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Abstract—1In this paper a distance on the set of
multivariate Gaussian linear stochastic processes is
proposed based on the concept of mutual informa-
tion, The definition of the distance is inspired by
various properties of the mutual information of past
and fuature of a stochastic process, For two special
classes of models a link exists between this mutual
information distance and a previously defined scalar
cepsiral distance, Finally, it is demonstrated that the
distance shows similar behavior to an ad hoc defined
multivariate cepstral distance.

1. INTRODUCTION

In this paper a distance based on mutual infor-
mation is defined on the set of multivariate Gaus-
sian linear stochastic processes. By considering
such a process as an infinite-dimensional random
variable it is possible to define distances based on
information-theoretic measures, e.g. as the (asymp-
totic) Kuilback-Leibler (K-1.) divergence, Chernoff
divergence or Bhattacharyya divergence of the
two processes [8), [9]. Mutual information is an
information-theoretic measure too, However, it is
not applicable in the same sense as the above
measures since the mutual information of two ran-
dom variables does not measure the similarity (or
dissimilarity) of their probability densities. Instead
it is a measure for the dependence of two random
variables. Inspired by previous work in [2], [4] we
explain further on in the text how we achieve from
this a distance on the set of stochastic processes
(without assuming information on their mutual
dependencies).

The paper is organized as follows. In Section II
we describe the model class we work with: Gaus-
sian linear stochastic models. Section HI recalls the
notion of mutual information of two random vari-
ables, and applies this in the context of stochastic
processes, In Section IV a distance between multi-
variate Gaussian processes based on the concept of
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mutual information is defined and its properties are
investigated. Section V applies this newly defined
distance in two simulation experiments with the
aim of better characterizing it. Section VI finally
states the conclusions of this paper,

II. MODEL CLASS

In this paper we consider stationary stochastic
processes y = {y(k)}rez whose first and second
order statistics can be described by the following
state space eguations;

{:n(k-l—l) =
y(k) =

E{u(k)} =0, E{uk)u"(1)}=1Lon. @

An(k) + Bu(k) , |y
Ca(k) + Du(k) ,

where y(k) € R” is the value of the process at
time % and is called the output of the model (1)-(2).
The state process {z(k)}xrez € R and the station-
ary and ergodic (normatized) white noise process
{u(k)}rez € R? are auxiliary processes used to
describe the process y in this representation. The
matrix D € RP*P is assumed to be of full rank,
Unless otherwise stated, we assume throughout
this paper that v and consequently also y is a
Gaussian process. This means that the process y
is fully described by (1)-(2).

The model (1) is assumed to be strictly sta-
ble and minimum-phase, meaning that its poles
{eigenvalues of A) and zeros (eigenvalues of A —
BD~10) lie strictly inside the unit circle of the
complex plane. The inverse model (from y fo
u) can then be derived from (1) and is denoted
with a subscript (),: (A,,B,,C,,D,) = (A
BD-C,BD~Y, -p~iC, DY),

The infinite controllability and observability ma-
1rix of the model (1) are defined as:

¢ = (B AB A*B ...},
r = (C7 (CA)T (a7 ...y,
respectively. The mode! (1) is assumed to be min-

imal, meaning that C and T are of full rank n. The
Gramians corresponding to € and I" are the unique



and positive definite solution of the controllabitity
and observability Lyapunov equation, respectively:

CCY = P = APAT4+BBT, 5
I'r = 0 = ATga+cTe. @

fl

The corresponding quantities for the inverse model
are denoted by C;,I';, P, and Q..

Along with the description (1) and its inverse
(A, B;,C;, D), a transfer function can be de-
fined from w to y and from ¥ to u, respectively:

h{z) = C(zI ~ A)'B+ D, )

and analogously for h~!(z). Modulo a simi-
larity transformation of the state space model
(A, B,C, D) into (T71AT,T-'B,CT, D) with
nonsingular 7', there is a one-lo-one correspon-
dence between the descriptions (1) and (4). From
each of both descriptions, angmented with (2), the
second order statistics of the process y can be
derived, i.e. its autocovariance sequence

As) = Ef{ykyy"(k-s)}, s€Z,
' (5)

or equivalently its spectral density function

+o0
= 3 A&z =h(2)hT(z7Y) . (6)

§==-0CQ

Gaussian processes (which we assume) are fully
described by their first and second order statistical
properties, Therefore a zero-mean process y is
fully described by (5) or (6). From (6) it can
thus be seen that h(z) is not uniquely defined
for the process y since the transfer functions h{z}
and h(z)V with unitary V' € RP*? correspond to
the same spectral density function ®(z). This is
the only non-uniqueness in h{z) under the given
assumptions and must be kept in mind while we
denote a process in this paper by one of its four-
somes (A, B, C, D) or one of its transfer functions
h(z)

respectively. Then, the mutual information of V
and W is defined as

V;wW)= j flu,wilog ——F—=

if the infegral exists.

The mutual information of two variables is a
measure for the amount of information one vari-
able contains about the other and is always non-
negative. In the case of two zero-mean jointly
Gaussian random variables V and W, I(V; W} is
related to the canonical correlations [5) of V and
W, here denoted by ox (k = 1,...,min{p, q)) [6]:

_Jww)

fv (@) fiy (w) dvdu

1 min(p,q) 5
I(V;W) = —3log E] (t—od). D
B. Mutual information of past and future of a
process

In this section we apply the notion of mutual
information to the stochastic processes ¥, ¥y,
u, and uy. A stochastic process, e.g. {y(k)}rez,
can be seen as an infinite-dimensional random
variable consisting of the (ordered) concatenation
of the random variables ..., y{—2), y(—1), ¥(0),
y(1), ... This way we can compute the mutual
information for any pair of these processes.

A pair of processes that have at least one canon-
ical correfation equal to 1 can be seen from (7)
not to have a finite amount of mutual informa-
tion. Conversely, processes that are orthogonal to
each other (all canonical correlations equal to 0)
have mutual information equal to zero. This is
for instance the case for u, and wuy. However,
processing this white noise u through the filter
h{z) (in general) introduces a time dependence in
the resulting process y, which appears as a certain
amount of mutual information between its past
yp and future gy, denoted interchangeably by Ipf,
Iot{y} or Ipr{h(z)}, equal to [3, Chap. 4}

Next to the process ¥ = {y{k)}rez we also
define the processes yp = {y(—k)}ren, and yf =
{1(k)} xen, where the subscript p stands for *past’
and f for ‘future’, and analogously the past and
future processes u, and uy of the process u.

FII. MUTUAL INFORMATION OF PAST AND
FUTURE OF A PROCESS

A. Definition of mutual information

Definition 3.1; Let V and W be random vari-
ables with joint probability density function
f(v,w) and marginal densities fy(v) and fi (w),

Ioe-= I{ypiys) = ...»««....iogdet (In+Q.P) . (8)

This and the vatues of the mutual information of
the other pairs of processes can be found in Table L
Note that I, is unique for a given stochastic
process. So if we write Io¢ {h(z)} this must be
understood as a characteristic of the process with
spectral density @(z) = A(z)hT(z71).

C. Properties of Iy

We now state some of the properties of Ipr.
Most of these can be proved using (7) and (8).

(@) It =0 ¢ h(z) = D (see (1)).



TABLE I
THE MUTUAL INFORMATION OF EACH PAIR OF PROCESSES.

Up us Yp Yy
Up +eo 0 +o0 It
ug 0 +oo 0 +o0
Up +oo 4] 400 Toe
yr Tug +eco Ios +0oo

{b) Ipr increases with ecach increase of a
canonical correlation between y, and y;.

()} Ipe{h(2)} = Iye{Th{z)} for a nonsingular
constan{ mairix T ¢ RP*P,

(&) Ipi{h(z)} = Ipf{h_T(z)}°

— (I’l(z) Omxpz :
(e) For ®(2) = (Opzxm Ba(2) ) it holds

that Ini{y} = Ie{in} + e {ye}-

Properties (a)-(b) and relation (7) indicate that
Is measures the amount of correlation that exists
between y, and yy, being zero for a while noise
process and increasing with each increase of a
correfation between y,, and y;, This suggests that
Ipr can be used as a measure for the amount of
dynamics in the process y.

IV. A DISTANCE BETWEEN MULTIVARIATE
GAUSSIAN PROCESSES

In Section IV-A we define a distance between
multivariate Gaussian processes based on the con-
cept of mutual information. In Section IV-B a
way to compute the distance is shown, while
Sections IV-C and IV-D treat two special classes
of stochastic processes, for which the distance can
be shown fo possess some additional properties.

A, Definition and metric properties

Definition 4.1: The mutual information dis-
tance between two p-variate Gaussian linear sto-
chastic processes 1 and yp with transfer func-
tion descriptions hi(z) and ho(z) is denoted by
dmi(y1,¥2) and is defined as the non-negative
square root of:

a2 (Y1, ¥2) = Ipt {h12(2)}, with

_ (AT (@ha(2) Op
hiz(z) = (‘ ! f)p e h;l(z)hl(‘zﬁ '

The first thing {o nole is that the mutual in-
formation distance dm;(y1,y2) is a property of
the processes y1 and o, and not of the par-
ticular transfer functions h,(z) and hga(z). In-
deed, substituting {#1(z), h2(z)} by the equivalent

{h1{2)W1, ha{z)Va} with V4, V, constant unitary
matrices (see (6)), corresponds to left- and right-
multiplying hi2(z) by a constant unitary matrix.
This has no influence on fp¢ {h12(2)}.

Following the discussion in Section III-C,
dmi{y1, y2) is a measure for the amount of dynam-
ics in the process yyz associated with the transfer
function hq9(2). Clearly dmi{y1,2n} = 0 since
hia(z) is in that case a constant matrix and ;s
is consequently white noise. Definition 4.1 also
implies that dmi(y];y2) = dmi(g(z)ylsg(z)y2)
for arbitrary transfer functions g(z) satisfying the
conditions stated in Section 1I.

The following properties hold for d;:

1) dmiy1,92) > 0 (non-negativity)

2) dmi{yn, 42) = 0 & hofz) = hy(2)T with T
a constant square nonsingular matrix,

3) dmi(ys,¥2) = dmily2, 11) (symmetry)

As a consequence of property 2), the distance dy
does not in general satisfy the triangle inequality’.
Consider three processes with transfer functions
hi(z), ha(z) and hs(z) where ho(z) = hy(2)T
with T' a constant square nonsingular matrix,
Clearly, dmi(2n,%2) = 0. Therefore, in order for
the triangfe inequality to hold, it should generally
be satisfied that dmi(y1, y3) = dmi{yz, y3). This is
however not the case. The distance thus satisfies
only two of the four properties of a true metric
{non-negativity and symmelry},

B. Computation
From property (e} in Section III-C it follows that

A%y, y2) = Ior (A7 h2} + Iop {hg 'R} . 9)

Using this properly we now show a way (o com-
pute dmi(y:,y2) making use of the state space
descriptions of hi(z) and hs(z). Equations (8)
and (9) show that we need to compute the con-
trollability and observability Gramians of both
hT1(z)ha(2) and h;1(z)hi(z). This can be eas-
ily done by solving the Lyapunov equations (3)
from the state space descriptions of both trans-
fer functions. As an example we give a possible
state space description of Ay *(z)ha(z) denoted by
(A12, B1a, Ch2, D1a):

A? On xn B2
Ajp = 27H By =
12 (lec2 Ay, ) » 212 (BZ}DZ) '
Cia = (D, C2 Cy), Do =Dy, Dy

!in the case of scalar processes or processes with diagonal
spectral density function ®(2), however, it can be shown that
the triangle inequality is satisfied (see Sections IV-C and IV-D).




with (A211 BZU Czn Dzl) = (Al - BlDl_lchBl
DY, —Dricy, Di1). The procedure concerning
hy 1(z)hi(2) is analogous. Afterwards it remains
to compute (9) using (8) and (3).

C. Class of scalar processes

In the case of scalar processes ¥y and yq it was
proven in [3, Chap. 6] as well as in [7] that;

+oo
dﬁﬂ(yx,yz) = Z k(cl (k) - Cg,(k))2 = d?cp(yllyZ) )

k=0

(10
with ¢y and cg the cepstra of the scalar processes
1 and yo (see Section V-A for the definition of
cepstrum), This constitutes a link between dini and
the cepstral distance defined in {10], and obviously
proves that d,; for scalar processes satisfies the
triangle inequality. If we further define a set of
equivalence classes of scalar stochastic processes,
where two processes y1 and yo with transfer func-
tions ky(z) and hy(z) are equivalent if and only if
there exists a constant real non-zero number a such
that ha{z) = ahy(z), then the mutual information
distance dm; defined on this set of equivalence
classes is a true metric. Various expressions for
duni(y1, y2) can be derived for the scalar case [3].

D. Class of uncorrelated multivariate processes

In the case of two p-variate processes y; and y»
with diagonal spectral density matrices @;(z) and
®4(z), it is easily shown that:

P
A2y, v2) = ngep('yl,h Y2,i) » (i1)
=1

where y1; (¢ = 1,...,p) are the uncorrelated
scalar processes constituting y1, and analogously
for y2,; (i = 1,...,p). This equality follows from
relation (9), property (e) in Section III-C and
relation (10) for scalar processes.

V. SIMULATION EXPERIMENTS
For scalar processes, several simulation experi-

In this section we demonstrate experimentally
that also for multivariate processes dm; has a
cepsiral character, although no relation as in (10)
or (11) holds for general multivariate processes. To
this aim we focus on two aspects that showed in
the scalar case a difference in behavior between
the cepstral distance and the I distance:

« The inflation of distance values when poles
of the models are approaching the unit circle
(Section V-B).

« The difference in influence of pole versus zero
locations on the distance between two models
(Section V-C),

What is however first needed is the definition
of a multivariate weighted cepstral distance in
Section V-A, which we shall denote by dcep.

A. Multivariate cepstral distance

We define the cepstrum of a multivariate process
y as the inverse Fourier transform of the matrix
logarithm of the spectrum of 3

400
log B(e’?) = E c(k)e=3% |

k=—00
where c(k) € RP*P is the kth cepstral coefficient
of y. For scalar processes this corresponds to
the usual definition of the power cepstrum of a
process [11]. The sequence {c(k)}kea is real and
even. It obviously contains the same information
as ®(z) and thus also fully characterizes the zero-
mean Gaussian process y. Only for the case of
scalar processes, analytical expressions for these
cepstral coefficients are known to us.

We now define in analogy with (10) a multivari-

ate weighted cepstral distance as

400
A2 (u1,92) = kgﬁk”cl{k) —c(B)E, (2

with ¢; and ¢ the cepstra of the multivariate pro-
cesses g1 and ;. For scalar processes this distance

ments were performed in {1} in order to compare
the behavior of the cepstral distance dcep, Which
was equal to dy,; because of (10), with the behavior
of the H, distance, denoted by dy,:

1 2 i .
() = 5= [ ) = ha(e)l3a6
0

with ||-||r the Frobenius norm of a matrix. In order
to make dp, a distance belween processes instead
of between transfer functions, we agree to fix the
transfer function description of a stochastic process
by choosing the D-matrix of a model (1) or (4) to
be Dcpnot, the unique Cholesky factor of DDT,

No relation with the mutual information distance as
in (10) for scalar processes holds for muitivariate
processes, except for diagonal ®1(2), @2(z) (see
Section IV-D) where we can rewrite (11) as:

dii(yhyz) = dgep(ylu?h) .
B. An experiment on the influence of poles

For scalar processes it was demonstrated ex-
perimentally in [1] that dy, is more sensitive {o
high peaks in the spectrum of hy(z) than cepstral
distances. In this section we investigate similar
behavior for the case of multivariate processes.



Consider two 3-by-3 stochastic models k;{z)
and fia(z) of order 2 (py = pa = 3, ny = np = 2),
both of which have a pair of zeros at radius 0.05
and angles +7/2 in the complex plane. The pole
pair of iy () is situated at angles +0.22w, the pole
pair of ho{z) at angles 40.787 in the complex
plane. The radii of the pole pairs of hy(z) and
ha(z) are always taken equal and are varied from
r = 010 to r = 0.99. This is schematically
presented in Table II. The idea of this setting is
to check the influence of the radii of the poles on
the distance between ky(z) and ha(z).

TABLE Il
POLES AND ZEROS OF h1(2) AND ii2(2) FOR THE POLES
EXPERIMENT (LOCATED AT rjetidi),

circle, concerning the influence on the distance
between two models. For scalar processes it can
be shown that cepstral distances are equally de-
pendent on the poles and zeros of the models,
The experimental setting now consists of two
parts, Consider again two 3-by-3 stochastic modeis
hi(z) and he(z) of order 2. For the first part, the
Tocation of the poles and zeros of h;{z) and ho{z)
can be viewed schematically in Table III. kt is seen
that ¢1 is quite close to ¢, for both the pole pair
and the zero pair and that the radius of the pole
pair of ha(z) is varied between 0.50 and 0.99.

TABLE IIf
POLES AND ZEROS OF h1(z) AND ha{z) FOR THE FIRST
PART OF THE ‘POLE VERSUS ZERO' EXPERIMENT.

pole{hi(z)} r1=010,...,08% ¢; =022 pole{h1(z}} ry = 0.50 ¢ =0.227
pole{ha(2}} ro =11 ¢ =0.78x% pole{ha(2)} ro = 0.50,...,0.99 $2 =0.17Tm
zero{h1{z)} r1 = 0.05 ¢1=13 zero{hi(z)} r1 = 0.50 ¢$1 =0.787
zero{ha(z)} r2 = 0.05 2= Z zerof{ha{z}} ra2 = 0.50 2 = 0.83w

Since a multivariate model is characterized by
more than only its poles and zeros, we generate for
each pole radius between r = 0.10 and r = .99,
100 different pairs of models {h;(2), hz(2}}, both
always with fixed pole and zero pair as specified
in Table II. For each pair of models the distances
Amiy deep and dy, between hy(z} and ha(z) are
computed. The median distance value of the 100
repeats is shown in Fig, 1 for the three distances
and for varying pole radius. Al values have been
rescaled to start at a distance 1 for » = 0.10.

The location of poles and zeros for the second
part of the experiment is shown in Table IV, The
only difference with Table 111 is that now the radius
of the zero pair (instead of the pole pair) of he(z)
is varied between 0.50 and 0.99.

TABLE IV
POLES AND ZEROS OF h1{2z) AND ha{z) FOR THE SECOND
PART OF THE ‘POLE VERSUS ZERO’ EXPERIMENT.

pole{hi{z}} T = 0.50 ¢1 =022
pole{ha(z)} r2 = 0.50 ¢2 = 017w
zero{hi(z)} r1 = 0.50 ¢1 = 0.78w
zero{ha{z)} | ra=050,...,099 ¢ =083

41 ez o3 o4 o3 cs o7 o1 oF

pole radius

Fig. 1. Evolution of the distance between hy{2) and ha{z) as
the radius of their pole pairs increases (see Table II), for dpyy
(full line), deep (dashed line) and dy,, (dash-dotted line),

The figure shows that dy, grows much more
strongly than the other distances as the pole pairs
of h1(z) and ho{z) approach the unit circle.

C. An experiment on the influence of poles & zeros

In this section we compare poles approaching
the unit circle with zeros approaching the unit

The idea of this experimental setting with two
parls is 0 check the difference between the first
and the second part, ie, the difference in how
the distance between h;{z) and haf{z) evolves as
the radius of pole {ha{z)} versus the radius of
zero {ha(z)} is varied between rp = (.50 and
ro = 0.99. Just as in the previous section, for
each of these radii 100 different pairs of models
{hi(2), ho(z)} are generated, both always with
fixed pole and zero pair as specified in Table HI
or IV. For each pair of models the distances
dinis deep and dy, between hy(z) and ho(z) are
computed and the median distance value of the 100
repeats is selected for each of the three distances.

Fig. 2 shows the results for the distance dy,.
There are two curves in the figure, one for each



part of the experiment. The values of both curves
have been rescaled by a common factor to have
a distance 1 when the radius of zero {ha(z)} in
the second part of the experiment is 0.50, The
influence on dy, of pole {ha{2)} approaching the
unit circle is much greater than the influence of
zero {hq{2)} approaching the unit circle.

. .
he T T T . B
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pole/zero radius of hz{z)

Fig. 2.  Evolution of dp,{h1(2),ha(2)} as the radius
of pole{ha(z)} increases ({ull line), and as the radius of
zero {ho(z)} increases (dashed line) (see Tables 11T and 1V).

Fig. 3 shows in an analogous way the result for
the distances dpy; and deep. It demonstrates a very
similar influence of pole {he{2)} approaching the
unit circle and zero {ho(z)} approaching the unit
circle, on both dp; and deep.

09 N . R . . e+
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V1. CONCLUSIONS

In this paper we defined the mutual information
distance dp,; on the set of Gaussian linear sto-
chastic processes, based on the concept of mutual
information of past and future of a stochastic pro-
cess and inspired by the various properties of this
notion. We demonstrated how it can be computed
from the state space description of the models and
investigated its metric properties. For two special
classes of stochastic models a link exists between
the mutual information distance and a previously
defined scalar cepstral distance.

In two simulation experiments dn; was shown
to have a behavior similar to an ad hoc defined
multivariate cepstral distance dcep and dissimilar
from the Hy distance dj,,.
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