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a b s t r a c t

In this paper the flood problem of the river Demer, a river located in Belgium, is discussed. First a

simplified model of the Demer basin is derived based on the conceptual reservoir modeling concept.

This model was calibrated to simulations results with a more detailed full hydrodynamic model.

Afterwards, the focus is shifted to a nonlinear model predictive controller (NMPC) which is based on a

new semi-condensed optimization procedure combined with a line search approach. Finally,

simulations are performed based on historical data in which the NMPC is compared with the current

control strategy used by the local water administration. Uncertainties are added to the rainfall

predictions in order to assess the robustness of the NMPC.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Flooding of rivers are a worldwide cause of great economic
losses. This is also the case in the basin of the river Demer in
Belgium. In the past the Demer basin experienced several floods.
In order to reduce the flood hazard in the area the local water
administration installed several flood control reservoirs in order
to be able to store the excessive water volume during periods of
extreme rainfall. In order to control the flows to and from the
reservoirs hydraulic control structures have been put in place.
Though these actions have lead to a significant reduction of the
flood risk in the basin, during the heavy rainfall periods of 1998
and 2002 the local water administration was not able to prevent
flooding along the Demer river. Recent simulations of these past
events in a hydrodynamic river model showed that flooding could
have been significantly reduced and even avoided if the hydraulic
structures would have been controlled in a different way.
Therefore, the main interest of this paper is to test a different
control strategy than the one adopted currently. Due to the
specific nature of the flood problem a nonlinear model predictive
controller (NMPC) (Rossiter, 2000) seems the most suitable
ll rights reserved.
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option. Therefore, in this work such a NMPC has been tested
and compared with the current control strategy.

Nonlinear model predictive control is an optimization-based
control paradigm that has been used successfully in many control
applications due to the fact that it can cope with constraints on the
system. Especially in the chemical process industry NMPC has
proven its value (Nagy, 2009; Wendt, Li, & Wozny, 2002). With
respect to river regulation NMPC has also been used extensively
(Malaterre, 1997; Van Overloop, 2006; Wahlin, 2004) but its
use has always been limited to fixed setpoint regulation
(e.g. irrigation control). Typically, good setpoint regulation can be
achieved by assuming a linear model. In this work, however, the
main focus will be flood prevention. A simple linear model is no
longer sufficient as all the nonlinear dynamics of the river system
will be excitated during flood periods. Therefore, in Barjas Blanco
et al. (2009), in a first step a nonlinear model has been developed
that on the one hand was accurately enough to capture the most
important dynamics but on the other hand still fast enough to be
used for real-time control purposes. In a second step a nonlinear
MPC scheme was proposed based on a trust-region approach. The
performance of this NMPC scheme was then compared with that of
the current fixed regulation (three-position controller) by simulating
the historical rainfall-runoff time series of 1998. First results
presented in Barjas Blanco et al. (2009) showed that NMPC
outperformed the three-position controller. However, in Barjas
Blanco et al. (2009) it was assumed that the rain predictions used
by NMPC coincided perfectly with the real rainfall. In practice, this is
never the case. Therefore, in order to assess whether NMPC performs
better in practice than the three-position controller simulations
must be done with a realistic amount of uncertainty added to the
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rain predictions. In this work simulations are done based on the
rainfall-runoff time series of 1998 but with a realistic amount of
uncertainty added to the time series. The amount of uncertainty is
estimated by means of the techniques described in Timbe (2007). In
order to increase the robustness of the controller the uncertainty
added to the rainfall-runoff time series is such that the rainfall-
runoff prediction used by NMPC is an overestimation of the
real rainfall-runoff. Furthermore, in this work the underlying
optimization scheme of the NMPC is improved compared to
the optimization scheme used in Barjas Blanco et al. (2009). First,
the uncondensed MPC scheme is replaced by a semi-condensed
NMPC scheme leading to less memory requirements and less
computation time. Second, the trust region approach of Barjas
Blanco et al. (2009) is replaced by a line search approach which
resulted in better control performance.
2. Background

The study area is the area around the two flood control
reservoirs along the Demer river, namely ‘‘Webbekom’’ and
‘‘Schulensmeer’’. A schematic representation of this area is shown
in Fig. 1. Because of the complicated shape of the ‘‘Schulensmeer’’
reservoir it is modeled as different reservoirs separated by spills.
The spills are indicated by the dark rectangular boxes. There are
12 hydraulic structures that need to be controlled. In Fig. 1 these
structures are indicated by white rectangular boxes. All the
hydraulic structures are of the gated weir type. Currently these
gates are regulated by a three-position controller (OBM, 2003).
The rainfall-runoff is indicated by discharges entering the river
system at different locations and act as disturbance inputs on the
river system. There are eight different locations through which
rainfall-runoff (from upstream subbasins) enters the river system.
Typically rainfall-runoff predictions go up to 48 h ahead.
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Fig. 1. Schematic overview
3. Hydrodynamic model of the river system

A detailed physically based hydrodynamic model of the river
system in the study area was created during earlier studies by the
VMM water authority, the local authority responsible for the water
management along the Demer river. The model is mainly based on
the full hydrodynamic model equations (de St.Venant momentum
and continuity equations; see e.g. Chow & Maidment, 1998). These
equations are solved based on finite differences (implicit computa-
tional scheme). Implementation of that model has been done by
means of the InfoWorks-RS river modeling software (Wallingford
Software, UK). The model is based on river bed cross-sectional data
approximately every 50 m along the modeled rivers, river bed
roughness information and geometric data on all hydraulic
structures (weirs, culverts, flow and water level control structures)
and bridges along the course of all these rivers. Currently, this model
is used as a warning system to predict which areas are going to be
flooded. However, this model cannot be used for real-time control
because of its computational complexity. For this reason in Barjas
Blanco et al. (2009) a more simplified model (of the conceptual or
grey box type) was calibrated to the detailed hydrodynamic model.
The model simplification is reached by lumping the processes in
space, and by limiting the study area to the region affected by the
flood control. Lumping of the processes in space is done by
simulation of the water levels, not every 50 m as the full
hydrodynamic model does, but only at the relevant locations. These
are the locations up- and downstream of the hydraulic regulation
structures, to be controlled by the NMPC-controller, and the
locations along the Demer where potential flooding is induced, to
be limited by the controller. Depending on these locations, the river
is subdivided into reaches, in which water continuity is modeled (in
a spatially lumped way per reach) based on reservoir-type of
models. A reservoir model simply assumes water continuity
(increase in volume v per time step equals inflow qin minus
outflow qout): dv(t)/dt¼qin(t)�qout(t). The inflow in each reservoir
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(submodel representing a river reach) is the discharge from the
more upstream river reach (result of the more upstream submodel).
The outflow depends on the water storage in the reach (qout¼ f(v)) or
is assumed equal to the sum of the upstream discharge and the
other inflows along the reach (e.g. from tributary rivers). Water level
differences (hupstr�hdownstr) along the reach are modeled propor-
tional to the ratio of the squared discharge (q) in the reach and the
squared water depth downstream along the reach (hdownstr is the
water level downstream of the reach and hdownstr,0 the level of river
bed):

hupstrðtÞ ¼ hdownstrðtÞþ
qðtÞ2

ðhdownstrðtÞ�hdownstr,0ðtÞÞ
2

ð1Þ

The relation between the water level difference and (1) is
expected for most river reaches after the equation of Manning,
well known in river hydraulic sciences and engineering (e.g. Chow
& Maidment, 1998). The precise relation is calibrated based on the
simulation results for a few historical flow events (including flood
events) with the detailed InfoWorks-RS (IWRS) model. This type
of calibration is done for all conceptual submodels. Fig. 2 shows
an example of a calibration result for the water level difference
along one of the river reaches in the model. The conceptual model
has 75 states consisting of 35 discharges, 20 water levels and 20
node volumes. Table 1 displays the flood levels for all the water
levels in the river system. All water levels in this paper are in
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Fig. 2. Calibration result of the conceptual model (conc.model) for one of the river

reaches (hgl) in the full hydrodynamic (IWRS) model.

Table 1
The water levels in the river system with their corresponding flood level.

Water level Flood level (m)

hopw 23.2

hv 24

hopw 24.8

hh 23.6

hs 23.2

hw 22.4

h1 24.3

h2 22.7

h3 22.9

h4 22.5

hzw 21.6

hvg 22.5

hzb 21.5

hbg 24.2

hlg 23

hgl 22

hafw 20.5

hs2,hs3,hs4 22.75
meter above the ‘‘TAW’’ level, which is the topographical
reference level for Belgium. More detailed information about the
hydraulic model can be found in Barjas Blanco et al. (2009).
4. Controller design

Several control strategies for river systems have been proposed
in the literature, see Malaterre (1997) and Clemmens, Ruiz
Carmona, and Schuurmans (1998) for recent reviews. Currently,
in the Demer basin the hydraulic structures are controlled by a
three-position controller (OBM, 2003; Rogers & Goussard, 1998).
A three-position controller consists of a basic control mode that
responds to a deviation from the setpoint water level by moving
the control gate at a predetermined movement speed. The
standard three controller states are:
1.
 Off—no corrective action.

2.
 On, above setpoint—move the gate to decrease water level.

3.
 On, below setpoint—move the gate to increase water level.

This type of controller has only one goal: to steer the
corresponding water level to the desired reference level. The
three-position controller used by the local water administration
to control the river system in the Demer basin is more advanced
and complex than the standard three-position controller. The
controller is more advanced in the sense that it consists of more
logical rules. These logical rules are based on expert knowledge,
where the main concern is to avoid flooding rather than optimal
setpoint regulation. This more advanced controller suffers from a
very important drawback, namely that the controller determines
its control action based on the current state of the system only,
namely the up- and downstream water levels and discharges. The
controller does not use future water level predictions to
determine an appropriate control action. A better alternative
when trying to avoid or decrease flooding in a river basin is a
nonlinear model predictive controller (NMPC) (Camacho &
Bordons, 2005; Diehl, Ferreau, & Haverbeke, 2008; Rossiter,
2000). The main characteristics of NMPC that justify its use for
flooding regulation are the following:
�
 NMPC can cope with all the constraints that are present in a
river system like physical upper and lower bounds of the gates
and maximal gate movement. Also upper constraints on the
water levels can be taken into account which is necessary for
flood prevention.

�
 By combining the rainfall predictions with the mathematical

model of the river system NMPC can make predictions of the
future water levels and use this information for making better
decisions with respect to flooding avoidance.

�
 During a flood event all the nonlinear dynamics of the river

system are excitated. So in order to make accurate predictions
of the future water level it is necessary to have a nonlinear
model of the river system. In the literature (Camacho &
Bordons, 2005; Diehl et al., 2008) there exist efficient non-
linear NMPC schemes that can cope with nonlinear models and
at the same time are fast enough for on-line implementation.

�
 River systems are typically highly interactive multi-input–

multi-output systems (MIMO). It is known that traditional
control design techniques based on transfer function models
are very difficult to use for such kind of systems because they
make use of relatively little information about the system.
NMPC, however, can effectively deal with MIMO systems.

�
 NMPC solves at each sampling time an optimization problem.

NMPC can only be applied if this optimization problem can be
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solved within the sampling time. Because river systems have
relatively slow dynamics the necessary sampling time is
typically in the range of 15–60 min, which is large enough to
solve the on-line optimization problem. Note, however, that
this is true if a simplified model is used and the horizon is not
too long. If a very detailed prediction model is used with a long
horizon solving the optimization can be very time demanding
(days).
In the next section the principles of NMPC will be explained as

well as the implementation for the case study.
5. Nonlinear model predictive control

NMPC is a control strategy that uses a model of the system in
order to make future predictions on which an optimal input
sequence is determined in order to minimize an objective
function taking constraints into account. The basic components
of NMPC for water systems are the following:
1.
 A process model combined with the future rain predictions is
used in order to predict the future outputs within a
predetermined window with length N.
2.
 An objective function is minimized taking constraints on the
inputs and outputs into consideration. The objective function
is typically a quadratic function trying to minimize the
deviation of the water level with the reference level on the
one hand, and the gate movement on the other hand.
3.
 After the minimization of the objective function a sequence of
future inputs is obtained of which only the first one is actually
applied to the system.
4.
 In the next sampling time the new state of the system is
measured or estimated, new predictions of the rainfall are
obtained and the complete process is repeated. Because of the
repetition of this process and the re-estimation of the state and
the rainfall predictions the NMPC strategy has a certain
robustness against model uncertainties and rainfall prediction
errors.
In the remainder of this section the different components of
the developed NMPC algorithm are described. First the standard
uncondensed NMPC scheme is discussed. This scheme is fre-
quently used in practice but it has the drawback that it uses a lot
of memory, especially in high dimensional applications with large
horizons. One way to solve this problem is to use a condensed
NMPC scheme in which the states are removed from the
optimization problem leading to a small optimization problem.
However, this scheme was not applicable to the river control
problem due to bad conditioning of the optimization problem.
Therefore in a next step a novel scheme is proposed that offers the
benefits of the condensed scheme and applicable to the problem
of river control. This scheme is referred at as the semi-condensed
NMPC scheme. Note that this semi-condensed scheme is the main
theoretical contribution in this paper. It is a novel scheme that
according to the authors has not previous appeared in the
literature. Further it is discussed in detail how to properly handle
the constraints on the system. During periods of heavy rainfall it is
unavoidable to allow water levels to violate their flood limit and
therefore a constraint strategy is applied to deal with this. Finally,
the uncontrollability of the gates is explained in detail. The origin
of the uncontrollability problem is explained as well as a method
to effectively deal with it.
5.1. Uncondensed NMPC

The process model used in this work is a nonlinear state space
model described as

xkþ1 ¼ f ðxk,uk,dkÞ ð2Þ

yk ¼ Cxk ð3Þ

with xk the state of the system at time step k containing the water
levels, discharges and water volumes in the water system, uk the
input of the system at time step k containing all the gated weirs in
the water system, dk the disturbance input at time step k

representing the rainfall-runoff at time step k and yk the output
of the system at time step k which in this case coincides with the
water levels in the Demer basin.

For a prediction horizon N NMPC solves the following
optimization program at each sampling time:

Optimization Problem 1.

min
uk ,...,ukþN�1

xk ,...,xkþN
ykþ 1 ,...,ykþN

XN

i ¼ 1

ðykþ i�yrÞ
T Q ðykþ i�yrÞþðukþ i�1�urÞ

T Rðukþ i�1�urÞ

ð4Þ

subject to the following constraints for each j¼1,y,N:

xk ¼ x̂k ð5Þ

xkþ j ¼ f ðxkþ j�1,ukþ j�1,dkþ j�1Þ ð6Þ

ykþ j ¼ Cxkþ j ð7Þ

uminrukþ j�1rumax ð8Þ

jukþ j�ukþ j�1jrDmax, joN ð9Þ

Lykþ jrLymax ð10Þ

with Q and R positive-definite diagonal matrices and x̂k the
measured or estimated state at time step k. Constraint (8) ensures
the gates do not exceed their lower and upper limits, constraint
(9) ensures the maximal possible gate movement is not exceeded
and (10) represents constraints bounding the different water
levels in order to avoid flooding. Note that the matrix L is added in
order to be able to deal with the constraint as a soft constraint.
Ideally the matrix L is the unitary matrix. However, during
periods of heavy rainfall the upper limits cannot always be
satisfied and in that case the matrix L needs to be adjusted in
order to remove the constraints that cannot be satisfied. This is
achieved by replacing the values on the diagonal corresponding to
the violated water levels by a 0. The optimization problem 1 is a
constrained nonlinear programming problem due to the presence
of the nonlinear equality constraint (6) representing the dynami-
cal model of the river system. Nonlinear programming problems
are typically solved in an iterative way (Nocedal & Wright, 1999).
Suppose a point is described as p ¼ [uk

T
y uk +N�1

T xk + 1
T

y xk + N
T ]T,

then first a starting point p0 is chosen which in this work is
typically a relatively good estimate of the (local) optimal solution
of the nonlinear programming problem (see further). Then a
sequence of iterates fpkg

1
k ¼ 0 with decreasing value for the cost

function (4) are generated that terminate when no more progress
can be made, when it seems a solution point has been
approximated with sufficient accuracy or when the available
time (sampling time) has expired.

In order to obtain a sequence of improving iterates fpkg
1
k ¼ 0 a

NMPC scheme is used (Camacho & Bordons, 2005). Basically, the
NMPC scheme approximates the nonlinear behavior of the system
by a linear time variant system. A linear time variant system has
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the following form:

xkþ1 ¼AkxkþBkukþdk ð11Þ

yk ¼ Cxk ð12Þ

with Ak, Bk and Ck the system matrices of the system at time
step k. Remark that the system matrices are time-dependent
which is why the system is called time variant. Also note that the
disturbance input dk is time variant and makes it possible to take
future rain predictions into account.

The nonlinear scheme starts by doing a simulation with the
future optimal inputs obtained at the previous time step. This
leads to a trajectory of the future states. The future optimal inputs
computed at time step k�1 are defined as

½uk�1jk�1 . . . ukþN�2jk�1� ð13Þ

with ukþ ijk denoting the input at time step k+ i predicted at time
step k. At time step k a simulation of the river model is done using
the following inputs:

½ukjk�1 . . . ukþN�2jk�1 ukþN�2jk�1� ð14Þ

This simulation gives raise to a sequence of future states

½x0
kþ1 . . . x0

kþN� ð15Þ

Combining (14) and (15) and assuming for convenience that

½ukjk�1 . . . ukþN�2jk�1 ukþN�2jk�1� ¼ ½u
0
k . . . u0

kþN�1�
T ð16Þ

an initial starting point

p0 ¼ ½u
0
k . . . u0

kþN�1 x0
kþ1 . . . x0

kþN�
T ð17Þ

can be obtained that is a relatively good estimate of the (local)
solution of the nonlinear optimization problem 1. The nonlinear
equality constraint (6) representing the nonlinear behavior of the
system can now be linearized around the point p0 leading to the
following linear time-varying approximation of the behavior of
the nonlinear model around the point p0:

xkþ jþ1 ¼Akþ jðxkþ j�x0
kþ jÞþBkþ jðukþ j�u0

kþ jÞþx0
kþ jþ1 ð18Þ

with xk + j
0 and uk + j

0 the simulated state and input at time step k+ j

and xk + j +1
0

¼ f(xk + j
0 ,uk + j

0 ). The matrices Ak + j and Bk + j are obtained
by the following forward finite difference scheme:

Akþ jð: ,sÞ ¼
f ðx0

kþ jþDxðsÞ,u0
kþ jÞ�f ðx0

kþ j,u
0
kþ jÞ

DxðsÞ
ð19Þ

Bkþ jð: ,sÞ ¼
f ðx0

kþ j,u
0
kþ jþDuðsÞÞ�f ðx0

kþ j,u
0
kþ jÞ

DuðsÞ
ð20Þ

with Ak + j(:,s), Bk + j(:,s) denoting the s-th column of Akþ j,Bkþ j,
DxðsÞ and DuðsÞ two column vectors containing only zeros with
exception from the s-th element which is equal to a small
perturbation d. The linearized system (18) can be re-written into
the form of (11) by noting that dk ¼ xk + 1

0
�Akxk

0
�Bkuk

0. Also note
that the rain predictions are taken into account implicitly by the
simulated states xk + j

0 ,j¼1,y,N. Replacing the nonlinear system
equation (6) by the time-varying system (18), optimization
problem 1 converts into a quadratic programming problem (QP) :

Optimization Problem 2.

min
uk ,...,ukþN�1
xkþ 1 ,...,xkþN
ykþ 1 ,...,ykþN

XN

i ¼ 1

ðykþ i�yrÞ
T Q ðykþ i�yrÞþðukþ i�1�urÞ

T Rðukþ i�1�urÞ

ð21Þ
subject to the following constraints for each j¼1,y,N:

xk ¼ x̂k ð22Þ

xkþ j ¼ Akþ j�1xkþ j�1þBkþ j�1ukþ j�1þdkþ j�1 ð23Þ

ykþ j ¼ Cxkþ j ð24Þ

uminrukþ j�1rumax ð25Þ

jukþ j�ukþ j�1jrDmax,joN ð26Þ

Lykþ jrLymax ð27Þ

Note that in optimization problem 2 the future input
trajectories as well as the future state trajectories are
considered as optimization variables which is the reason
why this NMPC scheme is called uncondensed NMPC. This
scheme was used in the results obtained in Barjas Blanco et al.
(2009).

5.1.1. Line search

Note that the linear time-varying system (11) is only an
approximation for the nonlinear system (2) around the point of
linearization. Therefore taking a full Newton step in the direction
found by solving optimization problem 2 does not necessarily
yield an improved point. In order to enforce progress in every
optimization step either a trust region constraint can be added to
the QP or a line search can be performed. In this work is opted for
the line search approach. The reason for this choice is the added
uncertainty on the rainfall-runoff predictions. At each time step k

an initial solution is created based on the solution obtained at
time step k�1. However, due to the uncertainty of the rainfall-
runoff predictions this initial solution can be quite different from
the local optimum of the NLP to be solved at time step k. It is
known that in such cases line search methods perform better than
trust region methods (Nocedal & Wright, 1999). In the following
the line search approach used in the simulations is discussed in
more detail.

Assume the point p� to be the solution of the QP, then a line
search method will approximately search for the best point lying
on the line that connects the points p0 and p�. Because each point
on this line can be written as p¼ p0þaðp��p0Þ for 0rar1 a line
search basically tries to find that value for a that leads to the best
point p. In order to evaluate the cost corresponding to a point on
the line, the sequence of future control moves corresponding to
the point is applied to the nonlinear model (6) and a simulation is
done with x̂ as initial state. This gives raise to a sequence of future
states. The best point on the line is the point for which this
simulation yields the best value for the cost function (4) and
satisfies the constraints (5)–(10). Because the point p� is a
solution of the QP described in optimization problem 2 and the
evaluation of the point has been done by a simulation of the
nonlinear model starting with x̂ as initial state of the simulation,
constraints (5)–(9) are automatically satisfied. For constraints
(5)–(7) this is trivial. Because the line search involves a search on
a line with two feasible points as endpoints and because the
constraint defined by (8) is convex, constraint (8) is satisfied for
all points on the defined line. In order to see that constraint (9) is
also satisfied for each point on the defined line if the constraint is
satisfied for the two endpoints, let u0

k + i,u
0
k + i +1 denote two

successive inputs of the vector p0 and u�kþ i,u
�
kþ iþ1 two successive

inputs of the vector p. Because p and p0 satisfy constraint (9) the
following conditions are valid:

ju0
kþ i�u0

kþ iþ1jrDmax ð28Þ

ju�kþ i�u�kþ iþ1jrDmax ð29Þ
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It is straightforward to show that for each point on the line the
value the corresponding inputs on time steps k+ i and k+ i+1 can
be written as

ukþ i ¼ ð1�aÞu0
kþ iþau�kþ i ð30Þ

ukþ iþ1 ¼ ð1�aÞu0
kþ iþ1þau�kþ iþ1 ð31Þ

Therefore the difference between these two inputs can be
written as

ukþ iþ1�ukþ i ¼ ð1�aÞðu0
kþ iþ1�u0

kþ iÞþaðu
�
kþ iþ1�u�kþ iÞ ð32Þ

which for 0rar1 is a convex combination of two differences
with an absolute value lower than Dmax and therefore it follows
that jukþ iþ1�ukþ ijrDmax for each value of a, so constraint (9) is
satisfied for each point on the line. The only constraint that needs
to be verified during the line search is constraint (10). The best
point found by the line search is the next point in the sequence
fpkg

1
k ¼ 0. Again a linearization around this new point is done and

the QP of optimization problem 2 is solved and after a line search
the next point in the sequence is obtained. These steps are
repeated until convergence. Convergence occurs when the
difference Jpi�pi�1J1re, with pi and pi�1 the optimal points
calculated at iteration i and i�1, respectively, and e a small value.
Note that there exist many sophisticated line search algorithms in
the literature (Nocedal & Wright, 1999). In this work a simple line
search algorithm is implemented in which the point p is
evaluated for several values of a going from a¼ 0 to 1 in steps
of 1/25.

The nonlinear optimization procedure can be summarized as
follows:
�
 At iteration n a simulation of the future state trajectory is
performed using the optimal inputs {uk

n�1,y,uk + N�1
n�1 } from the

previous iteration n�1 leading to the linear time variant
system (11).

�
 The QP of optimization problem 2 is solved leading to an

optimal input sequence fu�k, . . . ,u�kþN�1g.

�
 A line search is performed in which the inputs at iteration n are

determined as

fun
k , . . . ,un

kþN�1g ¼ ð1�aÞfu
n�1
k , . . . ,un�1

kþN�1gþafu
�
k, . . . ,u�kþN�1g

ð33Þ

with a obtained as the value from the set f0, 1
25 ,2 1

25 , . . . ,1g that
gives the maximum value for the cost function (4) and at the
same time satisfies constraint (10).

�
 A convergence check is performed as follows:

J½ðun
k Þ

T . . . ðun
kþN�1Þ

T
�T�½ðun�1

k Þ
T . . . ðun�1

kþN�1Þ
T
�TJ1re ð34Þ
�
 If the convergence condition (34) is not satisfied n is increased
by 1 and the algorithm jumps to the first step. If the
convergence condition is satisfied, convergence is obtained
and the optimal input uk

n corresponding to the current time
step is applied to the real system.

5.2. Semi-condensed NMPC

As stated before, the NMPC scheme of optimization problem 2
is an uncondensed NMPC scheme. The drawback of this scheme is
the amount of memory required, especially for large horizons.
A way to solve this problem is to use a condensed NMPC scheme.
In a condensed NMPC scheme the states are eliminated from the
optimization variables by writing them as a function of the initial
state and the input trajectory. As a result of this the number of
optimization variables reduces significantly resulting to a smaller
QP to be solved on-line. In Barjas Blanco, Willems, De Moor, and
Berlamont (2008) this scheme was used in order to control the
upstream part of the model. However, the drawback of this
approach is that the resulting QP turns out to be ill-conditioned
for large horizons. This is the reason why in Barjas Blanco et al.
(2009) an uncondensed NMPC scheme was used. In this paper a
new NMPC scheme is proposed that combines the advantages of
both approaches and that will be referred to as semi-condensed
NMPC. In the following this scheme will be outlined in more
detail.

Define a set j of positive integers as follows:

j¼ fn1,n2, . . . ,nrg ð35Þ

n140 ð36Þ

nr rN ð37Þ

niþ14ni,0o ior ð38Þ

This set defines the set of states w¼ fxkþn1
,xkþn2

, . . . ,xkþnr
g

which are taken explicitly into account as optimization variables
of the semi-condensed NMPC scheme. Similar to the condensed
NMPC scheme the states in between two successive states from w
can always be written in function of one of the states in w and a
subset of the unknown input variables. Assume the states
xkþni

,xkþniþ 1
Aw for iAf1, . . . ,r�1g it then follows that the states

in between xkþni
,xkþniþ 1

can be written as

xkþniþ1

xkþniþ2

^

xkþniþ 1�1

2
66664

3
77775¼ FðniÞxkþni

þGðniÞ

ukþni

ukþniþ1

^

ukþniþ 1�2

2
66664

3
77775 ð39Þ

with

FðniÞ ¼

Akþni

Akþniþ1Akþni

^

Akþniþ 1�2 . . .Akþniþ1Akþni

2
66664

3
77775 ð40Þ

and

GðniÞ ¼

Bkþni
0 . . . . . .

Akþniþ1Bkþni
Bkþniþ1 0 . . .

Akþniþ2Akþniþ1Bkþni
Akþniþ2Bkþniþ1 Bkþniþ2 . . .

^ ^ ^ ^

2
66664

3
77775
ð41Þ

Note that (39) can be re-written as

xkþniþ1

xkþniþ2

^

xkþniþ 1

2
66664

3
77775¼ ½FðniÞ GðniÞ�zðniÞ ð42Þ

with

zðniÞ ¼ ½x
T
kþni

uT
kþni

uT
kþniþ1 . . . uT

kþniþ 1þ1�
T ð43Þ

Now define J(ni,ni + 1) as the cost related to the states in
between the states xkþni

,xkþniþ 1
, from (42) it can be shown that

this cost can be expressed as a quadratic function in z(ni)
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as follows:

Jðni,niþ1Þ ¼ zðniÞ
T

FT Q̂ F FT Q̂ G

GT Q̂ F GT Q̂ G

" #
zðniÞ�2pT

r Q̂ ½F G�zðniÞ ð44Þ

with

Q̂ ¼

CT QC 0 . . . 0

0 CT QC . . . 0

^ ^ ^ ^

0 0 . . . CT QC

2
66664

3
77775 ð45Þ

and

pr ¼ ½x
T
r xT

r . . . xT
r �

T ð46Þ

Taking this into account the cost function (21) can be
re-written as

min
uk ,...,ukþN�1

xkþ n1
,...,xkþ nr

ykþ n1
,...,ykþ nr

Xr�1

i ¼ 1

ðykþni
�yrÞ

T Q ðykþni
�yrÞþ Jðni,niþ1Þþ Jð0,n1Þ

þðykþnr
�yrÞ

T Q ðykþnr
�yrÞþðukþ i�1�urÞ

T Rðukþ i�1�urÞ

ð47Þ

which is again a quadratic function in the unknown variables.
Changing the constraints of optimization problem 2 accordingly is
straightforward and combining this with cost function (47) leads
to a semi-condensed QP formulation. Note that the number of
optimization variables has reduced from N state vectors and N

input vectors to nr state vectors and N input vectors. In this
application this is a significant reduction as the number of state
variables is large, more specific there are 75 state variables. Also
note that a line search is still needed to ensure reduction of the
cost function.
5.3. Constraint strategy

The constraints (8) and (9) in optimization problem 1 are hard
constraints that should always be satisfied because they represent
physical limitations of the hydraulic structures. Constraint (10) on
the other hand represents the flood levels of the different water
levels in the river system. During heavy rainfall it is not always
possible to satisfy these constraints. Therefore, this constraint
should be implemented as a soft constraint which means that
under normal operation this constraint should be satisfied but
during heavy rainfall constraint violations are tolerated. Since this
constraint is a vector inequality, a priorization strategy is
necessary.

In order to achieve this a number of constraint sets with
different priorities are defined. The set with the highest priority is
called S1 and represents all the upper limits on all the water
levels. If the QP of optimization problem 2 returns no feasible
solution for the constraint set S1, the constraints related with the
less important water levels are omitted leading to a new
constraint set S2+S1. The weights in the cost function of
optimization problem 1 corresponding to the water levels of the
omitted constraints are increased by which the QP tries
to minimize the violation of the omitted constraints and tries to
make the set S1 feasible in the next QP iteration or in the future
time steps. This procedure of omitting less important constraints
is repeated until the QP returns a feasible solution. If a feasible
solution is obtained, a line search will be performed and in
the next iteration this procedure will be repeated starting from
the constraint set S1. Note that this procedure always leads to a
feasible solution because in the worst-case all soft constraints will
be omitted and therefore a feasible solution is ensured. Also note
that omitting constraints can be achieved by setting the
corresponding values on the diagonal of L equal to 0.

Another aspect that must be considered is the fact that the
prediction horizon cannot be taken infinitely long. The reason for
that is that most weather predictions predict around 2 days
ahead. Predictions further than 2 days ahead can be extremely
unreliable. However, heavy rain events that cause floods typically
last longer than 2 days. A problem that can arise is that given this
prediction of 2 days ahead it is possible that the optimal solution
consists of filling the water reservoirs up to their flood level at the
end of the horizon because the controller does not know that it
might still rain after the prediction horizon. This means that there
is no storage capacity available for the rain that might fall
during the period beyond the prediction horizon. Therefore,
conservativeness must be added to the control strategy. Another
problem that can arise is that during periods of normal regulation
the water reservoirs are being used in order to improve setpoint
regulation. The problem with this is that the total available
storage capacity of the water reservoirs reduces which can cause
floods afterwards during periods of heavy rainfall. In order to
avoid these problems the following constraint strategy is applied
in this work:
�
 For each water level a guard level is defined by the local water
administration. As long as the water levels do not violate their
corresponding guard level, it is not allowed to fill the water
reservoirs.

�
 Water reservoirs can be used to avoid violation of the guard

levels. However, it is not allowed to use the complete storage
volume available in the reservoirs. For each reservoir a safety
limit is defined. Once this safety limit is reached the reservoirs
may not be used anymore and the guard levels might get
violated. If it is impossible to satisfy the guard levels, these
guard levels will be replaced by their corresponding flood
levels.

�
 If it continues raining and NMPC cannot keep the water levels

beneath their flood level within the prediction window, it is
allowed to further fill the reservoirs until the water level in the
reservoirs reach their corresponding flood level.

�
 If the rainfall is really excessive then flooding is unavoidable

and some or all water levels will violate their corresponding
flood levels and the optimization proposed in step 3 will be
infeasible. In order to be able to get a useful solution from
NMPC flood levels need to be removed from the optimization
until a feasible solution is obtained.
5.4. Controllability

Typically in river control the discharges through the hydraulic
control structures are chosen as the input variables to be
determined by the NMPC. Once the NMPC has computed the
optimal discharge trajectory for all the gates, local controllers (PI,
PID) situated at the control structures try to follow the optimal
discharge trajectory as close as possible. However, by doing this
the nonlinearities of the control structure equations are not taken
into account explicitly. Because these nonlinearities play an
important role in flood prevention, in this work a different
approach is used. In this work the gate levels at the hydraulic
structures are considered as inputs for the NMPC. A difficulty that
arises with this approach is the non-controllability of the gates in
the river system. In the gate equations there are some modes in
which the discharge over the gate is independent of the gate itself.
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Table 2
NMPC parameters.

Control horizon Prediction horizon Sampling time Q R

30 h 30 h 1 h Variable Variable
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If a gate reaches such a mode it possibly gets trapped in this mode
and the NMPC controller cannot control it. In Fig. 3 these
uncontrollable modes are depicted. The first uncontrollable
mode arises when the gate G1 is completely closed. In this case
the discharge over the gate is zero. By moving the gate by a small
amount the discharge is still going to be zero. This is reflected in
the linearized model used in the optimization by system matrices
where the discharge over the gate is independent of the
corresponding gate level. The second uncontrollable mode arises
when the gate G2 is positioned at a very sharp angle with respect
to the bottom. In that case the discharge over the gate is
determined by the bottom elevation zc and the water levels
up- and downstream (hups and hds) of the gate and therefore
independent of the gate position. (for the gate equations we refer
to InfoWorks-RS, 2008). In both cases linearization of the
discharge equation leads to the following linearized system
equations:

hupsðkþ1Þ

hdsðkþ1Þ

qðkþ1Þ

0
B@

1
CA¼ A

hupsðkÞ

hdsðkÞ

qðkÞ

0
B@

1
CAþ

0

0

0

0
B@

1
CAy0ðkÞ ð48Þ

with y0 the position of the gate as indicated in Fig. 3. Note that the
system matrix related to the inputs consists of zeros only and
therefore the controllability matrix of this system is not of full
rank which means the system is not controllable. In Barjas Blanco
et al. (2008) this problem was discussed for the control of the
upstream part of the river Demer and solved by using a fuzzy
model for the calculations of the linearized time-varying system.
The drawback of this approach is of course that the model used to
calculate the derivatives and the model used for the simulation
are different which can lead to decrease in performance.
Therefore, in this work a different approach is adopted. At the
beginning of each sampling time a first simulation is performed in
order to approximate the nonlinear behavior of the river model by
a linear time variant model, as outlined in Section 5. Afterwards a
check is done in order to detect all the uncontrollable gates and at
which moments within the prediction horizon the gates are
uncontrollable. This is done by analyzing the columns of
the corresponding matrix Bk. If all the elements of a column in
the matrix Bk are zero, then the corresponding gate is
uncontrollable at time step k. Next, it is checked for each
uncontrollable gate if the controllability is a result of the gate
being completely closed or if it is a result of the gate being
positioned at a sharp angle. In case the uncontrollability is a result
of the gate being completely closed the reference level for that
gate at the moments in time, where the gate is uncontrollable, is
set a little bit lower than the highest neighbouring water level. In
the other case the reference level is increased in order to increase
the angle of the gate. By doing this, the controller tries to steer
gates to modes where they are controllable.
6. Simulation results

In this section semi-condensed NMPC with line search is
compared with the three-position controller of the local water
administration by comparing the performance of both control
strategies for the historical rainfall of 1998. The rainfall of 1998
caused the largest flood in the Demer basin of the last 20 years
and is therefore the most suited event for making a comparison
between the two strategies. NMPC uses rain predictions in order
to make a prediction of the future water levels and based on these
predictions a suitable control action is performed. An important
point that needs to be considered is the fact that these rain
predictions never coincide with the real rainfall. So the predic-
tions made by NMPC are always going to deviate from the real
future water levels. However, one of the crucial features of NMPC
is its receding horizon strategy. This means that at each sampling
time the new state of the system is measured or estimated; based
on this measured/estimated state a new prediction is made.
Because of this information feedback at every sampling time
NMPC is able to suppress disturbances and model deviations,
hence is inherently robust against uncertainties in the rainfall
predictions. In order to show this the simulation for NMPC is
going to be performed by adding a realistic amount of uncertainty
to the rainfall-runoff discharges predictions.

The uncertainty of the rainfall-runoff discharges prediction
varies within the prediction horizon. The further ahead in time
the larger the uncertainty on the rainfall-runoff predictions. In
these simulations it is assumed that the rainfall-runoff uncer-
tainty at the current time step is 10% and that this uncertainty
increases with 0.2% for each hour further ahead in the prediction.
This means that if the prediction horizon is 30 h then at the end of
the prediction window the rainfall-runoff uncertainty is equal to
16%. These values were estimated based on historical data by
means of the techniques described in Timbe (2007). In this section
it is assumed that the rainfall-runoff predictions used by NMPC
for calculating an optimal input sequence is an overestimation of
the real rainfall-runoff of 1998. This is done in the following way:
�
 At time step k+ i within the prediction horizon N the maximum
uncertainty Dmax is calculated as p% of the real rainfall-runoff
discharge qup of 1998. The variable p satisfies p¼10+0.2i,
which means that at time step k, p is equal to 10 and increases
with 0.2 each hour further ahead in the future.

�
 Based on this value for the maximum uncertainty Dmax the

uncertainty D is determined by performing a random sampling
from a Gaussian distribution with mean 0 and standard
deviation s satisfying 2� s¼Dmax.

�
 In order to ensure that an overestimation of qup is obtained, the

absolute value of D is added to qup.
In Table 2 a summary is given of the NMPC parameters used in
this simulation. The control horizon and the prediction horizon
are equal and at demand of the VMM set to 30 h. The sampling
time is 1 h. The matrices Q and R in the cost function (47) are
variable. The values of these matrices depend on the feasible
constraint set (see Section 5.3). The result of this simulation with
NMPC is plotted in Figs. 6 and 7. In Figs. 4 and 5 the same water
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levels are plotted for simulation with the three-position
controller. Comparing both figures leads to the following
observations:
�
 NMPC clearly improves the regulation of the upstream water
level hopw during periods of moderate rainfall.

�
 NMPC steers hbgopw to the desired setpoint but the three-

position controller performs a better and smoother regulation
of hbgopw.

�
 The three-position controller is not capable of keeping hw

under its flood level. The violation of hw is very severe and lasts
for 60 h. On the other hand, NMPC is capable of keeping hw

under its flood level. This is a significant improvement as water
level hw corresponds to a water reservoir. Water reservoirs are
typically very large so a small change in water level
corresponds with a large amount of water volume.

�
 Water levels h2, hgl and hvg violate their corresponding flood

level for both control strategies. However, from the figures it
can be seen that these violations are smaller for NMPC.
Moreover, the period of time for which these water levels
violate their flood level is shorter for NMPC.

Besides a visual comparison based on Figs. 4–7 in Tables 3
and 4 a quantitative assessment of both control strategies is made
by comparing both control strategies by means of a cost function.
The cost function in Table 3 is referred to as the regulation cost
and is defined as

JregðhÞ ¼
XNb

i ¼ 1

ekþ iðhÞþ
XNsim�Na

i ¼ 1

eNaþ iðhÞ ð49Þ

with Nb the time instant where the severe flow event starts (here:
hour 300), Na the time instant where the flow event ends
(here: hour 500), Nsim the time instant where the simulation
ends (here: hour 700) and with ek(h) defined as

ekðhÞ ¼ hk�hr ð50Þ

with hk the value of the water level h at time instant k, and hr the
desired setpoint for water level h. With other words, the cost
function J(h) is the sum of all the deviations of water level h from
the setpoint. From Table 3 it can be seen that NMPC regulates hopw

much better than the three-position controller. On the other hand,
the three-position controller performs a slightly better regulation
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Table 3
Comparison of the regulation cost of the two controllers during the periods before

and after the flood event.

Three-position controller NMPC

Jreg (hopw) 16.08 0.90

Jreg (hbgopw) 0.16 1.05

Table 4
Comparison of the flooding cost of the two controllers.

Three-position controller NMPC

Jf (h2) 3.00 1.89

Jf (hw) 1.48 0

Jf (hgl) 9.47 0.58

Jf (hvg) 13.02 3.91

Table 5
NMPC efficiency.

CPU time (s) Variables Hessian

Uncondensed NMPC 3.5 2610 6 812 100

Semi-condensed NMPC 0.4 735 540 225
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of hbgopw than NMPC. Overall, it can be stated that NMPC
performs a better setpoint regulation. In Table 4 the flooding
cost is shown. The flooding cost is a measure for the amount of
flooding that has occurred and is defined as

Jf ðhÞ ¼
XNsim

i ¼ 1

ef
kþ iðhÞ ð51Þ

with

ef
kðhÞ ¼maxðhk�hf ,0Þ ð52Þ

and hf the flooding level of water level h. From Table 4 it can be
seen that NMPC is capable of avoiding flooding of the water
reservoir hw. Besides that NMPC also significantly reduces the
flooding of the other three water levels. Therefore, despite the
uncertainty in the rainfall-runoff predictions, NMPC outperforms
the current three-position controller.
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To conclude this section in Table 5 a comparison in efficiency is
made between the uncondensed NMPC scheme and the new
semi-condensed NMPC scheme. The CPU time for 1 iteration is
3.5 s for the uncondensed scheme and just 0.4 s for the semi-
condensed scheme. Since several iterations are needed in order to
obtain convergence the computational speed of the semi-
condensed scheme is obvious. Besides computational efficiency,
it can also be seen that the optimization problem of the semi-
condensed scheme is significantly smaller than that of the
uncondensed scheme. In the semi-condensed scheme
the unknown vector consists of only 735 variables whereas in
the uncondensed scheme the unknown vector consists of 2610
variables. The consequence of this is that the Hessian
matrix of the QP consists of 6 812 100 elements for the
uncondensed scheme whereas of only 540 225 elements for
the semi-condensed scheme and therefore the uncondensed
scheme uses significantly more CPU memory. Therefore, the
semi-condensed scheme outperforms the uncondensed scheme
w.r.t. CPU time and memory usage. With respect to convergence
both schemes solve the same problem and therefore lead to
the same solution.

Remark 1. The states added into the optimization problem of the
semi-condensed scheme are w¼ fxkþ5,xkþ10,xkþ15,xkþ20,xkþ25,
xkþ30g.

7. Conclusions

In this work a NMPC scheme was discussed for flood
regulation. The NMPC scheme is based on a semi-condensed
optimization scheme combined with a line search approach. A
constraint strategy is discussed in order to tackle possible
infeasibilities during periods of heavy rainfalls. Also control-
lability problems are discussed and a suitable way to solve them.
The resulting scheme is tested on the historical flood event of
1998. In order to simulate uncertainties in the rainfall-runoff
prediction the rainfall-runoff model results of 1998 are
perturbed by a realistic amount of uncertainty. The simulations
show that despite these uncertainties NMPC still outperforms
the current three-position controller. The results also
show that the newly developed semi-condensed scheme
outperforms the uncondensed scheme w.r.t. CPU time and
memory usage.
8. Future research
�
 The work in this paper considers full-state feedback. In practice
only a subset of states is measured. Therefore, a state estimator
should be added to the control system in order to obtain a full
state estimate based on measurements of the water levels. Future
work will address the application of a moving horizon estimator
(MHE) in combination with NMPC. Note that the absence of a
state estimator does not change the conclusions made in this
paper. The VMM already implemented a state estimator that
gives very accurate estimates of the states in the full hydro-
dynamic model of the Demer river. The uncertainties arising
from this state estimation process are negligible compared to the
uncertainties on the rainfall predictions.
�
 In this paper the model only considered the hydraulic model of
the river Demer. In order to be able to incorporate financial
damage into the cost function the model should be extended
by models of the flood plains such that a prediction can be
obtained of the flood that occurs in the populated areas of
the Demer basin from which an estimate can be obtained for
the accompanying financial damage.
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