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Synchronous behavior in networks of coupled oscillators are commonly observed phenomena at-
tracting a growing interest in physics, biology, communication and other fields of science and tech-
nology. Besides global synchronization, one can also observe splitting of the full network into several
clusters of mutually synchronized oscillators. In this paper we study conditions for such cluster par-
titioning into ensembles for the case of identical chaotic systems. Most attention we pay at the
existence and the stability of unique unconditional clusters which rise does not depend on the ori-
gin of the other clusters. Also conditional clusters in arrays of globally non-symmetrically coupled
identical chaotic oscillators are investigated. The design problem of organizing clusters into a given
configuration is discussed.

PACS numbers: 05.45.Xt

Chaotic synchronization has attracted a growing interest in physics with applications to many areas
of science. In the context of coupled chaotic elements, many different types of synchronization have
been studied in the past two decades. The most important ones are complete or identical synchro-
nization (CS) [1–3], phase synchronization (PS) [4, 5], lag synchronization (LS) [6] and generalized
synchronization (GS) [7, 8]. In this paper we focus on CS in ensembles of non-symmetrically coupled
chaotic cells. CS was first discovered and is the simplest form of synchronization in chaotic systems.
It consists of a perfect hooking of the chaotic trajectories of two or many identical systems even though
their initial conditions may be different. In arrays of coupled systems CS can take the forms of global

(full) and cluster (partial) synchronization. In global synchronization all the elements of the ensemble
are mutually synchronized. The phenomenon of cluster synchronization is observed when an ensemble
of oscillators splits into groups of synchronized elements (for a review see [9, 10]). The analytical and
numerical study of the conditions for existence and stability of cluster CS are presented.

INTRODUCTION

One of the major collective coherent behaviors in ensembles of identical and non-identical chaotic elements are
global and cluster synchronization. Analytical studies of these synchronization phenomena meet some problems,
where currently there are only few results in this direction [11–13]. In this paper we study conditions of cluster
synchronization of identical chaotic systems. For complete synchronization we focus on the existence and stability of
unique unconditional clusters which rise does not depend on the origin of the other clusters.

Let us consider the following problem of N identical oscillators, which in the absence of interaction exhibit quali-
tatively similar dynamics. For different initial conditions the oscillators show different dynamical trajectories, while
for identical initial conditions the trajectories coincide. On the other hand, when considering interaction between
the oscillators, one may achieve alignment of a certain state with all other ones. In this way one has complete

synchronization for the N identical oscillators.
Furthermore, if n from the N identical oscillators, for initial states that are close to each other, possess coinciding

states for all time, these n oscillators are said to form one cluster C(n). This may be thought then as one oscillator
of n sticked together oscillators.

Let us distinguish now the main types of clusters as follows.
Definition 1. If the existence of a cluster C(n) does not depend on the states of the other N − n oscillators, we

call C(n) an unconditional cluster. Otherwise, if the cluster C(n) can only coexist with the other clusters or when it
is embedded within a larger one vanishing together with C(n), we call C(n) a conditional cluster.

Definition 2. If the cluster C(n) is embedded within a larger cluster and it can be stable only together with the
larger one, we call C(n) a hidden cluster. In the opposite case we call the stable cluster C(n) the real cluster.



2

INVARIANT MANIFOLDS AND CLUSTER SYNCHRONIZATION

We consider the phenomenon of clustering in an ensemble of nonlocally coupled identical oscillators described by
the following system

V̇ = F (V ) + (G ⊗ P )f(V ), V ∈ RdN , (1)

where V = (v1, . . . , vN )T is the set of variables of the N oscillators forming the array, vi is the d -dimensional vector
of i -th oscillator variables, and F (v) = (F (v1), . . . , F (vN ))T , f(vi) = (f(v1

i ), . . . , f(vd
i ))T . Elements of the d × d

matrix P that are equal to 1 determine by which variables the oscillators are coupled. The other part of P is zero.
G is an arbitrary non-decomposable N × N matrix. Recall in the case of zero-row sums, that the system has the
synchronization manifold

M(N, 1) = {v =: v1 = . . . = vN} (2)

corresponding to one cluster of N oscillators, whose dynamics is defined by the single system for one node:

v̇ = F (v), v ∈ Rd (3)

Suppose the set of nodes is subdivided into m subsets:

{1, . . . , N} = C0

1
∪ . . . ∪ C0

m, (4)

Here C0

j are clusters in the whole system, where the zero upper index refers to non-ordering. To order these subsets
we introduce a transformation of variables in (1):

V = ΠX, (5)

where Π is a N ×N permutation matrix, such that each subset in (4) obtains the natural numeration. Under (5) the
system (1) gets the form:

Ẋ = F (X) + (E ⊗ P )f(X), X ∈ RdN , (6)

where E = Π−1GΠ. The matrix E may be introduced in the block form:

E = {εkl}, k, l = 1, . . . ,m. (7)

An arbitrary partition (4) under the permutation (5) obtains the form:

{1, . . . , N} = C1 ∪ . . . ∪ Cm = {1, . . . , n1} ∪ {1, . . . , n2} ∪ ... ∪ {1, . . . , nm}, (8)

where N =
∑m

k=1
nk. Each block εkl of the size nk × nl has the entries:

εkl = {εkl
ij}, i = 1, . . . , nk, j = 1, . . . , nl. (9)

Introducing the vector X triple subdivision:

X = (X1, . . . ,Xm)T ,

Xk = (xk
1
, . . . , xk

nk
)T , (10)

xk
i = (xk

i1, . . . , x
k
id)

T

we rewrite the system (6) in the block form:

Ẋk = F (Xk) +
m∑

l=1

(εkl ⊗ P )f(Xk), k = 1, . . . ,m. (11)

Now let us discuss the invariance conditions of the linear subspace M(N,m) corresponding to the partition (8) defined
as a linear manifold in RdN :

M(N,m) = {yk =: xk
1

= . . . = xk
nk

, k = 1, . . . ,m}. (12)
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Definition 3. If the subspace M(N,m) is the invariant manifold of the system (11), M(N,m) is called the cluster
partition.

The subspace M(N,m) becomes an invariant manifold of the system (11) if this system is compatible for Xk|M =

Ṽ k = (ṽk, . . . , ṽk)T . The latter is true under the condition

nl∑

j=1

εkl
ij = g̃kl, k, l = 1, . . . ,m (13)

where g̃kl are scalar values being the entries of m × m matrix G̃. The system (11) on the manifold M(N,m) takes
the form

˙̃
V = F (Ṽ ) + (G̃ ⊗ P )f(Ṽ ) (14)

similar to (1) with Ṽ = (ṽ1, . . . , ṽm) and G̃ = (g̃kl), k, l = 1, . . . ,m. We call the system (11) under the condition (13)
the normal form of the cluster partition (12). In this way we proved the following assertion.

Statement 1. Let the coupling matrix G of the system (1) be transformed to the block matrix E = {εkl} satisfying
the condition (13), implying that each matrix εkl has equal row sums. Then the system (1) has the cluster partition
M(N,m) = C1(n1)∪ . . .∪Cm(nm) composed of m conditional clusters. Due to the permutation (5) and the reduction
from nk oscillators to one oscillator per cluster, provided the condition (13) holds, the system (1) at M(N,m) obtains
the form (14).

Statement 2. If in addition to (13) for some k, say k = 1, the off-diagonal matrices ε1l, l = 2, . . . ,m have equal
rows:

ε1l
ij = ε̂1l

j , i = 1, . . . , nk, j = 1, . . . , nl, (15)

the cluster C1 in the cluster partition M(N,m) becomes the unconditional cluster.
The first equation in (11) having the diagonal matrix ε11 with equal row sums,

∑nk1

j=1
ε11

ij ≡ g̃11, and the off-diagonal
matrices with equal rows (15) may be rewritten in the form

Ẋ1

i = F (X1

i ) +

n1∑

j=1

ε11

ij Pf(X1

j ) + h(X2, . . . ,Xm), i = 1, . . . , n1, (16)

where the function h =
∑m

l=2

∑nl

j=1
ε̂1l
j Pf(X l

j) does not depend on the index of equation i and the vector X1

i . Hence,
C1 is the cluster with the equation in it

ẏ1 = F (y) + g11Pf(y1) + h(X2, . . . ,Xm), (17)

and the existence of cluster C1 does not depend on any other elements not included into this cluster.
Remark. Note that the conditions of the statements 1 and 2 are being similar to the statements from [12–14], but

in contrast to these papers we present now an explicit scheme for the clusters finding. This scheme involves verifying
the conditions (13), (15) for all possible permutation matrices Π forming the matrix E.

EMBEDDINGS AND SIMPLE CLUSTER PARTITIONS

Considering the system (14) standing for the system (1), and applying recurrently transitions similar to (4)-(14),
we obtain a sequence of cluster embeddings such that the next cluster partition is formed from the clusters of the
previous cluster partition. The limit of this sequence is the full cluster of complete synchronization if it does exist.
The example of such embeddings serves the hierarchy reported in [11] for diffusively coupled identical systems.

Let us now clarify two simple cases concerning the system (1):

• The case of equal row sums of the matrix G is similar to the case of zero-row sums. It gives the one cluster
partition C(N) = {1, . . . , N} defined as the linear manifold M(N, 1) = {y =: x1 = . . . = xN}. The single
system for C1(N) is

ẏ = F (y) + g̃11Pf(y), y ∈ Rd. (18)
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• Let the system (1) have an unconditional cluster C1(n) which is stable and cannot be embedded into any
(conditional or unconditional) cluster. This cluster represents a real cluster and we call it an isolated cluster.

We present an artificial partition {1, . . . , N} = C1(n) ∪ C̃2(N − n) such that the group of N − n remaining

oscillators C̃2(N − n) may have an arbitrary internal cluster partition. The system (11) for the singled out
cluster C1(n) can then be rewritten in the form

Ẋ1 = F (X1) + (ε11 ⊗ P )f(X1) + (ε12 ⊗ P )f(X2)

Ẋ2 = F (X1) + (ε21 ⊗ P )f(X1) + (ε22 ⊗ P )f(X2) (19)

where the matrix ε11 has equal row sums, the matrix ε12 has equal rows, and the matrices ε21, ε22 provide
the condition of the cluster C1(n) to be isolated. Note that for a given matrix G the problem to select the
isolated cluster C1(n) is related to a hard procedure of sorting out permutations (5) and of checking the condi-
tions (13), (15).

STABILITY OF ISOLATED CLUSTER

As the term g̃11f(X1) arising from the equal row sums of the matrix ε11 can be combined with the vector F (X1)
in the first equation of the system (19), without loss of generality we consider the matrix ε11 in the system (19) with
the property of zero row sums.

Assume that the individual system of the system (1) is eventually dissipative and that there exists a compact
domain B0 which attracts all trajectories of the system from the outside. Moreover, we assume that the matrices E
and P and the function f(x) are such that the coupled system (19) is eventually dissipative as well, and that there
exists a domain B in RdN which attracts all trajectories of the system from outside.

Assume that the scalar function f : R1 → R1 satisfies the condition

f(0) = 0,Df(x) > K, x ∈ R1, (20)

where K is a positive real scalar. Note that in the case (20) the property of system (19) to be eventually dissipative
can be stated similarly to [14].

For convenience we rewrite the first equation in (19) in the coordinate form

ẋ1

i = F (x1

i ) +

n∑

j=1

ε11

ij Pf(x1

j ) + h(X2), i = 1, . . . , n, (21)

where h(X2) denotes the equal rows of the matrix (ε12 ⊗ P )f(X2).
Following [14] we introduce the notation for the differences

Xij = x1

j − x1

i , i, j = 1, . . . , n. (22)

¿From the system (21) we obtain the system of equations for differences

Ẋij = F (x1

j ) − F (x1

i ) +

n∑

k=1

[
ε11

jkP (f(x1

k) − f(x1

j )) − ε11

jkP (f(x1

k) − f(x1

i ))
]
. (23)

Note that the stability of the system (23), being free of the term h(X2), implies the stability of isolated cluster.
Next, following [14] in order to have the explicit presence of Xij in the system (23), we apply the mean value theorem
to each difference in (23) such that

f(x1

j ) − f(x1

i ) = Df(θ1(x
1

i , x
1

j ))Xij

F (x1

j ) − F (x1

i ) = DF (θ2(x
1

i , x
1

j ))Xij , (24)

where Df, DF are Jacobian matrices and θ1,2(x
1

i , x
1

j ) ∈ [x1

i , x
1

j ]. Now by denoting the n × n matrices

[ε̃ij ]
n

n
=

[
ε11

ij Df(θ1(x
1

i , x
1

j ))
]n

n
, (25)
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we rewrite the system (23) in the form

Ẋij = DF (θ2(x
1

i , x
1

j ))Xij +
n∑

k=1

{ε̃jkPXjk − ε̃ikPXik} , (26)

which coincides with the system (1) from [14]. Following this paper we take the next similar assumptions:

(i) P is a diagonal matrix P = diag(p1, . . . , pd) where ph = 1 for h = 1, 2, . . . , s, and ph = 0 for h = s + 1, . . . , d.

(ii) The matrix {ε̃ij} is a n × n symmetric matrix with vanishing row-sums and non-negative off-diagonal elements,
i.e. ε̃ij = ε̃ji, ε̃ij ≥ 0 for i 6= j, and ε̃ii = −

∑n

j=0,j 6=i εij , i = 1, . . . , n.

(iii) The matrix {ε̃ij} defines a connected graph with n vertices and m edges where m equals the number of non-zero
above diagonal elements of the matrix

{
ε11

ij

}
. For these elements we use an internal numbering k such that

ε11

k > 0, k = 1, . . . ,m.

(iv) The auxiliary system

Ẋij =
[
DF (θ2(x

1

i , x
1

j )) − A
]
Xij , i, j = 1, . . . , n (27)

where the matrix A = diag(a1, . . . , ad), ah ≥ 0, h = 1, . . . , s and ah = 0 for h = s + 1, . . . , d is globally stable
along any trajectory from the attracting domain B of the system (21). We use parameter a to denote the
parameters a1, . . . , as.

Hence, by applying the connection graph stability method we obtain the following condition for the isolated cluster
stability.

Statement 3. Under the above assumptions the isolated cluster C1(n) of the system (1) is globally asymptotically
stable if

ε11

k >
a

nK
bk(n,m), k = 1, . . . ,m (28)

where bk(n,m) is the sum of the lengths of all chosen paths which pass through a given edge k that belongs to the
coupling configuration.

Indeed, we rewrite the inequality (24) from [14] for ε̃ij = ε11

k Df > ε11

k · K, and thus obtain (28).
Corollary. Assume that the condition (20) is valid within an interval b∗ = {|x| < x∗}. Denote a compact B∗ ⊂ Rnd

being a direct product of the intervals b∗ along the coordinates of the system (21). Assume also that the system (21)
for such a function f(x) is eventually dissipative and has an attracting domain B such that B ⊂ B∗. Then statement
3 is valid for this type of functions f(x).

CLUSTER STABILITY DIAGRAM FOR IDENTICAL SYSTEMS

In order to check our theoretical results we study cluster synchronization in an ensemble of five coupled identical
Lorenz systems:

ẋi = σ(yi − xi) +
∑

5

j=1
gijxj

ẏi = xi(ρ − zi) − yi

żi = xiyi − βzi

(29)

where σ = 10, ρ = 28, β = 8/3 and gij are the elements of the coupling block matrix G:

G =

(
ε11 ε12

ε21 ε22

)

We take the matrices εij as follows

ε11 = α11




−2 1 1
1 −2 1
1 1 −2


 ε12 = α12




2 3
2 3
1 4




ε21 = α21

(
1 2 3
3 2 1

)
ε12 = α22

(
−2 2

2 −2

)
,

(30)
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where αij are changeable control parameters to achieve stability conditions.
The matrices εij are chosen in such a way that the following clusters can exist:

(i) one unconditional cluster: C12 (elements 1 and 2 can be synchronized)

(ii) four conditional clusters: C13, C23, C45, C123.

Note that cluster C23 is completely similar to C13. Therefore we only discuss the dynamics of the latter cluster.
Indices after the letter C correspond to the number of oscillators that form each cluster. The conditions (13), (15)
for each cluster may be easily checked.

Unfortunately, an analytical study of cluster stability is impossible. Therefore our aim is to obtain stability diagrams
for all clusters depending on specified parameters. We set α12 = α21 = 0.5 and varied two other parameters α11 and
α22 from 0 to 3.5. We integrated the whole system and tested the difference of x-variables of each element. As a
synchronization criterion between elements ith and jth we consider

1

S

S∑

k=1

|xi(T
∗ + 100k∆t) − xj(T

∗ + 100k∆t)| < δ, (31)

where T ∗ = 25000 is the calculation time assigned for transient process, δ = 0.01, S = 1000 and ∆t = 0.001 is the
integration step. The calculations were also performed for other values of T ∗ and δ (for example, for T ∗ = 35000, δ =
0.005, S = 2000) and qualitatively similar results were obtained, though some slight quantitative changes took place.
Hence, these particular values are considered to be quite satisfactory for our experiments. The multiplier 100 in (31)
is introduced in order to compare the trajectories of the ith and jth elements on a larger time scale. In our case
the time when the trajectories are compared equals 100 ∗ S ∗ ∆t = 200 time units of the model. We built stability
diagrams for all clusters (Fig. 1(a) - cluster C12, Fig. 1(b) - cluster C123, Fig. 1(c) - cluster C13, Fig. 1(d) - cluster
C45).

Cluster C12 is unconditional and it becomes stable starting from a certain value of α11 ≈ 1 (see Fig. 1(a)), meanwhile
its stability almost does not depend on α22 and hence on other elements. On the other hand the clusters C13 and C45

are mutually conditional, i.e. they can become stable only simultaneously as shown in Fig. 1(c) and 1(d). Note, that
there is a certain inaccuracy of the algorithm appearing due to the finiteness of the calculation and the long transient
process in the border zone of the diagram where stability of clusters settles in. Here the intermittent synchronization
may take place, in which long epochs of synchrony can be divided by intervals of asynchronous behavior. That is why
one can see individual points outside the large domains in the diagrams. They are “spurious” clusters detected by
the algorithm. We can say nothing about these states with certainty in contrast to large domains where the cluster
stability appears undoubtedly. Finally, there is the stability diagram of the last cluster C123 presented in Fig. 1(b).
It is easy to see that when C123 becomes stable cluster C13 can not be detected, i.e. it becomes a hidden cluster.

DESIGN OF CLUSTERS

In order to demonstrate the ability to construct clusters of a desired shape by operating with the coupling matrix,
we stated the following problem. Our objective is to obtain a cluster of mutually coupled oscillators with a prescribed
configuration, e.g. a cluster in the form of the word “CHAOS”. In order to do that, firstly, we take a two dimensional
20× 60 lattice of globally coupled identical Rössler oscillators. Then, this lattice was presented as a 1D array of 1200
elements. Therefore, the coupling matrix G is 1200× 1200. We intend to construct the required cluster here from 295
elements. This auxiliary cluster we call C. In order to obtain this cluster we made the following. We allocated the
295 elements at the beginning of the whole chain. Then, in the coupling matrix G we signed out four blocks: ε11 of
the size 295 × 295, ε12 of the size 295 × 905, ε21 of the size 905 × 295 and ε22 of the size 905 × 905. The elements of
these blocks were chosen in order to satisfy the existence condition (13) for the block ε11 and (15) for ε12. i.e. in the
block ε11 all row sums are equal and the block ε12 consists of identical rows (elements of each column of the block
are the same). Blocks ε21 and ε22 can be chosen as arbitrary because they have no influence on the existence of the
desired unconditional cluster. The block matrix G, has then the form

G =

(
α11ε11 ε12

ε21 ε22

)
.

In order to provide the stability condition of the initial cluster C we introduce the control parameter α11 as in the
previous examples. After that we apply the permutation (5), in such a way that the stable cluster C will transform
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FIG. 1: Cluster stability diagram in the ensemble of five coupled identical Lorenz oscillators for parameters α12 = α21 = 0.5.
Diagrams presented for clusters: a) C12, b) C123, c) C13, d) C45. The areas of stability of clusters C13, C45, C123 almost
coincide, indicating that these clusters are really conditional. Stability of cluster C12 does not depend on the stability of any
other clusters.

into the desired cluster with the form of the word “CHAOS”. This procedure may be performed automatically by the
following algorithm:

1. First, we define two elements of the lattice for which we will replace the corresponding coefficients in the coupling
matrix. The first one we call - e1 - belonging to the initial cluster C and the second one - e2 - belonging to the
desired cluster.

2. Second, the coordinates of both elements (row and column numbers in the lattice) should be defined: for element
e1 - (r1, c1), and for e2 - (r2, c2).

3. Finally, the elements gij of the coupling matrix G with the indices gr1j , gic1
or gr1c1

should be replaced
correspondingly by the elements gr2j , gic2

or gr2c2
.

Then this algorithm should be repeated 295 times for all the elements of the cluster C. As a result, we obtain the
pattern presented in Fig. 2. Note, that inside this cluster “CHAOS” there are other clusters of smaller sizes, that are
the parts of the main cluster, e.g. the characters “C”, “H”, etc.

CONCLUSIONS

We observed the effect of cluster partitioning in networks of coupled oscillators, i.e. splitting of the full network into
several clusters of mutually synchronized oscillators. The conditions for existence of unconditional and conditional
clusters were given. We also obtained the stability condition for unconditional clusters. A design technique for
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FIG. 2: Example of cluster design in the 2D 20 × 60 lattice of identical Rössler oscillators. The desired cluster in the form of
the word “CHAOS” is obtained from randomly distributed initial conditions.

prescribing clusters was also suggested.
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