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A method is presented for determining invariant low-complexity polytopic sets and associated linear feedback
laws for linear systems with polytopic uncertainty. Conditions based on the relationship between 2- and ∞-
norms are used to define an initial invariant low-complexity polytope as the solution of a semidefinite program.
The problem of computing a maximal controlled invariant low-complexity polytopic set is then formulated
as a bilinearly constrained problem, and a relaxation of this problem is derived as an iterative sequence of
convex programs. The proposed method scales linearly with the state dimension, which allows the possibility
of determining low-complexity robust controlled invariant sets for high-order systems.

Key Words: polytopic invariant sets; optimization; constrained control

1 Introduction

The notion of invariant sets arises in many problems concerning the analysis and control of
dynamical systems. A controlled invariant set defines a region of state space in which there
necessarily exists a control law ensuring that the state remains in the set at all times. Because
of this property invariant sets are typically used as target sets in an MPC framework in order
to ensure stability and recursive feasibility of the controller. An overview of set invariance can
be found in Blanchini (1999).

In the interests of computational tractability, two types of convex sets have been proposed
as candidate invariant sets, namely ellipsoidal and polytopic sets. In this paper the main focus
is on low-complexity polytopes as defined in Cannon et al. (2003). Low-complexity polytopes
have significant advantages compared with ellipsoidal and more general polytopic sets Gilbert
and Tan (1991), Pluymers et al. (2005a). As pointed out in Pluymers et al. (2005a), use of
ellipsoidal target sets for linear MPC leads to the formulation of the online MPC optimization
as a Semi-Definite Program (SDP), which typically has a much higher computational cost than
the Quadratic Program (QP) required for polytopic target sets. On the other hand maximal
robust invariant polytopic sets are described by large numbers of inequality constraints which
can lead to significant increase in the computational complexity of the QP problem, especially
for high order systems. Moreover, existing methods for determining general invariant polytopic
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sets Gilbert and Tan (1991), Pluymers et al. (2005a,b) do not allow the feedback law to be
optimized, while use of a fixed, predetermined feedback gain has a negative influence on the size
of the resulting invariant set. On the other hand, in Blanchini (1991) and Hennet and Beziat
(1991) methods are described that start from a fixed set and then determine a feedback law
K that makes this set invariant. It is straightforward to see that these approaches also lead
to invariant sets which are conservative w.r.t. the volume. However, the existing algorithms for
determining low-complexity polytopes as described in Cannon et al. (2003) and in this paper
allow the feedback K and the volume of the invariant set to be optimized simultaneously.

In Cannon et al. (2003) an algorithm is described for determining the maximal feasible invari-
ant low-complexity polytope for nonlinear systems. The current paper proposes to extend these
results to the case of uncertain linear systems with polytopic uncertainty. The first contribution
of the paper consists of a method that enables the calculation of an initial feasible invariant
low-complexity polytope using Linear Matrix Inequalities (LMI). Using a general relationship
between 2- and ∞-norms, the proposed algorithm determines a feedback gain K and an invari-
ant low-complexity polytope satisfying linear state and input constraints. This initial set is used
as starting point for an efficient optimization procedure that increases the volume of the initial
set by solving a sequence of Convex Programs. In contrast with the method described in Can-
non et al. (2003), the number of optimization variables and constraints of the proposed method
scales linearly with the number of the primary vertices of the low-complexity polytope instead
of exponentially. Therefore, this method makes it possible to calculate invariant low-complexity
polytopes for high dimensional systems as it significantly reduces the required calculation time
and memory usage. The effectiveness of the proposed method is illustrated with examples.

Notation: A > 0 is used to denote a matrix A with non-negative elements, whereas A � 0
denotes a positive definite matrix A.

2 Problem Description

In this work uncertain discrete-time systems are considered of the following form:

xk+1 = Ãxk + B̃uk. (1)

with Ã and B̃ uncertain, possibly time-varying belonging to the polyhedral uncertainty class

Ω =

{
(Ã, B̃) =

np∑

i=1

γi(Ai, Bi)|γi ≥ 0,

np∑

i=1

γi = 1

}
. (2)

Note that for np = 1, (2) represents a linear time-invariant (LTI) system, so the results in this
paper also apply to the LTI case. It is assumed that the system is subject to polytopic input
and state constraints:

xk ∈ {x| ‖Lx‖
∞

≤ 1} (3)

uk ∈ {u| ‖u‖
∞

≤ ū} (4)

with x ∈ R
nx×1, u ∈ R

nu×1 and L ∈ R
nc×nx . The main focus of this work is to determine low-

complexity controlled invariant sets with maximal volume for the uncertain system (1) subject
to the input and state constraint (3) and (4). To ensure that this maximization problem has a
well-defined solution, we make the simplifying assumption that the maximal controlled invariant
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set for (1) subject to (3)-(4) is finite. Note that the paper’s approach is applicable even if this
assumption is not satisfied, but the results may not be optimal in this case.

The invariant sets are assumed to have the following form:

ϕ = {x| ‖V x‖
∞

≤ γ} , γ ≥ 0 (5)

with V a square matrix (not necessarily symmetric) and of full-rank. Invariance of the uncertain

system (1) under a linear state feedback K requires ∀x ∈ ϕ and ∀(Ã, B̃) ∈ Ω:

∥∥∥V
(
Ã+ B̃K

)
x
∥∥∥
∞

≤ ‖V x‖
∞
. (6)

3 Invariant Feasible Polytopes

3.1 Initial Feasible Set

In this subsection an iterative procedure is outlined in order to determine an invariant set with
maximum volume. In order that the procedure guarantees a feasible solution at each iteration
an initial feasible invariant set has to be determined that can be used as a feasible starting point
for the procedure. In the sequel a method will be discussed to find such a set.

The following relation between 2- and ∞-norms holds:

∀x ∈ R
n : ‖V x‖

∞
≤ ‖V x‖2 ≤

√
n ‖V x‖

∞
. (7)

The following theorem uses this property in order to determine an initial invariant set for the
system (1).

Theorem 3.1 : The set ϕ = {x| ‖V x‖
∞

≤ γ} is invariant for system (1) w.r.t. the state

feedback gain K if the following condition is satisfied ∀(Ã, B̃) ∈ Ω:

∥∥∥V φ̃xk

∥∥∥
2
≤ (

1√
n
) ‖V xk‖2 (8)

with φ̃ = (Ã+ B̃K).

Proof. From (7) the following relationships follow

∥∥∥V φ̃x
∥∥∥
∞

≤
∥∥∥V φ̃x

∥∥∥
2
≤ 1√

n
‖V x‖2 ≤ ‖V x‖

∞
(9)

which proves the theorem. �

Remark 1 : In order to impose condition (8) for all (Ã, B̃) ∈ Ω it is sufficient to impose the
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condition on the vertices of the polytopic uncertainty set Ω:

‖V (Ai +BiK)x‖2 ≤ (
1√
n
) ‖V x‖2 , i = 1, . . . , np. (10)

In the case of (Ã, B̃) belonging to the polytopic uncertainty class (2), the condition (8) can
be re-written as the following set of LMIs

φT
i Pφi � α2P, i = 1, . . . , np (11)

with α = 1/
√
n, P � 0 and φi = Ai + BiK. A matrix P satisfying these LMIs leads to a set

ϕ =
{
x| ‖P 1

2x‖∞ ≤ 1
}
which is invariant for the uncertain system under the stabilizing feedback

law K. A suitable P and K satisfying conditions (11) and constraints (3)-(4) can be found by
solving the following optimization scheme (Boyd et al. (1994), Kothare et al. (1996), Lee et al.
(2005)):

Algorithm 1:

min
Q,X,Y

− log det(Q) (12)

subject to

Q � 0 (13)

L(i, :)QL(i, :)T ≤ 1, i = 1, . . . , nc (14)

[
X Y
Y T Q

]
� 0, X(j, j) ≤ ū2 , j = 1, . . . , nu (15)

and

[
α2Q (AiQ+BiY )T

AiQ+BiY Q

]
� 0, j = 1, . . . , np (16)

By taking P = 1
α2Q−1 and K = Y Q−1, a feedback gain is obtained stabilizing the uncertain

system (1) in such a way that the corresponding ∞-norm set ϕ is invariant and all the input
and state constraints are satisfied.

Remark 2 : In the case that the system is linear time-invariant (LTI) it can be shown that a
necessary and sufficient condition for the optimization algorithm of Theorem 3.1 to be feasible
is controllability of the LTI system. If the system is linear time-varying (LTV) then a sufficient
condition is that the LTV system is quadratically controllable.

Remark 3 : In Lee and Kouvaritakis (2000) a method is described for determining an initial
invariant set for LTV systems. This procedure has some specific drawbacks when compared to
the algorithm of Theorem 3.1:

• For the LTV case the procedure is difficult to use as the proposed invariance condition in Lee
and Kouvaritakis (2000) is nonlinear. The method of Theorem 3.1 allows to find an initial
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feasible invariant set by solving a convex optimization problem.

• In the LTI case an invariant set can be obtained by first determining a stabilizing feedback
matrix K with pole placement and by performing an eigenvalue decomposition of the
closed-loop system. The drawback of this method is that no optimization is performed.
Therefore, the resulting set is not optimal w.r.t. the volume of the set. In Theorem 3.1 the
initial set is obtained as result from an optimization procedure were both the feedback matrix
K and V are optimization variables and the volume of the set is maximized. Using this set
as starting point in the volume maximization algorithms of subsection 3.2 typically leads to
faster convergence and larger invariant sets.

3.2 Volume Maximization

In Cannon et al. (2003) a nonlinear program is described to determine the maximal volume low-
complexity polytope. However, the complexity of the proposed optimization scales exponentially
with the state dimension of the problem because the number of constraints as well as the number
of unknown variables scale exponentially with the state dimension. Also the proposed iterative
scheme solving successive LPs suffers from the same problem. Therefore, in this section a new
nonlinear program is proposed that scales much better with the state dimension. This new
optimization scheme is mostly based on Farkas’ Lemma (see e.g. Blanchini (1999)).

Lemma 3.2: Given two polyhedra ϕ1 = {x|F1x ≤ g1} and ϕ2 = {x|F2x ≤ g2} then ϕ1 ⊆ ϕ2 if
and only if there exists a non-negative matrix H such that HF1 = F2 and Hg1 ≤ g2.

In the case of low-complexity polytopes (5) these conditions can be reduced as indicated in
the following theorem:

Lemma 3.3: Given two polyhedra ϕ1 = {x| ‖V1x‖∞ ≤ 1} and ϕ2 = {x| ‖V2x‖∞ ≤ 1} then
ϕ1 ⊆ ϕ2 if and only if there exist non-negative matrices H1 and H2 such that the following
conditions are satisfied:

(H1 −H2)V1 = V2 (17)

[
H1 H2

] [1
1

]
6 1 (18)

with 1 a n-dimensional vector whose elements are all 1.

Proof. The two sets can be rewritten as

ϕ1 =

{
x
∣∣∣
[

V1

−V1

]
x 6

[
1
1

]}
(19)

ϕ2 =

{
x
∣∣∣
[

V2

−V2

]
x 6

[
1
1

]}
. (20)
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By Farkas’ Lemma ϕ1 ⊆ ϕ2 if and only if the following conditions are satisfied:

[
H1 H2

H3 H4

] [
V1

−V1

]
=

[
V2

−V2

]
(21)

[
H1 H2

H3 H4

] [
1
1

]
6

[
1
1

]
(22)

with H1, H2, H3, H4 ≥ 0. Here the conditions on H1, H2 are identical to those on H3, H4 and
(21) and (22) are therefore equivalent to (17) and (18).�

In Benzaouia and Burgat (1988), Bitsoris (1988) and Blanchini (1999) invariance conditions
are derived for general polytopic sets by use of Farkas’ Lemma. Applying these conditions to the
low-complexity set (5) combined with Lemma 3.3 leads to the following invariance conditions
for low-complexity polytopes:

Lemma 3.4: The set ϕ = {x| ‖V x‖
∞

≤ 1} is invariant for the system xk+1 = Ajxk + Bjuk
under linear state feedback uk = Kxk if and only if there exist non-negative matrices H1j and
H2j such that the following conditions are satisfied for j = 1, . . . , np:

(H1j −H2j)V = V (Aj −BjK) (23)

[
H1j H2j

] [1
1

]
6 1 (24)

H1j , H2j > 0 (25)

Proof. Invariance of ϕ = {x| ‖V x‖
∞

≤ 1} is equivalent to ϕ ⊆{
x|(Ã+ B̃K)x ∈ ϕ, ∀(Ã, B̃) ∈ Ω

}
, which is equivalent to ϕ ⊆

{
x| ‖V (Aj +BjK)x‖

∞
≤ 1

}
for

j = 1, . . . , np. By Lemma 3.3 this condition is satisfied if and only if (23)-(25) hold. �

The following theorem uses these results to determine the maximum volume feasible invariant
low-complexity polytope:

Theorem 3.5 : The maximum volume feasible invariant low-complexity polytope is the solution
of the nonlinear program, for j = 1, . . . , np:

min
V,K,H1j ,H2j ,H3,...,H6

log(|det(V )|) (26)

subject to the following constraints:

(H1j −H2j)V = V (Aj −BjK) (27)

[
H1j H2j

] [1
1

]
6 1 (28)

(H3 −H4)V = K (29)

[
H3 H4

] [1
1

]
6 ū1 (30)

(H5 −H6)V = L (31)
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[
H5 H6

] [1
1

]
6 1 (32)

H1j , H2j , H3, H4, H5, H6 > 0 (33)

Proof. Consider the following sets:

ϕ1 = {x| ‖V x‖
∞

≤ 1} (34)

ϕ2 = {x| ‖Kx‖
∞

≤ ū} (35)

ϕ3 = {x| ‖Lx‖
∞

≤ 1} (36)

ϕ4j =
{
x| ‖V (Aj −BjK)x‖

∞
≤ 1

}
(37)

The set ϕ1 is invariant if and only if ϕ1 ⊆ ϕ4j (Lemma 3.4). This is expressed by the conditions
(27) and (28). In order for the feedback K to satisfy the input constraints (4) the set ϕ1 must
satisfy ϕ1 ⊆ ϕ2 which is expressed by the conditions (29) and (30). In order for the set ϕ1 to
satisfy the state constraints the set ϕ1 must satisfy ϕ1 ⊆ ϕ3 which is expressed by the conditions
(31) and (32).�

Constraints (29) and (31) of Theorem 3.5 are bilinear constraints. By introducing the trans-
formations P = V −1 and Q = KP these constraints can be made linear as given in the following
theorem:

Theorem 3.6 : The optimization of (26) subject to (27)-(33) is equivalent to:

min
P,Q,H1j ,H2j ,H3,...,6,j=1,...,np

− log(|det(P )|) (38)

subject to the following equations for j = 1, . . . , np:

P (H1j −H2j) = AjP +BjQ (39)

H3 −H4 = Q (40)

H5 −H6 = LP (41)

H1j , H2j , H3,...,6 > 0 (42)


H1j H2j

H3 H4

H5 H6



[
1

1

]
6




1

ū1
1


 (43)

with

P = V −1 (44)

and

Q = KP. (45)

The corresponding stabilizing feedback K can be obtained as

K = QP−1 (46)
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Proof. In (Cannon et al. (2003)) it was shown that in order to optimize the volume of the set
(5) the objective

∣∣det(
[
v1 . . . vn

]
)
∣∣ needs to be maximized, with v1,...,n the primary vertices of

the set (5). This objective can be written as
∣∣det(V −1S)

∣∣ = |det(P )| |det(S)| ∼ |det(P )| (where S
is a constant non-singular matrix with elements equal to ±1), which leads to the objective (38).
The invariance constraint (27) can easily be re-written as (H1j − H2j)P

−1 = P−1(Aj + BjK)
which can easily be re-written as (39) taking into account that Q = KP . A similar approach
applied to (29) and (31) leads to conditions (40) and (41).�

Remark 4 : Note that the state constraints (41) and input constraints (40) are linear in Theo-
rem 3.6. In Theorem 3.5 these constraints are bilinear. This clearly shows the benefits of Theorem
3.6. However, the invariance conditions (39) are still bilinear and are therefore the reason that
the optimization procedure in Theorem 3.6 is nonlinear.

In comparison with the method described in Cannon et al. (2003) this method leads to a
significant reduction of the number of variables and constraints. In Cannon et al. (2003) for
a state space with dimension n the increase in variables and constraints is of order n2n while
in the method proposed here the increase is of order n2 which means that the optimization
scheme described in Theorem 3.6 is scalable in high dimensions. Also note that this optimization
scheme is nonlinear due to the cost function and the n bilinear invariance constraints (39). This
optimization scheme can be simplified by means of the concept of inverse-positive matrices
Berman and Plemmons (1994).

Definition 3.7: A matrix is inverse-positive if all the entries of its inverse consists of positive
elements.

A matrix A satisfying A = αI − D with α ≥ 0, D a nonnegative matrix and ‖D‖
∞

≤ α is
inverse-positive. Note that this is a sufficient condition, not necessary. The following theorem
uses this concept in order to generate a sequence of convex programs leading to a sequence of
feasible invariant sets with increasing volume.

Theorem 3.8 :

The following iteration for k = 1, . . .:

min
X,Q,R1,R2,H3,...,H6,a,D

(− log det (PkX)) (47)

subject to the following convex constraints for j = 1, . . . , np:
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Pk(R1j −R2j) = AjPkX +BjQ (48)

H3 −H4 = Q (49)

H5 −H6 = LPkX (50)


R1j R2j

H3 H4

H5 H6



[
1

1

]
6



X1

ū1
1


 (51)

R1j , R2j > 0 (52)

X = aI −D (53)

a ≥ 0 (54)

‖D‖
∞

≤ a (55)

D > 0 (56)

X � 0 (57)

X = XT (58)

leads to a sequence of feasible invariant sets P0, P1, . . . with volume (Pk+1) ≥ volume (Pk) with
starting set P0 chosen such that det(P0) > 0.

Proof. Condition (48) follows from condition (39) by assuming P = PkX and Rij = XHij .
The first constraint of condition (51) coincides with the first constraint of condition (43). In
order to see this note that the first constraint of (51) can be re-written as

R1j1 +R2j1 ≤ X1. (59)

Due to condition (52) and the inverse positiveness conditions (53)-(56), this can be re-written
as

X−1 (R1j1 +R2j1) ≤ 1. (60)

Because Rij = XHij it follows that this expression is the same as condition (43). Conditions
(57) and (58) are necessary to ensure the cost function (47) is convex.

Also note that at iteration k + 1 the set Pk obtained at iteration k still satisfies all the
constraints imposed at iteration k + 1 for X = I with I the unity matrix. This means that the
set Pk is a feasible solution for the optimization at time step k + 1. Therefore, this iterative
sequence generates a sequence of sets satisfying volume (Pk+1) ≥ volume (Pk). Therefore the
maximization of volume through (47) leads to a sequence of solutions corresponding to feasible
invariant polytopes of monotonically increasing volume. It follows that the sequence of feasible
invariant sets generated as solutions of the convex program of this theorem is guarenteed to
converge to a (possibly local) solution of the nonlinear program defined in Theorem 3.5. �

Remark 5 : The procedure of Theorem 3.8 needs an initial feasible invariant set P0 as starting
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point. For the uncertain linear system (1) such a starting set can be found by means of Algorithm
1. Also note that each set Pk+1 is related to the set Pk from the previous iteration through
following relationship

Pk+1 = PkX(k + 1) (61)

with X(k + 1) the solution of Theorem 3.8 at iteration k + 1.

Remark 6 : Note that if det(P0) > 0 it then follows that det(P1) = det(P0X1) =
det(P0) det(X1) > 0 since det(X1) > 0 because X1 � 0. By induction, it can be shown that
each set Pk in the sequence satisfies det(Pk) > 0. Therefore the absolute value in the objective
function (38) can be omitted which leads to the convex objective function (47). Also note that
if an initial invariant set V0 = P−1

0 is found such that det(P0) < 0, then by switching two rows
of V0 a new value for P0 can be obtained with det(P0) > 0.

4 Examples

Example 1 This example illustrates that the algorithms in this paper can lead to bigger feasible
invariant sets than the methods described in Cannon et al. (2003). The example deals with the
constrained control problem of a DC electric motor with independent excitation and is taken
from Blanchini (1991). The system matrices of the linear continuous-time system are given by:

A =

[
−0.07 −0.86 (1 + q1)

0.06 (1 + q1) −q2

]
, B =

[
1
0

]
(62)

The uncertainty is defined by

Q = {(q1, q2)|−0.2 ≤ q1 ≤ 0.2, 0.0085 ≤ q2 ≤ 0.5} . (63)

Note that this implies that the uncertainty polytope Ω consists of 4 linear systems that define
its vertices. The state constraints are given by

[
−1
−1

]
6 xk 6

[
1
1

]
(64)

and the input constraints by

−10 ≤ uk ≤ 10. (65)
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Figure 1. Feasible invariant polytopic sets for Example 1.

This system was discretized by the Euler discretization scheme using a sampling time Ts = 0.1s.
The methods described in this paper are applied to this discretized system. The set S0 in Figure
1 is the initial invariant feasible set obtained using Algorithm 1. The primary vertices of this set
are given by

v1 =

[
0.598
2.049

]
, v2 =

[
0.071
−1.380

]
(66)

and it is invariant (see different paths of the vertices in the figure) for the linear feedback gain

K =
[
15.475 −7.020

]
. (67)

The set Sopt is the resulting set after increasing the volume of S0 with the sequence of convex
programs described in Theorem 3.8. The set Sopt consists of the primary vertices

v1 =

[
10

4.092

]
, v2 =

[
8.663
−2.756

]
(68)

and is invariant (see different paths of the vertices in the figure) for the linear feedback gain

K =
[
0.253 −2.833

]
. (69)
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Table 1. Optimality and computational load for Example 2.

Algorithm |det(P )| variables time(s)
Algorithm 1 2.204× 103 63 2.58
Theorem 3.8 1.011× 106 235 30.25
Cannon et al. (2003) 7.056× 104 16514 2410.56

Note that the iterative method described in Cannon et al. (2003) is not capable of increasing
the volume of the set S0. Therefore, the method described in this work outperforms the one
described in Cannon et al. (2003).

Example 2 This example illustrates the advantage in computation time and memory usage
of the methods in this paper compared with the methods of Cannon et al. (2003) due to the
reduction in numbers of the optimization variables and constraints. The example consists of the
control of the temperature profile of an one-dimensional bar Agudelo et al. (2006). In order to
control the temperature profile 3 inputs are present which are the temperature of the bar at 3
locations (see Agudelo et al. (2006)). The model consists of parabolic Partial Differential Equa-
tions (PDE’s). These PDE’s are simulated by discretization in spatial and temporal domain. By
dividing the one-dimensional bar into 400 sections (spatial discretization) and taking a sampling
time of 1 sec (temporal discretization) a linear system was obtained in Agudelo et al. (2006)
consisting of 398 states. In order to reduce this complexity a model reduction was performed by
means of Proper Orthogonal Decomposition (POD) leading to following reduced order model:

A =




0.858 −0.053 0.021 0.193 −0.029 0.027
−0.053 0.716 0.039 0.051 0.179 0.162
0.021 0.039 0.698 0.031 0.135 −0.206
0.193 0.051 0.031 0.567 0.053 −0.014
−0.029 0.179 0.135 0.053 0.658 −0.031
0.027 0.162 −0.206 −0.014 −0.031 0.504



, B =




−0.438 −1.607 −0.474
−0.074 −1.479 1.389
−1.647 1.011 0.204
0.866 1.869 0.821
0.633 0.004 −1.364
−0.997 1.185 −0.554




(70)

subject to the following input constraints

u = [1, 1, 1]T , u = [−1,−1,−1]T . (71)

An initial feasible invariant set is obtained using the LMI of Algorithm 1. This set is then used
as starting point for the optimization schemes of Theorem 3.8 and the iterative procedure of
Cannon et al. (2003). The results of the different optimization schemes implemented on a P4-2.8
GHz PC with 3 GB RAM are summarized in table 1. From table 1 it can be seen that the
optimization scheme of Theorem 3.8 needs significantly less memory and computation time than
the one described in Cannon et al. (2003) and therefore outperforms the method of Cannon et
al. (2003). Also note that for a dimension higher than 6 it is not possible to use the method of
Cannon et al. (2003) on this platform due to the excessive memory requirements.
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