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FROM BIOINFORMATICS 
TO SYSTEMS BIOLOGY 

 
BART DE MOOR 

 
 
INTRODUCTION 

 a famous one-page article in Nature in 1953, Francis Crick and 
ames Watson described the chemical structure of DNA for the 
rst time1. Since that day, scientific research in molecular biology 
nd biotechnology has exploded. Our knowledge about the genetic 
nd biochemical processes in the cell is increasing exponentially. 

e also know that the impact of applications with respect to men, 
nimals and plants will be enormous. Here, we will describe some 
f the basic ingredients that characterise this explosion of knowl-
dge on biological and biomedical systems.  

We are currently also witnessing an exponential evolution of 
pplications of information and communication technology. What 
day we call ‘hardware’ originated in the laws of electro-
agnetism, discovered in the late 19th century by Maxwell and 

thers. Current day applications include our power-generating sys-
m (electricity) and wireless communication technology. The fun-
amentals of quantum mechanics were laid down by physicists like 
instein, Bohr, Schrödinger and Heisenberg in the first half of the 
0th century. Their insights led to the invention of the transistor in 
948, the basic building block of all our computers and electronic 
evices today, such as lap tops, iPods, PDAs (Personal Digital 
ssistants), mobile phones and many more.  

The spectacular growth of information technology applica-
ons is driven by ‘Moore’s law’2, which says that the number of 
ansistors on a siliconchip of one square millimetre doubles every 
ighteen months. This implies that our computers can contain more 
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This important discovery, for which Crick and Watson received the Nobel Prize, 
as commemorated in a special issue of Nature on 23 January 2003 (Vol. 421).  
 Moore’s law is named after Gordon Moore, the person that started Intel 

intel.com

1 
w
2

(www. ). In the beginning of the 1960s, at the dawn of the era of micro-
ectronics, he predicted that the number of transistors per unit of chip surface 
ould double every eighteen months. In the financial world, a comparable growth 
te would correspond to an interest rate of 59 percent. If you would have invested 

€1 in 1968 at an interest rate of 59 percent, you would be €100 million richer by 
now (2008)!  

el
w
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and more data e growth rate 
of the World W ower, i.e., the 
number of calcu , also doubles 
about every eighteen months.  

What we call ‘soft  the many mathematical 
iscoveries and developments between 1850 and 1950, the formu-
tion of information theory by Shannon about 50 years ago and 

he computer sciences that started around 1950. 
oftware’ includes numerical algorithms, databases, transmission 

 plays a major role in 
the ad

in their memory (think of the incredibl
ide W ), and that t r computing peb hei
lations they can perform per second

ware’ is based on
d
la
the research in t
‘S
and computer security protocols, computer languages, etc.  

The combination of hardware and software has led to the 
development of the World Wide Web, which in less than twenty 
years has grown into an incredible repository of information and 
databases. Our environment has literally evolved into what is 
called ‘a small world’: it only takes an average of four to six clicks 
with your mouse to reach any arbitrary website from anywhere in 
the world. This ‘small world phenomenon’ is one of the major 
drivers in what we call ‘globalisation’. It also

vancement of science in general, and that of the biological 
and biomedical sciences in particular.  

This article is about the synergy between molecular biology 
and information technology: two sciences that at first sight have 
nothing in common. Their symbiosis is called ‘bioinformatics’. It 
has drastically modified the way in which we perform research in 
biology and biomedicine today.  “Biology has become an informa-
tion science”, says Leroy Hood of the Institute for Systems Biol-
ogy in Seattle (cf. http://www.systemsbiology.org/). In what fol-
lows we will describe the relevant ingredients of bioinformatics. 
We will also discuss several applications and also have a glimpse 
at the near future of systems biology.  
 

Before we elaborate on bioinformatics, we need to highlight some 

 
WHAT IS BIOINFORMATICS? 
 

basics of biology, technology and mathematics. Don’t be afraid: 
we will keep it simple!  
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BREAKTHROUGHS IN BIOLOGY  
 

It has not escaped our notice that the specific pairing we 
have postulated immediately suggests a possible copying 
mechanism for the genetic material. 
Last sentence from the Crick & Watson article in Nature, 
1953. 

 
Biology as a science has witnessed an incredible evolution over the 
last 50 years or so, characterised by an overwhelming amount of 
scientific breakthroughs and discoveries involving viruses, bacteria, 
plants, animals and homo sapiens. Before we proceed, it is neces-
sary to make the reader familiar with some basics of molecular 
biology3.  
 
1. DNA and genomes 
The human body consists of billions of cells. In the nucleus of 
every cell, we find chromosomes. They can be considered to be the 
chapters of a book, which is written in the alphabet of the DNA. 
The acronym DNA4 stands for ‘Deoxyribonucleic Acid’.  Every 
DNA molecule is a linear concatenation of four genetic basic com-
ponents, called nucleotides, which are indicated by the letters A 
(Adenine), C (Cytosine), T (Thymine) and G (Guanine). What 
Crick and Watson described in their 1953 paper in Nature was the 
molecular geometric structure of the DNA molecule, the famous 
‘double helix’ model. The global molecule looks like a spiral stair-
case, with winding stairs that consist of pairs of molecules, with 
molecules A and T as one type of stair, and molecules G and C as 
another type. These pairs are called base-pairs. The double spiral 
around these stairs consists of chains of phosphate-deoxyribose-
ugar polymers. The whole structure is called double-stranded s

DNA.  
s pairs with T (or the other way 

und), and C always with G is called ‘complementarity’. This 
The fact that A alway

roa
property is the basis of the fundamental principle by which DNA is 
copied during cell division, in which the steps of the staircases are 
split up in the middle, separating each A from its pairing T, and 

                                                           
If you want to learn more, you can consult some splendid books, such as Grif-

fiths (1996); Kreuzer (1996), Griffiths (1999), Brown (2002) and Karp (2002).  
4 In the recent past, already nine Nobel prizes have been awarded for discoveries 
related to DNA. Yet, DNA is still the subject of a lot of ongoing research (see the 
special issue of the New Scientist of 15 March  2003, entitled  ‘DNA, the next 
fifty years’).  

3 
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each G from its pairing C. Next, each of the two separated, but 
omp A 

bind and 
to ea is a 
gros
tarity etic 
nfor  in each division step, just like we do with a copy ma-

ed the unravelling of the human genome, which was 
Nature and Science 5 (cf. 

6

c lementary strands are completed again: to each molecule 
s a new molecule T, to each T a new A, to each G a new C 
ch C a new G. Of course, our mechanistic description here 
s simplification of reality, but it is a starter! The complemen-
 in our DNA allows nature to ‘double’ the amount of gen
mationi

chine. Not only is this complementarity the basis of genetic inheri-
tance, but it is also the basis of a lot of new technology, such as 
microarrays, which we will describe below.  

Another recent and extremely important breakthrough is the 
availability of the complete DNA sequence – the genome – of an 
increasing number of organisms. At the start of this millennium, 
we witness
published in two path-breaking papers in 
Lander, 2001; Venter, 2001) . Besides the human genome, which 
counts about 3 billion nucleotides, the genome of many other or-
ganisms has been sequenced. We now know the genome for vi-
ruses7, bacteria8 (e.g., Haemophilus influenzae), organisms such a 
yeast (Saccharomyces cerevisae), plants such as Arabidopsis 

                                                           
5 The fact that the genome of one person cannot be published on paper in one 
article is trivial: the human genome counts approximately 3 billion letters. The 
four letters A, C, T and G can be encoded with binary numbers of two bits (e.g., 
A=00, T=01, C=10, G=11). This means that for 3 billion letters, we need 6 billion 
bits, corresponding to a memory requirement of 750 MB. 
6 With the technology developed by Venter, the genome is shot into pieces. Using 
computer algorithms, these pieces are then put back together in silico. For the 
human genome, a supercomputer was used, counting 800 processors with 70 TB 
memory (a Terabyte is ‘2 to the power of 40’ bytes, or about 1000 billion bytes, or 
1000 GB (gigabyte)). One byte is eight bits.  
7 One can debate whether viruses can be considered to be ‘alive’, or whether they 

t lifeless pockets of molecules. They can cause diseases like the flu, or 
AIDS. They are much smaller and simpler than bacteria and consist of genetic 
material covered in a mantle of proteins.  
The genetic code of the SARS virus (Severe Acute Respiratory Syndrome) was 
unravelled in a record time of three weeks in April 2003 (cf. 

are jus

http://www.bcgsc.ca/bioinfo/SARS, and a slightly different sample can be found 
on www.cdc.gov). It consists of about 29,700 building blocks. Knowing the ge-

e-

 genes.  

nome of the virus, might lead to better diagnostic tests and therapies. 
8 Bacteria cause many infections, like lung infections. Contrary to viruses, bact
ria can survive sometimes during years without a host. Recently, the genome of 
several bacteria was unravelled. Many bacteria play an important role in food 
(Streptococcus thermophilus in the production of cheese, yoghurt, etc.). This type 
of bacteria has about 1,900
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thaliana (Nature, 14 December 2000), rice 9 , the marine diatom 
Thlassiosira pseudonana 10 , the nematode worm Caenorhabditis 
elegans 11 , the fruit fly Drosophila melanogaster (Science, 24 
March  2000) and the mouse Mus musculus (Nature, 5 December 
2002) in addition to many, many others, including several mam-
mals.  

 
2. Genes, amino acids and proteins, and so-called ‘junk-DNA’  
We have described the genome of living organisms as a linear cas-
cade of nucleotides. In every genome, there are certain functional 
segments, intertwined with other ones that, at first sight, do not 
seem to have any function. Of the functional segments, genes are 
those best known. There are many possible definitions of a gene12, 
but here we provide a simplified information-theoretic description. 
The ‘words’ that compose a gene are written in the DNA alphabet 

                                                           
9 The genome maps of two different subspecies of rice were published in Science 
on 5 April  2002. Based on this genome information, the search for better versions 
of rice can begin. Rice shares a lot of common features with wheat, sorghum, etc., 
because they all share common ancestors. These correspondences can be found in 
databases like www.gramene.org. Unravelling the rice genome took 74 days with 
the same ‘whole-genome shotgun’ method that was used in the human genome 
project. In this technique, the genome of an organism is shot into overlapping 
pieces, and then pasted together using numerically intensive computer algorithms. 

orests together. Thalas-

 can be used as a ‘model’ for compa-

e’. The biochemical process that trans-

ecule that is 

alled ‘translation’.  

It is estimated that rice possesses between 32,000 to 50,000 genes, and that, re-
markably enough, each rice gene only codes for one single protein (which is not 
the case in humans).   
10 These are small but relatively important plants that serve as food for fish and 
absorb almost as much carbon dioxide as all tropical rain f
siosira pseudonana has 24 pairs of chromosomes, numbering 11,500 genes. Re-
markably they have a skeleton made of glass (silicone dioxide, the same material 
from which we build our ICT chips today).  
11 This little worm only has 959 cells. It is an example of what in biotechnology is 
called a ‘model-organism’. Many of its genes
rable genes in humans. The Nobel Prize of 2002 was given to three scientists who 
helped to unravel the genetic processes in this little worm.  
12 A gene is defined as the ‘complete DNA sequence required for the syntheses of 
a functional polypeptide or RNA molecul
forms the information encoded in a gene into a protein is very complicated.  The 
process starts when an activated transcription factor enters the nucleus and then 
binds to the DNA. The presence of an activated transcription factor will attract 
RNA polymerase to start the transcription of a gene. The RNA polymerase reads 
the DNA sequence and then generates a single-stranded RNA mol
complementary to the gene that was read. In the next step messenger RNA 
(mRNA) is formed by splitting out so-called ‘introns’.  
The mRNA is then compacted and transformed into the cytoplasm where finally 
proteins are formed by   
ribosomes (see Figure 1). This step is c
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(A, C, G and T). Each ‘word’, called a ‘codon’, consists of three 
consecutive nucleotides. Each codon ‘encodes’ (describes) a dif-
ferent amino acid, of which there are twenty different ones in na-
ture. Every gene starts with a start codon (typically ATG) and ends 
with a stop codon (which can be either TAA, TAG or TGA)13. 
Now imagine that a gene can be ‘read’ by some reading mecha-
nism  read-

 is 

longer think of this dogma as so universal.  

 

, which starts with the start codon, and then proceeds by
ing each codon, and ends with a stop codon. Every time a codon
read, it is chemically translated into a specific amino acid, and all 
the amino acids generated in this way are then cascaded together to 
form a certain protein. These proteins are the workhorses of all 
biological processes. The path from the functional entities in the 
DNA – the genes –, to codons and amino acids, to proteins, used to 
be called the ‘central dogma of biology’. Recently, important ex-
ceptions to this central dogma have been discovered, so we no 

The more organisms for which the genome has been se-
quenced, the easier we can make estimates on the number of genes 
in each genome. Some examples: the bacteriophage Lambda (ge-
nome size 5.0E+04 base pairs 14 , 60 genes), Escherichia coli 
(4.6E+06 bp, 4,290 genes), yeast (12.0E+06 bp, 6,144 genes), the 
fruit fly Drosophila melanogaster (1.0E+08 bp, 13,338 genes), the 
worm Caenorhabditis elegans (1.0E+08 bp, 18,266 genes), the 
plant Arabidopsis thaliana (2.3E+08 bp, 27,000 genes) and, finally,
Homo sapiens (3.0E+09 bp, ‘only’ 25,000 genes)15.  

Because a codon consists of three letters, each of which is 
part of an alphabet of four letters (A, C, T and G), it is easy to cal-
culate that there are 64 different codons. However, in nature there 
are only twenty different amino acids. But some amino acids can 
be ‘generated’ by more than one codon. Nature is not mistaken 
                                                           
13 One way to identify candidate genes in the genome is to detect so-called  ‘Open 
Reading Frames’ (ORFs), that start with a start codon and end in one of the three 

es, the findings of which 

stop codons. For ease of explanation, we do not distinguish between DNA and 
mRNA (in which the base T is replaced by Uracil, denoted by the letter U).  
14 The notation 5.0 E+0.4 means ‘5 times 10 to the power of 4’, i.e., 50,000.   
15 Now that we almost have the complete DNA sequence of the human genome, a 
systematic study has begun to map exhaustively all genes of man. Complete maps 
are available now for the chromosomes 7, 14, 20, 21 and 22. Because of the im-
mense amount of information, and the complexity, this type of research is typi-
cally done by large research consortia. Chromosome 7 of the human genome was 
unravelled by a team of 90 scientists from 10 countri
were published in Science on 11 April 2003 (cf. www.chr7.org). Chromosome 7 
numbers 158 million nucleotides and by the year 2003, 1455 genes had been 

nd mucoviscidosis.  identified, some of which play a role in leukaemia, autism a
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here, as this redundancy is the basis of a certain genetic robustness: 
in this way, once in a while, there can be a mutation of one single 
nucleotide, or there can be an error in the reading mechanism, 
without any noticeable effect on the resulting protein. Of course, 
things can also go wrong: sometimes a point mutation in the DNA 
is not innocent at all. This is the case with certain mono-genetic 
diseases, which are caused by deviations in one single gene, and 
which can be quite catastrophic.  

Despite the finite number of only twenty amino acids, the 
number of possible proteins is astronomically large. For proteins 
that consist of concatenated amino acids, say ‘L’ of them, the 
number of different proteins is large, equal to ‘20 to the power of 
L’. For a length of L=5, in principle there are ‘20 to the power of 
5’, which is 3.2 million different proteins!  

Proteins, which in essence are linear chains of amino acids, 
typically have a complicated three-dimensional geometrical con-
figura

ms. Amongst 
other 

sequences, to codons, to amino acids, to proteins is quasi-universal 

tion. This geometry very much determines the precise inter-
action with other proteins and molecules, such as binding proper-
ties, enzymatic effects, signal transduction, cell-cell communica-
tion and many other functionalities and processes in the cell. A lot 
of research is being carried out to predict the precise geometrical 
form of a protein, starting from the DNA sequence that codes for it 
(the so-called protein-folding problem).  

Proteins glue cells together into tissue, organise these tissues 
in organs and, from there, compose living organis

things, proteins control cell division, repair damaged heredi-
tary material, and play an important role in oxygen delivery. 16  
Failures in the functioning of a protein are felt very rapidly at the 
level of tissues, organs and soon the general wellbeing of a patient.  

The genetic code we have just described, starting from DNA 

for all organisms on our planet. This offers interesting perspectives 
to ‘synthetically’ exchange certain pieces of DNA sequence be-
tween organisms (as nature has been doing ‘spontaneously’ over 
millions of years) in order to obtain certain ‘improvements’.  

                                                           
16 The Nobel Prize of 2004 (cf. www.nobel.se) was awarded to three scientists 
who discovered how all kinds of ‘waste material’ in our bodies are labelled for 
transport to ‘waste-treatment factories’ in our cells (the proteasomes). A typical 
label is a protein, called ‘ubiquitin’, because it is ubiquitous in living cells. The 
failure of some of the mechanisms in which ubiquitin is involved, can lead to 
cancer and other diseases.   
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In the genome of humans, mammals and plants, we also find 
sequences of DNA that do not code for proteins. Till quite recently, 
these pieces were called ‘junk-DNA’, but over the last couple of 
years we have started to realise that this name is quite inappropri-
ate. In these non-coding areas, there are many other functional 
entities, such as regulatory elements and motifs, on which we will 
elaborate on below. These are ‘switches’, which can switch a gene 
on or off, and which can do this in a continuous way, similar to the 
way w

or in cyclic or seasonal 
behav

tems can vary widely. In 
ideal c

 

por-
tant role. mRNA contains single-stranded copies of DNA. It can 
migrate from the nucleus to the body of the cell, where it provides 

e can switch a light on or off, or do it continuously using a 
‘dimmer’. They can up- or down-regulate a gene, i.e., increase or 
decrease the number of mRNA it generates (and hence increase or 
decrease the number of corresponding proteins). These switches 
can also act as ‘timers’, i.e., they control the activity of a gene as a 
function of time, as we see in biorhythms 

iours. Also, junk-DNA contains pseudo-genes, genes that 
somewhere  during evolution played a role, but which are now not 
switched on any more. Today, a lot of research is being done to 
unravel the interaction between genes and regulatory elements, 
which are organised in so-called ‘genetic networks’.  

All of these biochemical reactions happen on very small 
scales: viruses are the size of a couple of hundred nanometres (a 
nanometre is one-millionth of a millimetre, or 0.000000001 m). 
But also the time scales of biological sys

ircumstances, the bacteria E. coli can divide itself in twenty 
minutes. This means that after eight hours, one bacteria can gener-
ate a population of ‘2 to the power of 24’ bacteria, or 16,777,216 
bacteria. Genetic clocks responsible for biorhythms can have a 
periodicity of 24 hours. These are just two examples of the widely 
varying time-scales that we find in living organisms.  

TECHNOLOGICAL BREAKTHROUGHS: MICROARRAYS AND BIODATA 
 

The complementarity of DNA that we have described also lies at 
the basis of an important new technology: DNA chips, or microar-
rays. In the path from DNA to proteins, of which we have given a 
simplistic description, messenger RNA (mRNA) plays an im

the protein-generating mechanism with the instructions it needs. 
This is illustrated in Figure 1. The more mRNA that is transported 
from the genetic epicentre, the harder the protein generating me-
chanism will work. The volume of mRNA molecules – and their 
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conce

io-

sequence, and, at the same time, measures the quantity of that spe-

ntration – is an important indicator for the molecular biologi-
cal activities of the genes, and, from there, we can recognise, in 
principle, the difference between health and disease.  
 

 
 

Figure 1: Representation of the different steps in going from a gene to 
a protein. An activated transcription factor enters the nucleus of a cell 
and, under certain circumstances, binds with the DNA.   
Then RNA-polymerase gets involved to start transcription of the gene, 
into a complementary, single-stranded RNA sequence. The newly 
formed RNA is stabilised at both ends. In the next step, mRNA is 
formed by spitting out the so-called introns. The mRNA sequence 
folds into a more compact form that is then transported out of the nu-
cleus. In the cytoplasm the final translation of mRNA to an amino 
acid sequence is performed.  

 
 
One of the most spectacular technological breakthroughs in b 
technology of the last couple of years is the development of mi-
croarrays (cf. Schena, 1995; DeRisi, 1997; Lander, 1999). They 
have made possible the simultaneous measurement of the activity 
or gene expression level of thousands of genes active in a particu-
lar sample. These expression levels are a measure for the quantity 
of mRNA that is generated by the genes involved. Microarrays 
consist of a large number of spots on a small carrier surface. Each 
of these spots contains a string of nucleotides that is complemen-
tary to one specific single-stranded mRNA string, to which it will 
bind: in other words, each spot ‘recognises’ one specific mRNA 
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cific mRNA in the sample under study. Because microarrays con-
tain thousands of spots, we can simultaneously measure the expres-
sion levels of several thousands of genes that are active or  non-
ctive in a certain sample. The speed by which microarray technol-

ogy is developing implies that, pretty soon, we will be able to put 
all genes of a genome on one single DNA chip. While techniques 
to measure the expression levels of a couple of genes have been 
available for a while (e.g., Northern blot), the power of microarrays 
lies in their ‘high throughput’, i.e., they measure the expression 
levels of several thousands of genes at once!  This implies that for 
each sample we analyse on a microarray (e.g., a sample from a 
biopsy of a cancer tumour), we obtain thousands of numbers, each 
of which quantifies the expression level of a specific gene in that 
specific sample. This generates a large amount of data. Suppose we 
have 5,000 tumour biopsies (e.g., a bio-bank), of 5,000 patients 
with a specific type of cancer, and that we screen those samples on 
a microarray for the expression levels of 10,000 pre-selected genes, 
and we do this every month for twelve months in a row. This will 

e a database of 5,000 x 10,000 x 12 = 600,000,000 num-
ers; that is 600 million numbers that need to be analysed. What 
e m oint 

we c en-
erate lecular biology 
with lop 
new  
orde om 
whic bio-
med all 
bou

It should come as no surprise that the volume of biological 

a

then creat
b
w ean exactly by analysis will be explained below, but the p

an make here is that this new technology of microarrays g
s a lot of numbers and links the world of mo
 the numerical/statistical world. From this, we need to deve
 types of mathematics and statistics, and also algorithms, in
r to cope with these large amounts of numerical data, fr
h we can then try to deduce the relevant biological or 
ical information. This is exactly what bioinformatics is 
t.  a

and biomedical information on the World Wide Web is increasing 
exponentially. Recent estimates show that the volume of genome 
sequence information doubles every eighteen months (coincidence 
or not, this is exactly the same exponential doubling as in Moore’s 
law). It is predicted by experts that very soon the world will pro-
duce 100 gigabytes of biological and biomedical data, every day! 

All of these data have specific properties and features, which 
can briefly be summarised as follows (De Moor, 2003):  
Biodata feature I:  Typically, biological data are collected under 
difficult and nontrivial experimental circumstances, and, therefore, 
the measurements are not always very precise. In technical terms, 
the data suffer from a very bad ‘signal-to-noise’ ratio, i.e., they are 
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corrupted by all kinds of useless, random noise, which is quite 
challenging to deal with!  
Biodata feature II: Biology as a science is not yet characterised by 
an ‘axiomatic approach’; in other words, it is still very much like 
an ‘empirical’ science, where most of the ‘first principles’, the 
‘axioms’, still need to be discovered. This is the reason why many 
of the results published in biological literature are formulated in a 
conditional tense, as a hypothesis. This is also the reason why there 
is a big need for statistics and probabilistic methodologies.  
Biodata feature III: Even if biology is not (yet) axiomatic, and the 
overall quality of the empirical data is quite low, the qualitative, 
descriptive know-how of biological systems is still quite good. 
This requires relatively complex knowledge-representation systems 
that can cope with qualitative, not quite quantitative models.  
Biodata feature IV: Biological systems operate on several, widely 
varying scales in space and time. Therefore, we need methods that 
can integrate and operate with information over several orders of 
magnitude in space and time.   
Biodata feature V: Biological research on specific organisms or 
pathologies happens simultaneously in many (hundreds to thou-
sands) research groups throughout the world. Therefore, the ac-
quired scientific knowledge is distributed, not only geographically, 
but also over several hundreds or even thousands of websites with 
biological databases and with relevant publications. This requires 
special methods of knowledge-integration.   
Biodata feature VI: Biologists typically represent biological prob-
lems and systems in a graphical manner. Therefore, they need user-
friendly user-interfaces as well as graphical metaphors in order to 
exchange information.  
 

 

BREAKTHROUGHS IN MATHEMATICS AND STATISTICS  
 
At first sight, we think of biology and mathematics as two different, 
non-overlapping branches of science. However, in the 20th century, 
we discovered that the fundamental laws of matter, energy and 
information can be captured in an extremely efficient way with the
language of mathematics17. There is no doubt that in the 21st cen-
tury we will come to the same conclusion for the fundamental bio-

                                                           
17  Already Galileo Galileï emphasised how efficient mathematics is in describing 
the laws of nature (‘...libro della natura, scritto in carateri matematici....’). The 
Nobel Prize winner Eugene Wigner called it “The unreasonable effectiveness of 
mathematics” (Lesk, 2000).  
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logical laws (Lesk, 2000). The DNA code as we have described 
above (albeit rather simplistically), is a clear example of this: it 

ebra 

s made important contributions to 

reek, bios, ‘life’, and 

shows how biological systems encode information, over several 
thousands of years throughout generations. The way proteins inter-
act with each other as a function of time can be described by dif-
ferential equations (not that we already do this intensively, but the 
time that we will do so is nearby). In brief, information theory, 
mathematics and statistics will prove to be extremely effective in 
the description and modelling of biological systems.  

This is no coincidence, as can be seen from some historical 
examples. When Gregor Mendel discovered his laws of inheritance, 
he was not so much inspired by biological insights, but by mere 
statistical inference (basically counting occurrences) (Henig, 2000). 
The 1940 PhD thesis of Claude Shannon was entitled An Alg
for Theoretical Genetics. The very same engineer created a brand 
new branch of mathematical statistics ten years later, called ‘in-
formation theory’. The famous British mathematician Alan Turing, 
who during the 1930s and ‘40
computer science (the ‘Turing-machine’), and who also cracked, 
during the second World War, the secret Enigma code of the Nazis, 
wrote in around 1950 a famous manuscript in which he explained 
the cell division of embryos (‘morphogenesis’) using reaction-
diffusion equations. And there are many more exciting examples of 
the interaction between mathematics and biology. In a new scien-
tific field, called ‘biomimicry’ (from the G
mimesis, ‘to imitate’) (cf. www.biomimicry.org), scientists derive 
inspiration from nature to find new solutions for technological 
problems. The underlying idea is that nature is a gigantic computer, 
which over the last 3.8 billion years has experimented with ‘sur-

ival’ strategies so as to keep only the best ‘solutions’. Well known 
engineers do to 

immune systems. And recently, researchers developed DNA com-

v
examples of biomimicry include the research that 
create ‘artificial neural networks’, which manage to find nonlinear 
relationships to model and predict observations. We also use ‘ge-
netic algorithms’, which are inspired by Darwin’s ‘survival-of-the-
fittest’, to solve difficult optimisation problems. Or we use sophis-
ticated search algorithms that are inspired by the way ants commu-
nicate with each other, using pheromones. Our computer-virus-
detection methods behave in very much the same way as natural 

puters18, in which the complementarity of DNA strings, explained 
                                                           
18  Recently, Israeli scientists described how they managed to put about three 
million DNA computers into one thousandth of a millilitre of a salty solution. 
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above, is used to solve complicated combinatorial optimisation 
problems (Kari, 1997).  

Due to Moore’s law, the computing power of our computers 
doubles every eighteen months. Therefore, nowadays we can also 
implement numerical algorithms so that they can perform calcula-
tions on databases of a very large scale19, the size of several me-
ga/gigabytes. Many algorithms were invented more than 100 years 
ago, but it is only because of the technological breakthroughs in the 
design and manufacturing of siliconchips that we can now really 
use them. An algorithm20 is a certain sequential procedure, imple-
mented in software on a computer, to solve a given problem. As an 
example, we all extensively use algorithms to sort a list of names 
alphabetically, called sorting algorithms, which are very efficient. 
But our computers use many algorithms every second. A special 
type of algorithm is a numerical algorithm. These numerical algo-
rithms operate on numbers and use the language and properties of 
numerical mathematics and linear algebra. Very simple examples 
are an algorithm for calculating the square root of a real number, or 
an algorithm for multiplying two matrices together. A more com-
plicated algorithm is one that calculates the eigenvalues and eigen-
vectors of a large scale matrix. Nowadays, there are algorithms for 
many problems in all branches of science, and the research area of 
algorithmic design is a very lively one.  

Bioinformatics has emerged from the interaction between 
these breakthroughs in biology, technology, mathematics and sta-
tistics. But increasing communication via the internet has also pro-

                                                                                                                        
These small calculating units perform an estimated 66 billion of elementary calcu-
lation operations per second. These small computers measure the concentration of 
specific mRNA molecules, take certain decisions based on these concentrations 
and then proceed in releasing or not, certain molecules that can act as a medicine. 
Each of these modules – to measure (input), to diagnose (processing), to output 
(release medicine) – are typical parts of a computer. There is a lot of ongoing 
research today to synthesise such elementary computers using DNA (cf. Benen-
son, 2004). 
19 In the first half of the 20th century, algorithms like this were executed by ‘bat-
teries’ of human calculators - in many cases women, who were called ‘com-
puters’. Each of them took a small piece of the computational problem just like 
today we split up a difficult calculation in many tractable pieces. The word com-
puter in due time got transferred from its meaning of ‘human’ to that of ‘ma-
chine’.  
20 The word algorithm derives from the name of the mathematician Mohammed 
ibn-Musa al-Khwarizmi, a member of the royal court in Bagdad, who lived from 
around 780 till 850 AD. It is in the work of Al-Khwarizmi, that the word algebra 
is used for the first time.  
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ven to be a strong catalyst  for the development of this new disci-
pline: the number and size of biological databases containing ge-
nomes

(2002), but since then there have been many papers that describe 

cer is a process in which the genome plays a critical role. 

nt cells). These genetic mutations can also lead to the mal-

 of organisms, and databases with scientific insights and 
publications is increasing very rapidly.  
 
 
APPLICATIONS 
 
Although the number of applications is nearly unlimited, we will 
restrict ourselves to just two, relatively easy proof-of-principle 
examples that illustrate how bioinformatics has dramatically chan-
ged the way biological and biomedical research is being done.  

The first application describes how several types of leukae-
mia can be distinguished from each other, using genetic informa-
tion derived from microarrays. This example shows how physi-
cians in the near future will use ‘decision-support-tools’ that assist 
them in determining a correct diagnosis.  

In the second application, we illustrate how microarrays are 
used to gain new insights in biology. We will show how one can 
discover so-called ‘regulatory elements’ in the DNA.  
 
CLINICAL APPLICATIONS IN ONCOLOGY  
 
In recent publications, it has been shown how data generated by 
microarrays can be used in clinical diagnosis applications, espe-
cially for cancer research and diagnosis (oncology). Some early 
examples can be found in van de Vijver (2002) and van ’t Veer 

the same idea. We now know that microarray data can be used in 
the diagnosis, prognosis and therapy planning of malignant cancers. 
In addition, since the price and selectivity of microarray devices is 
improving exponentially, it is expected that we will soon be apply-
ing microarrays in every day medical practice. This may then lead 
to a revolution in the clinical treatment of cancer.  

Can
Under the influence of many potential external factors, such as 
radiation, viral infections, etc., mutations in certain genes can be 
induced, causing an uncontrolled proliferation of cells, which in 
due time leads to invasion and metastasis (the spreading-out of the 
maligna
functioning of other genes, even though they themselves are not 
modified at all. But their expression might be regulated by the pro-
duct or protein of a gene that is malfunctioning. The collection of 
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abnormal gene expressions, determines the phenotype of the tu-
mour cell. It also determines the prognosis or the reaction to a cer-
tain therapy. Measuring the gene expression levels of the genes 
involved in these processes leads to a better understanding of the 
mechanisms underlying ‘carcinogenesis’, the origin and growth of 

mour cells. It will also lead to better therapy monitoring. There is, 
tific challenge. Every microarray generates thou-

ands of numbers (one number per gene per patient at a certain 

has 
often 

form of acute leukaemia, 
call

d.mit.edu/ 
gi-bin/cancer/datasets.cgi). The data from these microarrays can 

tu
however, a scien
s
instance of time). Processing so many numbers, and deducing the 
correct medical conclusions from them, requires advanced mathe-
matical and statistical techniques. In order to explain the idea, we 
will take a relatively simple example from literature, which 

been discussed in recent years, and which illustrates very 
well what we have in mind.  

A sample of 72 patients is taken, some of which suffer from 
acute lymphatic leukaemia (ALL), others from acute myeloid leu-
kaemia (AML), and a third group from a 

ed MLL leukaemia. Blood samples of these patients are then 
analysed with a microarray, containing about 12,600 genes (these 
results can be found on the internet at: http://www.broa
c
now be used  for the following:  

- for selecting individual genes or combinations of genes 
that ‘characterise’ one of these three forms of leukaemia;  

- for performing predictions relevant to the clinical treat-
ment;  

- for discovering unknown classes of a certain disease, and 
identify the genes that play a role in these classes.  

Let us now elaborate on these themes.  
 
1. Feature selection 
Typically, a first step in data treatment is the reduction of the mere 
amount of data. This is called ‘reduction of dimensionality’. Our 
dataset under study contains 72 patients, monitored over about 
12,600 genes. This is a lot of data. Therefore, it is important to 
reduce the information, which will contain a lot of redundant or 
irrelevant information, in one way or another. We only have to 
select those features of the data that are relevant for what we want 
to do, which in this case is to recognise which patients belong to 
which of the three classes of leukaemia, and which genes play a 
role in that classification. There are several methods of achieving 
this, but here we will only mention two by way of example.  
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2. Selection of individual genes 
The simplest way is to select individual genes, the expression of 
which is best correlated with a specified class. This is a very sim-
ple idea, since one can expect that the expression level of most 
genes is irrelevant for one or all of the three classes of leukaemia, 
since most of the 12,600 genes probably do not play a significant 
role in the disease anyway. As an example, we could select the 
fifteen genes of which the expression differs most in one of the 
three classes (ALL, AML or MLL), compared to the other two (see 
Figure 2). Then we can just omit the other genes. This corresponds 
to a dimensionality reduction from 12,600 genes originally, to only 
45 (3 x 15 genes; that is fifteen for each of the three classes). In 
this way, we could also hope to identify the genes that play a role 
in a certain type of leukaemia, which might help in trying to iden-
tify th

l 

ent, 
 levels (colour-coded) for a 

particular gene in all patients (Figure taken from Armstrong, 2002.) 

e origins of this specific form of cancer. In literature, one can 
already find many articles that attempt to identify in this way genes 
relevant for a certain pathogenesis. One can not only compare gene 
expression levels in microarrays, for different genes and different 
patients, but also under several different conditions, or even as a 
function of time. Obviously, the technology of microarrays wil
help us a lot in the near future in biomedical research and clinical 
therapy. 
 
 
 
 

Figure 2: Selection of three sets of fifteen genes, the expression of 
which differs the most in ALL, AML or MLL (in comparison to the 

atrix represents a patitwo other classes). Every column of this m
and each row contains the gene expression
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3. Selection of combinations of genes 
A second, more advanced method of reducing the number of di-
mensions is to try to find combinations of genes that are relevant to 
‘recognising’ and ‘characterising’ a certain class. Each of the com-
binations then results in one specific value that can be considered 
as what is called a ‘feature’. In the simple method we have just 
been describing, every feature corresponds to the expression of just 
one single gene. But typically, a specific class is characterised, not 
by an individual gene, but by the interaction of several genes at 
once. Therefore, it is probable that we will find a better characteri-
sation of each class by trying to combine the expression levels of 
several genes at once.  

A well known statistical method of doing this is called ‘Prin-
cipal Component Analysis’ (PCA). This numerical technique has 
been known for a long time in multivariate statistics. And these 
days we have excellent software available to calculate it. In PCA, 
the data are projected onto a lower dimensional space by using 
orthonormal transformations on the rows and columns of the data 
matrix, which, in our case, is a matrix with 12,600 rows (the gene 
expression levels as measured by the microarray) and 72 columns 
(the patients). For the leukaemia dataset, we can project the data 
into a three dimensional space using PCA, and each patient can 
then be represented by a point in a three-dimensional space (see 
Figure 3). The coordinate axes in this example are not individual 
gene expressions, but each of the three axes is a specific combina-
tion of the 12,600 gene expression levels. So, instead of scoring the 
profile of each patient over 12,600 genes, we can now characterise 
each patient, as the result of the PCA calculation, by just three 
numbers (the coordinates in the three dimensional space obtained 
from PCA). In so doing, we can clearly see that there are three 
different classes of patients. It can be verified that these classes 
indeed correspond to the three types of leukaemia we started with 
in our patient sample.  
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Figure 3: Principal component analysis of 72 patients with leukaemia. 
This analysis results in three ‘features’ (which are the coordinate axes). 
One can clearly see that, when patients are represented by their coor-
dinates according to these axes, there are three clearly distinguishable 
classes of leukaemia in this dataset: the left class ALL, the middle 
class MLL and to the right AML. (Figure taken from Armstrong, 
2002.)  
 
 

4. Predictions  
 a clinical environment, it is important to predict the response of 

atients with respect to a certain therapy. This can be done by mak-
g models using the features that have been selected to describe a 

certain disease. The parameters of these models are determined by 
using data from samples obtained from patients that are known to 
suffer from the disease under study. This set of samples is called 
the ‘training set’. The trained model can then be used for trying to 
carry out predictions for patients for whom classification is not yet 
known. Some examples of models we use are ‘artificial neural 

In
p
in
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networks’, ‘Bayesian networks’, ‘Linear Discriminant Analysis’ 
and ‘support vector machines’. In this way, we could use our sam-
ple of 72 patients, for each of whom we know which of the three 
types of leukaemia they suffer from, to try to diagnose ‘new’ pa-
tients. This could be done by calculating for each new patient, the 
three coordinates in the coordinate system delivered by PCA, cal-
culated on the sample of the 72 patients, and then deciding to 
which class the new patient belongs.   

With these methods, we can develop models in which mi-
croarray measurements are used to assist the specialist, or to pre-
dict the clinical progress of a tumoural process.  

We can train a model in such a way that the presence of me-
tastasis can be predicted (even in a case where this is not yet trace-
able clinically). In this way, we could select patients that would be 
most helped by additional therapy (e.g., chemotherapy) or patients 
for whom additional therapy would imply unnecessary toxicity or 
mutilation. We can make models based on microarray measure-
ments that predict whether a tumour will grow slowly or aggres-
ively. Such models can be used to make a prognosis of tumour 
eve pment. Microarray-based models can be used to predict the 

success of a certain therapy, i.e., whether a certain therapy leads to 
com mission or progression.  
 
5. Class discovery  
As w lus-
ter s ral 
thou ring 
algo ng’, 
‘self al-
gorit
space, by assessing which points behave similarly as a function of 
certain features. The 72 leukaemia patients we have been discuss-

 as an example. By first calculating a PCA of the 

s
d lo

plete re

e have shown, microarray measurements can be used to c
amples from  patients with a similar behaviour on seve
sands of genes. This can be done using so-called ‘cluste
rithms’. Some popular methods are ‘hierarchical clusteri
-organising maps’ and ‘K-means clustering’. A clustering 
hm typically recognises clouds of points in a high-dimensional 

ing can be used
12,600 x 72 data matrix, we can ‘represent’ each patient as a point 
with three coordinates in a three-dimensional feature space, which 
is ‘automatically’ determined by PCA. We could now apply a clus-
tering algorithm to automatically find the three clouds that we 
clearly see in Figure 3 (in the three different colours). The leukae-
mia example we have used here is an easy one, as we can easily 
distinguish the three classes in Figure 3. However, in most applica-
tions, the task is not so easy. To begin with, the PCA dimensional-
ity reduction might require a larger-dimensional space, e.g., five 
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instead of three. In that case, we can no longer ‘visualise’ the pa-
tients. In addition, in that five-dimensional space, it might not be so 
straightforward clustering the patients into separate classes. For 
instance, the boundaries between two classes are not necessarily 
straight, ‘flat’ surfaces, but can be quite complicated, and in those 
cases advanced clustering algorithms are used.  
 

 
 

ression level of which char-
he two matrices shown here are the result of a 

 
 
 
 
 
 
Figure 4: Examples of class discovery using data from microar-
rays. We see two data matrices visualised. The first one con-
tains, as its rows, nineteen patients with ALL, and the columns 
are the gene expression levels for 80 genes, which together can 
characterise this type of leukaemia. Element (i,j) of this matrix 
represents the gene expression level (encoded by a certain gray 
level) for gene j in patient i.  
The second matrix contains, as its rows eighteen AML patients 
characterised by 87 genes, the exp
acterises AML. T
so-called ‘blind’ class discovery problem, in which one is gi-
ven a large matrix of patients (rows) and gene expression levels 
(columns). It is not known beforehand how many different 
classes of diseases there are (AML, ALL and MLL), nor which 
genes might characterise these classes. Nor is it known which 
and how many patients belong to each of the classes. In our re-
search, we have been developing so-called ‘bi-clustering’ algo-
rithms, which manage to find classes of patients that belong to 
the same type of leukaemia, and simultaneously discover the 
genes that characterise each class.  
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NRAVELLING DNA FUNCTIONALITY  

Let us now discuss a second example of the applicability of mi-
croarrays.  
 
1. Context 
The most important aspect of the gene expression process is that 
transcription (i.e., the way DNA is transcribed into messenger 
RNA (mRNA)) starts by the binding of an activated transcription 
factor with the DNA. In 1987 it was shown that there must be a 
certain complementarity between the active site of a protein and 
the DNA, before a transcription factor can bond with the DNA 
(Berg, 1987). This implies that, if we compare the different binding 
sites of a specific transcription factor, these binding sites share 
certain common features at the nucleotide sequence level. Nowa-
days, there is a lot of ongoing research to develop algorithms to 
detect these binding sites in the genomes of species. A typical 
binding site consists of a relatively short sequence (e.g., ten to 
twenty nucleotides) so it is extremely difficult to find them in the 
genome. However, the search can be focused by assuming that 
genes that show a similar expression level  under certain conditions 
are regulated by the same transcription factors. As a first step in the 
detection of regulatory elements, we have to identify genes that 
show similar expression behaviour. This step is also implemented 
using clustering algorithms.  
 
2. Clustering gene expression profiles  
As we discussed earlier, microarrays determine the expression 
levels of thousand of genes simultaneously. And, as we have al-
ready mentioned, we can repeat microarray experiments with sam-
ples from different patients, samples obtained at different instances 
of time (e.g., during cell division, during the cell cycle or during 
therapy) or samples obtained under different experimental condi-
tions. The objective of clustering gene profiles is to find groups of 
genes that show a similar behaviour in patients, time or experimen-
tal conditions. Genes that show such a similarity are called ‘co-
expressed’. In Figure 5, we see the result of a cluster analysis of a 
collection of genes, the expression of which was measured at 
eighteen different instances of time during the cell division of yeast 
cells (Spellman, 1998). For genes that belong to the same cluster, 
there is a higher probability that they participate in a common bio-
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logical function in the cell cycle. Therefore, it is highly probable 

sured with microarrays over eighteen 
points in time. Cluster three (top left) contains the expression profiles 

p right) contains tho-

 

that they share the same binding sites for transcription factors.  
 
 

 
Figure 5: Four clusters of gene expression profiles measured during 
two cell cycles of yeast. Thin dashed lines represent the individual ge-
ne expression profiles, mea

of 61 genes as a function of time. Cluster four (to
se of 44 genes. Cluster 28 (bottom left) contains the profiles of the ex-
pression levels as a function of time of 44 genes, and cluster 24 (bot-
tom right) those of nineteen genes. The thick lines represent the aver-
age expression profile of these clusters, averaged over all gene expres-
sion profiles in each cluster. The fact that certain genes co-occur in a 
cluster is probably an indication that they are involved in a common 
process in the organism.   

 
3. Representing binding sites  
A collection of binding sites is called a ‘motif’. One specific bind-
ing site is then a specific instance of a motif. A motif is represented 
by a motif model, which can be just a string of nucleotides or a 
matrix, the columns of which refer to the positions in the motif, 
and the four rows give the probability that we will find an A, C, T 
or G at the corresponding position in the motif. To construct a mo-
tif model, we start from a set of DNA sequences where the tran- 
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Figure 6: Probabilistic representation of a motif, i.e., the representa-
tion of a collection of possible binding sites for a transcription factor 
within the DNA, which can start the transcription of a gene. We show 
a motif, which numbers ten nucleotides. In the matrix on the left, we 
can see, in the first column, that the probability of having a letter T at 
that position is equal to 0.8931. This implies that more than probably 
the first letter of the motif is T. For position ten, we see that the prob-
ability of having a C at that position (0.6235) is twice as large as that 
of having a T (0.3629). In the figure on the right we see a visual repre-
sentation of the motif, in which the size of each letter is proportional 
to the probability of having that letter at a certain position. Recently, 
we have been developing algorithms that can find motifs like the one 
represented here in DNA-sequences. These are algorithms that try to 
estimate the probability matrix per motif, using advanced statistical 
techniques. 

 
scrip can 
dedu ign 
ligning all segments and at each position selecting (or ranking) the 
mos  we 
cons trix, 
with , C, 
T an ith 
whic cur 
at the position represented by the column. An example can be 

und in Figure 6, where we see a probabilistic representation of a 

 

tion factor binds. By grouping the samples in this set, we 
ce a so-called consensus. This consensus is formed by al

t probable nucleotide(s). In one version of this method,
truct a position-frequency matrix, which is a four by N ma
 N being the length of the motif. The rows correspond to A
d G. Each element in the matrix represents the probability w
h the nucleotide corresponding to the specific row will oc

fo
motif of ten letters.  

In our research group we have been developing advanced al-
gorithms to detect motifs in DNA sequences and represent them in 
the same format as shown in Figure 6. On the internet, there are 
several databases where motifs are stored and can be downloaded 
by other researchers, so that they can be verified or validated bio-
logically. 
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4. An example 
As an example of motif detection, we have used an extensive and 
often-used dataset of microarray data from the cell cycle of baker’s 
yeast, Saccharomyces cerevisiae (Spellman, 1998). The cell cycle 
here consists of four consecutive phases: phase G1 in which the 
cell grows, the S-phase in which  DNA synthesis occurs, the transi-
tion phase G2, and the M-phase in which eventual mitosis occurs
The icroarray samples were obtained at eighteen instances of 
time n two consecutive cycles of the cell. After some data pre-
proc lgo-
rithm om 
whic  5, 
whe The 
first eri-
odic teen 
gene eri-
men  in 
one  of 
the g for 
com een 
nucl
lusters. The most prominent motif is found in the sequences up-
tream of the genes in cluster 28. Here we find in all motifs a 

sensus motif of ATGAAAC, which shows a 
strikin

e in the form of ATATATGnnTCAGATA in seven ge-
nes. In the known databases we cannot directly retrieve what func-
tion it could have. But the fact that we can see this motif consis-

. 
m

 i
essing, we use one of our home-developed clustering a
s (called AQBC: Adaptive Quality-Based Clustering), fr
h we find 38 clusters. Four of these are shown in Figure

re one clearly sees the different phases of the cell cycle. 
three clusters (clusters three, four and 28) clearly show a p
 behaviour. The fourth cluster (cluster 24) contains nine
s that have a high expression level at the start of the exp
t and that are switched off later on. For each of the genes
cluster, we select a sequence of 800 nucleotides upstream
ene. With our motif detection algorithms, we then look 

mon motifs of a length that varies between five and sevent
eotides. The results we obtain are quite different for the several 

c
s
common consensus: ACGCGT. This consensus corresponds to the 
well-known MCB motif, which is known to play an important role 
during the cell cycle. In cluster four, we find two motifs: TTTs-
GykT and TGTTTsTT (the small letters represent several possible 
nucleotides at the same time).  

These two motifs are unknown in the present-day databases. 
For cluster three we do not seem to find any significant motif, as 
we only find consensus sequences containing only A’s and T’s, of 
which it is known that such sequences cannot really be regular 
motifs. The analysis of the non-periodic cluster 24 for short motif 
lengths reveals a con

g resemblance to the STE12 motif that is found in certain 
dedicated databases. As a matter of fact, one of the genes, for 
which it has been proven that it is regulated by STE12, is present in 
cluster 24. This is an indication that the motif we found also influ-
ences the other genes in this cluster. If we try to find longer motifs, 
we find on
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tently in seven genes can be a source of inspiration for further bio-
logical research and validation.  
 
 
THE NEAR FUTURE: SYSTEMS BIOLOGY  
 
Until recently, biological research concentrated on the role of sin-
gle genes, proteins and other molecules as relatively isolated enti-
ties. The use of new ‘high throughput’ technologies, part of which 
we discuss in this contribution, opens completely new perspectives 
for biological research: we now know that genes interact with each 
other through complex regulatory networks, thereby influenced in 
one way or another by external ‘stimuli’ (‘inputs’). From this per-
spective, we consider an organism as a dynamical system (i.e., a 
system whose variables evolve as a function of time), characterised 
by a certain ‘state’, and interacting with its environment through 
inputs and outputs. The whole behaviour of the organism is deter-
mined by a complex dynamical interaction between genes, proteins 
and metabolites in a complicated network. Through the increasing 
availability of data from an increasing number of model organisms, 
we can now start comparing the cellular mechanisms between or-
ganisms. The new discipline where we study these interactions is 
called ‘systems biology’. It is an interdisciplinary and cross-
disciplinary research domain, where we combine high-throughput 
molecular biology (microarrays and transcriptomics, proteomics, 
etc.), using system identification techniques and data mining to 
obtain mathematical and statistical models and acquire insight into 
the fundamental mechanisms of biological systems.  

The reconstruction of genetic networks using molecular bio-
logical data is one of the main challenges of systems biology. A 
cell can be considered as a dynamical system that processes input 
signals, through its interaction with the environment, in an ade-
quate and appropriate behaviour. The genetic network plays an 
important role in the signal transduction. The functional parts of a 
genetic network are the genes and proteins, each of which is con-
nected in a more or less hierarchical way. In this sense, genetic 
networks can be compared to electrical circuits. Whenever a gene 
located at the top of the regulation cascade is switched on, e.g., 
through an external stimulus, the corresponding protein it generates 
will in turn be responsible for switching on a next set of genes. 
Through the hierarchical structure of a genetic network, this phe-
nomenon of cellular signal transduction is a multiplicative process. 
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In addition, there are many non-linear mechanisms such as the 
presence of (nonlinear) feedback mechanisms, all kinds of syner-

etic effects and even  Boolean logic gate mechanisms. These 
onlinear mechanisms – the mathematical study of which is the 

 autonomy of a cell as a 
elf-regulated system that is quite robust with respect to variations 

, is conserved 
in mo

g
n
branch of ‘systems theory’ – determine the
s
in its environment. However, as of today, the precise causal struc-
ture of most genetic networks is unknown. Obviously, new tech-
nologies such as microarrays can play a very important role in 
trying to unravel the operational modes – both qualitatively as well 
as quantitatively - of a genetic network.  

Besides obtaining fundamental insights into the mechanistic 
operation of an organism, network inference also opens perspec-
tives for a wide variety of industrial and medical applications. 
Think, for example, of the unravelling of certain network modules, 
involved in certain cancer types, which, when well understood, 
might lead to an improved diagnosis, prognosis or treatment.  

Yet another example of a process that is apparently con-
trolled by a complex genetic network is ‘quorum sensing’ or cell-
cell communication in prokaryotes (bacteria). It was discovered 
that some bacteria can communicate with each other in a common 
chemical language, which serves to initiate a certain pathogenesis. 
Understanding the fundamental mechanisms behind quorum sens-
ing is an important challenge in microbiology (and can, for in-
stance, lead to a better use of probiotics as an alternative for pre-
venting and fighting infections). Quorum sensing is possible by the 
production and release of signal molecules, called auto-inducers 
(AI). The gene that codes for AI-2 synthase, i.e., luxS

re than 40 species. Bacteria adapt their gene expression as a 
function of changes in the quantity of signal molecules. The ge-
netic network that is (in-)directly controlled by AI-2 is not very 
well understood at this moment. Systems biology can lead here to 
new breakthroughs.  

In summary, we can state that we are at the beginning of a 
new revolution in the life sciences, in which biology and informa-
tion technology will lead us to new discoveries and applications. It 
might also be necessary to modify the century-old classification 
system of Linnaeus, because genetic analysis has taught us a lot 
about the origin and evolution of species. The evolutionary rela-
tionships between species can be described much more accurately 
using DNA information, than based on external features (pheno-
types) (Holmes, 2004). But there is more to come. In this contribu-
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tion, we mainly discussed ‘transcriptomics’, i.e., the unravelling of 
the function of certain DNA sequences by using microarray tech-
nology. But now there are already important technological break-
through in proteomics (interactions between proteins) and me-
tabolomics (the biochemical processes in the cell). The wealth of 
information contained in databases downloadable from the web 
and the databases in millions of scientific publications has grown 
so drastically, that it has become necessary to develop algorithms 
that can summarise the main notions of these papers, and that can 
perform a correlation analysis between papers to find possible in-
teractions between genes. This is called ‘text mining’. Text mining 
is  already used heavily by biologists and biomedical researchers to 
simultaneously screen thousands of articles to discover potential 
biological relations, which can then be validated in wet lab ex-
periments. Bioinformatics and systems biology: we ain’t seen noth-
ing yet!21  
 

                                                           
21 I would like to thank all my past and current PhD students, my postdoc re-
searchers and my research colleagues in the many projects and networks we are 
involved in, for their direct and indirect contributions to this article. Of course, all 
mistakes, inaccuracies and simplifications are my responsibility. Suggestions can 
be mailed to bart.demoor@esat.kuleuven.be 
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