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Abstract

In this paper, we study the structured nonnegative matrix factorization problem: given a square, nonneg-
ative matrix P , decompose it as P = V AV� with V and A nonnegative matrices and with the dimension of
A as small as possible. We propose an iterative approach that minimizes the Kullback–Leibler divergence
between P and V AV� subject to the nonnegativity constraints on A and V with the dimension of A given.
The approximate structured decomposition P � V AV� is closely related to the approximate symmetric
decomposition P � V V�. It is shown that the approach for finding an approximate structured decompo-
sition can be adapted to solve the symmetric decomposition problem approximately. Finally, we apply the
nonnegative decomposition V AV� to the hidden Markov realization problem and to the clustering of data
vectors based on their distance matrix.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The nonnegative matrix factorization problem is a long-standing problem in linear algebra.
It consists of decomposing a given (elementwise) nonnegative matrix M into a product V H of
minimal inner dimension with V and H nonnegative. It can be shown that there exists a finite
algorithm to compute the minimal inner dimension of an exact decomposition. However, the
complexity bounds on the number of arithmetic/boolean operations that this algorithm requires,
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are non-polynomial. In [8] the approximate nonnegative matrix factorization problem has been
introduced. The idea is to choose an inner dimension and compute a factorization V H which
approximates M optimally. In [7,8] iterative update formulas for V and H are given that retain
the nonnegativity of V and H and that decrease the Kullback–Leibler divergence between P

and V H . In addition it is shown that, if the algorithm converges, it converges to a stationary
point of the Kullback–Leibler divergence between P and V H . Convergence to a minimum is not
guaranteed, as the algorithm may also converge to a saddle point. During recent years, further
theoretic research [3,5] on the nonnegative factorization has been performed and the factorization
started to be used in various engineering applications (image processing, text mining, etc.) [2,9].

In this paper, we introduce the approximate structured nonnegative matrix factorization. It
consists of approximating a square, nonnegative matrix P into a product V AV � with V and A

nonnegative. Following the approach of [6], we prove that an optimal approximation V AV � of
P in the Kullback–Leibler divergence has the same element sum as P . This theorem allows us to
search for an optimal decomposition in the space of column stochastic matrices V and matrices
A with the same sum as the matrix P . As a consequence of this fact, we are able to prove update
formulas for the decomposition P � V AV �. When P is symmetric, we propose an adapted
algorithm with A symmetric. We also propose iterative formulas to decompose a nonnegative,
symmetric matrix P into a product V V �. It will also be shown that the structured decomposition
can be used in several engineering applications, such as the hidden Markov realization problem
and clustering.

In Section 2, we review the classical nonnegative matrix factorization problem and its approx-
imate solution by means of iterative update formulas. In Section 3, we state the structured non-
negative matrix factorization problem and propose iterative update formulas to solve this problem
approximately. Section 4 deals with the symmetric matrix factorization. In Section 5, we use the
factorization to find an approximate hidden Markov model corresponding to given probabilities
of output strings of length 2 (i.e. the hidden Markov realization problem for strings of length 2).
In Section 6, we show that the factorization can be used for clustering data points based on the
distance matrix between the points.

The following notation is used. R+ is the set of nonnegative real numbers. If X is a matrix,
then we mean with Xij the i, j th element of X, with Xi:, the ith row of X and with X:j , the j th
column of X. X � 0 denotes that the elements of X are nonnegative. With e we indicate a column
vector with all elements equal to 1, i.e. e = [1 1 · · · 1]�.

2. Classical nonnegative matrix factorization

The nonnegative matrix factorization problem can be stated as follows: given a matrix M ∈
R

m1×m2+ , find a decomposition M = V H with V ∈ R
m1×a
+ and H ∈ R

a×m2+ , and with a as small
as possible. The minimal inner dimension a for which a decomposition exists is called the positive
rank (p�rank) of M . There exist matrices with only trivial minimal decompositions M = IM and
M = MI . In [11] these matrices are called prime. It is clear that 0 � rank(V ) � p�rank(V ) �
min{m1, m2}. There exists a finite algorithm to compute the minimal inner dimension of an exact
decomposition. However, the complexity bounds on the number of arithmetic/boolean operations
that this algorithm requires, are non-polynomial. Recently, the approximate nonnegative matrix
factorization problem was introduced in [8]. The idea is that one chooses the inner dimension a

and looks for matrices V and H such that V H approximates P optimally in a certain distance
measure. The Kullback–Leibler divergence is a popular such measure. The Kullback–Leibler
divergence between two nonnegative matrices of the same size is defined as
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D(A‖B) =
∑
ij

(
Aij log

Aij

Bij

− Aij + Bij

)
.

The nonnegative matrix factorization problem can now be stated as

Problem 1. Given M ∈ R
m1×m2+ and given a, minimize D(M‖V H) with respect to V (of size

m1 × a) and H (of size a ×m2), subject to the constraints V, H � 0.

Lee and Sueng propose iterative update formulas to solve Problem 1 and prove interesting
properties of the formulas.

Theorem 1 [7,8]. The divergence D(M‖V H) is nonincreasing under the update rules

Hi,l ← Hi,l

∑
μ Vμi

Mμl

(V H)μl∑
μ Vμi

, Vk,i ← Vk,i

∑
ν Hiν

Mkν

(V H)kν∑
ν Hiν

.

The divergence is invariant under these updates if and only if V and H are in a stationary point
of the divergence.

The theorem says that fixed points of the update formulas are stationary points of the cost
function D(M‖V H). However, the theorem does not imply convergence of the update formulas.
As the initial values for V and H have to be chosen nonnegative, the obtained matrices V and H

are nonnegative.

3. Structured nonnegative matrix factorization

The structured nonnegative matrix factorization studied in this paper may be stated as follows:
given a square matrix P ∈ R

p×p
+ , find a decomposition P = V AV � with V ∈ R

p×a
+ , A ∈ Ra×a+ ,

and with a as small as possible. We define the structured positive rank (sp�rank) of a square matrix
P , to be the minimal dimension a for which a decomposition P = V AV � exists. It is intuitively
clear that 0 � rank(P ) � p�rank(P ) � sp�rank(P ) � p. Again, it can be shown that there exists
a finite algorithm to compute the minimal inner dimension of an exact decomposition. However,
the complexity bounds on the number of arithmetic/boolean operations that this algorithm requires,
are non-polynomial.

Problem 2. Given P ∈ R
p×p
+ and given a, minimize D(P ‖V AV �) with respect to V (of size

p × a) and A (of size a × a), subject to the constraints V, A � 0.

The partial derivatives of F(A, V ) = D(P ‖V AV �) with respect to the elements Ai,j and Vk,i

of the matrices A and V can be calculated as

�F

�Aij

(A, V )= −
∑
μν

VμiVνj

Pμν

(V AV �)μν

+
∑
μν

VμiVνj , (1)

�F

�Vki

(A, V )= −
∑
λν

VνλAiλ

Pkν

(V AV �)kν

−
∑
λν

VνλAλi

Pνk

(V AV �)νk

+
∑
λν

VνλAiλ +
∑
λν

VνλAλi. (2)



1412 B. Vanluyten et al. / Linear Algebra and its Applications 429 (2008) 1409–1424

The Karush–Kuhn–Tucker optimality conditions are

Vk,i � 0, Ai,j � 0, (3)

�F

�Aij

(A, V ) � 0,
�F

�Vki

(A, V ) � 0, (4)

Aij

�F

�Aij

(A, V ) = 0, Vki

�F

�Vki

(A, V ) = 0 (5)

for i = 1, 2, . . . , a, j = 1, 2, . . . , a, and k = 1, 2, . . . , p.
Now following the approach of [6], we obtain the following theorem.

Theorem 2. Let P ∈ Rp×p. Every stationary point (A, V ) of the cost function D(P ‖V AV �)

preserves the mean of the row and column sum of P, i.e.∑
l Pkl + Plk

2
=
∑

l (V AV �)kl + (V AV �)lk

2
, k = 1, 2, . . . , p. (6)

As a consequence the element sum of P is also preserved, i.e.∑
kl

Pkl =
∑
kl

(V AV �)kl . (7)

Proof. Eq. (5) gives, for k = 1, 2, . . . , p and i = 1, 2, . . . , a

Vki

�F

�Vki

(A, V ) = 0.

From Eq. (2), we obtain

Vki

(∑
λν

VνλAiλ

Pkν

(V AV �)kν

+ VνλAλi

Pνk

(V AV �)νk

)
= Vki

(∑
λν

VνλAiλ + VνλAλi

)
.

(8)

The sum over i of the left-hand side of Eq. (8) gives∑
i

Vki

(∑
λν

VνλAiλ

Pkν

(V AV �)kν

+ VνλAλi

Pνk

(V AV �)νk

)

=
∑
ν

(V AV �)kν

Pkν

(V AV �)kν

+ (V AV �)νk

Pνk

(V AV �)νk

=
∑
ν

Pkν + Pνk.

On the other hand the sum over i of the right-hand side of Eq. (8) gives

∑
i

Vki

(∑
λν

VνλAiλ + VνλAλi

)
=
∑
ν

(V AV �)kν + (V AV �)νk.

This proves the first part of the theorem. The second part of the theorem follows by summing the
left- and right-hand side of (6) over k. �
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A point (Ã, Ṽ ) is called normalized if the matrix Ṽ is column stochastic and Ã has the same
element sum as P , i.e.

∑
ij Ãij =∑kl Pkl . As a consequence of Theorem 2, every stationary

point (A, V ) of the divergence can be written in an equivalent normalized form (Ã, Ṽ ), such that
V AV � = Ṽ ÃṼ �. The matrices Ã and Ṽ are given as function of A and V by

Ṽ = V (diag(e�V ))−1,

Ã = (diag(e�V ))A(diag(e�V )).

The fact that the matricesP and Ãhave the same element sum follows from e�Pe = e�Ṽ ÃṼ �e =
e�Ãe.

So, for a stationary point (A, V ) of the cost function D(P ‖V AV �), there exists a normalized
version (Ṽ , Ã) which gives the same approximation (and hence the same cost function value).
Therefore, when minimizing D(P ‖V AV �) over nonnegative V and A, it suffices to minimize
over nonnegative matrices V and A that are normalized. Minimizing over normalized matrices
can be done by choosing normalized initial values and by making sure that the update formulas
retain the normalization. Choosing normalized initial values is no problem, and the fact that
the proposed update formulas retain the normalization, is shown in the proof of Theorem 3.
From now on, we assume that V or A are normalized, without explicitly indicating it with a
tilde.

Theorem 3. Assume that the starting values V 0 and A0 are normalized, i.e.
∑

ij A0
ij =

∑
kl Pkl

and
∑

k V 0
k,i = 1, i = 1, 2, . . . , a. Then the divergence D(P ‖V AV �) is nonincreasing under the

update rules

Aij←Aij

∑
μν

VμiVνj

Pμν

(V AV �)μν

, (9)

Vki←Vki

∑
λν

Pkν

(V AV�)kν
AiλVνλ + Pνk

(V AV�)νk
AλiVνλ∑

λμν
Pμν

(V AV�)μν
AiλVνλVμi + Pνμ

(V AV�)νμ
AλiVνλVμi

. (10)

Proof. First note that the update rule for A retains the normalization, since∑
ij

Aij

∑
μν

VμiVνj

Pμν

(V AV �)μν

=
∑
μν

(V AV �)μν

Pμν

(V AV �)μν

=
∑
μν

Pμν.

Also the update rule for V retains the normalization, since

∑
k

Vki

∑
λν

Pkν

(V AV�)kν
AiλVνλ + Pνk

(V AV�)νk
AλiVνλ∑

λμν
Pμν

(V AV�)μν
AiλVνλVμi + Pνμ

(V AV�)νμ
AλiVνλVμi

= 1, i = 1, 2, . . . , a.

Next, we prove that the divergence D(P ‖V AV �) is nonincreasing under an update for A.
Note therefore that the cost function FA(A)

FA(A) = D(P ‖V AV �) =
∑
μν

Pμν log Pμν − Pμν + (V AV �)μν − Pμν log(V AV �)μν
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can be approximated by the auxiliary function GA(A, At )

GA(A, At )=
∑
μν

Pμν log Pμν − Pμν + (V AV �)μν

−
∑
κλ

Pμν

VμκAt
κλVνλ

(V AtV �)μν

(
log VμκAκλVνλ − log

VμκAt
κλVνλ

(V AtV �)μν

)
.

Convexity of the − log function and the fact that
∑

κλ

VμκAt
κλVνλ

(V AtV�)μν
= 1 gives GA(A, At ) �

FA(A). In addition GA(At , At ) = FA(At ), and therefore

FA(At+1) � GA(At+1, At ) = min
A

GA(A, At ) � GA(At , At ) = FA(At ).

To obtain an update formula, we put At+1 equal to the minimizer of GA(A, At ). From

�GA

�Aij

(A, At ) =
∑
μν

VμiVνk −
∑
μν

Pμν

VμiA
t
ijVνj

(V AtV �)μν

1

Aij

= 0,

we obtain

At+1
ij = At

ij

∑
μν VμiVνj

Pμν

(V AtV�)μν∑
μν VμiVνk

. (11)

Since the denominator is equal to (
∑

μ Vμi)(
∑

ν Vνk) = 1, this yields the proposed update formula
(9).

We now prove that the divergence D(P ‖V AV �) is also nonincreasing under an update for V .
In order to see this, note that the cost function FV (V )

FV (V ) = D(P ‖V AV �) =
∑
μν

Pμν log Pμν − Pμν + (V AV �)μν − Pμν log(V AV �)μν

can be approximated by the auxiliary function GV (V, V t )

GV (V, V t )=
∑
μν

Pμν log Pμν − Pμν + (V A(V t )�)μν + (V tAV �)μν − (V tA(V t )�)μν

−
∑
κλ

Pμν

V t
μκAκλV

t
νλ

(V tA(V t )�)μν

(
log VμκAκλVνλ − log

V t
μκAκλV

t
νλ

(V tA(V t )�)μν

)
,

where A will be chosen later on. At this moment it suffices to require that
∑

ij Aij =∑kl Pkl .

From the fact that
∑

k Vki =∑k V t
ki = 1 and

∑
ij Aij =∑ij Aij =∑kl Pkl , we have that∑

μν

(V AV �)μν =
∑
μν

(V A(V t )�)μν + (V tAV �)μν − (V tA(V t )�)μν.

From this, the convexity of the− log function, and the fact that
∑

κλ

V t
μκAκλV t

νλ

(V tA(V t )�)μν
= 1, we obtain

that GV (V, V t ) � FV (V ). In addition, since GV (V t , V t ) = FV (V t ) there holds

FV (V t+1) � GV (V t+1, V t ) = min
V

GV (V, V t ) � GV (V t , V t ) = FV (V t ).
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So to obtain an update formula, we put V t+1 equal to the minimizer of GV (V, V t ). From

�GV

�Vki

(V , V t )=
∑
λν

AiλV
t
νλ + AλiV

t
νλ

−Pkν

V t
kiAiλV

t
νλ

(V tA(V t )�)kν

1

Vki

− Pνk

V t
νλAλiV

t
ki

(V tA(V t )�)νk

1

Vki

= 0,

we find that

V t+1
ki = V t

ki

∑
νλ AiλV

t
νλ

Pkν

(V tA(V t )�)kν
+ AλiV

t
νλ

Pνk

(V tA(V t )�)νk∑
λν AiλV

t
νλ + AλiV

t
νλ

. (12)

One can easily see that the denominator is equal to
∑

λ Aiλ + Aλi . By taking

Aij = Aij

∑
μν

V t
μiV

t
νj

Pμν

(V tA(V t )�)μν

, (13)

we obtain the proposed update formula for V . �

We have proven that the divergence D(P ‖V AV �) is nonincreasing under the update rules
(9) and (10). We now consider the invariant points of the update formulas and investigate their
relation with the stationary points of the divergence D(P ‖V AV �).

For fixed V t = V 0, the divergence F(A, V ) = D(P ‖V AV �) is invariant under an update of
A, i.e. At+1 = At , if and only if At is a stationary point of the divergence with fixed V 0, i.e.
At

ij
�F

�Aij
(At , V 0) = 0. For fixed At = A0 on the other hand, the divergence is invariant under an

update for V , i.e. V t+1 = V t , if and only if

V t
ki

(∑
νλ

A
0
iλ + A

0
λi − A0

iλV
t
νλ

Pkν

(V tA0(V t )�)kν

− A0
λiV

t
νλ

Pνk

(V tA0(V t )�)νk

)
= 0.

Notice that this last condition is in general not equivalent to the condition that V t is a stationary
point of the divergence with fixed A0. So for the case where we take A fixed and update only V ,
it is possible that the formulas, if they converge, converge to a point that is not a stationary point
of the divergence with fixed A0.

However, if we use the update formulas for A and V alternatingly, i.e.

(A0, V 0) �→ (A1, V 0) �→ (A1, V 1) �→ (A2, V 1) �→ (A2, V 2) �→ · · · ,
we have the following result.

Theorem 4. The divergence is invariant under updates (9) and (10) if and only if (A, V ) is a
stationary point of the divergence, i.e.{

At+1 = At,

V t+1 = V t ,
⇔

{
At

ij
�F

�Aij
(At , V t ) = 0, i = 1, 2, . . . a; j = 1, 2, . . . , a,

V t
ki

�F
�Vki

(At , V t ) = 0, k = 1, 2, . . . p; i = 1, 2, . . . , a.

Proof. We first prove the⇐ part. From the fact that At
ij

�F
�Aij

(At , V t ) = 0 for i = 1, 2, . . . , a; j =
1, 2, . . . , a, it follows that for a certain i, j either At

ij = 0 or �F
�Aij

(At , V t ) = 0. In the first case,
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the updated value At+1
ij is also equal to 0 because the update is multiplicative. In the second case,

the update factor for Aij is equal to 1. So, in both cases, we have At+1
ij = At

ij . It also follows that

At+1
ij

�F
�Aij

(At+1, V t ) = 0, from which we conclude that A
t+1
ij = At+1

ij . Since V t
ki

�F
�Vki

(At , V t ) = 0

for i = 1, 2, . . . , a; j = 1, 2, . . . , a, we either have V t
ki = 0, or �F

�Vki
(At+1, V t ) = 0. In the first

case the updated value V t+1
ki is also equal to 0. In the second case, one can see from A

t+1
ij = At+1

ij

and �F
�Vki

(At+1, V t ) = 0, that the update factor for Vki is equal to 1. So in both cases we have that

V t+1
ki = V t

ki . This proves the first part of the theorem.
Next, we prove the⇒ part. From the fact that At+1 = At , we conclude that either At

ij = 0 or the

update factor for Aij is equal to 1. This implies that At
ij

�F
�Aij

(At , V t ) = 0. From At+1
ij

�F
�Aij

(At+1,

V t ) = 0, we obtain A
t+1
ij = At+1

ij . From this and V t+1 = V t , we conclude that V t
ki

�F
�Vki

(At+1,

V t ) = 0. This proves the second part of the theorem. �

It follows that if the update formulas converge, that they converge to a stationary point of the
cost function in case A and V are updated alternatingly or in case V is fixed and A is updated.
However, when A is fixed and only V is updated, it is only guarantueed that the divergence is
nonincreasing. It is possible that the formulas converge to a point that is not a stationary point of
the divergence with fixed A.

The scheme below implements the same update formulas as in Theorem 3, but is much better
from computational point of view:

Aij ← Aij

∑
μν VμiVνj

Pμν

(V AV�)μν
,

Vki ← Vki

∑
λν

Pkν

(V AV�)kν
AiλVνλ + Pνk

(V AV�)νk
AλiVνλ,

normalize V such that e�V = e�.
In case P is symmetric and V AV � is an approximation of P then one can easily see that

V AV�+(V AV�)�
2 is a better (or equally good) approximation of P . So if the matrix P is sym-

metric, we can restrict our search to symmetric approximations. On the other hand, every sym-
metric approximation V AV � can be transformed to a form where A is symmetric by taking

V (A+A�
2 )V �. So in case P is symmetric, we can restrict our search to approximations with

A = A�. This restriction is easy to fulfill in practice since the update formula for A (formula
(9)) retains the symmetry. So by starting with a symmetric A0 = (A0)�, we end up with a
symmetric A.

4. Symmetric nonnegative matrix factorization

Another decomposition of interest is the symmetric nonnegative matrix factorization. In this
problem, we are given a square, symmetric, nonnegative definite matrix P ∈ R

p×p
+ , and are

looking for a decomposition P = V V � with V ∈ R
p×a
+ . The completely positive rank (cp�rank)

[1] of the matrix P is the minimal inner dimension for which a decomposition P = V V � exists. In
contrast to the nonnegative matrix factorization and the structured nonnegative matrix factoriza-
tion, a symmetric nonnegative factorization with a finite inner dimension does not always exist.
In case the symmetric decomposition does not exist, we say that the completely positive rank
is infinite. Obviously 0 � rank(P ) � p�rank(P ) � sp�rank(P ) � cp�rank(P ). We consider the
following approximate problem.
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Problem 3. Given a symmetric matrix P ∈ R
p×p
+ and given a, minimize D(P ‖V V �) with

respect to V (of size p × a), subject to the constraint V � 0.

Analogous to the decomposition V AV �, one can prove that the row (or column) sum of P

is equal to the row (or column) sum of V V �, where V is a stationary point of the divergence
D(P |V V �). As a consequence the element sum of P is equal to the element sum of V V � with
V a stationary point of the divergence.

Theorem 5. Given a nonnegative matrix P ∈ Rp×p, then every stationary point V of the cost
function D(P ‖V V �) preserves the element sum of P, i.e.∑

kl

Pkl =
∑
kl

(V V �)kl .

As a consequence of this theorem, we see that for every stationary point V of the divergence
D(P ‖V V �), there exists a matrix Ṽ and a diagonal matrix D such that V V � = Ṽ DṼ �, where Ṽ

is row stochastic and the element sum of P equals the element sum of D, i.e.
∑

kl Pkl =∑i Dii .
Our approach for Problem 3 is to look for a decomposition P � Ṽ DṼ �, with Ṽ column

stochastic and D diagonal with sum of its elements equal to the element sum of P such that
the divergence F(D, Ṽ ) = D(P ‖Ṽ DṼ �) is minimized. This leads to updates which make the
divergence decrease, and are invariant if and only if we have reached a stationary point of the
divergence D(P ‖Ṽ DṼ �). Once an approximation P � Ṽ DṼ � has been found, we obtain a
decomposition of the form V V �, by calculating V as

V = Ṽ
√

D.

The next theorem proposes update formulas for the decomposition P = Ṽ DṼ �.

Theorem 6. Under the condition that the starting values Ṽ 0 andD0 are normalized, i.e.
∑

i D0
i,i =∑

k,l Pk,l and
∑

k Ṽ 0
k,i = 1, i = 1, 2, . . . , a, the divergence D(P ‖Ṽ DṼ �) is nonincreasing

under the update rules

Dii←Dii

∑
μν

ṼμiṼνi

Pμν

(Ṽ DṼ �)μν

, (14)

Ṽki←Ṽki

∑
ν

Pkν

(Ṽ DṼ�)kν
Dii Ṽνi + Pνk

(Ṽ DṼ�)νk
Dii Ṽνi∑

μν
Pμν

(Ṽ DṼ�)μν
Dii Ṽνi Ṽμi + Pνμ

(Ṽ DṼ�)νμ
Dii Ṽνi Ṽμi

. (15)

Proof. The proof is analogous to the proof of Theorem 3. �

If we use the update formulas for D and Ṽ alternatingly, i.e.

(D0, Ṽ 0) �→ (D1, Ṽ 0) �→ (D1, Ṽ 1) �→ (D2, Ṽ 1) �→ (D2, Ṽ 2) �→ · · · ,
we can prove the following theorem.

Theorem 7. The divergence is invariant under updates (14) and (15) if and only if (D, Ṽ ) is a
stationary point of the divergence, i.e.
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{
Dt+1 = Dt,

Ṽ t+1 = Ṽ t ,
⇔

{
Dt

ii
�F

�Dii
(Dt , Ṽ t ) = 0, i = 1, 2, . . . , a,

Ṽ t
ki

�F
�Ṽki

(Dt , Ṽ t ) = 0, k = 1, 2, . . . , p; i = 1, 2, . . . , a.

Proof. The proof is analogous to the proof of Theorem 4. �

5. Application to hidden Markov realization theory

Hidden Markov models (HMMs) are used as a modeling tool for finite valued stochastic
processes. They are used in speech processing, image processing, bioinformatics, etc. Although
HMMs were introduced in literature in 1950s, many theoretical questions remain open until now.
One of these is the realization problem, i.e. given string probabilities, find the system matrices of
the underlying HMM. In [4], it is shown that the classical nonnegative matrix factorization can be
used for realization of HMMs. In this section, we show that the (approximate) HMM realization
problem for string probabilities up to length two can be solved using the matrix decomposition
techniques of this paper.

An hidden Markov model [10] consists of a finite valued stochastic state process x and a finite
valued output process y that depends in a probabilitic manner of the state process. An hidden
Markov model is completely defined by (X, Y, �X, B, π(1)), where

• X = {1, 2, . . . , |X|} with |X| <∞ is the state alphabet, and Y with |Y| <∞ is the output
alphabet;
• π(1) is a row vector in R

|X|
+ with π(1)e = 1 and πi(1) = P(x(1) = i), the probability distri-

bution of the initial state;
• �X is a matrix in R

|X|×|X|
+ with �Xe = e and (�X)ij = P(x(t + 1) = j |x(t) = i), the prob-

ability of going from state i to state j ;
• B is a matrix in R

|X|×|Y|
+ with Be = e and Bik = P(y(t) = yk|x(t) = i), the probability of

producing output symbol k given that the present state is i, where (yk, k = 1, 2, . . . , |Y|) is
an ordering of the symbols of the set Y;

Define Y∗ as the set of strings of finite length with symbols from Y. String probabilities
P: Y∗ �→ [0, 1] are then defined as

P(u) :=P(y(1) = u1, y(2) = u2, . . . , y(|u|) = u|u|),

where u = u1u2 · · · u|u| ∈ Y∗. The matrix P is defined as the |Y| × |Y|matrix with k, lth element
P(ykyl ), whereykyl is the concatenation ofyk andyl . Notice thatP contains all string probabilities
of strings of length 2. The element sum of P is equal to 1, i.e.

∑
kl Pkl = 1.

It can be shown that P containing string probabilities of a hidden Markov model satisfy

P = B�diag(π(1))�XB. (16)

In the HMM realization problem, we are given the string probabilities of all possible finite
strings and the problem is to find a HMM with minimal state dimension that realizes P, i.e. to
find a HMM that produces exactly the given string probabilities. In this paper, we consider the
HMM realization problem for string probabilities of length two.

Because of (16), the problem of finding a HMM with given probabilities of strings of length
two, is equivalent to the problem of finding, for a given P ∈ R

|Y|×|Y|
+ with e�Pe = 1, matrices
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B ∈ R
|X|×|Y|
+ , with Be = e, and �X ∈ R

|X|×|X|
+ , with �Xe = e, and a vector π(1) ∈ R

|X|
+ with

π(1)e = 1, such that P = B�diag(π(1))�XB, where |X| is as small as possible.
In the previous sections of this paper, we developed a method to (approximately) decompose a

matrix P into a product V AV �, with V and A positive, V column stochastic and with the element
sum of A equal to the element sum of P . It is easy to see that this method allows us to solve the
realization problem approximately. Indeed, from an approximate decomposition P � V AV �,
one can find B, �X and π(1) as follows:

B = V �,

�X = (diag(Ae))−1A,

π(1) = (Ae)�.

This defines a hidden Markov realization which approximately models string probabilities up to
length two.

Consider the following simulation example. Suppose that we are given the probabilities of
strings of length two for an HMM with Y = {a, b, . . . , j}, and that we want to find the system
matrices of the underlying HMM. Suppose there is an ordering (y1 = a, y2 = b, . . . , y10 = j)

on the output set Y. Now the string probabilities can be stacked in the matrix P as described
before, i.e. Pkl = P(ykyl ).

In our simulation example P is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

396 193 149 116 113 94 98 161 128 454
182 128 87 85 77 67 70 120 84 191
150 87 69 60 58 52 53 77 63 150
111 84 60 61 55 51 52 80 57 112
112 75 58 55 51 47 48 70 54 105
92 67 50 51 46 45 45 63 47 93
97 69 52 52 47 46 46 65 49 96
149 118 78 80 72 63 65 114 78 148
126 81 64 58 55 49 51 75 60 113
488 189 152 105 100 86 90 141 111 415

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10−4.

This matrix P was generated as P = B�diag(π)�XB where B, �X and π(1) are the system
matrices of an HMM (X, Y, �X, B, π) with X = {1, 2, . . . , 5} and

�X =

⎡⎢⎢⎢⎢⎣
0.80 0.00 0.10 0.10 0.00
0.20 0.20 0.20 0.20 0.20
0.40 0.10 0.30 0.20 0.00
0.15 0.05 0.10 0.35 0.35
0.05 0.05 0.05 0.55 0.30

⎤⎥⎥⎥⎥⎦ ,

π = [0.4850 0.0375 0.1218 0.2300 0.1257
]
,

B =

⎡⎢⎢⎢⎢⎣
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.15 0.00 0.25 0.00 0.20 0.00 0.05 0.00 0.35 0.00
0.30 0.30 0.00 0.10 0.00 0.00 0.00 0.30 0.00 0.00
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55
0.70 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10

⎤⎥⎥⎥⎥⎦ .
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Table 1
Number of iterations for the multiplicative update method minimizing the Kullback–Leibler divergence

sp-Rank 1 2 3 4 5 6 7 8 9 10

Number of iterations 1 272 1439 1431 2137 3656 2157 2320 1786 1806

1 2 3 4 5 6 7 8 9 10
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Fig. 1. Kullback–Leibler divergence between the true matrix P and its optimal (w.r.t. the Kullback–Leibler divergence)
approximation of sp-rank 1, 2, . . . , 10 computed with the iterative algorithm of Theorem 3.

In the simulation example, this model is unknown, but we give it here to check the performance
of the algorithms.

We use the iterative update algorithm of Theorem 3 to compute optimal approximations with
respect to the Kullback–Leibler divergence with sp-rank equal to 1, 2, . . . , 10. As initial values for
the iterative algorithm we use randomly chosen nonnegative matrices. As stopping rule, we use the
Kullback–Leibler divergence between the approximation at iteration step t and the approximation
at step t + 1. The algorithm stops if this divergence is smaller than 10−8. In Table 1, we show the
number of steps until convergence for the different sp-ranks.

In Fig. 1, we plot the Kullback–Leibler divergence between the original matrix P and its optimal
approximation with respect to the Kullback–Leibler divergence as a function of the sp-rank.

Table 2
String probabilities for strings of length 2

Sequence Exact Order 5 Order 4 Order 3 Order 2 Order 1

aa 0.0396 0.0397 0.0396 0.0397 0.0333 0.0362
ab 0.0193 0.0192 0.0192 0.0190 0.0204 0.0207
ac 0.0149 0.0149 0.0149 0.0150 0.0153 0.0156
ad 0.0116 0.0116 0.0116 0.0116 0.0137 0.0137
ae 0.0113 0.0113 0.0113 0.0114 0.0131 0.0128
af 0.0094 0.0094 0.0094 0.0095 0.0113 0.0114
ag 0.0098 0.0098 0.0099 0.0100 0.0118 0.0118
ah 0.0161 0.0161 0.0161 0.0158 0.0185 0.0184
ai 0.0128 0.0128 0.0127 0.0127 0.0144 0.0139
aj 0.0454 0.0454 0.0454 0.0454 0.0384 0.0357
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Notice that the divergence is almost equal to 0 for sp-ranks 5–10. This makes sense as the
matrix P was generated using an underlying hidden Markov model of order 5. To show further
the quality of the approximations, we give in Table 2 the true output probabilities of a selection
of length-2 strings and compare them with the probabilities found with the Kullback–Leibler
minimalisation method of order 5, 4, . . . , 1. We conclude that the approximate HMM realization
problem of string probabilities of strings of length 2 can be solved using the matrix factorization
method of this paper.

6. Application to clustering based on distance matrices

In the clustering problem, one is given p points y1, y2, . . . , yp in Rn and the objective is to find
clusters of points which are close to each other according to a certain distance measure d(·, ·).
In general the number of clusters is not known beforehand. We consider the clustering problem
where the distance matrix P between the points is given, i.e. Pkl = d(yk, yl). Note that P is
symmetric and that the diagonal elements of P are equal to 0.

A clustering with a clusters {C1, C2, . . . , Ca} is a partition of the set {y1, y2, . . . , yp}. A
clustering is completely described by the matrix V ∈ {0, 1}p×a defined as

Vk,i =
{

1, yk ∈ Ci,

0, yk /∈ Ci.

Since every point belongs to exactly one cluster, we have V e = e. Define now the mean distance
Aij between the clusters Ci and Cj as the mean of the distances between every possible combi-
nation of a point of Ci and a point of Cj . It follows that the matrix A with as i, j th element the
mean distance between cluster Ci and cluster Cj can be calculated as

A = V †P(V †)�,

where V † = (diag(e�V ))−1V � is the left inverse of V . Notice that the diagonal elements Aii are
equal to the mean distance of the points inside cluster Ci . They are hence not necessarily equal
to zero.

As a result of the clustering, the distance Pkl between two points yk and yl is approximated with
the mean distance P̃kl between the clusters to which the points yk and yl belong. The complete
matrix P̃ can be written as

P̃ = V AV �.

From all the above, we conclude that the clustering of p points with distance matrix P into a

clusters, can be expressed as the following matrix factorization problem:

minimize C(P, V V † P V †�V �)

subject to V ∈ {0, 1}p×a,

V e = e,

where C(X, Y ) is a distance measure between X and Y . As this problem is hard to solve, we
propose the following relaxed version:

minimize D(P ‖V AV �)

subject to V ∈ R
p×a
+ , A = A� ∈ Ra×a+ .

This problem can be solved with the methods proposed in Section 3. A point yk is assigned to
cluster i if Vki = maxt Vkt . By using this relaxed version of the problem, we have two additional
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Fig. 2. Kullback–Leibler divergence between the true distance matrix P and its optimal (w.r.t. the Kullback–Leibler
divergence) approximation of structured rank 2, . . . , 6 computed with the iterative algorithm of Section 3.

advantages. First of all the quality of the clustering can be measured by the ratio between the
diagonal and off-diagonal elements of A. The smaller the diagonal elements of A compared to
the off-diagonal elements of A, the better the clustering. In addition, one has a measure for how
strong a certain point belongs to its cluster. We say that yk belongs to cluster i if Vki is the biggest
element of row Vk:. If all other elements of the row Vk: are much smaller than Vki , one can say
that the point yk strongly belongs to cluster i. If there are elements in the row Vk: that are of the
same order of magnitude as Vki , we conclude that the point weakly belongs to cluster i.

We now apply this algorithm to a data set of iris flowers (this data set is available in the SOM-
toolbox for Matlab as the file iris.mat). The data set contains 150 data points y1, . . . , y150. Each
point contains four measurements of an iris flower. The four measurements are the petal width,
petal length, sepal width and sepal length of the flower. In the data set three different types of flow-
ers are present, the first 50 samples are Setosa flowers, the next 50 are Versicolor and the last 50 are
Virginica flowers. As a first step we make a distance matrix P of size 150× 150 with Pkl = ‖yk −
yl‖2. Next we decompose the matrix P into a product V AV �. As we do not know the number of
clusters in advance, we make decompositions with inner dimensions 2–6. In Fig. 2, we show the
distance between the original matrix P and its approximation V AV � as a function of the structured
positive rank of the approximation. One sees that the divergence does not decrease much by taking
the structured positive rank higher than 3. For that reason, we conclude to work with three clusters.

The A-matrix of the decomposition is given by

A =
⎡⎣0, 00000000001 4975, 78659538 9668, 80064875

4975, 78659538 0, 00000032641 13768, 5062877
9668, 80064875 13768, 5062877 27, 0549877873

⎤⎦ .

Table 3
Clustering result for the points y14, y53, y58 and y130

Point yk True cluster V (k, 1) V (k, 2) V (k, 3) Estimated cluster

14 3 0.017 0.012 0.196 3
53 1 0.080 0.115 0.001 2
58 1 0.123 0.000 0.071 1
130 2 0.002 0.201 0.015 2
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Fig. 3. Visualisation of the result of our clustering algorithm. Points that belong to cluster 1 are plotted with o, points
belonging to cluster 2 are plotted with *, and points belonging to cluster 3 are plotted with +.

Notice that the diagonal elements of A are small compared to the off-diagonal elements of A,
which is an indication that we have a good clustering. Next to that, the diagonal elements give a
measure of the density of the clusters. We conclude that the first cluster is the densest while the
third cluster is the least dense. The off-diagonal elements of A give an idea of the mean distance
between the clusters.

As explained before, the biggest element of the kth row of the matrix V allow us to conclude
to which cluster point k belongs. Using this approach 136 of the 150 iris flowers are clustered
correctly (i.e. Versicolor flowers in cluster 1, Virginica flowers in cluster 2 and Setosa flowers in
cluster 3). Moreover, the elements of Vk: also give a measure of the strength with which the point
belong to its cluster. In Table 3, we show the kth row of the matrix V for k = 14, 53, 58, 130.
For instance for point y14 we conclude from our algorithm that it strongly belongs to cluster 3 (as
0.196� 0.017 and 0.196� 0.012). This makes sense as the true cluster of that point is indeed
cluster 3. On the other hand, point y53 (which is one of the miss-clustered points) was connected
to cluster 2 but the connection is not strong, its affinity with cluster 1 is almost as high as its
affinity with cluster 2. This again makes sense as the true cluster of this point was cluster 1. In
Fig. 3, we visualize the result of our clustering algorithm. Points that belong to cluster 1 are
plotted with o, point belonging to cluster 2 are plotted with ∗, and points belonging to cluster 3
are plotted with +.
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7. Conclusion

In this paper we considered the approximate nonnegative matrix factorization P � V AV �
with the dimension of A small. As distance measure between the matrix P and its approximation
we used the Kullback–Leibler divergence. We proved that the element sum of a local optimal
approximation V AV � equals the element sum of the original matrix P . This result allowed us
to work with normalized decompositions with V column stochastic and the element sum of A

equal to the element sum of P . We further proved iterative update formulas for V and A that are
guarantueed to decrease the Kullback–Leibler divergence between P and V AV � and retain the
nonnegativity of V and A. As a special case, we commented on the situation where the original
matrix P is symmetric. As a final contribution, we proposed iterative update formulas for the
approximate decomposition P � V V �. The decomposition was applied to the hidden Markov
realization problem and to the clustering of data points.
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