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This paper proposes an initialization approach for parameter estimation problems (PEPs) involving
parameter-affine dynamic models. By using the state measurements, the nonconvex PEP is modified
such that a convex approximation to the original PEP is obtained. The modified problem is solved by
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convex optimization methods yielding an approximate solution to the original PEP. The approximate
solution can be further refined by linearizing the original problem around the obtained minimum. An
assessment of the distance between the real solution and the one provided by the linearization of the
problem around the convex approximation is presented. The optimum obtained by the convex approxi-
mation is used to subsequently initialize a simultaneous Gauss–Newton (SGN) approach on the original
nonconvex PEP. Comparative results for the SGN with arbitrary initialization and with the proposed

sing
approach are presented u

. Introduction

Developing accurate models for dynamic processes has an enor-
ous impact on science and engineering. Models used to predict

nd control process dynamics are basically characterized by their
tructure and the parameter values in this structure. Parameter
stimation addresses the calculation of a set of parameter values
n a predefined model structure, such that the outputs of the model
t the measurement data. Approaches to fit the collected data to
given model generally lie in one of the following classes: (i) the
nes which minimize the errors between data and model outputs
ith respect to a given norm and (ii) the ones which demand errors

o be uncorrelated with the measured data sequence (Ljung, 1999).
itting is not the only requirement in the parameter estimation
roblem (PEP), constraints on the estimated parameters and model
tates are usually required as well, e.g., positive reaction rates,
pper and lower bounds in concentrations. Consequently, PEPs are
ften cast as optimization problems, leading to convex or noncon-
ex formulations depending on the nature of the fitting criteria,
he model and the constraints. Nonlinear models generally lead to

onconvex PEPs which are difficult to solve since they can exhibit

ocal solutions and the true parameter values can be hard to find.
In order to tackle PEPs involving dynamic models, several meth-

ds have been proposed. On the one hand, the methods based

∗ Corresponding author. Tel: +32 16 321466; fax: +32 16 32299.
E-mail address: jan.vanimpe@cit.kuleuven.be (J. Van Impe).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.10.020
three benchmark examples in the chemical and biological fields.
© 2009 Elsevier Ltd. All rights reserved.

on calculus of variations and Pontryagin’s maximum principle
(Pontryagin, 1962) are known as indirect methods and, on the
other hand, the methods based on the finite parameterization of
the continuous functions involved in the optimization task are
called direct methods. The latter methods are preferred when the
optimization problem possesses inequality constraints since the
former methods become difficult to solve under this condition
unless information regarding the active constraints is available
(Cervantes & Biegler, 1999). Among the direct methods, the most
reliable approaches for PEP are based on simultaneous optimiza-
tion (Biegler, Cervantes, & Wachter, 2002) combined with the
constrained Gauss–Newton method (Nocedal & Wright, 2006), or
constrained L1 estimation methods (Kostina, 2004). Two of the
most widely used simultaneous optimization techniques are direct
multiple shooting (Bock & Plitt, 1984) and collocation on finite ele-
ments (Biegler, 1984). Despite the efficiency and robustness of
these methods, they still require a starting point to initialize
the optimization routines. The current work proposes an initial-
ization method for nonconvex PEPs involving a particular class
of dynamic models, namely parameter-affine systems. The pro-
posed approach leads to a convex problem, where initialization
is not required, and a solution can easily be obtained by con-
vex optimization tools (Boyd & Vandenberghe, 2006). Hereafter,

the solution of this convex problem can be used to initialize the
nonconvex PEP combined with a simultaneous optimization tech-
nique.

Other well-known procedures leading to convex problems have
been proposed for parameter-affine systems, such as least squares

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:jan.vanimpe@cit.kuleuven.be
dx.doi.org/10.1016/j.compchemeng.2009.10.020
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rediction error methods LS-PEM (Ljung, 2002). Although these
ethods are widely used, they are sensitive to noisy data and, in

rder to work well in practice, they need to filter the residuals. On
he contrary, the approach presented here does not involve the use
f arbitrary filters over the residuals and can be shown to be less
ensitive to noisy data, leading to less biased results without pre-
ious knowledge of the errors’ behavior (Bonilla, Diehl, De Moor, &
an Impe, 2008).

.1. Main contribution of the paper

The main contribution of this work is the proposed initial-
zation method for parameters estimation problems involving
arameter-affine dynamic models. Moreover, the initialization pro-
edure is analyzed and an assessment of the distance between
he initial guess proposed by the approach and the minimum
f the nonconvex problem is provided. In addition, the use of
he method combined with efficient simultaneous optimization
echniques is illustrated through benchmark examples, show-
ng the advantages of using the approach against an arbitrary
nitialization.

The paper is organized as follows: Section 2 introduces the
east squares parameter estimation problem (LS-PEP) for non-
inear systems. Section 3 presents the proposed approach for
arameter estimation using a least squares norm and a parameter-
ffine model. Section 4 introduces the principles of simultaneous
ptimization in the multiple shooting framework employing the
onstrained Gauss–Newton method. Numerical examples compar-
ng the known approaches with the proposed method are presented
n Section 5. Conclusions follow in Section 6.

. Parameter estimation for dynamic processes

Consider the dynamics of a process during a given time interval
0, T], modeled by an ordinary differential equation (ODE) of the
orm:

˙ (t) = �(x(t), p), t ∈ [0, T], (1)

here the vector p ∈Rnp and x(t) ∈Rnx denote model parameters
nd states, respectively. In order to estimate the value of the vector
, a set of measurements y(ti) ∈Rny , i = 0, 1, . . . , nm with nm + 1 ≥
p, is collected along the interval of interest. The set of measure-
ents y(ti) does not necessarily correspond to the model states at

he sampling points x(ti), however, here it is assumed that the mea-
urement set corresponds to measurements of the system states,
.e., y(ti) = x̄(ti). The mismatch between the output of the model (1)
nd the measurements are usually quantified using a least squares
LS) norm:

(x(ti), x̄(ti)) = 1
2

nm∑
i=0

nx∑
j=1

(xj(ti) − x̄j(ti))
2. (2)

lthough L1-cost minimization may be less sensitive to the pres-
nce of outliers in the measurement set,1 the L2-norm is widely
pplied due to its smoothness and is considered in the current
tudy. Following the introduced notation, the PEP can be cast in
he form:

inJ(x(ti), x̄(ti)), (3)

,x(.)

ubject to

˙ (t) = �(x(t), p), t ∈ [0, T], (4)

1 L1 norm does not square the contribution of the errors.
l Engineering 34 (2010) 953–964

x(t) ∈X, t ∈ [0, T], (5)

p ∈P. (6)

Constraints on the parameters and model states can be introduced
by the sets P and X respectively. Consequently, parameter estima-
tion tasks are considered as optimization problems and may lead to
nonconvex formulations, particularly when �(x(t), p) is nonlinear
in the states.

In the following, a particular structure in the general LS-PEP
(3)–(6) is considered. It is assumed that the nonlinear model
exhibits the parameter-affine form:

�(x(t), p) = �(x(t)) + ϒ(x(t))p, (7)

and the set described by X× P is convex. Bound constraints on
parameters and states are the simplest case covered by the assump-
tion on the convexity of the set X× P.

3. The convex approach

The approach proposed is inspired by continuation methods
in optimization (Watson, 2000). These kind of methods attempt
to solve an optimization problem by first solving a related opti-
mization task which is hopefully connected to the original one by
a continuous path. The nonconvex PEP (3)–(6) can be reformu-
lated using this approach by introducing a homotopy parameter
� ∈ (0, 1), a new variable x̃(t) and a norm on this new variable in
the cost:

P(�) : min
x̃(.),x(.),p

1
�
J(x(ti), x̄(ti)) + 1

1 − �
J(x̃(ti), x(ti)), (8)

subject to

˙̃x(t) = �(x(t)) + ϒ(x(t))p, t ∈ [0, T], (9)

x̃(t) ∈X, t ∈ [0, T], (10)

p ∈P. (11)

Although the addition of the norm J(x̃(ti), x(ti)) may look arbitrary,
x̃(ti) − x(ti) corresponds to the integral of the modeling errors. The
parametric optimization problem (8)–(11) exhibits an interesting
behavior when � ranges from zero to one. Although the conver-
gence of the parametric problem solution to the global solution
of the original PEP is only guaranteed if the algorithm is able to
find the global solution for each P(�), � ∈ (0, 1) (Bonilla, Diehl,
Logist, De Moor, & Van Impe, 2009a), the approach proposed here
does not attempt to follow a path for different values of �. Con-
sequently, the approach does not deal with methods to follow
such a path of minimizers neither on the existence or continu-
ity of that path. Moreover, the condition of a global solution is
only easily satisfied for the first problem on the homotopy path
namely P(0) where a convex problem is addressed (Bonilla et al.,
2008). It can be shown that when � goes to one, the problem
recovers its original form, i.e., J(x̃(ti), x(ti)) goes to zero, leading
to (3)–(6). On the other hand, when � goes to zero the model states
approach the measurements, i.e. x(ti) goes to x̄(ti). The formula-
tion (8)–(11) resembles quadratic penalty methods for constrained
optimization (Gould, 1989) and its convergence properties can be
analyzed by using the same principles (Nocedal & Wright, 2006).
In the following, the problem corresponding to the case � going to
zero:
P(0) : min
p,x̃(.)

J(x̃(ti), x̄(ti)), (12)

subject to

˙̃x(t) = �(x̄(t)) + ϒ(x̄(t))p, t ∈ [0, T], (13)
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Fig. 1. Homotopy map for the parameter estimation problem of a parameter-affine
model. The original PEP is nonconvex (� → 1) but if the measured state sequence is
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sed as the real state, it is possible to achieve convexity in one of the extremes of
he map (� → 0). Notice that the presented approach only uses the convex extreme
f the map and does not require continuity on the zero path.

˜(t) ∈X, t ∈ [0, T], (14)

∈P, (15)

s used as a convex modification of the original nonconvex PEP.
otice that only the convex extreme of the homotopy map is con-

idered. In fact, the homotopy map is mentioned here only to show
hat there is a link between the original problem and the convex

odification. Convexity is achieved in this formulation since (i) the
ost is quadratic in the pseudo-states x̃(t), (ii) the nonlinearity in the
odel has vanished by introducing the measurement trajectories

¯ (t), (iii) the model is affine in the parameters p and (iv) the fea-
ible set X× P is convex. Although the modification in the model
ould be seen as a linearization around measurements, it differs
rom that approach since no information of a linearization point
or the parameters, p̄, is provided. Fig. 1 illustrates the homotopy

ap generated by the parametric optimization problem (8)–(11)
hen applied to the estimation of the natural frequency ωn, in a
armonic oscillator model (Bonilla, Diehl, Logist, De Moor, & Van

mpe, 2009a). Notice that, as mentioned previously, the extreme of
he map corresponding to P(0) is convex.

It is possible to refine the solution provided by the convex
pproach by further linearizing the original problem around the
olution to P(0). This refinement corresponds to the first iteration
n a sequential quadratic programming (SQP) method when the ini-
ial guess is set to the solution provided by P(0). In the following,
t is proven that this refinement delivers a solution with a dis-
ance from the real optimum of second order in the size of problem
erturbations.2 This is clarified in the following section.

.1. Assessment of the approximation errors

In this section, an assessment of the distance between the real

olution to the PEP and the solution provided by the refined convex
roblem is analyzed. In order to do so, the optimization problems
3)–(6) and (12)–(15) are parameterized using a suitable discretiza-

2 Here, measurement noise and modelling errors are considered.
l Engineering 34 (2010) 953–964 955

tion method, leading to:

PEPNL(x̄) : min
p,x

1
2

‖x − x̄‖2
Q , (16)

subject to

0 = A(x) − B(x)p − Wx, (17)

x ∈X, p ∈P, (18)

and

PEPCVX(x̄) : min
p,x̃

1
2

‖x̃ − x̄‖2
Q , (19)

subject to

0 = A(x̄) − B(x̄)p − W x̃, (20)

x̃ ∈X, p ∈P, (21)

where x = [x(t0)T , x(t1)T , . . . , x(tN)T ]
T

and x̄ = [x̄(t0)T , x̄(t1)T , . . . ,

x̄(tN)T ]
T

correspond to the discrete-time model-state dynamics and
the state measurements, respectively. A(x), B(x) and W represent
the nonlinear dynamics of the model along with the discretization
method. Q is a positive definite penalization matrix of the appro-
priate dimensions.

The first SQP iteration in a nonlinear programming solver lin-
earizes the original nonconvex problem around the initial guess
and solves a problem of the form

PEPCVX-REF(x̄) : min
p,x

1
2

‖x − x̄‖2
2, (22)

subject to

0 = ALx − BLp + b, (23)

x ∈X, p ∈P. (24)

where (23) corresponds to the model linearized around the solution
of the convex problem (x∗

CVX, p∗
CVX). For comparison, consider the

unperturbed original PEP where a set of noise-free state measure-
ments ¯̄x is obtained and no modeling errors are present. In addition,
the following assumptions are introduced:

• A1: The functions A(x) and B(x) are twice continuously differen-
tiable.

• A2: There exist a pair ¯̄x ∈X and ¯̄p ∈P such that 0 = A( ¯̄x) − B( ¯̄x) ¯̄p −
W ¯̄x.

• A3: Both problems, PEPNL( ¯̄x) and PEPCVX( ¯̄x), satisfy the strong
second-order sufficient conditions (SOSC), strict complementar-
ity and constraint regularity (Nocedal & Wright, 2006) at their
solution, ( ¯̄x, ¯̄p).

Corollary 1. Under assumptions A2 and A3, the Lagrange multipliers
associated to the inequality constraints at the solution ( ¯̄x, ¯̄p) are zero,
and none of the inequality constraints is active.

In view of these assumptions, the following lemmata can be
formulated:

Lemma 1. If assumptions A2 and A3 hold, then ( ¯̄x, ¯̄p) is a global
solution to all problems PEPNL( ¯̄x), PEPCVX( ¯̄x) and PEPCVX-REF( ¯̄x).

Proof. ( ¯̄x, ¯̄p) is feasible and it yields the lowest possible objective
value for all optimization problems, i.e., zero. �
Lemma 1 states that the convex approximation provides an
exact solution if the measured trajectory can be exactly generated
by the model to fit, i.e., x̄ is noise-free and there are no modeling
errors.
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Fig. 2. Cost functions generated by the PEP of a harmonic oscillator when a noisy
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0 = pi − p0, i ∈ [1, N − 1], (30)
tate sequence is measured (top). NL corresponds to the original problem formula-
ion, CVX to the convex approach and CVX-REF to the linearized problem. The plot
n the bottom illustrates that the errors in the solution provided by the proposed
pproach are of second order in the size of the perturbation.

emma 2. If A1 to A3 hold, then

|p∗
cvx(x̄) − ¯̄p|| = O(||x̄ − ¯̄x||), (25)

.e., the distance between the perturbed convex problem solution and
he unperturbed one is a function of the size of the perturbation.

The proof to Lemma 2 is provided in Appendix A.

heorem 1. If Assumptions A1 to A3 are satisfied, then

|p∗(x̄) − p∗
CVX-REF(x̄)|| = O(||x̄ − ¯̄x||2) (26)

olds. Eq. (26) gives an assessment of the distance between the origi-
al problem solution and the solution provided by the refined convex
pproach p∗

CVX-REF(x̄) as a function of the size of the perturbation

|x̄ − ¯̄x||.
The proof of Theorem 1 is provided in Appendix A. This theorem

s numerically corroborated by performing six experiments over
harmonic oscillator model (Bonilla et al., 2009b). In each one of

hese experiments, a state sequence, contaminated with Gaussian
oise with different variances, is collected. The distance between
he solution to the PEP (3)–(6), provided by a nonlinear optimizer,
nd the solution proposed by the linearization of the original prob-
em around p∗

CVX is calculated along with the size of the perturbation
ith respect to the noise-free data. Fig. 2 (bottom) illustrates that

he distance between the actual solution p∗(x̄) an the one provided
n the first SQP iteration p∗

CVX-REF(x̄) is of second order in the size of
he perturbation. Note that a second-order polynomial accurately
ts the data corresponding to the six experiments.

In the following, the presented convex approximation is
ombined with a simultaneous optimization algorithm in order
o provide an initialization-free estimation methodology for
arameter-affine models.

. Simultaneous optimization for PEP

The parameter estimation problem is solved here using direct
pproaches. There are several techniques to deal with this kind of
roblems, e.g., direct single shooting, multiple shooting and col-

ocation. In single shooting the initial value problem (IVP) given
y the ODE model is solved such that the states trajectories are

liminated from the optimization problem and the optimization is
erformed only in terms of the parameters to be estimated and the
tates initial condition, x(0). Single shooting has been widely used,
owever, other direct methods have been proven to be more effi-
ient when dealing with highly nonlinear and/or unstable process.
Fig. 3. Multiple shooting approach. Parameters are represented by the local vari-
ables pi on each shooting interval and constrained to be equal to each other, i.e.,
pi = p0 for all i = 1, 2, . . . , N − 1.

In this work, the PEP is discretized using a direct multiple shoot-
ing (DMS) approach (Bock & Plitt, 1984). Nevertheless, other direct
techniques such as collocation on finite elements (Biegler, 1984)
are widely applied as well. In the following the main principles of
the employed method are described.

4.1. The direct multiple shooting parameterization

In DMS the measurement horizon T is divided in N subintervals:

t0 < t1 < t2 . . . < tN = T. (27)

The process states are parameterized on each subinterval, Ni =
[ti, ti+1], i = 0, . . . , N − 1, i.e., state trajectories are determined
by the state values at shooting nodes s = [s0, s1, . . . , sN]T , the
model equations and local parameters p = [p0, p1, . . . , pN−1]T . This
parameterization allows the model to be independently integrated
from ti to ti+1, i = 0, . . . , N − 1. Fig. 3 illustrates the approach fol-
lowed by DMS.

Contrary to single shooting, in DMS the states are not directly
eliminated from the optimization but the algorithm optimizes in
initial conditions at each shooting node si and parameters pi in
each shooting interval. Note that the parameter vector p is a global
variable, i.e., it does not change from one shooting interval to
the other, however, to make each subinterval totally independent,
local variables pi can be introduced.3 In order to guarantee con-
tinuity in the solution from t0 to tN and to avoid time varying
parameters, additional equality constraints are imposed on each
subinterval Ni, i.e., the final states value of the subinterval Ni must
match the initial states value of the interval Ni+1, and pi = p0 for all
i = 1, 2, . . . , N − 1.

Following the DMS parameterization, the least squares PEP can
be reformulated in terms of the error residuals at each shooting
node ri:

min
s,p

f (s, p) = 1
2

N∑
i=0

r2
i (si, pi) (28)

subject to

0 = si+1 − x(ti+1), i ∈ [0, N − 1], (29)
0 ≤ H(si, pi), i ∈ [0, N], (31)

3 This procedure yields sparse banded Jacobian matrices.
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ith

(ti+1) =
∫ ti+1

ti

�(si, pi, t)dt + si.

he function H(si, pi) represents the inequality constraints imposed
o the parameters and states at each shooting node. For parameter
stimation, the cost to be minimized presents a pointwise feature,
.e., the cost is given by the evaluation of the residuals at the mea-
urement instants which coincides with the selected grid for the
MS parameterization. Consequently, the parameterized problem
as the general form:

in
w

1
2

N∑
i=0

r2
i (wi), (32)

ubject to

(w) = 0, (33)

(w) ≥ 0. (34)

ith

= [w0, 1, . . . wN]T wT
i = [sT

i , pT
i ] ∀ i = 0, 1, . . . N.

otice that for notational purposes an additional variable pN has
een added since wN = sN . The presented nonlinear constrained

east squares problem is usually solved using SQP algorithms. More-
ver, due to the parameterization, the quadratic programming (QP)
roblems arising at each SQP iterations exhibit banded and sparse
tructures. This sparsity and special structure can be efficiently
xploited by the QP algorithm.

.2. The Gauss–Newton method for PEP

Due to the least squares form of the objective function in (32), a
odified Newton’s method can be used to generate the second-

rder information on the cost required by the SQP approach.
lassical SQP methods require the Hessian of the Lagrangian, usu-
lly approximated from first-order information by update formulas
uch as BFGS.4 The pointwise cost

(w) = 1
2

N∑
i=0

r2
i (wi) = 1

2
||R(w)||22, (35)

an be formulated in terms of the residual vector

(w) = [r0(w0), r1(w1), . . . , rN(wN)]T . (36)

y defining the Jacobian of the residual vector as:

r(w) = ∂R(w)
∂w

= ∇R(w)T , (37)

he gradient and Hessian of the cost can be expressed by:

f (w) = Jr(w)T R(w), (38)

2f (w) = Jr(w)T Jr(w) +
N∑

i=0

ri(wi)∇2ri(wi), (39)

espectively. Note that due to the multiple shooting parameteriza-

ion, the Jacobian of the residuals is sparse and banded. Normally,
he second term in the right hand side of (39) is neglected since
lose to the solution either the residuals ri(wi) or ∇2ri(wi) are
mall (Nocedal & Wright, 2006). Note also that contrary to single

4 In simultaneous optimization this update is performed by blocks in order to
reserve the sparsity of the Hessian.
l Engineering 34 (2010) 953–964 957

shooting, in DMS, the shooting nodes are initialized with the avail-
able measurements, leading to a small residual vector at the first
SQP iteration agreeing with approximation in the Gauss–Newton
method and improving its convergence. The proposed initialization
approach complements this set of available state measurements by
providing an initial guess to the parameters and avoiding an arbi-
trary initialization. The approximation of the Hessian of the cost
leads to the main feature of Gauss–Newton method where at each
mayor iteration, k, of the SQP a subproblem of the form

min
�wk

1
2

||R(wk) + ∇R(wk)T �wk||22, (40)

subject to

G(wk) + ∇G(wk)T �wk = 0, (41)

H(wk) + ∇H(wk)T �wk ≥ 0, (42)

is solved. Hence, no second-order information is required. This iter-
ative procedure is combined with a globalization strategy (Nocedal
& Wright, 2006) in order to achieve global convergence. The first-
order information required to build the Jacobians of the cost and
inequality constraints can be obtained by several methods (finite
differences, automatic differentiation or symbolic calculations),
however, due to the static characteristic of the cost in least squares
problems and the inequality constraints, these Jacobians can be
easily calculated by finite differences. On the other hand, the Jaco-
bian of the equality constraints, imposed by the dynamic model, is
obtained, in this study, by using an ODE solver with sensitivity gen-
eration capabilities (Hindmarsh et al., 2005). This solver provides
sensitivity information used to build the sparse and banded struc-
ture of Jacobian in the simultaneous Gauss–Newton method. Fig. 4
shows the sparsity patterns in the Jacobians obtained by the multi-
ple shooting parameterization for a PEP involving a dynamic model
with 2 states, 3 parameters, 4 measurement points and bound con-
straints on the parameters. The sparse and banded structures in
the formulation can be either exploited by sparse solvers or a con-
densing strategy can be applied in order to reduce the size of the
matrices. This procedure leads to a smaller least squares problem
involving dense matrices as described in Bock and Plitt (1984).

5. Case studies

In the following, the multiple shooting parameterization is used
to estimate the parameters in three benchmark case studies. Com-
parative results are illustrated for an arbitrary initialization against
an initialization based on the solution of the convex modification
(12)–(15).

5.1. Catalytic cracking of gas oil

The first case study involves the catalytic cracking of gas oil A, to
gasoline Q, and other products S (Tjoa & Biegler, 1991). The overall
reaction scheme is represented by:

(43)
The dynamics of the concentration of gas oil x1(t), and gasoline
concentration x2(t), is described by the set nonlinear differential
equations (45) and (46) and characterized by the three reac-
tion rates k1, k2 and k3. By defining the parameter vector as p =
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Fig. 4. Sparsity patterns for the Jacobians in a multiple shooting parameterization. In
this example, the non-zero entries of the cost residuals Jacobian, and the equality and
inequality constraints Jacobians are illustrated. The PEP involves four measurement
p
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Fig. 5. Time evolution of the catalytic cracking of gas oil to gasoline. The noisy state
measurements are taken from the benchmark problem for PE presented in Floudas
et al. (1999).

measurement point, i.e., 21 shooting nodes and 3 parameters are
considered as optimization variables. The resulting nonlinear pro-
oints, x̄(ti), i = 0, 1, 2, 3, two states, x1, x2, three parameters, p1, p2, p3 and bound
onstraints on the parameters to estimate, pmax and pmin. (a) Residuals cost Jacobian
R(w)T , (b) equality constraints Jacobian ∇F(w)T , and (c) inequality constraints

acobian ∇H(w)T .

k1, k2, k3], the PEP for this case study can be formulated as:

in
,x(.)

J = 1
2

20∑
i=0

2∑
j=1

(xj(ti) − x̄j(ti))
2 (44)

ubject to

˙ 1(t) = −(k1 + k3)x2
1, (45)

˙ 2(t) = k1x2
1 − k2x2, (46)

1(t0) = 1, (47)

2(t0) = 0, (48)

≤ k1, k2, k3 ≤ 20. (49)
he optimization problem arisen from the estimation of the
eaction rates has been previously used as a benchmark to test opti-
ization methods in Singer and Barton (2006) and Papamichail and
djiman (2002), among others. Fig. 5 depicts the set of noisy states
Fig. 6. Sum of square errors (SSE) for the parameter estimation problem of the cat-
alytic cracking of gas oil. The state initial condition and parameter k3 are fixed to
[1, 0]T and 2, respectively.

measurements used for the estimation procedure and obtained
from Floudas et al. (1999).

In order to visualize the complexity of the PEP, Fig. 6 shows the
cost in (44) when the parameters k1 and k2 are evaluated over a
grid of points in the box [0, 20] × [0, 20] and k3 and x0 are set to
fixed values.5 Although the problem is linear in parameters, the
cost function is nonconvex in the optimization variables due to the
nonlinearities in the states.

The constrained PEP (44)–(49) is parameterized using the mul-
tiple shooting approach by introducing shooting nodes at each
gramming (NLP) problem is solved using a SQP routine with a
quadratic programming (QP) solver based on an active set method.

5 These values are given here just for visualization purpose.
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In the first case, nodes are initialized with measurement points
nd the parameters take an arbitrary initialization. Assuming no
nowledge of a better initial guess for the parameter vector, the
eaction rates are set to the center of the cube defined by the bound
onstraints (49), i.e., p0 = [10, 10, 10]T . This initialization leads to
he optimum value p∗ = [12.2155, 7.9802, 2.2210]T in four SQP
terations. In the second case, the optimization problem is con-
exified by using the presented approach, leading to a linear least
quares problem of the form:

in
˜,x̃(.)

J̃ = 1
2

20∑
i=0

2∑
j=1

(x̃j(ti) − x̄j(ti))
2 (50)

ubject to

˙̃ 1(t) = −(k1 + k3)x̄2
1, (51)

˙̃ 2(t) = k1x̄2
1 − k2x̄2, (52)

˜1(t0) = 1, (53)

˜2(t0) = 0, (54)

≤ k1, k2, k3 ≤ 20. (55)

ince (50)–(55) is convex, initialization is not an issue and the
roblem is solved using a linear least squares solver based on the
auss–Newton method. Hereafter, the obtained parameter solu-

ion, p∗
CVX = [8.0982, 6.3512, 3.4722]T , is used to initialize the

riginal nonconvex optimization problem parameterized with the
ultiple shooting approach. The convex initialization leads to the

ame optimum p∗ previously presented. Consequently, the initial
uess of the parameter vector p0 is automatically calculated by
he proposed method. Table 1 presents some relevant optimization
arameters along with the results obtained from solution of the PEP
50)–(55). The algorithm parameters TOLSQP, ATOLODE, RTOLODE
nd KKTTOL correspond to the stopping value for the KKT toler-
nce, the absolute and relative tolerance of the ODE solver, and
he KKT tolerance at the last iteration. Note that NIter, correspond-
ng to the total number of SQP iterations, does not include the
rst iteration needed for the convex initialization in the proposed
pproach.

Fig. 7 illustrates the convergence results for the problem with
n arbitrary initialization and the ones obtained with the proposed
ethodology. It can be noticed that, in this particular case, the arbi-

rary initialization already provides a guess close to the optimum
nd the difference on convergence rates is not significant. How-
ver, the advantage of the proposed approach lies in the fact that
o guess has to be proposed a priori.

.2. Lotka–Volterra equations
Consider the Lotka–Volterra model independently introduced
y Alfred J. Lotka in 1925 and Vito Volterra in 1926. The non-

inear differential equations (57) and (58) describe the time
volution of the population density for two species in a bio-
ogical system, a predator x2(t) and its prey x1(t). The dynamic

able 1
ptimization parameters for the catalytic cracking of gas oil PEP using arbitrary and
onvex initialization approaches.

Parameter Arbitrary Convex

TOLSQP 1 × 10−10 1 × 10−10

ATOLODE 1 × 10−6 1 × 10−6

RTOLODE [1, 1] × 10−4 [1, 1] × 10−4

KKTTOL(p∗) 4.253 × 10−12 8.403 × 10−11

J(p∗) 1.32766 × 10−3 1.32766 × 10−3

NIter 4 3
Fig. 7. Convergence results for the PEP of reaction rates in the catalytic cracking of
gas oil. The PEP is parameterized using DMS and initialized arbitrarily and using the
convex approach. (a) Arbitrary initialization and (b) convex approach.

behavior of this interaction is characterized by the following
parameters:

˛: intrinsic rate of prey population increase,

ˇ: predation rate coefficient,

	: reproduction rate of predators per 1 prey eaten,

ı: predator mortality rate,

leading to a parameter vector p = [˛, ˇ, 	, ı]T . Eqs. (57) and (58)
exhibit two fixed points [0,0] and [˛/ˇ, 	/ı]. The first one corre-
sponds to a saddle point while the second one to a center-stable,
generating periodic solutions with an amplitude dependent on
initial values. The oscillatory behavior of this pair of nonlinear
equations is illustrated in Fig. 8, where a set of noisy states mea-
surements is obtained by simulating the model with nominal
parameters p = [0.6, 0.5, 0.7, 0.4]T , x(t0) = [1, 0.5]T and adding
Gaussian noise with a variance 
2 = 0.05. This benchmark prob-

lem can be found in Floudas et al. (1999) where only two of the
four parameters are estimated.

Although the system (57) and (58) is parameter-affine, the esti-
mation of the parameter vector p is not a simple task. The PEP can
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Table 2
Algorithm parameters for the Lotka–Volterra PEP using arbitrary and convex initial-
ization approaches.

Parameter Arbitrary Convex

TOLSQP 1 × 10−10 1 × 10−10

ATOLODE 1 × 10−6 1 × 10−6

−4 −3
ig. 8. Set of noisy measurements used for the parameter estimation problem of
he Lotka–Volterra model. Data has been generated by simulating the model with
ominal parameters p = [0.6, 0.5, 0.7, 0.4]T , x(0) = [1, 0.5] and adding Gaussian
oise with a variance 
2 = 0.05.

e formulated as:

in
,x(.)

J = 1
2

20∑
i=0

2∑
j=1

(xj(ti) − x̄j(ti))
2 (56)

ubject to

˙ 1(t) = ˛x1 − ˇx1x2, (57)

˙ 2(t) = −	x2 + ıx1x2, (58)

≤ ˛, ˇ, 	, ı ≤ 2, (59)
here x̄(ti) represents the noisy state measurements in Fig. 8. The
ontaminated data sequence is used to evaluate the cost (56) when
he pair [˛ 	] changes while the parameters ˇ and ı remain con-
tant and equal to their original values. Fig. 9 presents the obtained
onconvex cost as a function of the varied parameters for a fixed

ig. 9. SSE as a function of the variation of parameters ˛ and 	 for the PEP in the
otka–Volterra model. The parameters ˇ, ı and the initial condition are constant
nd equal to their original values, i.e., ˇ = 0.5, ı = 0.4, [x1(t0), x2(t0)]T = [1, 0.5]T .
RTOLODE [1, 1] × 10 [1, 1]×10
KKTTOL(p∗) 5.8486 × 10−11 3.7386 × 10−11

J(p∗) 0.80318 0.80318
NIter 11 6

initial condition [x1(t0), x2(t0)]T = [1, 0.5]T . Notice that in this case
a local minimum can be easily attained by the unappropriated ini-
tialization of the problem.

The PEP is parameterized using the DMS approach using
the same procedure as in the first case study. In this exam-
ple 21 shooting nodes are optimized along with the four model
parameters ˛, ˇ, 	 and ı. Initialization of the parameter vec-
tor p is arbitrarily performed first by setting the initial guess
to the center of the hyperbox defined by the bounds con-
straints (59), i.e., p0 = [1, 1, 1, 1]T . This initialization leads to an
optimal value p∗ = [0.6700, 0.5455, 0.6288, 0.3501]T . In a sec-
ond test, the initialization is performed with the value p∗

CVX =
[0.6343, 0.483, 0.5617, 0.288]T , corresponding to the solution of
the convex optimization problem described by

min
p,x̃(.)

J̃ = 1
2

20∑
i=0

2∑
j=1

(x̃j(ti) − x̄j(ti))
2 (60)

subject to

˙̃x1(t) = ˛x̄1 − ˇx̄1x̄2, (61)

˙̃x2(t) = −	x̄2 + ıx̄1x̄2, (62)

0 ≤ ˛, ˇ, 	, ı ≤ 2, (63)

and leading to the same optimum obtained with the arbitrary ini-
tialization. Table 2 summarizes algorithm parameters along with
the results obtained with both approaches. Additionally, Fig. 10
illustrates the performance of both approaches, where it is pos-
sible to appreciate faster convergence of the SGN method with the
convex initialization. Notice that in the second iteration, continuity
conditions are almost totally satisfied.

5.3. Complex batch reaction

The batch reaction of formaldehyde, A, and sodium p-phenol
sulfonate, B, exhibits a complex dynamic scheme with four inter-
mediates, C, D, F and G, and a final product, E. All the reactions

follow second-order kinetics and are modeled as proposed in
Ingham, Dunn, Heinzle and Přenosil (2000). Table 3 illustrates the
reactions, their rates and nominal values. In order to simplify the
notation, the concentration of the reactants, products and inter-
mediates, A to G are represented by x1(t) to x7(t), respectively and

Table 3
Reaction rates for the batch reaction of formaldehyde with sodium p-phenol
sulfonate.

Reaction Rate coefficient Nominal value (m3/kmol s)

A + B → C k1 0.16
A + C → D k2 0.05
C + D → E k3 0.15
B + D → F k4 0.14
C + C → F k5 0.03
C + B → G k6 0.058
A + G → F k7 0.05
A + F → E k8 0.05
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Fig. 11. Noisy states trajectories for the formaldehyde–sodium p-phenol sulfonate
reaction. The dynamics is contaminated with Gaussian noise with standard devia-
tion 
 = 1 × 10−3 for x1, x2, x3 and x5 and 
 = 2.23 × 10−4 for x4, x6 and x7.

Fig. 12. SSE as a function of the variation of parameters k1 and k3 for the PEP of the
ig. 10. Convergence results for the simultaneous Gauss–Newton method applied
o the PEP in the Lotka–Volterra model. The optimization is performed using and
rbitrary initialization and the proposed convex approach. (a) Arbitrary initialization
nd (b) convex approach.

he parameter vector is defined as p = [k1, . . . , k8]. The parameter
stimation problem can be cast as:

in
,x(.)

J = 1
2

10∑
i=0

7∑
j=1

(xj(ti) − x̄j(ti))
2 (64)

ubject to

˙ 1(t) = −k1x1x2 − k2x1x3 − k7x1x7 − k8x1x6, (65)

˙ 2(t) = −k1x1x2 − k4x2x4 − k6x3x2, (66)

˙ 3(t) = k1x1x2 − k2x1x3 − k3x3x4 − 2k5x2
3 − k6x3x2, (67)

˙ 4(t) = k2x1x3 − k3x3x4 − k4x2x4, (68)

˙ 5(t) = k3x3x4 + k8x1x6, (69)

˙ 6(t) = k4x2x4 + k5x2
3 + k7x1x7 − k8x1x6, (70)
˙ 7(t) = k6x3x2 − k7x1x7, (71)

≤ k1, k2, . . . , k8 ≤ 1, (72)

≤ x1, . . . , x7. (73)
formaldehyde and sodium p-phenol sulfonate. The remaining 6 parameters and the
initial condition are fixed to their nominal values.

Fig. 11 shows the noisy state measurements x̄(ti), obtained
when (65)–(71) are solved with the initial condition x(t0) =
[0.15, 0.1, 0, 0, 0, 0, 0]T . This data set has been contaminated with
Gaussian noise with standard deviation 
 = 1 × 10−3 for x1, x2, x3
and x5 and 
 = 2.23 × 10−4 for x4, x6 and x7.6

Fig. 12 illustrates the nonconvex cost (64) when 6 parameters
are fixed and the initial condition is set to the one introduced pre-
viously. It is not difficult to see that despite the linearity in the
parameters, the optimization problem becomes nonconvex due to
the nonlinearity in the states.

The PEP (64)–(72) is parameterized using the DMS approach
and solved with initialization of the shooting nodes at the measure-
ment points and arbitrarily setting p0 = [1, 1, 1, 1, 1, 1, 1, 1]T .
In this case, it takes eight iterations to reach the optimum p∗ =
[162.03, 41.13, 142.57, 32.87, 44.71, 57.46, 50.33, 54.91]T ×
10−3. In order to improve convergence rate and avoid arbitrary
initializations, the proposed approach is applied and the convex
6 Different levels of noise are used due to different amplitudes in the states tra-
jectories.
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Fig. 13. Convergence results using the simultaneous Gauss–Newton algorithm for
the PEP of the reaction rates in the reaction of formaldehyde with sodium p-phenol
62 J. Bonilla et al. / Computers and Ch

roblem

in
,x̃(.)

J̃ = 1
2

10∑
i=0

7∑
j=1

(x̃j(ti) − x̄j(ti))
2 (74)

ubject to

˙̃ 1(t) = −k1x̄1x̄2 − k2x̄1x̄3 − k7x̄1x̄7 − k8x̄1x̄6, (75)

˙̃ 2(t) = −k1x̄1x̄2 − k4x̄2x̄4 − k6x̄3x̄2, (76)

˙̃ 3(t) = k1x̄1x̄2 − k2x̄1x̄3 − k3x̄3x̄4 − 2k5x̄2
3 − k6x̄3x̄2, (77)

˙̃ 4(t) = k2x̄1x̄3 − k3x̄3x̄4 − k4x̄2x̄4, (78)

˙̃ 5(t) = k3x̄3x̄4 + k8x̄1x̄6, (79)

˙̃ 6(t) = k4x̄2x̄4 + k5x̄2
3 + k7x̄1x̄7 − k8x̄1x̄6, (80)

˙̃ 7(t) = k6x̄3x̄2 − k7x̄1x̄7, (81)

≤ k1, k2, . . . , k8 ≤ 1, (82)

≤ x̃1, . . . , x̃7, (83)

s solved first. The obtained solution p∗
CVX =

112.6, 30.4, 125.6, 0, 42.4, 33.7, 30.5, 49.9]T × 10−3 is used to
nitialize the SGN algorithm, leading to the same optimal value
reviously presented. Table 4 summarizes some of the algorithm
arameters along with the parameter optimization results for this
ase study.

Fig. 13 illustrates the evolution of the iterations for the meth-
ds with arbitrary initialization and the proposed approach.
he state evolution of the intermediate compounds is not pre-
ented for clarity in the visualization. Note also that while
onvergence is achieved after the fourth iteration when the
roblem is arbitrarily initialized, the SGN with the proposed
onvex initialization method already attains convergence after
he first iteration. Consequently, the advantage of the presented

ethodology lies not only in improving the convergence speed
ut in the fact that no arbitrary initialization is performed
nd the initial value is calculated by solving a related convex
roblem.

.4. Discussion of the results and limitations

The initialization method provides an automatic procedure to
enerate the initial guess for the parameters to be estimated. In
ost of the case studies, a clear improvement on the number of

terations required to find the local minimum is achieved when
ompared with an arbitrary initialization. On the other hand, one
f the limitations of the method is the applicability to a reduced set
f dynamic models such as (7) or models which can be reformulated
n that form, e.g.,
˙ (t) = �(x) + ϒ(x)M(p), (84)

here M(p) is a diffeomorphism. An extension of the method
n its current form to a more general class of systems, where
he dynamic is not affine in the parameters, is not viable. Notice

able 4
lgorithm parameters for the complex batch reaction PEP using arbitrary and convex

nitialization approaches.

Parameter Arbitrary Convex

TOLSQP 1 × 10−10 1 × 10−10

ATOLODE 1 × 10−6 1×10−6

RTOLODE [1, 1] × 10−4 [1, 1]×10−4

KKTTOL(p∗) 9.8354 × 10−11 1.556 × 10−11

J(p∗) 1.6996 × 10−5 1.6996 × 10−5

NIter 8 4
sulfonate. The figure illustrates the time evolution for the state trajectory using an
arbitrary initialization (a) and the convex approach (b) along with the parameters
convergence (a) Arbitrary initialization and (b) convex approach.

that in that case, although states measurements might be avail-
able for performing the approximation in (12)–(15), the resulting
equality constraint imposed by the model is still nonlinear.
Hence, the same initialization requirements as in the original
NLP problem would be necessary in order to solve the resulting
PEP.

6. Conclusion

An initialization method for the solution of parameter estima-
tion problems in nonlinear parameter-affine dynamic models has
been introduced. An assessment of the solution errors is presented
showing that the they are of second order in the size of the pertur-
bations. Three benchmark examples have been studied, illustrating

that the heuristic of the method reduces the number of iterations
required to converge to a solution. The advantages of the method
do not only lie in improving convergence properties but also in the
fact that no previous knowledge of an initial guess for the parame-
ter vector is required, allowing an automatic initialization by using
the power of convex optimization.
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ppendix A. Proof of Lemma 2

Notice that in view of Lemma 1, ¯̄p is the solution of the convex
nperturbed problem. Consequently, it is enough to prove that the
istance between the unperturbed solution of the convex problem
nd its perturbed one obeys (25). In order to do so, consider the PEP

in
p,x

1
2

||x − x̂||2Q s.t. A(x̂) − B(x̂)p − Wx = 0, (85)

hich corresponds to the convex problem for unperturbed (x̂ = ¯̄x)
nd perturbed (x̂ = x̄) measurements. Notice that the inequality
onstraints can be neglected for x̂ = ¯̄x due to Corollary 1. Addition-
lly, for sufficiently small perturbations, the inequality constraints
emain inactive, this allows to neglect the inequality constraints
hen x̂ = x̄. Consequently, the convex formulation is reduced to

85) for the unperturbed measurement set and in a small neigh-
orhood of it || ¯̄x − x̄|| ≤ �, � > 0.

The Karush–Kuhn–Tucker (KKT) optimality conditions for (85)
ield:

F(x∗, p∗, �∗, x̂) =
[

Q 0 −WT

0 0 −B(x̂)T

−W −B(x̂) 0

][
x∗

p∗

�∗

]

−
[

Q x̂
0

−A(x̂)

]
= 0.

(86)

hich provides the solution (x∗(x̂), p∗(x̂), �∗(x̂)) for the perturbed
roblem x̂ = x̄ and the unperturbed one x̂ = ¯̄x. Under the small per-
urbation condition, the change in the solutions given a change in
he measurement data is given by⎡
⎢⎢⎢⎣

∂x∗(x̂)
∂x̂

∂p∗(x̂)
∂x̂

∂�∗(x̂)
∂x̂

⎤
⎥⎥⎥⎦ =

[
Q 0 −WT

0 0 −B(x̂)T

W −B(x̂) 0

]−1

⎧⎪⎪⎨⎡
⎢⎢

0 0 0

0 0 −∂B(x̂)T

⎤
⎥⎥[

x∗(x̂)
p∗(x̂)

]
+

⎡
⎣ Q

0

⎤
⎦

⎫⎪⎪⎬
.

(87)
⎪⎪⎩⎣ ∂x̂

0 −∂B(x̂)
∂x̂

0
⎦

�∗(x̂) ∂A(x̂)
∂x̂

⎪⎪⎭
ue to assumptions A 1 to A 3, the Jacobian of F(x∗, p∗, �∗, x̂) is

nvertible at ( ¯̄x, ¯̄p, ¯̄�). Moreover, the perturbed Jacobian remains
l Engineering 34 (2010) 953–964 963

invertible for small changes in the measurement data ||x̄ − ¯̄x||. Con-
sequently, the change in the optimal values also depends on the size
of the perturbation as can be inferred from the smoothness of the
involved functions in (87).

Appendix B. Proof of Theorem 1

In order to simplify the notation, the following definitions are
introduced:

w = [xT , pT ]
T
, Qw =

[
Q 0
0 0

]
. (88)

Consider the original PEP with the set of perturbed measurements
x̄. Following Corollary 1, the original PEP can be formulated as:

PEPNL(w̄) : min
w

1
2

||w − w̄||2Qw
(89)

subject to

g(w) = 0. (90)

Notice that Corollary 1 implies that the inequality constraints can
be neglected for || ¯̄x − x̄|| small enough. Now, the KKT conditions for
the quadratic programming problem:

PEPLIN(w̄, ŵ) : min
w

1
2

||w − w̄||2Qw
(91)

subject to

g(ŵ) + ∇g(ŵ)T (w − ŵ) = 0, (92)

at the linearization point w̃ are considered, i.e.,

F(w, �, w̄, w̃) =
[

Qw(w − w̄) + ∇g(ŵ)�
g(ŵ) + ∇g(ŵ)T (w − ŵ)

]
= 0, (93)

where � represents the Lagrange multipliers for the equality
constrained problem. This set of equations provides a solution
w∗

LIN(w̄, ŵ) as a function of the linearization point and the set of
measurements.

For sufficiently small perturbations ||x̄ − ¯̄x|| and considering
assumptions A 1 to A 3 it is possible to establish the following
relations

A : ||w∗(w̄) − w∗
LIN(w̄, ¯̄w)|| = O(||w̄ − ¯̄w||2) (94)

and

||w∗
LIN(w̄, ¯̄w) − ¯̄w|| = O(||w̄ − ¯̄w||) (95)

Eq. (94) states that the solution provided by the first-order predic-
tor w∗

LIN(w̄, ¯̄w) differs from the real solution w∗(w̄) by O(||w̄ − ¯̄w||2)
as presented in [Dieh, 2001, Theorem 3.6 and Section 3.4.1]. Eq.
(95) is a result of perturbation analysis of optimization problems
(Robinson, 1982) under assumption A1 to A3 and can be easily
proved by linearizing the original problem around the unperturbed
solution.

Considering (94) and (95), Theorem 1

C : ||w∗(w̄) − w∗
LIN(w̄, w∗

cvx)|| = O(||x̄ − ¯̄x||2) (96)

is proven by showing that the distance between the first-
order predictor solution w∗

LIN(w̄, ¯̄w) and the solution provided by
w∗

LIN(w̄, w∗
cvx) is of second order in ||w̄ − ¯̄w||, i.e.,
B : ||w∗
LIN(w̄, ¯̄w) − w∗

LIN(w̄, w∗
cvx)|| = O(||w̄ − ¯̄w||2). (97)

Notice that in this proof what is basically used is a inequality trian-
gle, i.e., A&B ⇒ C. Consequenlty C is proved by proving B. In order to
do so, consider the series expansion of the linear predictor solution
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round the minimizer provided by the convex problem using the
erturbed set of measurements,7

w∗
LIN(w̄, w∗

cvx) = w∗
LIN(w̄, ¯̄w)

+∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w(w∗

cvx − ¯̄w)

+O(||w∗
cvx − ¯̄w||2).

(98)

he term

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w(w∗

cvx − ¯̄w) (99)

s investigated in detail. By evaluating (93) at the solution
w∗

LIN, �∗
LIN),

(w∗
LIN, �∗

LIN, w̄, ŵ) = 0, (100)

nd applying the implicit function theorem to it, it is possible to
btain an expression for the first factor in (99),

∂w∗
LIN(w̄, ŵ)

∂ŵ
= −[I 0]J(ŵ)−1 ∂F

∂ŵ
, (101)

ith

J(ŵ) = ∂F(w∗
LIN, �∗

LIN, w̄, ŵ)
∂(w∗

LIN, �∗
LIN)

=
[

Qw ∇g(ŵ)
∇g(ŵ)T 0

]
,

nd

∂F

∂ŵ
=

[
∇2g(ŵ)�∗

LIN
∇2g(ŵ)(w∗

LIN − ŵ)

]
. (102)

q. (101) is obtained by considering that (∂w̄/∂ŵ) = 0, i.e., the
easurement data does not depend on the linearization point.
ssuming A3, and the invertibility of J( ¯̄w), at the linearization point,

ˆ = ¯̄w, J( ¯̄w)
−1

and ∇2g( ¯̄w) become constants, yielding

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O

(∥∥∥∥ �∗
LIN(w̄, ¯̄w)

w∗
LIN(w̄, ¯̄w) − ¯̄w

∥∥∥∥
)

(103)

ote that w∗
LIN(w̄, ¯̄w) − ¯̄w corresponds to the distance between the

nperturbed solution ¯̄w and the perturbed one provided by the use
f a linear predictor in the constraints. This distance is given by (95)
nd leads to

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O(||w̄ − ¯̄w||). (104)

ence, combining (104) and Lemma 2 yields

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w(w∗

cvx − ¯̄w) = O(||w̄ − ¯̄w||2) (105)
onsequently, (98) is rewritten by using (105) leading to

∗
LIN(w̄, w∗

cvx) = w∗
LIN(w̄, ¯̄w) + O(||w∗

cvx − ¯̄w||2), (106)

.e., the solutions w∗
LIN(w̄, wcvx), and w∗

LIN(w̄, ¯̄w) are identically
part from second-order perturbations.

7 This linear predictor is the model used in the first SQP iteration.
l Engineering 34 (2010) 953–964
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