.

In case of two zero-mean jointly Gaussian random variables and denoting the covari-

ance matrix of

(
V
W

)
by Q =

(
Qv Qvw

Qwv Qw

)
, this expression can be rewritten as

I(V ;W ) = −1
2

log
detQ

detQv detQw
,

under the assumption that Qv and Qw are of full rank. In this case I(V ;W ) is
also related to the canonical correlations of V and W , here denoted by σk (k =
1, . . . ,min(p, q)), as can be derived using equation (11):

I(V ;W ) = −1
2

log
min(p,q)∏
k=1

(1− σ2
k) . (12)

3.4 Application to Stochastic Processes

In this section we apply the notions defined in the previous sections to the stochas-
tic processes yp, yf , up and uf . A stochastic process, e.g. {y(k)}k∈Z, can be seen as
an infinite-dimensional random variable consisting of the (ordered) concatenation of the
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random variables . . . , y(−2), y(−1), y(0), y(1), . . . We can thus associate with the
process y the random variable

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
y(−2)
y(−1)
y(0)
y(1)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Yp
Yf

)
,

Yp and Yf being associated with the processes yp and yf , and analogously U , Up and
Uf for the processes u, up and uf . This way we can compute the canonical correlations
and the mutual information for any pair of these processes.

Canonical Correlations
Since we are dealing with stationary and ergodic zero-mean processes, it is readily seen
from equations (10) and (11) that the canonical correlations between any two of the pro-
cesses u, up, uf , y, yp and yf are equal to the cosines of the principal angles between
the row spaces of the corresponding block Hankel matrices defined in (9), e.g.:

cc(Uf ,Yf ) = cos ([Uf � Yf ]) . (13)

In [8, Chap. 3] the canonical correlations of each pair of these processes were computed.
Formulas were derived for the canonical correlations between the past and future output
process:

cc2(Yp,Yf ) = λ
(
P (Q−1

z + P )−1) , 0, 0, . . . ,
as well as for the canonical correlations between uf and yf :

cc2(Uf ,Yf ) = λ
(
(In +QzP )−1) , 1, 1, . . . ,

where P and Qz each follow from a Lyapunov equation (see (3)-(5)). We denote the
non-trivial correlations of yp and yf by ρk, and those of uf and yf by τk, as follows:

ρ2k = λ
(
P (Q−1

z + P )−1
)

(k = 1, . . . , n) ,
τ2k = λ

(
(In +QzP )−1

)
(k = 1, . . . , n) .

(14)

It can be shown that ρ2k + τ2k = 1, for k = 1, . . . , n. These results together with the
canonical correlations of the other pairs of processes are summarized in Table 1.

Mutual Information of Past and Future of a Process
Using the relation (12) for Gaussian processes, we can compute from Table 1 the mu-
tual information of each pair of processes. A pair of processes that has at least one
canonical correlation equal to 1 does not have a finite amount of mutual information.
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Table 1. Overview of the canonical correlations of each pair of processes, where k goes from 1
to n

Up Yp Uf Yf

Up 1, 1, . . . 1, 1, . . . 0, 0, . . . ρk, 0, 0, . . .

Yp 1, 1, . . . 1, 1, . . . 0, 0, . . . ρk, 0, 0, . . .

Uf 0, 0, . . . 0, 0, . . . 1, 1, . . .
√

1 − ρ2
k, 1, 1, . . .

Yf ρk, 0, 0, . . . ρk, 0, 0, . . .
√

1 − ρ2
k, 1, 1, . . . 1, 1, . . .

Looking at relation (13) between canonical correlations and principal angles we can
say that these processes intersect, since they have a principal angle equal to zero. Con-
versely, processes that are orthogonal to each other (all canonical correlations equal to
0 or all principal angles equal to π/2) have mutual information equal to zero. This
is for instance the case for up and uf , past and future of the white noise process u.
However, processing this white noise u through the filter h(z) (in general) introduces a
time correlation in the resulting process y, which appears as a certain amount of mutual
information between its past yp and future yf , denoted interchangeably by Ipf , Ipf{y}
or Ipf{h(z)}:

Ipf = I(yp; yf) = −1
2

log
n∏

k=1

(1− ρ2k) = −1
2

log
n∏

k=1

τ2k =
1
2

log det (In +QzP ) .

(15)
Note that ρk, τk (k = 1, . . . , n) and consequently also Ipf are unique for a given sto-
chastic process, since P and Qz do not change when h(z) is right-multiplied by a
unitary matrix, and a similarity transformation of the state space model does not al-
ter the eigenvalues of the product QzP . So if we write Ipf {h(z)} or ρk {h(z)}, this
must not be understood as a characteristic of the transfer function h(z) but rather as a
characteristic of the process y with spectral density Φ(z) = h(z)h�(z−1).

Properties of Ipf

The mutual information Ipf of past and future of a stochastic process y is the amount
of information that the past provides about the future and vice versa. Through (15)
it is closely connected to the canonical correlations of yp and yf . The problem of
characterizing this dependence of past and future of a stationary process has received a
great deal of attention because of its implications for the prediction theory of Gaussian
processes (see [17, 19, 20]). Inspired by the use of canonical correlation analysis in
stochastic realization theory [1], a stochastic model reduction technique based on the
mutual information of the past and the future has been proposed by Desai and Pal [10],
which is also used in stochastic subspace identification [27, 34]. Li and Xie used the
past-future mutual information for model selection and order determination problems
in [26]. We now state some of the properties of Ipf .
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(a) Ipf = 0 ⇔ h(z) = D (see (1))

Since y is Gaussian, Ipf = 0 is equivalent with yp and yf being uncorrelated, thus
Λ(s) = 0p for s 	= 0. From stochastic realization theory then follows that h(z) has
order zero.

(b) Ipf ∈ [0,+∞)

This follows from relation (15) and the fact that ρk ∈ [0, 1). Indeed, in [15] it is
shown that the number of unit canonical correlations of yp and yf is equal to the
number of zeros of h(z) on the unit circle. Since h(z) is assumed to be minimum-
phase (see Section 2), this number is zero.

(c) Ipf (strictly) increases with each increase of a canonical correlation ρk (k =
1, . . . , n).

This follows immediately from relation (15) and property (b).

(d) Ipf{h(z)} = Ipf{Th(z)} for a nonsingular constant matrix T ∈ Rp×p.

This follows from the definition of canonical correlations or principal angles, since
left-multiplying the output variables y(k) (k ∈ Z) with T does not change the row
spaces of Yp and Yf . Consequently, the canonical correlations ρk and the mutual
information Ipf do not change.

(e) Ipf{h(z)} = Ipf{h−�(z)}
Equation (14) shows that the past-future canonical correlations ρk (k = 1, . . . , n)
only depend on the eigenvalues of the product matrix QzP . Noting that the state
space description of the transpose of the inverse model is given by h−�(z) =
(A�

z , C
�
z , B

�
z , D

�
z ), it can be seen from (3) that the controllability Gramian of

h−�(z) is given by Qz , while the observability Gramian of its inverse model
h�(z) = (A�, C�, B�, D�) is equal to P . Consequently, the canonical correla-
tions ρk and the mutual information Ipf are equal for the transfer functions h(z) and
h−�(z). This invariance property does not, in general, hold for h(z) and h−1(z)
since the eigenvalues of QzP are usually not equal to those of QPz .

(f) For Φ(z) =
(
Φ1(z) 0p1×p2
0p2×p1 Φ2(z)

)
, it holds that Ipf{y} = Ipf{y1}+ Ipf{y2}.

In this case the p1-variate process y1 and the p2-variate process y2, constituting
the process y, are completely uncorrelated. Therefore, the canonical correlations
of yp and yf are on the one hand the canonical correlations between y1p and y1f

,
and on the other hand the canonical correlations between y2p and y2f

: ρk{y} (k =
1, . . . , n1+n2) is the union of ρk{y1} (k = 1, . . . , n1) and ρk{y2} (k = 1, . . . , n2),
with n1 and n2 the orders of the processes y1 and y2. The result then follows from
relation (15).

Properties (a)-(c) indicate that Ipf measures the amount of correlation that exists be-
tween yp and yf , being zero for a white noise process and increasing with each increase
of a correlation ρk between yp and yf . This suggests that Ipf can be used as a measure
for the amount of dynamics in the process y where dynamics are defined in terms of the
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correlation or the dependence that exists between all future values and all past values of
the process at any time instant.

4 A Distance Between Multivariate Gaussian Processes

In this section we define a new distance between multivariate Gaussian processes based
on the notion of mutual information. In Section 4.1 the distance is defined and its metric
properties are investigated, while in Section 4.2 we show a way to compute the distance.

4.1 Definition and Metric Properties

We propose as a new distance on the set of multivariate Gaussian processes: the mutual
information distance, denoted by dmi(y1, y2).

Definition 3. The mutual information distance between two Gaussian processes
The mutual information distance between two Gaussian linear stochastic processes y1
and y2 with transfer function descriptions h1(z) and h2(z) is denoted by dmi(y1, y2)
and is defined as

d2
mi(y1, y2) = Ipf {h12(z)} , with h12(z) =

(
h−1

1 (z)h2(z) 0p
0p h−1

2 (z)h1(z)

)
.

The first thing to note is that the mutual information distance dmi(y1, y2) is a property
of the processes y1 and y2, and not of the particular transfer functions h1(z) and h2(z).
Indeed, substituting {h1(z), h2(z)} by the equivalent {h1(z)V1, h2(z)V2} with V1, V2
constant unitary matrices (see (8)), corresponds to left- and right-multiplying h12(z)
by a constant unitary matrix. This has no influence on Ipf {h12} (see property (d) in
Section 3.4).

Following the discussion at the end of Section 3.4, dmi(y1, y2) can be interpreted as
a measure for the amount of dynamics in the process y12 associated with the transfer
function h12(z). It is clear that dmi{y1, y1} = 0 since h12(z) is in that case a constant
matrix and y12 is consequently white noise. This also clarifies why the ‘ratio’ of h1(z)
and h2(z) is found in h12(z), instead of for instance the difference. From Definition 3 it
is also immediately seen that dmi(y1, y2) = dmi(g(z)y1, g(z)y2) for arbitrary transfer
functions g(z) satisfying the conditions stated in Section 2 (e.g. being square, stable
and minimum-phase). Filtering the processes y1 and y2 by a common filter g(z) does
not change their mutual information distance.

The following properties hold for the mutual information distance:

1. dmi(y1, y2) ≥ 0
2. dmi(y1, y2) = 0 ⇔ h2(z) = h1(z)T with T a constant square nonsingular matrix.

This follows from property (a) in Section 3.4.
3. dmi(y1, y2) = dmi(y2, y1) is symmetric.

This follows immediately from Definition 3.
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Examples have shown that dmi(y1, y2) does not in general satisfy the triangle
inequality1. The distance thus satisfies only two of the four properties of a true metric
(non-negativity and symmetry). However, if we define a set of equivalence classes of
stochastic processes, where two processes with transfer functions h1(z) and h2(z) are
equivalent if and only if there exists a constant square nonsingular matrix T such that
h2(z) = h1(z)T , then the mutual information distance dmi(y1, y2) defined on this set
of equivalence classes, satisfies all metric properties but the triangle inequality. It is
then called a semimetric.

4.2 Computation

From property (f) in Section 3.4 it follows that

d2
mi(y1, y2) = Ipf

{
h−1

1 (z)h2(z)
}

+ Ipf
{
h−1

2 (z)h1(z)
}
. (16)

Using this property we now show a way to compute dmi(y1, y2) making use of the
state space descriptions of h1(z) and h2(z) of orders n1 and n2 respectively. Equa-
tions (15) and (16) show that we need to compute the controllability and observability
Gramians of both h−1

1 (z)h2(z) and h−1
2 (z)h1(z). This can be easily done by solving

the Lyapunov equations (3) from the state space descriptions of both transfer functions.
As an example we give a possible state space description of h−1

1 (z)h2(z) denoted by
(A12, B12, C12, D12):

A12 =

(
A2 0n2×n1

Bz1C2 Az1

)
, B12 =

(
B2

Bz1D2

)
, C12 =

(
Dz1C2 Cz1

)
, D12 = Dz1D2 ,

with (Az1 , Bz1 , Cz1 , Dz1) = (A1 − B1D
−1
1 C1, B1D

−1
1 ,−D−1

1 C1, D
−1
1 ). The pro-

cedure concerning h−1
2 (z)h1(z) is analogous. Afterwards it remains to compute (16)

using (15) and (3).

5 Special Case of Scalar Processes

The only relation in Figure 1 that holds for both scalar and multivariate Gaussian
processes is the one between the mutual information distance and the past-future ca-
nonical correlations, which can be seen in (15). In the case of scalar processes
y1 and y2 it follows from property (e) in Section 3.4 that (16) can be rewritten as

d2
mi(y1, y2) = 2Ipf

{
h1(z)
h2(z)

}
= 2Ipf

{
h2(z)
h1(z)

}
. In this case the mutual information

distance is also related to so-called subspace angles between stochastic processes and
to a cepstral distance, as was mentioned in the introduction (see Figure 1). We will
shortly recall these two results in Sections 5.1 and 5.2. Based on these relations, sev-
eral additional expressions for dmi(y1, y2) can be derived for the scalar case. For more
details on this we refer to [8, Chap. 6].

1 In the case of scalar processes or processes with diagonal spectral density function Φ(z),
however, it can be shown that the triangle inequality is satisfied (see Sections 5.2 and 6.1
respectively).
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5.1 Relation with Subspace Angles Between Scalar Stochastic Processes

Consider the situation in Figure 2 where the single-input single-output models h1(z)
of order n1 and h2(z) of order n2 are driven by a common white noise source
{u(k)}k∈Z ∈ R. It can be shown that in this case only n1 + n2 canonical correla-
tions between the future y1f

and y2f
of the processes y1 and y2 can be different from 1.

If we denote these correlations by νk (k = 1, . . . , n1 + n2), then the following relation
was proven in [8]:

d2
mi(y1, y2) = − log

n1+n2∏
k=1

ν2
k = − log

n1+n2∏
k=1

cos2 ψk , (17)

where the angles ψk (k = 1, . . . , n1 + n2) are the n1 + n2 largest principal angles
between the row spaces of the block Hankel matrices Y1f

and Y2f
. They are called

the subspace angles between h1(z) and h2(z), denoted by [h1(z) � h2(z)]. They can
be expressed as the principal angles between subspaces immediately derived from the
models:

[h1(z) � h2(z)] =

[(
C(1)

O(2)�

z

)
�

(
O(1)�

z

C(2)

)]
. (18)

u
h1(z)

h2(z)

y1

y2

Fig. 2. Setup for the definition of subspace angles between two scalar processes

5.2 Relation with a Cepstral Distance

The power cepstrum of a scalar process y is defined as the inverse Fourier transform of
the logarithm of the power spectrum of y:

logΦ(ejθ) =
+∞∑

k=−∞
c(k)e−jkθ , (19)

where c(k) is the kth cepstral coefficient of y. The sequence {c(k)}k∈Z contains the
same information as Φ(z) and thus also fully characterizes the zero-mean Gaussian
process y. The sequence is real and even, i.e. c(k) = c(−k), and can be expressed in
terms of the model parameters:

c(k) =

⎧⎪⎨⎪⎩
logD2 k = 0 ,
n∑
i=1

α
|k|
i

|k| −
n∑
i=1

β
|k|
i

|k| k 	= 0 ,
(20)
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where the poles of h(z) are denoted by α1, . . . , αn and the zeros by β1, . . . , βn. Based
on the cepstral coefficients, a weighted cepstral distance was defined in [28]:

d2
cep(y1, y2) =

+∞∑
k=0

k(c1(k)− c2(k))2 , (21)

with c1 and c2 the cepstra of the processes y1 and y2 and ‘cep’ referring to ‘cepstral’.
Based on (18), this distance dcep was proven in [8, Chap. 6] (and differently also in [20])
to be equal to the mutual information distance dmi, i.e.:

dmi(y1, y2) = dcep(y1, y2) . (22)

This obviously proves that dmi for scalar processes satisfies the triangle inequality. Re-
ferring to the discussion in Section 4.1 we can thus say that dmi is a true metric on the
set of equivalence classes of scalar stochastic processes, where two processes y1 and y2
are equivalent if and only if h2(z) = ah1(z) for a non-zero real number a.

6 The Cepstral Nature of the Mutual Information Distance

The equality (22) of dmi and dcep was formulated for scalar stochastic processes. In
the case of multivariate processes, one would first need a definition of the power cep-
strum of a multivariate process. No such definition is known to the authors of this paper.
Therefore, we introduce in Section 6.1 a multivariate power cepstrum and a correspond-
ing weighted cepstral distance, denoted by dcep.

Even with this new definition, the relation (22) does not hold for general multivariate
processes. However, it turnes out experimentally that dmi has a cepstral character. This
is explained in Section 6.2.

6.1 Multivariate Power Cepstrum and Cepstral Distance

No definition of the power cepstrum of a multivariate process y is known to the authors
of this paper. Therefore, in analogy with (19), we propose to define the power cepstrum
of a multivariate process y as the inverse Fourier transform of the matrix logarithm of
the power spectrum of y:

logΦ(ejθ) =
+∞∑

k=−∞
c(k)e−jkθ , (23)

where c(k) ∈ Rp×p is the kth cepstral coefficient matrix of y. The sequence {c(k)}k∈Z

is real and even, and again contains the same information as Φ(z) and thus also fully
characterizes the zero-mean Gaussian process y. However, no analytical expressions as
in (20) are known to us for these multivariate cepstral coefficients, although in principle
they could be calculated from the state space description (8) of Φ(z) by expanding the
Laurent series of logΦ(z) around the origin.
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We now define in analogy with (21) a multivariate weighted cepstral distance as

d2
cep(y1, y2) =

+∞∑
k=0
k‖c1(k)− c2(k)‖2

F , (24)

with c1 and c2 the cepstra of the multivariate processes y1 and y2, and ‖ · ‖F the Frobe-
nius norm of a matrix. For scalar processes this distance coincides with the previ-
ously defined distance (21). No relation with the mutual information distance as in (22)
for scalar processes holds for multivariate processes, except for diagonal Φ1(z), Φ2(z)
where it is easily shown that

d2
mi(y1, y2) =

p∑
i=1

d2
mi(y1,i, y2,i) =

p∑
i=1

d2
cep(y1,i, y2,i) = d2

cep(y1, y2) ,

with y1,i (i = 1, . . . , p) the uncorrelated scalar processes constituting y1, and analo-
gously for y2,i (i = 1, . . . , p). The first equality follows from Definition 3 and property
(f) in Section 3.4. The second equality follows from relation (22) for scalar processes.

The distance (24) can be computed based on the model descriptions of the processes
y1 and y2. These allow to compute exact values of logΦ(ejθ) where θ varies over a
discretization of the interval [0, 2π]. After applying the inverse fast Fourier transform
(IFFT) to obtain estimates of the cepstral coefficients, one can further approximate (24)
by replacing +∞ in the formula by a finite L.

6.2 The Cepstral Nature of the Mutual Information Distance

For scalar processes, several simulation experiments were performed in [5] in order
to compare the behavior of the cepstral distance dcep, which is equal to dmi because
of (22), with the behavior of the H2 distance, denoted by dh2 :

d2
h2

(h1(z), h2(z)) = ‖h1(z)− h2(z)‖2
h2

=
1
2π

∫ 2π

0
‖h1(ejθ)− h2(ejθ)‖2

Fdθ . (25)

In order to make dh2 a distance between processes instead of between transfer functions,
we agree to fix the transfer function description of a stochastic process. We always
choose the D-matrix of a model (1) or (6) to be Dchol, the unique Cholesky factor of
DD�, which is invariant for a given stochastic process.

In this section we focus on two aspects that showed in the scalar case a difference in
behavior between the cepstral distance and the H2 distance:

1. The influence of poles of h1(z) and h2(z) approaching the unit circle.
2. The influence of poles of h2(z) approaching the unit circle (with fixed zeros), com-

pared to the influence of zeros of h2(z) approaching the unit circle (with fixed
poles). Poles and zeros of h1(z) are kept fixed.

In order to understand why we choose these two experimental settings, one should
notice an important difference between dh2 in (25) and dcep in (21) and (24), namely the
presence of the logarithm of the power spectrum in the definition of the cepstrum (19)
and (23). For the scalar case this has the following consequences:
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1. High peaks in the spectrum of hi(z) (corresponding to poles close to the unit circle)
have a greater influence on dh2(h1, h2) than on dcep(h1, h2).

2. Deep valleys in the spectrum of hi(z) (corresponding to zeros close to the unit
circle) have a greater influence on dcep(h1, h2) than on dh2(h1, h2).

It can be shown that cepstral distances in the scalar case are equally dependent on the
poles and zeros of hi(z): the distance between two models is equal to the distance be-
tween the inverses of the two models. The distance dh2 , on the other hand, is much less
sensitive to the depth of a valley than to the height of a peak in the spectrum of hi(z).

It turns out that, in the multivariate case, the mutual information distance dmi and the
cepstral distance dcep have several characteristics in common, whereas the H2 distance
dh2 behaves very differently:

1. The distance dh2(h1, h2) grows much faster than dcep(h1, h2) and dmi(h1, h2) as
the poles of h1(z) and h2(z) approach the unit circle. This means that dh2 is more
sensitive to high peaks in the spectrum of hi(z) than dcep and dmi. The distances
dcep and dmi evolve quite similarly to each other.

2. The distance dh2(h1, h2) grows much faster in case h2(z) has fixed zeros but poles
approaching the unit circle, than in case h2(z) has fixed poles but zeros approaching
the unit circle. For both the distances dcep(h1, h2) and dmi(h1, h2), on the other
hand, the evolution of the distance in case of poles approaching the unit circle is
very similar to the evolution in case of zeros approaching the unit circle. This
means that dh2 is much more sensitive to high peaks than to deep valleys in the
spectrum of hi(z), whereas dcep and dmi are more or less equally sensitive. The
distances dcep and dmi also evolved quite similarly to each other.

With these conclusions we do not claim that one of the distances is better than the
others. We only wish to point out some differences between them. On the basis of these
differences one can choose which distance to use in a specific application.

7 Conclusions and Open Problems

7.1 Conclusions

In this paper we defined the mutual information distance on the set of multivariate Gaus-
sian linear stochastic processes, based on the notion of mutual information of past and
future of a stochastic process and inspired by the various properties of this notion. We
demonstrated how it can be computed from the state space description of the processes
and showed that it is a semimetric on a set of equivalence classes of stochastic processes.
For two special classes of stochastic processes, namely scalar processes and processes
with diagonal spectral density function, a link exists between the mutual information
distance and a previously defined scalar cepstral distance.

The mutual information distance shows a behavior similar to an ad hoc defined mul-
tivariate cepstral distance and dissimilar from the H2 distance: it does not inflate when
poles of the models are approaching the unit circle and it is more sensitive to differences
in zeros than the H2 distance.
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7.2 Open Problems

In this paper a possible extension for multivariate processes was considered of the the-
ory for scalar processes described in Section 5 and Figure 1. The proposed Definition 3
of a multivariate distance however only involves the notion of mutual information and
not the notions of subspace angles or cepstral distances between stochastic processes.
Thus there remain quite some challenges and issues to be investigated concerning a
comparable theory for multivariate stochastic processes.

Furthermore, it would be nice to have more rigorous evidence for the conclusions
drawn in Section 6.2.

Multivariate Power Cepstrum and Cepstral Distance
No definition of the power cepstrum of a multivariate process is known to the authors
of this paper. Therefore, we introduced an ad hoc definition (23) in Section 6.1. For
these cepstral coefficients, however, no analytical expressions are known comparable to
e.g. (20) for the scalar coefficients. This topic needs further investigation.

Based on the definition of a multivariate power cepstrum one can define distances
in the cepstral domain. In this paper one possible approach was considered in (24) in
analogy with (21). But this is clearly not the only possibility.

Subspace Angles Between Multivariate Stochastic Processes
The definition of subspace angles between scalar stochastic processes based on Fig-
ure 2 is not readily extendable to multivariate processes. The non-uniqueness of the
transfer function description of a multivariate process (see the discussion below (8))
also causes non-uniqueness in the definition of the subspace angles between two multi-
variate processes. Further investigation is necessary to find a good way to circumvent
this problem.

Relations Between System Theory, Information Theory and Signal Processing
Looking at Figure 1 for scalar processes, it is very tempting to look for similar rela-
tions in the case of multivariate processes. The two previous topics described the lack
of a definition of subspace angles and cepstral distances between multivariate proces-
ses. A possible guideline in the search for these definitions could be the attempt to
establish a relation with the distance dmi similar to (17) and (22) for scalar stochastic
processes. Alternatively, the search for definitions of subspace angles and cepstral dis-
tances between multivariate processes could also be guided by the search for a direct
link between both, not necessarily through dmi.
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3:103–174, 1875.

22. Y. Kakizawa, R. H. Shumway, and M. Taniguchi. Discrimination and clustering for multi-
variate time series. Journal of the American Statistical Association, 93:328–340, 1998.

23. K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of
ARIMA time-series. In Proceedings of the 2001 IEEE International Conference on Data
Mining (ICDM’01), pages 273–280, San Jose, CA, November-December 2001.

24. T. Katayama and G. Picci. Realization of stochastic systems with exogenous inputs and
subspace identification methods. Automatica, 35(10):1635–1652, 1999.



A Mutual Information Based Distance for Multivariate Gaussian Processes 33

25. D. Kazakos and P. Papantoni-Kazakos. Spectral distance measures between Gaussian pro-
cesses. IEEE Transactions on Automatic Control, 25(5):950–959, 1980.

26. L. Li and Z. Xie. Model selection and order determination for time series by information
between the past and the future. Journal of time series analysis, 17(1):65–84, 1996.

27. A. Lindquist and G. Picci. Canonical correlation analysis, approximate covariance extension,
and identification of stationary time series. Automatica, 32(5):709–733, 1996.

28. R. J. Martin. A metric for ARMA processes. IEEE Transactions on Signal Processing,
48(4):1164–1170, April 2000.

29. M. S. Pinsker. Information and Information Stability of Random Variables and Processes.
Holden–Day, San Francisco, 1964. Originally published in Russian in 1960.

30. F. C. Schweppe. On the Bhattacharyya distance and the divergence between Gaussian pro-
cesses. Information and Control, 11(4):373–395, 1967.

31. F. C. Schweppe. State space evaluation of the Bhattacharyya distance between two Gaussian
processes. Information and Control, 11(3):352–372, 1967.

32. R. H. Shumway and A. N. Unger. Linear discriminant functions for stationary time series.
Journal of the American Statistical Association, 69:948–956, December 1974.

33. P. Van Overschee and B. De Moor. Subspace algorithms for the stochastic identification
problem. Automatica, 29:649–660, 1993.

34. P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: Theory –
Implementation – Applications. Kluwer Academic Publishers, Boston, 1996.




