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Abstract

This papers presents a convex approximation method for the solution of nonconvex
optimal control problems involving input-affine dynamic models. The method relies in
the availability of full reference state trajectories. By using these states references as
real states trajectories, the dynamic model is approximated such that the resulting
problem becomes convex. The convexified problem is solved by efficient convex
methods delivering a suboptimal solution. This solution is used to linearize the original
nonconvex problem such that the minimizer is refined by solving a new convex
problem. Consequently, the solution to the original problem is obtained in two steps.
An assessment of the errors in the approximation as a function of the mismatch between
state reference trajectories and a perfect traceable trajectory is provided. The method is
exemplified by formulating the optimal control problem of an isothermal continuous
stirred tank reactor with Van den Vusse reactions.
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1. Introduction

Nonconvex Optimal Control Problems (OCPs) are of particular interest in the control
community since control problems with nonlinear system dynamics are inherently non-
convex. Because non-convex OCPs are, in general, difficult to solve, researchers try to
find methods and new formulations in order to solve them efficiently and accurately. In
order to tackle OCPs involving dynamic models, several approaches have been
proposed. On the one hand, the methods based on calculus of variations and
Pontryagin's maximum principle [1] are known as indirect methods and, on the other
hand, the methods based on the finite parametrization of the continuous functions
involved in the optimization task, which are known as direct methods. Practical and
efficient approaches to solve nonconvex optimal control problems in the direct methods
class have been proposed. There, the problem is linearized around an initial guess and a
sequence of convex problems are solved until a local solution is found [2],[3].

This work proposes a direct-method based approach to find an approximate solution to
nonconvex OCPs of the form (1)-(5). Where the cost (1) is a convex function, the
inequality constraints (4)-(5) are defined by convex sets and the dynamic model (2) is
affine in the controls. Notice that here a quadratic cost, with @ > 0, is used for
simplicity in the explanation of the method. Nevertheless, the approach is applicable to
any convex cost function. Similarly, terminal cost and terminal constraints are not
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mention in (1)-(5) but they can be easily included in the problem formulation as long as
they do not affect the convexity of the problem.

: . g £00y(12
OCP,cex .'Av(lll)‘l‘llzl(.) /0 le(t) — & (1)]15 at (1)
subject to:
j;(t) = f(?“) + g(n;)-u(t), te [01 T]: (2)
2(0) = @, (3)
z(t) € X, te[0,7), (4)
w(t) € U, telo,T). (5)

2. Convex approximation

Notice that for the given problem (1)-(5), the source of the nonconvexity lies in the
nonlinearity of the model. Here, an approximation to the model in (2) is proposed by
introducing a pseudo state ;. and reformulating the problem in the form:

T ) m
OCP.yx e /0 llwe(t) — 2" (0)]13 di (6)
subject to:
() = F@)+ g, teT, (1)
2.(0) = (8)
z(t) € X, tel0,T), (9)
u(t) € U, telo,T). (10)

It has been shown that (6)-(10) corresponds to the convex extreme of a parametric
optimization problem which ranges between (6)-(10) and (1)-(5) when a homotopy
parameter varies from zero to one, Consequently, (6)-(10) is not obtained arbitrarily, but
achieved by a convexification of the original problem through an homotopy approach
[4]. Since (6)-(10) is a convex problem in z, and u , it can be easily solved delivering
an approximate solution (%, u},,). The given solution can be refined by formulating
the new problem

g
OCP sy ypat l(ﬂ)lli]{) [0 |l () — :L“'“f(t)Hé dt (11)
subject.  to:
#(t) = Az(t)+ Bu(t)+e, te€[0,7), (12)
z(0) = ap, (13)
x(t) € X, telo,T), (14)
ut) € U, tel0,T), (15)

where the equality (12) corresponds to the linearization of (2) around (z},ul.,). By
solving QCP.x_rer, a refined solution (:rc*vxfwf, U, o) 1S Obtained. This solution

is considered as an approximation to the minimum obtained by solving (1)-(5) directly.
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Hence, a 2-step procedure is proposed where the solution to (1)-(5) is approximated by
solving the convex problems (5)-(10) and (11)-(15) sequentially.

3. Assessment of errors in the approximation

Notice that all the OCPs have been introduced in continuous time for simplicity in its
presentation. Nevertheless, for the solution and analysis of the resulting problems, a
time discretization approach is employed. Consequently, under a suitable discretization,
the OCP (1)-(5) can be represented by a Nonlinear Programming (NLP) problem of the
form:

NLP(x) : 11131}1(1% || x —x ”% (16)
subject to:

0 = A(x)-Bx)u-Wx, (17)

x € X uel, (18)

where X is a vector containing references for the states, xand u represent vectors in
R(N+D-neand RN-nu respectively, and N is the number of discretization points in the
time horizon T. X=X} x Xy x ... Xy and U= Uy x Uy x ... Uy. Similarly, the
problem (11)-(15) can be discretized to (19)-(21) whose solution leads to an
approximated minimum of (16)-(18).

OPeverer(®) s mins [ x—% 3 (19)
subject to:

0 = Arx—Bpu-—gy (20)

X € X, uel, (21)

In order to analyse how the solution to (16)-(18) and (19)-(21) are related, the following
conditions are assumed [5]:

Al: The functions A(x)and B(x) are twice continuously differentiable,

A2: There exista pair X € X and @ € U such that 0 = A(X) - B(X)d — WX.

A3: Both problems, NLP(X) and OP.yx—ref(X) satisfy the strong second order
sufficient conditions (SOSC), strict complementarity and constraint regularity [6] at
their solution (X, @).

Lemma 1: Tf assumptions A1 to A3 are satisfied, then
0" (%) = vty —res (R = O(lI% — X[|*) (22)

holds.

Lemma 1 implies that if the reference is a perfect traceable trajectory X, the solution to
the convex approximation (19)-(21) perfectly matches the solution of the original NLP
(16)-(18). Otherwise, the errors in the approximation are of second order in the size of

the distance between the real X and the perfect traceable trajectory X. Lemma 1 is
numerically corroborated in the case study presented in the next section. A
mathematical proof is not given here for simplicity, but can be found in [5] for the
parameter estimation of parameter-affine models which is analogous to the problem
formulated here,
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4, Case Study

Consider the benchmark problem presented in [7], where the control of an isothermal
CSTR with the Van den Vusse reactions is evaluated. The process is governed by the
set of nonlinear ordinary differential equations:

C'ﬂ(l‘:) = @(C'ﬂ,ﬂ(!') = C'u(t)) = kl C"a(t) = AgCﬁ(f), (23)
Crb(i) = 'tl"lcru(t) - '1126'&({) - 'P%C'b{t) (24)

where C, and C} are species concentration in the reactor and Cl(t) and F(¢)

represent input concentration and volumetric inflow respectively. Nominal parameters
are: k1 =501/h, ko =1001/h, ks =10l/gmolh, V =1, , Fuin=0Il/h

Fiax = 2001/h, F =32.611/h, C. = 2.91 gmol/l, Cy, = Llgmol/l,
Cuo = 10gmol/l. In order to evaluate the 2-step procedure, an optimal control
problem of the form (1)-(5) is proposed over a time horizon 7" = 6 min and discretized
with a sampling period 75 = 0.12 min, i.e,, N =50. The control horizon N, is
assumed equal to the prediction horizon. The state penalization matrix @ is set to
diag(1,1){?/(gmol?h) . However, for N, = 1, the problem can be easily enumerated
over the search space of u. Figure 1(a) shows the cost to minimize for the problem
when a perfect traceable trajectory X is used as a reference while Figure 1(b) shows
the cost obtained by performing a step change in the reference plus the addition of
Gaussian noise to the second state reference trajectory. Notice that as postulated in
Lemma 1, the convex approximation delivers a solution that exactly matches the
minimum of the original NLP when the desired trajectory equals a perfect traceable
trajectory X , i.e., the desired trajectory is an open loop response. Figure 2 shows the
errors obtained in the approximation when Gaussian noise of different amplitudes is
added to a perfect traceable state trajectory X, where Lemma 1 is corroborated
numerically.

In order to evaluate the performance of the 2-step procedure, a tracking and disturbance
test is performed in the receding horizon framework. One the one hand, a NLP solver is
used to solve the discretized version of (1)-(5) at each sampling instant for set point
changes. On the other hand the proposed method is used to provide a suboptimal
solution.
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Figure 1. Cost functions for the OCP of a CSTR with Van den Vusse reactions. The reference
trajectory exactly matches an open loop response of the system (a) where the approximation
delivers the optima solution. On the other hand, a step change is performed in C), while C,, is
contaminated with Gaussian noise of ¢ = (.28. Notice the difference between the solutions.
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Figure 2. Errors in the approximation as a function of the distance between a perfect traceable
trajectory and a reference trajectory. The reference trajectory corresponds to X plus Gaussian
noise of different amplitudes.

A third scheme, namely linearization around trajectory (LAT), is included here for

further discussion. The receding horizon schemes are implemented along with a
nonlinear open loop observer plus an output disturbance model [8].
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Figure 3. Tracking and disturbance rejection test for the NMPC and the 2-steps approach.
Difference in the trajectories are almost negligible.

5. Discussion

For the presented study case, the method performs slightly different from the NMPC
scheme. In terms of control performance, the difference is almost negligible even for the
disturbance applied to the input concentration. Moreover, the computational demand of
the presented approach is less than the one required for solving the original nonconvex
optimization problem. The scheme presented can be directly compared with
linearization around trajectory where the model inside the MPC is linearized around
every point in the reference trajectory, i.e., a linear time-variant model is used inside the
MPC. However, the proposed approach presents a computational advantage since the
first step provides already a good approximation of the solution, the second step takes
less time to achieve the optimal control profile. On the other hand in linearizion around
trajectory, the model is solved using a flat control profile which corresponds to the
steady state value for the given reference trajectory at the current time. Notice that this
is not the case for the 2-step approach since, u},, has already the shape of the optimal
control profile, Figure 4 shows the computational time for the test in Figure 3 evaluated
with the 3 control approaches as a function of the control horizon N,,.



(

(



J. Bonilla et al.

5 N ‘ OCPy I
—OCPevx _ner |
- - OCNLy |

: o
1.5
2 o
& o
=
1 8 I e S I P PP IR, < LR R s s
e grozeoo - e .
= ) B ‘ o . )
25 30 35 L - J
Ny

Figure 4. Average computation time for the test performed in Figure 3 as a function of control
horizon changes. Notice that the presented 2-step approach presents slightly better computation
time than the other control strategies.

6. Conclusions

A 2-step convex optimization method has been presented in the context of optimal
control for input affine dynamic models. Although the solution is not optimal, it has
been shown that the errors in the approximation are quadratic in terms of the difference
between a perfect traceable trajectory and the given reference. A simulated study has
shown that proposed approach requires less computational power than the one required
by solving the original nonconvex problem. The method can be compared with
linearization around trajectory, however, the first step in the approach already provides
a better control trajectory that the one in the LAT approach. This property leads to a
smaller computation time needed for converging to a local solution.
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