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Services offered in a commercial context are expected to deliver certain levels of quality,
typically contracted in a service level agreement (SLA) between the service provider and
consumer. To prevent monetary penalties and loss of reputation by violating SLAs, it is
important that the service provider can accurately estimate the Quality of Service (QoS)
of all its provided (composite) services. This paper proposes a technique for predicting
whether the execution of a service composition will be compliant with service level objec-
tives (SLOs). We make three main contributions. First, we propose a simulation technique
based on Petri nets to generate composite time series using monitored QoS data of its ele-
mentary services. This techniques preserves time related information and takes mutual
dependencies between participating services into account. Second, we propose a kernel-
based quantile estimator with online adaptation of the constant offset to predict future
QoS values. The kernel-based quantile estimator is a powerful non-linear black-box regres-
sor that (i) solves a convex optimization problem, (ii) is robust, and (iii) is consistent to the
Bayes risk under rather weak assumptions. The online adaption guarantees that under cer-
tain assumptions the number of times the predicted value is worse than the actual value
converges to the quantile value specified in the SLO. Third, we introduce two performance
indicators for comparing different QoS prediction algorithms. Our validation in the context
of two case studies shows that the proposed algorithms outperform existing approaches by
drastically reducing the violation frequency of the SLA while maximizing the usage of the
candidate services.
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1. Introduction

1.1. Context

Workflow languages, such as WS-BPEL,2 focus on combining web services into aggregate services that satisfy the needs of
clients. A service composition consists of a collection of related, structured activities or tasks that produce a specific service by
combining services provided by multiple business partners. Tasks can be delegated to globally available software services and
may require human interaction. For example, an integrated travel planning web service can be created by composing services
for hotel booking, airline booking, payment, etc.

In a global service market, many available web services can provide similar functionality, but have different Quality of
Service (QoS). QoS can be defined in terms of attributes such as price, response time, availability and reputation [4].
QoS-aware service composition refers to the process of composing services in function of their QoS properties such that
the overall composition meets the QoS constraints, specified in the service level agreement (SLA) [3]. Violating SLAs is often
associated with a decrease in reputation or monetary penalties for the service provider [20]. It is therefore in the providers’
best interest to make for each potential composition an accurate assessment of the QoS that will be provided during its exe-
cution by the client. In this context, two important challenges arise: QoS aggregation [11,10,17] and QoS prediction [5,21,15].
Composite services typically consist of different activities such as sequences, conditions, loops and parallel invocations. To
calculate the aggregated QoS of the composition, these different composition patterns have to be taken into account. Further-
more, web services typically operate autonomously within a rapidly changing environment. As a result, their QoS may
change frequently, either because of internal changes or because of changes in their environment [31]. To know if a compo-
sition will respect the SLA during its execution, the provider must thus predict what the QoS of the composition will be dur-
ing its actual execution by the client.
1.2. Problem statement

The problem tackled in this paper is to produce future QoS values of the composition as accurate as possible given his-
torical QoS values of the individual services. A selected composition can then be rejected or accepted to address the custom-
ers’ requests depending on whether the prediction indicates if the composition will be executed according to the service
level objectives (SLOs) of the SLA. In the context of this paper, an SLO states that an accepted service should satisfy a QoS
constraint with a probability greater than s (e.g. the service must respond in less than 1 s in 99,9% of the cases). Two types
of errors can occur in this scenario: a type I error occurs when the service is rejected and would have satisfied the SLO, a type
II error occurs when the service is accepted and will violate the objective. Suppose fs is a function that predicts a future QoS
attribute given a certain input (e.g. past values of that QoS attribute) and fs belongs to a certain hypothesis space H. If based
on this prediction we decide whether or not to accept the request (e.g. we accept if the predicted value is below or above a
certain threshold value), then the problem we try to optimize is
2 We
wsbpel
min
fs2H

PðType I errorjfsÞð1� sÞ þ PðType II errorjfsÞs ð1aÞ

such that PðType II errorjaccepted; f sÞ 6 1� s ð1bÞ
where P expresses a probability and ‘accepted’ means the service was accepted to execute the task. Constraint (1b) states
that the frequency of accepted services that violate the SLO should not exceed 1� s. As long as constraint (1b) is satisfied,
we have chosen the cost we want to minimize in Eq. (1a) to be linear in the number of type I and type II errors: an error of
type I has cost 1� s and an error of type II has cost s. We will show in this paper that in order to minimize optimization
problem (1), we need to know the conditional s-quantile value. From an economical point of view it is important to accept
as many requests as possible, while the proportion of violations of the accepted request should be as small as possible. There-
fore it is interesting to reformulate problem (1) as an optimization problem in the rejection rate (PðrejectedÞ) and the
violation rate (PðType II errorjacceptedÞ)
min
fs2H

PðType II errorjaccepted; f sÞ þ PðrejectedjfsÞðð1� sÞ � PðType II errorjaccepted; f sÞÞ ð2aÞ

such that ð1� sÞ � PðType II errorjaccepted; f sÞP 0 ð2bÞ
where rejected means the service was rejected to execute the task. A proof for this reformulation can be found in Appendix A.
Given constraint (2b) holds, the cost we want to minimize decreases for a decreasing rejection rate and a decreasing
violation rate as desired.
b Services Business Process Execution Language Version 2.0, April 2007, OASIS Technical Committee, http://docs.oasis-open.org/wsbpel/2.0/
-v2.0.html.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
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1.3. Related work

With respect to QoS aggregation, the current state-of-the-art techniques have some important drawbacks. As explained in
[21], some existing approaches for aggregation use hard composition rules such as addition, maximum or conjunction
[4,5,31,1,3,9,30]. In case one is interested in quantile values, hard contract rules can be overly pessimistic because they
do not take the probability distribution of the individual services into account. This problem can be solved by estimating
probability distributions for the QoS values of the elementary services which are combined according to soft composition
rules [10,21]. Soft contract rules, on the other hand, assume that QoS values of the different elementary services are inde-
pendently distributed. In practice, however, quality attributes such as response time of different automated services are of-
ten dependent due to several reasons: both services run on the same server; during the day certain services are executed
more often than during the night; and users choose the fastest service out of a group of services which causes the services
to become equally fast. These dependencies are even more distinct with non-automatic services that require human inter-
action to execute a task. They are often induced due to the fact that outside working hours less people are available to
execute a task.

Concerning QoS prediction it is important that the predicted quantile value approximates the true conditional quantile
function as good as possible. We did not find any seminal work that uses state-of-the-art prediction methods to predict
quantile values in this context.

1.4. Contributions

This paper has the following contributions. First, we present a QoS aggregation technique that generates composite time
series using monitored QoS data of its elementary services. Our proposed simulation technique based on Petri nets preserves
time related information and takes mutual dependencies between participating services into account. Second, we address
QoS prediction by solving optimization problem (1) using a kernel-based quantile regressor with online adaptation of the
constant offset. This estimator has the following properties:

� It can guarantee that, under certain assumptions, the number of times the predicted value is worse than the actual value
converges to the agreed quantile value for the number of data points going to infinity.
� Kernel-based methods like SVM [27] and LS-SVM [24] have shown to be powerful non-linear black-box methods success-

ful for various applications such as optical character recognition [16] and electricity load prediction [6].
� The solved optimization problem is convex as opposed to other non-linear black-box methods such as neural networks.

This guarantees the global optimum can be found efficiently.
� It is robust and thus resistant to outliers. Its breakdown point equals 1� s if s P 0:5.
� It is risk consistent to the Bayes risk under rather weak assumptions and it approximates the conditional quantile

function [7].

Third, we introduce two performance indicators to quantify and compare our results: the first expresses, given certain
assumptions, the cost we want to minimize in (1a) and the second expresses, given certain assumptions, the likelihood
(1b) holds.

1.5. Structure of the paper

This paper is organized as follows: Section 2 clarifies the problem statement and motivates our approach. Section 3 elab-
orates on related work. Section 4 provides an overview of the QoS model we use for this work. We propose the simulation
technique based on Petri nets for calculating the QoS attributes of composite services, given QoS attributes of its elementary
services in Section 5. Section 6 explains the performance indicators and describes the underlying prediction mechanism that
is used to predict violations of the SLA between customer and service provider. An experimental evaluation of our approach
and comparison with existing work is documented in Section 7. Section 8 provides a conclusion. Finally, Section 9 elaborates
on future work.
2. Motivation

2.1. Running example

This section presents a case study situated in the health care environment. The case study consists of a composite service
(workflow), initiated by the government, that realizes a mammography screening program in order to reduce breast cancer
mortality. The workflow is illustrated in Fig. 1.

The first task of the workflow consists of sending out invitations to all women that qualify for the program. A radiologist
will take images needed for screening and uploads them to the system (task 2). Next, the images need to be analysed by
specialized screening centers. There are always two independent readings, represented by tasks 3 and 4. These readings



Fig. 1. Example e-health workflow process.
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can be performed in parallel. In a next step, the two results of the readings are compared. When the results are identical, it is
unlikely that the two physicians made the same mistake. Therefore it can be safely assumed that results are correct and the
workflow can proceed with task 5. However, when the results are different, a concluding reading is performed (task 40). Once
the results of the screening of a particular screening subject are formulated, a report is generated (task 5) and a report is sent
to the screening subject and her general practitioner in task 7. In parallel, different parties are billed (task 6).

Suppose the government, who finances this initiative, wants some quality guarantees and specifies a service level agree-
ment with the company (service provider) responsible for executing the workflow. In this agreement, the company specifies,
for example, that in 99% of the cases the duration of the workflow composition will take no longer than 15 working days. We
will now motivate why quantile estimation, time series prediction and taking into account mutual QoS dependencies are
important for accurate SLO compliance estimation.
2.2. Quantile vs. average SLO compliance estimation

The algorithms we propose are based on quantile estimation. We explain its benefit by means of a simple example. Sup-
pose two different service selections on the e-health workflow leads to two composite services CS1 & CS2. The response time
of these services have, at a certain time, probability densities for RTs of 0–25 days as presented in Table 1. We can use these
values to make a quality estimate for an SLO. For example, which service would be the best candidate to have 99% certainty
that its response time will not exceed 15 days? Using the average RTs of 12.5 days for CS1 and 7.5 days for CS2, it seems that
CS2 is more reliable than CS1 and thus the best choice. However, using 99% quantile values of 15 days for CS1 and 20 days
for CS2, we rightly conclude the opposite: CS1 has a higher probability that it will not exceed the threshold of 15 days
because it is less volatile.
2.3. Time series prediction

Again, consider a scenario where one has to estimate which of two composite services, as shown in Table 2, is the best
candidate to comply with an SLO stating that the total duration of the composite service will take no longer than 15 working
days. If we expand the pattern present in t1; t2; t3 and t4 to t5 and t6 as shown in Table 2, then at t5 ‘CS A’ complies with the
SLO while ‘CS B’ violates the SLO and at t6 the opposite happens. The estimation for this scenario, as for many real-life sce-
nario’s, is thus time dependent. Possible causes for varying quality of service attributes are temporary over -or underload,
infrastructure failures, seasonality due to fixed working hours of non-automatic services, etc. The algorithms we propose
to predict time varying QoS attributes are discussed in Section 6.
Table 1
Probability density, average and 99%-quantile values of RTs for 2 composite services CS1 & CS2.

Services Monitored RT (Prob. Density) 99% Q-value Average value

0–5 (%) 5–10 (%) 10–15 (%) 15–20 (%) 20–25 (%)

CS 1 0 1 98 1 0 15 12.5
CS 2 15 75 6 3 1 20 7.5



Table 2
Past (monitored) and future (to be predicted) RTs for two composite services.

Services Monitored RT (days) Real RT (days)

t1 t2 t3 t4 t5 t6

CS A 10 25 10 25 10 25
CS B 20 10 20 10 20 10
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2.4. Mutual dependencies

In this example we will show why taking into account mutual dependencies (e.g. as a consequence of time dependencies)
is important. Suppose the composite service (CS) consists of a screening services and a post service (SS and PS) executed in
sequence as shown in Table 3. The response times are dependent in the sense that if the execution of SS contains a weekend,
then the execution of PS does not contain a weekend. The true worst-case response time is 5 days (3 working days and an
extension of 2 days due to the weekend). Algorithms assuming independence of response times will estimate the worst-case
response time as 7 days (3 days for SS plus 4 days for PS) because they add the penalty due to weekends twice. Using these
values, for example to calculate the 99% QoS quantile, will result in a too pessimistic value (7 days instead of 5 days), causing
a competitive disadvantage to the service provider. This example shows why in real scenario’s assuming independence can
be dangerous. Mutual dependencies as a consequence of sharing resources or other dependencies give similar results.
3. Related work

In literature, several works can be found that address QoS-aware service composition. Surveys are reported in [12,29,23].
Important research challenges in this domain are QoS aggregation, QoS-based service selection and QoS prediction. Fig. 2
and Table 4 give an overview of related work for each challenge. We discuss them briefly.

QoS aggregation, which is typically part of service selection and prediction, involves calculating a global QoS value based
on the QoS of the participating services. Jaeger et al. [11] introduce an aggregation method to calculate the QoS of the com-
position, given the QoS values of the individual services. The model identifies several structural elements called composition
patterns. These structural elements were derived from a set of workflow patterns defined in Van der Aalst [26]. A practical
approach is taken by Mukherjee et al. [17]. They propose a model for estimating three key QoS parameters (Response Time,
Cost and Reliability) of an executable BPEL process from the QoS information of its partner services and certain control flow
parameters. Hwang et al. [10] approaches the aggregation challenge as a stochastic problem. Each QoS parameter for a web
service is represented as a discrete random variable with a probability mass function. They propose a probabilistic frame-
work to derive a QoS measure of a composite service from those of its constituent services and explore algorithms for com-
puting the probability distribution functions of the QoS of the service composition. Their theoretical rules for composing the
probability mass function are based on the assumption that QoS values of each constituent web service of a composition
construct are mutually independent.

QoS-based service selection deals with finding an assignment of services to workflow tasks which maximizes a customer
related utility function. Typically this comes down to the following optimization problem: given an abstract composite ser-
vice and a set of candidate services with different QoS values for each task, find a service for each task such that the utility is
maximized and the global composite QoS values satisfy certain Service Level Objectives (SLOs). Popular techniques in liter-
ature to solve this challenge efficiently are integer programming [31,1], efficient heuristic algorithms [30] and genetic algo-
rithms [3]. These works tackle the composition problem assuming deterministic QoS attributes for the elementary services.
Harney and Doshi [9] present a composition solution that intelligently adapts workflow processes to changes in quality
parameters of participating services providers. Their approach assumes that QoS values remain fixed for a certain amount
of time. Changes are introduced by means of expiration times, i.e. service providers provide their current reliability rates
and duration of time for which the current reliability rates are guaranteed to remain unchanged. Wiesemann et al. [28] focus
on the stochastic service composition problem. They formulate the service composition problem as a multi-objective sto-
chastic program which simultaneously optimizes QoS parameters which are modeled as decision-dependent random
Table 3
Monitored response times for the screening service (SS), the post service (PS) and the corresponding response time for the composite service. The response time
for SS equals one working day and the response time for PS equals 2 working days. During the weekend (when no personnel is available to execute the tasks)
the progress freezes and the response time will be extended by up to 2 days.

Mo Tu We Th Fr Sa Su (Max)

SS 1 1 1 1 3 2 1 3
PS 2 2 2 4 4 3 2 4

CS 3 3 5 5 5 4 3 5



Fig. 2. Related work – positioning.

Table 4
Related work – overview.

Related work Challenge Approach Implementation choices

Cardoso [4,5] Prediction Stochastic workflow reduction Hqv (avg, min, max), mutually independent
Jaeger et al. [11] Aggregation Composition patterns Deterministic
Zeng et al. [31] Selection Linear integer programming Deterministic
Aggarwal et al. [1] Selection Linear integer programming Deterministic
Canfora et al. [3] Selection Genetic algorithms Deterministic
Hwang et al. [10] Aggregation Probabilistic composition patterns Stochastic, mutually independent
Harney and Doshi [9] Selection Value of changed information Deterministic
Yu et al. [30] Selection Efficient heuristic algorithms Deterministic
Wiesemann et al. [28] Selection Stochastic programming Stochastic, mutually independent
Rosario et al. [21] Prediction Monte Carlo sampling Hqv (distribution), mutually independent
Mukherjee et al. [17] Aggregation Composition patterns for WS-BPEL Deterministic, mutually independent
Leitner et al. [15] Prediction Regression Other (runtime data of composition)
This paper Prediction Petri nets, Support vector machines Hqv (time series), mutually dependent

Hqv: Historical values of qos attributes
Deterministic: Qos values of participating services are fixed point estimates
Stochastic: Qos values of participating services are stochastic variables that change in time
Mutually independent: Qos values among participating services do not depend on each other
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variables. Their model minimizes the average value-at-risk (AVaR) of the workflow duration and costs while imposing
constraints on the workflow availability and reliability.

Driven by the fact that QoS attributes, such as response time, can be very volatile with respect to time, the challenge of
QoS prediction has recently gained popularity. Its main goal is to bridge the time gap between the service selection process
and the actual execution of the composite service. By predicting accurate expected values for quality measures in the near
feature, this technique is able to improve the probability that the selected composition of services will still respect the SLO
during the execution of the workflow. This challenge typically starts from QoS related data and assumes that a selection of
services for the composition has taken place. Cardoso’s Ph.D. thesis [4] is a seminal work that proposes a framework that uses
Stochastic Workflow Reduction to arrive at QoS estimates for the overall workflow. Using different workflow patterns, they
defined QoS aggregation with four attributes: response time, cost, reliability, and fidelity. These aggregation patterns make it
possible to predict the QoS performance of service processes by performing the substitution repeatedly until the whole pro-
cess is transformed into a composite service node. Although Cardoso mentioned the possibility of deriving distribution func-
tions for QoS of workflow tasks, the proposed reduction rules were only implemented for point estimates, such as minimum,
average, and maximum, of historical QoS values. Leitner et al. [15] present a framework called PREvent for event-based mon-
itoring and prediction of SLA violations and automated runtime prevention by triggering adaptation actions in service com-
positions. Monitored runtime data of the composition is used by a predictor to identify problematic instances at defined
checkpoints in the composition execution via regression. Because their approach does not use historical QoS values of the
participating services, there is no need for aggregation or for taking service dependencies into account. Rosario et al. [21]
propose QoS estimation based on soft contracts. Soft contracts are characterized through probability distributions for QoS
parameters. To yield a global contract for the composition, they use a tool called TOrQuE to unfold a composition and esti-
mate its response time using Monte Carlo simulation. Their simulation technique assumes that the probability distribution
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of QoS values of the elementary services are independently distributed. As discussed in this work, this assumption is often
violated in practice with as consequence that their approach leads to overoptimistic or overpessimistic results.

In this paper, we present a two-step approach to predict QoS values of composite services. The first step, which is based
on Petri nets, deals with QoS aggregation by deriving QoS values of a workflow composition from those of its participating
elementary services. In contrast to related work, this technique preserves both mutual and time dependencies to allows us,
in a second step, to effectively deal with the QoS prediction challenge. We apply time series prediction on the aggregated
historical QoS to accurately predict if a composition will comply with an SLA. The accuracy of our approach is compared with
the approach of Rosario et al. [21] in Section 7.2.
4. QoS considerations

4.1. QoS for elementary service

In the domain of web services, QoS parameters can be used to determine non-functional properties of the service. QoS
attributes can be divided into quantitative and qualitative attributes. Examples of the latter are security and privacy. Popular
quantitative attributes are response time, throughput, reputation, reliability, availability, and cost:

� Response Time (RT): the time taken to send a request and receive a response (expressed in milliseconds). The response
time is the sum of the processing time and the transmission time. For short running processes they are usually of the
same order. For long running processes that can take hours, days or even weeks to complete, the transmission time is
usually negligible.
� Throughput (TP): the maximum requests that can be handled at a given unit in time (expressed in requests/min).
� Reputation (RP): the reputation of a service is a measure of its trustworthiness (expressed as scalar with higher value

being better). The value is defined as the average ranking given to the service by end users.
� Reliability (RL): the probability that a task is satisfactorily fulfilled (expressed as a percentage). The reliability can be

calculated from past data by dividing the number of successful executions by the total number of executions.
� Availability (A): the probability that a web service is available (expressed in available time/total time). It is computed by

dividing the total amount of time in which a service is available through the total monitoring time. In the scope of this
work, we define an available service as a service that is able to respond within a predefined time interval.
� Cost (C): the cost that a service requester has to pay for invoking a specific operation of a service (expressed in cents/

request). Other pricing schemes are sometimes used such as membership fee or monthly fee.

Because the focus of this paper is on the prediction of quality of service attributes with a volatile nature, we do not con-
sider static attributes like fixed costs such as membership fees. Also reputation is an attribute that gives a general impression
about users opinions of a service, and is not meant to frequently change in time. System-level QoS attributes, such as
throughput, often largely depend on hardware and computing power of the underlying infrastructure of the composite ser-
vice and need to be evaluated over multiple instances. In this work, we concentrate on instance-level QoS attributes of com-
posite services that directly relate to the QoS values of its constituent web services and moreover are non-stationary.
Interesting attributes for our approach are response time, reliability, availability and cost as pay-per service. For the sake
of simplicity we limit the QoS prediction algorithms in Section 6 and their evaluation in Section 7 to the response time
attribute.

4.2. QoS for composite services

The QoS of a service composition is calculated based on the QoS values of its constituents. In contrast to the measurement
of QoS for elementary services, composite services consist of different activities such as sequences, if-conditions, loops and
Table 5
QoS computations for composite services. RTi; TPi;RPi ;RLi ;Ai and Ci are respectively the response time, throughput, reliability, availability and cost of the ith
service. There are a total of m services which are part of a sequence, parallel execution or switch. In case of a switch the expected value is calculated where pi is
the probability that service i is executed. In case of a loop one service is executed k times.

QoS attribute Composition patterns

Sequence Parallel Switch Loop

Response time
Pm

i¼1RTi maxm
i¼1ðRTiÞ

Pm
i¼1pi � RTi RT � k

Throughput minm
i¼1ðTPiÞ minm

i¼1ðTPiÞ
Pm

i¼1pi � TPi TP
Reputation Pm

i¼1
RPi
m

Pm
i¼1

RPi
m

Pm
i¼1pi � RPi RP

Reliability
Qm

i¼1RLi
Qm

i¼1RLi
Pm

i¼1pi � RLi RLk

Availability
Qm

i¼1Ai
Qm

i¼1Ai
Pm

i¼1pi � Ai Ak

Cost
Pm

i¼1Ci
Pm

i¼1Ci
Pm

i¼1pi � Ci C � k
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parallel invocations. We need to take into account these different composition patterns to calculate the QoS of a composite
service. Example QoS computations are summarized in Table 5. WS-BPEL elements relevant to QoS computation are simple
elements as receive, reply, invoke, assign, throw, wait and complex elements like sequence, flow, if, while and foreach.
Similar to Kiepuszewski et al. [13], we define a structured model that consists of four constructs that allow for recursive
construction of larger workflows:

� Sequence: multiple tasks that are sequentially executed.
� Parallel execution (and-split/and-join): multiple paths that are executed concurrently en merged synchronously.
� Exclusive choice (or-split/or-join): multiple possible paths, among which only one can be executed.
� Loop: a path that is repeatedly executed a fixed number of times c.

Various standards for service composition include more constructs in addition to the four basic constructs described
above. Jaeger et al. [11] summarizes the workflow patterns that cover most control constructs proposed in existing standards
and products. In this paper we limit ourselves to the four basic constructs that are able to cover the most important activities
offered in WS-BPEL, a popular workflow language for orchestrating web services. How the composite activities of WS-BPEL
are mapped to the basic constructs will be explained in the next section. A Petri net graph and a Petri net execution time
system (PNET-system) is used to reason over the workflow and to estimate its total response time.

Besides the overhead generated by the service calls, the QoS of a composite service is influenced by events internal to the
orchestration. Usually, the delay caused by internal events is negligible compared to that of the service calls. This is certainly
the case for medium and long running processes, which are the main targets for our approach. For further analysis, we
assume that the overall delay of the orchestration depends solely on the response times of the services it calls during
execution. The inclusion of internal delays is a trivial extension.
5. QoS aggregation

In the motivation, we emphasized that time related information and mutual dependencies are important to make accu-
rate composite QoS estimates. In this section we present a QoS aggregation technique that takes both into account by gen-
erating a simulated time series of the QoS attributes of the workflow as if the composition was executed several times in the
past. The quantile values will be predicted using this simulated dataset as will be explained in Section 6.

5.1. Petri net graph

Various activity-based process models have been suggested for workflow systems. We represent the workflow as a non-
deterministic Petri net graph (PNG), which is a commonly used representation for workflow systems [22,18]. Compared to a
structured workflow model, expressing our QoS model as a formal model offers more expressive power and is equipped with
strong analysis capabilities. Furthermore, the Petri net functions as an intermediate representation that allows generaliza-
tion of our approach to different workflow languages. We apply our technique in the context of WS-BPEL, however, it can
be applied on any workflow language that can be represented by our Petri net representation.

Our Petrinet consists of places and transitions. Places correspond to workflow states and allow the representation of con-
ditional execution. There are two kinds of transitions in our Petri net: timed and immediate transitions. Timed transitions
represent services and the firing delay of the transition corresponds to the response time of these services. Immediate
transitions are needed to enable the representation of internal events of the composite service.

A generalization of the Petri net graph we use for our analysis of WS-BPEL, is a 8-tuple (P; T 1; T 2; T ;D;W�;Wþ; s0), where

� P ¼ fp1; p2; . . . ; pn1
g is a finite set of places. The set contains exactly one starting place (p1) and exactly one ending place

(pn1
).

� T 1 ¼ t1
1; t

1
2; . . . ; t1

n2

n o
is a finite set of immediate transitions. Immediate transitions have no firing delay.

� T 2 ¼ t2
1; t

2
2; . . . ; t2

n3

n o
is a finite set of timed transitions. Timed transitions have a firing delay.

� T ¼ ft1; t2; . . . ; tn4g is a finite set of transitions. All transitions are immediate or timed transitions (T ¼ T 1 [ T 2) but
cannot be both (T 1 \ T 2 ¼ ;).
� D ¼ fd1; d2; . . . ; dn3g is finite set of positive real functions representing the firing delay of the corresponding timed

transitions with respect to the time. diðsÞ is the firing delay of t2
i at time s.

� W�;Wþ are the backward and forward incidence matrices, respectively. They contain boolean values. If W�ði; jÞ ¼ 1, then
there is an arc going from pi to tj. If Wþði; jÞ ¼ 1, then there is an arc going from ti to pj. If W�ði; jÞ or Wþði; jÞ equals 0, then
there is no corresponding arc. Places, except for the starting and ending place, can have multiple incoming arcs (‘OR-join’)
or multiple outgoing arcs (‘OR-split’). The starting place differs in the sense it has no incoming arcs and the ending place
differs in the sense it has no outgoing arcs. Timed transitions have one incoming arc and one outgoing arc. Immediate
transitions can have multiple incoming arcs (‘AND-join’) or multiple outgoing arcs (‘AND-split’).



Fig. 3. Mapping: Business Process Modeling Language (BPMN) – Petri net graph – PNET-system. The gray, blue, red and green building blocks of the PNET-
system correspond to respectively the response time, cost, availability and reliability. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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� The initial marking of the Petri net is always one token present at the starting place. The initial time of the Petri net equals
s0. Time is continuous and can take any real value.
� An additional constraint on our Petri net is that each ‘AND-split’-transition, ‘OR-split’-place has to have exactly one cor-

responding ‘AND-join’-transition, ‘OR-join’-place respectively and vice versa. With corresponding we mean that all out-
going paths of the ‘split’-node are disconnected until they reach the corresponding ‘join’-node in which they all come
together. The paths connecting the ‘split’-node and corresponding ‘join’-node are called the connecting paths.

The mapping of WS-BPEL activities, represented by their Business Process Modeling Notation (BPMN),3 to their corre-
sponding Petri net representation is shown in Fig. 3. If we apply this mapping on the case study introduced in Section 2.1,
we get the Petri net representation illustrated in Fig. 4. The firing delays introduced by the timed transitions t2

1 to t2
7 correspond

to the response times of the post 1, radiology, screening 1–3, report, billing and post 2 service respectively. Remark that we have
truncated the Petri net graph by removing ‘a place followed by an immediate transition with one incoming and one outgoing
arc’. These constructs have no influence on further analysis and calculations.

Similar to Colored Petri nets, we add an extension to the elements of the net to deal with the other QoS attributes besides
response time: a Petri net token is associated with 3 data values C, A and RL of type integer to hold the current aggregated
cost, availability and reliability of a composition. The extension is a 4-tuple (Q; C;A;RL), where

� Q ¼ fq1; q2; . . . ; qn3
g is a finite set of positive real numbers representing the maximal allowed delay for each timed

transition before it is considered as unavailable.
� C ¼ fc1; c2; . . . ; cn3g is a finite set of positive real functions representing the cost of the corresponding timed transitions

with respect to the time. ciðsÞ is the cost of t2
i at time s.

� A ¼ fa1; a2; . . . ; an3g is a finite set of functions where aiðsÞ 2 f0;1g represents the availability of the corresponding timed
transitions with respect to the time. aiðsÞ is the availability of t2

i at time s. There is a direct relation between ai and di: if
ðdi <¼ qiÞfai ¼ 1g else fai ¼ 0g
� RL ¼ frl1; rl2; . . . ; rln3g is a finite set of functions where rli 2 f0;1g represents the reliability of the corresponding timed

transitions with respect to the time. rliðsÞ is the reliability of t2
i at time s.

5.2. Petri net execution semantics

The execution of the Petri net graph is done by passing tokens from the initial marking to the end marking. These mark-
ings correspond to a token present at start place and end place respectively. An execution of the Petri net graph simulates the
3 Business Process Modeling Notation (BPMN) Version 2.0, January 2011, OMG Specification, http://bpmn.org/.

http://bpmn.org/


Fig. 4. Petri net graph for e-health workflow.
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execution of the workflow. The execution (response) time of the workflow at time s is the time elapsed between a token
present at the starting place at time s and a token reaching the ending place in the same execution cycle. During execution
of the Petri net, time increases in a continuous way, starting from the initial value s0. For each time, the following rules are
executed in a non-deterministic order until no more rules can be executed:

� Rule 1: if a token is present at the incoming place of a timed transition t2
i , then that token is consumed and the fire delay

counter of that transition is activated. The counter starts counting down from diðsÞ where s is the current time. As time
increases, the counter value decreases with an equal amount.
� Rule 2: if an active fire delay counter of a timed transition reaches zero, then a token is generated at the outgoing place

and the fire delay counter is deactivated.
� Rule 3: if tokens are present at all incoming places of an immediate transition, then these tokens are consumed and new

tokens are generated at all outgoing places.
� Rule 4: if a token reaches the ending place, then the execution stops. Time freezes and no more rules are executed. The

execution time of a Petri net graph equals the time at which the execution stops minus the initial time.

Applied on our case study, the token starts at the start place at s0. The only applicable rule is rule 1 where the fire delay
counter of the timed transition t2

1 is activated. When the counter reaches zero at time s0 þ d1, a new token is generated
according to rule 2 and arrives at P1. Analogue, the token reaches P2. At P2 rule 3 is executed and new tokens are generated
at both outgoing places of t1

1. The parallel execution is done according to rule 1 followed by rule 2 for each branch in a non-
deterministic order. The parallel execution ends when both tokens are consumed and a new token is generated at the imme-
diate transition t1

2 according to rule 3. When this token arrives at P7, both rule 1 and rule 3 can be executed corresponding to
the upper and lower path respectively. Again, a rule is chosen non-deterministically. If rule 3 fires, a token is generated at the
lower path and sent to the immediate transition. If rule 1 fires, a token is generated at the upper path, going to the timed
transition t2

40 . The next steps are similar to what we explained already. The execution ends after the ‘AND-join’, where rule
4 is applied and the token reaches its ending state. The execution time of the Petri net graph, where tokens are passed from
start to end, corresponds to the simulated response time of the composite service.

To keep track of the cost, availability and reliability during the execution of the Petri net, we add the following rules as an
extension to the existing ones:

� Rule 0: if a token is present at the start place, all associated data values are initialized as follows: C  0;A 1;RL 1.
� Rule 10: if the firing delay diðsÞ of a timed transition t2

i is above a predefined value qi, we consider the timed transition as
unavailable. The data values associated with the token are updated as follows: A 0;C  C;RL 0 and the Petri net exe-
cution is halted. The Petri net execution time for the halted service then equals qi. The response time now equals the time
elapsed between a token present at the starting place and the time at which the execution is halted.
� Rule 20: if an active fire delay counter of a timed transition t2

i reaches zero, then a token is generated at the outgoing place
and the fire delay counter is deactivated. The data values associated with the token are updated as follows:
A 1;C  C þ ciðsÞ;RL RL� rliðsÞ.
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Taking into account these extension rules for the case study, the data values C, A and RL contain the current aggregated
QoS values for the cost, availability and reliability respectively.

5.3. Petri net execution time system

Instead of simulating the above Petri net graph, we derive in this subsection a transformation of a Petri net graph into a
Petri net execution time system (PNET-system). A PNET-system immediately outputs the time at which the execution of the
corresponding Petri net graph stops, given the time at which the execution starts. The extended PNET-system also outputs
the corresponding cost, availability and reliability of the Petri net execution. Because the Petri net is non-deterministic, the
PNET-system is non-deterministic as well. An overview of the building blocks is illustrated in Fig. 6.

Definition 1. We define S�i ;C
�
i ;A

�
i ;RL�i and Sþi ;C

þ
i ;A

þ
i ;RLþi as the values of the simulation time, cost, availability and reliability

right before, respectively right after the execution of the timed transition t2
i . The simulation time s represents the virtual time

during which the Petri net is executed.
The PNET-system is generated as follows out of a Petri net graph for the different QoS attributes (see also Fig. 3 for the

relationship between their constructs):

Response Time:

� Instead of calculating the execution (response) time, we are, until now, calculating the time at which the execution stops.
For that reason we subtract the initial time (sstart) from the time at which the execution stops: RTðsÞ ¼ s� sstart .
� The time at which a token is generated at the outgoing place of a timed transition t2

i equals the time at which a token is
consumed at the incoming place added with the firing delay diðsÞ. A timed transition in a PNG corresponds to an addition
with the delay at that time in a PNET-system. In the extended Petri net execution, any delay above the predefined value qi

is not taken into account because the workflow is then considered unavailable. Delays on an unavailable path are also not
taken into account to calculate the simulated response time. The simulation time after the timed transition t2

i is fired at
time s is thus calculated as Sþi ¼ S�i þminðdiðsÞ; qiÞ � A�i .
� An ‘AND-split’ means all paths are executed simultaneously. The time at which the ‘AND-split’ is fired is copied to all out-

going places. An ‘AND-split’ in a PNG corresponds to a ‘fork’ in a PNET-system. The time at which a token is fired at the
‘AND-join’-transition equals the maximum of the times on which a token is generated at the incoming places. An ‘AND-
join’-transition in a PNG corresponds to a ‘MAX’-building block in a PNET-system.
� An ‘OR-split’ with corresponding ‘OR-join’ means a token is send into one of the connecting paths. This is equivalent to

sending tokens into all connecting paths, but all but one of the former connecting paths are disconnected from the former
‘OR-join’. An ‘OR-split’ in a PNG corresponds to a ‘fork’ in a PNET-system and an ‘OR-join’ in a PNG corresponds to a
‘SWITCH’-building block in a PNET-system.
� A loop in a PNG corresponds to a ‘LOOP’-building block in a PNET-system.

Availability & Reliability:

� The initial availability (reliability) is initialized to 1 (100%).
� An ‘AND-split’ in a PNG corresponds to a ‘fork’ in a PNET-system. An ‘AND-join’-transition in a PNG is where two parallel

paths meet. The resulting availability (reliability) is the product of availability (reliability) of both paths. An ‘AND-join’-
transition in a PNG corresponds to a multiplication-building block in a PNET-system.
� An ‘OR-split’ in a PNG corresponds to a ‘fork’ in a PNET-system and an ‘OR-join’ in a PNG corresponds to a ‘SWITCH’-build-

ing block in a PNET-system.
� The availability (reliability) at which a token is generated at the outgoing place of a timed transition equals the availabil-

ity (reliability) at which a token is consumed at the incoming place multiplied with the availability (reliability) at the sim-
ulated execution time (starting time plus the time induced by the firing delays of the previous timed transition). Current
simulated execution time is thus used as an input to retrieve the availability (reliability) at a specific simulated execution
point.
� A loop in a PNG corresponds to a ‘LOOP’-building block in a PNET-system.

Cost:

� The initial cost is initialized to 0.
� The cost of a parallel execution equals the summation of the costs generated on all paths. To take into account the cost

generated before the parallel execution, one path is connected with the previous execution path by a straight line. All
other paths start counting form zero. An ‘AND-join’-transition in a PNG corresponds to a summation-building block in
a PNET-system. The result is a summation of all prior costs.
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� An ‘OR-split’ in a PNG corresponds to a ‘fork’ in a PNET-system and an ‘OR-join’ in a PNG corresponds to a ‘SWITCH’-build-
ing block in a PNET-system.
� The cost at which a token is generated at the outgoing place of a timed transition equals the cost at which a token is con-

sumed at the incoming place plus the cost at the current simulated execution time. Also here the current simulated exe-
cution time is a necessary input to retrieve the cost. When a service is not available, the execution of the PNG stops and no
further costs are made. In the PNET-system this is achieved by multiplying the cost generated by the timed transition
with the aggregated availability of the system. The resulting cost after the timed transition t2

i that is fired at time s is thus
calculated as Cþi ¼ C�i þ ciðsÞ � Aþi .
� A loop in a PNG corresponds to a ‘LOOP’-building block in a PNET-system.

The extended PNET-system for the e-health workflow is illustrated in Fig. 5. To keep the overview, we did not include all
the building blocks as defined in Fig. 6 but used the modified functions d0iðsÞ ¼minðdiðsÞ; qiÞ � A�i and c0iðsÞ ¼ ciðsÞ � Aþi instead.
Fig. 5. Petri net execution time system for e-health workflow.



Fig. 6. Overview of the PNET-system building blocks. The top row visualizes the building blocks and the bottom row describes the input–output behavior.
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5.4. From non-deterministic to deterministic

To make our approach practically usable, we need to find a way to simulate a non-deterministic system using a determin-
istic algorithm. To allow ex-ante estimation of QoS values, we need to make assumptions on how many times a loop will be
executed and which path will be followed after a conditional execution. This is not always trivial because the number of loop
executions or the value of a condition is often only known at run-time. Possible strategies for resolving the non-deterministic
constraints by making deterministic assumptions are:

� Assume the worst-case scenario. In case of a loop, this means to use the maximum number of times it can be executed in
practice. For a conditional execution, the worst-case path depends on the QoS attribute. The worst response time is on the
path that takes the longest time to execute. This can be modeled by replacing the ‘OR-split’ and ‘OR-join’ by an ‘AND-split’
and ‘AND-join’ (parallel execution with synchronization) in the Petri net graph and replacing the ‘SWITCH’ by a ‘MAX’
building block in the PNET-system. The worst-case cost is on the most expensive path and for availability (reliability),
it is the least available (reliable) path. In practice, one can simulate the QoS values for all paths and take the worst values
for each attribute. For a more general approach to worst case execution analysis, we refer to specialized literature in this
domain [19].
� Use a probabilistic model by assigning probabilities to the number of times a loop is executed or to each path that is

implied by a condition. In practice, this strategy can be realized by doing the simulation for all paths considered and
assign probabilities to the resulting QoS values. An important remark here is that the resulting values cannot simply
be added after multiplication with their corresponding probabilities if one wants to estimate quantile values.

5.5. Example simulated QoS calculation

In this section, we explain more in detail how we generate a composite time series from individual time series of the con-
stituting services using the PNET-system. Suppose we have monitored the response times for several consequent time peri-
ods of the 8 services used in the mammography workflow as shown in Fig. 7. We generate a virtual time series by simulating
the execution of the composite service according to the PNET-system discussed in the previous subsection. The inputs are
fixed time steps in the past. For example, if the workflow would be executed at time 0.8, we can see that the execution
of the first service (post service) takes approximately 1.31 time units. This implies that the second service (radiology service)
Fig. 7. Example simulated RT calculation for the e-health workflow. The response times that are highlighted in green are the response times corresponding
to a composition that would have been executed successfully. The response times that are highlighted in red are the response times corresponding to a
composition that would not have been executed successfully.
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will be executed at time 2.11 (sum of 0.8 and 1.31). The closest monitored result is at t = 2 with a response time of 1.27 units.
The resulting execution time is 3.38 (sum of 2.11 and 1.27). At this point, the two screening services S1 and S2 will be exe-
cuted in parallel with corresponding RTs of 3.22 and 1.78. Because this is a parallel execution where the workflow has to wait
for the slowest service to finish, we will arrive at the next service at time 6,61 (maximum ending time of SS1 and SS2). The
other calculations are similar. For the if condition, we have to make a deterministic assumption concerning the path that will
be chosen. In practice, in most of the cases of a mammography screening the results of SS1 and SS2 will probably match,
meaning that a third opinion is not necessary. This implies that the upper path of the conditional execution in Fig. 5 rarely
will be chosen. Nevertheless, the safest strategy is to calculate the worst case scenario. This means we take into account the
path that generates the maximum response time of all the paths that could be implied by the if condition. Worst case calcu-
lations of the response time of the composite service using input times (sstart) of 0.8 and 4.2 are
Table 6
Monito
service
workflo
and the

Mon

Post

Radi

Scre

Scre

Scre

Repo

Billin

Post

Com
RT0:8 ¼ 0:8þ 1:31þ 1:27þmaxð3:22; 1:78Þ þmaxð5:08; 0Þ þmaxð2:59þ 2:21; 3:05Þ � 0:8 ¼ 15:7
RT4:2 ¼ 4:2þ 0:88þ 2:04þmaxð3:30; 1:62Þ þmaxð3:62; 0Þ þmaxð5700:3þ U; 2:29Þ � 4:2 ¼ U:
Remark that for the second calculation, the report service is unavailable and takes 5700.3 s to recover from failure. For
services further in the execution chain, QoS values cannot be retrieved because no data is available that far in the future.
An unavailable value is marked as ‘Unknown (U)’ and has the following properties: 0� U ¼ 0; 1� U ¼ U; max
ðU; xÞ ¼ U; minðU; xÞ ¼ U; U þ x ¼ U. In our extended calculation below, we tackle this problem by taking into account the
other QoS attributes and their interrelations.

To simulate the composite QoS values for cost, availability and reliability, we need their monitored values for all partic-
ipating services at the times they are actually executed. Table 6 shows some fictive QoS values we use to illustrate our cal-
culations. When a service on the path of execution is not available, the aggregated availability and reliability will become 0
and the costs and response times of the remaining services will not be taken into account due to its multiplication with the
aggregated availability in the PNET-system. Worst case calculation for input times of 0.8 and 4.2 are
RT0:8 ¼ 0:8þminð1:31;2:10Þ � 1þminð1:27;6:14Þ � 1þmaxðminð3:22;6:32Þ � 1; minð1:78;20:15Þ � 1Þ
þmaxðminð5:08;15:95Þ � 1; 0Þ þmaxðminð2:59;49:35Þ � 1þminð2:21;5:18Þ � 1; minð3:05;4:82Þ � 1Þ
� 0:8 ¼ 15:7

A0:8 ¼ 1� 1� 1� 1� 1� 1� 1� 1� 1 ¼ 1

C0:8 ¼ 6:72� 1þ 203:30� 1þ 110:37� 1þ 103:17� 1þ 125:81� 1þ 6:71� 1þ 9:30� 1þ 9:88� 1 ¼ 575:26

RL0:8 ¼ 1� 1� 1� 1� 1� 1� 1� 1� 1 ¼ 1

RT4:2 ¼ 4:2þminð0:88;2:10Þ � 1þminð2:04;6:14Þ � 1þmaxðminð3:30;6:32Þ � 1; minð1:62;20:15Þ � 1Þ
þmaxðminð3:62;15:95Þ � 1; 0Þ þmaxðminð5700:3;49:35Þ � 1þminðU;5:18Þ � 0; minð2:29;4:82Þ � 1Þ
� 4:2 ¼ 63:6
red QoS values and worst case composite QoS calculations for the 8 services used in the mammography workflow. The maximal allowed delay before the
is considered unavailable is denoted as q. The time period at which the service is executed is denoted as t and s represents the simulation time when the
w would be executed. For each services there are two rows: the first row corresponds to the composition that would have been executed successfully
second row corresponds to the composition that would not have been executed successfully.

itored QoS q t RT C A RL

service 2.10 1 1.31 6.72 1 1
4 0.88 5.77 1 1

ology service 6.14 2 1.27 203.30 1 1
5 2.04 235.33 1 1

ening service 1 6.32 3 3.22 110.37 1 1
7 3.30 110.89 1 1

ening service 2 20.15 3 1.78 103.17 1 1
7 1.62 102.62 1 1

ening service 3 15.95 7 5.08 125.81 1 1
10 3.62 113.10 1 1

rt service 49.35 12 2.59 6.71 1 1
14 5700.3 8.57 0 0

g service 4.82 12 3.05 9.30 1 1
14 2.29 5.24 1 0

service 5.15 14 2.21 9.88 1 1
– – – – –

posite QoS s ¼ 0:8 15.67 575.26 1 1
s ¼ 4:2 63.6 572.95 0 0
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A4:2 ¼ 1� 1� 1� 1� 1� 1� 0� 1� 1 ¼ 0
C4:2 ¼ 5:77� 1þ 235:33� 1þ 110:89� 1þ 102:62� 1þ 113:10� 1þ 8:57� 0þ 5:24� 1þ U � 0 ¼ 572:95
RL4:2 ¼ 1� 1� 1� 1� 1� 1� 0� 0� U ¼ 0:
Using this technique to calculate a time series for the composite service, we can apply the same prediction algorithm to
estimate the QoS for elementary and composite services.

5.6. Discussion

Related works on QoS prediction typically make predictions for the individual services [4,5,21] and combine these pre-
dictions using QoS aggregation strategies such as Monte Carlo simulation [21] or probabilistic composition rules [10]. In
our approach, we simulate a complete time series for the composite service, as it was executed several times in the past,
and apply prediction on the resulting composite time series. Existing aggregation techniques have the following disadvan-
tages compared to our simulation approach:

� Quantile values of QoS attributes of the individual service are not sufficient to calculate a realistic global quantile value for
the composite service. One needs to predict the probability density for the QoS attributes of each individual service.
� The quantile values depend not only on the probability density of the QoS values of the individual services but on the

dependencies between these QoS values as well. These mutual dependencies need to be modeled explicitly. Our strategy
implicitly takes them into account as discussed below.
� QoS of individual services are often modeled as distributions that do not preserve information on how the QoS evolves in

time. We believe that these time dependencies are valuable to make accurate estimations of future QoS values by means
of time series prediction.

We elaborate on how mutual and time dependencies are implicitly taken into account by our aggregation approach. The
example in Section 2.4 illustrates that aggregation causes distorted results when mutual dependencies (due to time depen-
dencies) are not taken into account. Our approach, however, gives the correct response times for the composite service (CS)
equivalent to those shown in Table 3. The starting time of the post service (PS) is aggregated by the PNET-system after the
execution of the screening service (SS) to generate the composite time series and thus the weekend will never be counted
twice. In case of mutual dependencies due to resource dependencies we get similar results. The result of our simulation ap-
proach is a time series for the composite QoS. The time information of this series can be exploited, as illustrated in Section 2.3,
to make more accurate predictions for the future composite QoS. How this time series prediction can be done will be
discussed in the next section.

6. QoS prediction

The goal we want to achieve with our estimation algorithm is to predict if the chance that a certain SLO will be violated is
larger than a predefined value. This section is organized as follows. In Section 6.1 we define the problem we try to solve by
discussing two performance indicators we want to minimize out-of-sample. A kernel-based batch learning algorithm de-
signed to minimize the first performance indicator is discussed in Section 6.2. Section 6.3 explains an online algorithm de-
signed to minimize the second performance indicator. Finally Section 6.4 combines both of the previous algorithms such that
a good performance is achieved on both indicators.

6.1. Performance indicators

We want to check whether a service has a chance of at least s to have a response time smaller than the maximal response
time fi;max. This can be achieved by first obtaining the confidence interval ½0; fsðxiÞ� such that the chance the response time
Fig. 8. Pinball loss function used for quantile estimation. On the figure s equals 0:8.
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belongs to this interval equals s. The service is then selected if fsðxiÞ 6 fi;max. The true conditional quantile value is denoted as
lsðxiÞ and satisfies
Pðyi < lsðxiÞÞ 6 s
Pðyi 6 lsðxiÞÞP s: ð3Þ
For simplicity reasons we assume the quantile value is unique (which is not necessary true). The performance indicators ex-
plained in this section try to quantify how good the produced fsðxiÞ performs. The produced quantile value that is expected to
perform the best, should be the true quantile value.

6.1.1. Performance indicator I
To be able compare different quantile estimators we have to quantify how good the estimated quantile value approxi-

mates the true quantile value. For a location estimator the mean value minimizes the square error and the median value
minimizes the absolute value of the error. Similarly it can be shown the quantile value minimizes the following pinball loss
function [14] (Fig. 8):
lsðyi � fsðxiÞÞ ¼
sðyi � fsðxiÞÞ; yi � fsðxiÞP 0
ðs� 1Þðyi � fsðxiÞÞ; yi � fsðxiÞ < 0:

�
ð4Þ
This loss is however not unique in the sense that there exists other loss-functions that have an optimum in the quantile value
as well, such as
ls;log ¼ lsðlogðyiÞ � logðfsðxiÞÞÞ: ð5Þ
It is moreover possible that one estimator performs better according to one of these loss functions (e.g. ls) and another esti-
mator performs better according to another one (e.g. ls;log). That is why, in this section, we further specify the problem of esti-
mating the quantile value to a problem of minimizing a well chosen cost. Two types of error can occur in our applications:

� Type I error: a (composite) service is rejected to execute a customer’s request in which the actual response time is smaller
than the maximal response time (yi < fi;max).
� Type II error: a (composite) service is accepted to execute a customer’s request in which the actual response time is larger

than the maximal response time (yi > fi;max).

For the first performance indicator we assign costs to both errors: the cost of a type I error equals 1� s and the cost of a
type II error equals s. In Theorem 1 and Corollary 1 we will show that the expected cost can be minimized if one knows the
true conditional quantile value.

Theorem 1. If the cost of a type I error equals 1� s and the cost of a type II error equals s, then the expected conditional cost for
accepting is lower than the expected conditional cost for rejecting if and only if fi;max > lsðxiÞ.
Proof 1. The expected conditional cost for accepting a service equals
Eðcostjaccept; xiÞ ¼ Pðyi > fi;maxjxiÞs; ð6Þ
where Pðyi > fi;maxjxiÞ equals the probability that yi > fi;max, and the expected conditional cost for rejecting a service equals
Eðcostjreject; xiÞ ¼ Pðyi < fi;maxjxiÞð1� sÞ: ð7Þ
Accepting is better than rejecting if and only if
Eðcostjaccept; xiÞ � Eðcostjreject;xiÞ < 0() Pðyi > fi;maxjxiÞs� Pðyi < fi;maxjxiÞð1� sÞ < 0
() Pðyi > fi;maxjxiÞ < 1� s
() fi;max > lsðxiÞ: � ð8Þ
Corollary 1. If fsðxiÞ equals the true conditional quantile value lsðxiÞ and a service is accepted if and only if fsðxiÞ < fi;max, then the
expected conditional cost is minimized for all possible values of fi;max.

A type I error occurs when yi < fi;max < fsðxiÞ and a type II error occurs when fsðxiÞ < fi;max < yi. Given a test set only con-
taining the true response times yt , we cannot calculate the cost because we have no values for fi;max. We need extra assump-
tions to handle the uncertainty over fi;max. The first performance indicator (PI1) will be defined as the cumulative expected
cost, given these assumptions.

Theorem 2. If we receive one service request per time step, if the probability on a certain fmax is time independent and uniformly
distributed in an interval ½f�; fþ� with f�; fþ finite and if all yt ; fsðxtÞ belong to this interval, then the expected cost, given yt and
fsðxtÞ, becomes proportional to the pinball loss (ls)
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Eðcostjyt ; fsðxtÞÞ � lsðyt � fsðxtÞÞ: ð9Þ
Proof 2. When fsðxtÞ > yt a type I error (with cost 1� s) can occur and when yt < fsðxtÞ a type II error (with cost s) can occur.
Because fmax is uniformly distributed, the probability on these errors becomes proportional to the distance between fsðxtÞ and
yt and the expected cost becomes proportional to the pinball loss. h
Corollary 2. Given the same assumptions as in Theorem 2, the first performance indicator becomes
PI1ðT ; fsÞ ¼
Xntest

t¼1

lsðyt;test � fsðxt;testÞÞ: ð10Þ
A disadvantage of using the pinball loss as performance measure is that the loss of one datapoint is not bounded (it can
become infinite), despite the fact that a datapoint can only cause one error of type I or II. This is caused by the assumption
that all yt and fsðxtÞ belong to the interval ½f�; fþ� and the interval ½f�; fþ� is thus not a priori determined and can become
arbitrary large.
Theorem 3. If we receive one service request per time step and if the probability on a certain fmax, denoted as P, is time
independent and a priori determined, then the first performance indicator (PI1) equals the following cumulative expected cost
PI1ðT ; fs; FÞ ¼
Xntest

t¼1

ls Fðyt;testÞ � Fðfsðxt;testÞÞ
� �

ð11Þ
where F is the cumulative distribution function of P
FðyÞ ¼
Z y

0
Pðft;maxÞdft;max: ð12Þ
Proof 3. If yt;test P fsðxt;testÞ, then an error of type II can occur with probability Fðyt;testÞ � Fðfsðxt;testÞÞ. The expected cost
becomes sðFðyt;testÞ � Fðfsðxt;testÞÞÞ. If yt;test < fsðxt;testÞ, then an error of type I can occur with probability Fðfsðxt;testÞÞ� Fðyt;testÞ.
The expected cost becomes ð1� sÞðFðfsðxt;testÞÞ � Fðyt;testÞÞ. h

The influence of one data point on PI1 is bounded because
ls Fðyt;testÞ � Fðfsðxt;testÞÞ
� �

6 maxðs;1� sÞ: ð13Þ
Different probability distributions for fmax cause different costs and in practice the performance indicator should equal the
cumulative expected cost in which the chosen probability distribution of fmax matches the true probability distribution as
good as possible. In our experiments we will use the performance indicator as defined in Corollary 2 in which the influence
of one datapoint is unbounded because we have no data that allows us to make a reasonable estimate of PðfmaxÞ.

6.1.2. Performance indicator II
In practice costs are not always linear in the number of errors. It is possible that causing more violations than agreed in-

vokes huge fines while causing fewer violations than agreed does not cause equally large profits. For that reason it is impor-
tant that the number of violations does not exceed the agreed number of violations too much. Constraining the frequency of
violations not to exceed 1� s is in our opinion too severe because the test set contains only a sample of the total population
and it is possible the frequency of violations of this sample exceeds 1� s despite the frequency of violations of the entire
population to be smaller or equal to 1� s. That is why we choose performance indicator II to express the probability that
the frequency of violations of the test set is larger than or equal to the actual number of violations in the test set, given
the frequency of violations of the entire population equals 1� s.

Theorem 4. Assuming the expected number of violations equals 1� s and assuming the data is independent and identically
distributed (i.i.d.), the probability of observing at least nv ;test violations on a test set where nreq;test service requests are accepted
becomes
Pðnv P nv;testjs;nreq;testÞ ¼
Xnreq;test

i¼nv ;test

ð1� sÞis nreq;test�ið Þ nreq;test

i

� �
ð14Þ

� �

where n

i
is a binomial coefficient and where the number of violations are counted as follows(
nv ;test ¼
Xnreq;test

i¼1

violðyi;test; fi;maxÞ where violðyi;test; fi;maxÞ ¼
0; yt;test 6 fi;max

1; yt;test > fi;max:
ð15Þ
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Proof 4. The discrete probability distribution of the number of violations nv in a sequence of nreq;test independent experi-
ments, each of which yields a violation with probability 1� s, equals a binomial distribution. The probability on nv ;test or
more violations given a binomial distribution is expressed in Eq. (14). h

To be able to measure the number of violations, we need test data containing times on which service requests are send
together with the corresponding maximal response times. In case no such data is available, we have to make extra
assumptions.

Corollary 3. Under the extra assumptions of one service request per time step and 100% acceptance with fi;max equal to fsðxiÞ (the
latter assumption implies the worst case value of fi;max such that the service is accepted), the probability of observing at least nv ;test

violations is denoted as PI2 and equals
PI2ðT ; fsÞ ¼
Xntest

i¼nv ;test

ð1� sÞisðntest�iÞ ntest

i

� �
ð16Þ

� �

where

n
i is a binomial coefficient and where the number of violations are counted as follows(
nv;test ¼
Xntest

t¼1

violðyt;test; fsðxt;testÞÞ where violðyt;test; fsðxt;testÞÞ ¼
0; yt;test 6 fsðxt;testÞ
1; yt;test > fsðxt;testÞ:

ð17Þ
The true quantile value of an estimator is defined as
sf ðfsÞ ¼ Pðyt;test < fsðxt;testÞÞ: ð18Þ
Given the violations are counted as in Eq. (17), 1� sf ðfsÞ is equal to the expected number of observed violations. The smaller
PI2, the more unlikely the observed number of violations are caused by an estimator with true quantile value larger than or
equal to s. A high PI2, however, does not imply having a conditional quantile estimator. An unconditional, constant function
can perform very well on this performance indicator, but will, luckily, perform poorly on PI1.

6.2. Kernel-based quantile estimation

In this Section we will explain why the kernel-based quantile estimator discussed in [25] suits our problem. The first algo-
rithm we propose is designed to minimize PI1 and thus the following expected risk
R½fs� ¼
Z

ls y� fsðxÞð ÞdPðx; yÞ: ð19Þ
The probability density function Pðx; yÞ is unknown. We have only access to training data. A naive way of minimizing the
expected risk is minimizing the empirical risk
Remp½fs; S� ¼
1
n

Xntr

t¼1

lsðyt;tr � fsðxt;trÞÞ: ð20Þ
When the hypothesis space H to which fs belongs is very rich, this can lead to overfitting. For that reason we will minimize
the regularized risk
Rreg ½fs; S� ¼ Remp½fs; S� þ
k
2
kwk2

2 ¼
1
n

Xntr

t¼1

lsðyt;tr � fsðxt;trÞÞ þ
k
2
kwk2

2 ð21Þ
where k is a regularization parameter that must be positive. We assume fs can be written as
fsðxÞ ¼ wTuðxÞ þ b ð22Þ
where w is the weight vector, u maps the input space into a feature space (which can be infinite dimensional) and b is the
constant offset. Minimizing the regularized risk can be written as the following optimization problem
min
w;b;n;n�

Xntr

t¼1

snt þ ð1� sÞn�t þ
1
2

kkwk2
2 subject to

yt;tr �wTuðxt;trÞ � b 6 nt; t ¼ 1; . . . ;ntr

wTuðxt;trÞ þ b� yt;tr 6 n�t ; t ¼ 1; . . . ;ntr

nt ; n
�
t P 0; t ¼ 1; . . . ;ntr:

8><
>: ð23Þ
Because uðxÞ can be huge or even infinite dimensional, directly solving this optimization problem can become very expen-
sive. The dual problem, after applying the kernel trick, becomes
min
a

1
2

kaTXa� aT y subject to

s
k P at P s�1

k ; t ¼ 1; . . . ;ntrXn

t¼1

at ¼ 0

8><
>: ð24Þ
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where kðxi; xjÞ ¼ uðxiÞTuðxjÞ;X 2 Rntr�ntr is the kernel matrix defined as Xi;j ¼ kðxi;tr ; xj;trÞ;a ¼ ½a1;tr ; . . . ;antr ;tr �
T and

y ¼ ½y1;tr ; . . . ; yntr ;tr �
T . This optimization problem is a quadratic programming (QP) problem. The kernel trick

(kðxi; xjÞ ¼ uðxiÞTuðxjÞ) makes explicit calculation of the mapping uðxÞ into a possible infinite dimensional feature space
no longer necessary. The function fs can now be expressed as
fsðxÞ ¼
Xntr

t¼1

atkðxt;tr; xÞ þ b: ð25Þ
The constant offset b can be found using the fact the following holds fsðxt;trÞ ¼ yt;tr for at belonging to the open interval
� s�1

k ; sk ½. The pseudo-code for the algorithm explained in this section is shown in Algorithm 1.

Algorithm 1. Given the training set S, the targeted quantile value s, a kernel k and the regularization parameter k, find a and
b which are parameters of the predicting function fs.

for t1 ¼ 1! ntr do
for t2 ¼ 1! ntr do

Xt1;t2  kðxt1 ;tr ; xt2 ;trÞ
end for

end for
â arg mina

1
2 kaTXa� aT ytr
subject to

s
k P at P s�1

k ; t ¼ 1; . . . ;ntrXn

t¼1

at ¼ 0

8><
>:
for t ¼ 1! ntr do
if ât 2 � s�1

k ; sk ½ then
b yt;tr �

Pntr
t1¼1ât1 kðxt1;tr; xt;testÞ

end if
end for
6.3. Online adaptation of an unconditional quantile estimator

The second algorithm we propose is designed to minimize PI2. It is a simple online algorithm that is updated as follows
fs;t ¼

fs;start; t ¼ 1
fs;t�1 þ gs; t > 1; yt�1 > fs;t�1

fs;t�1 þ g s� 1ð Þ; t > 1; yt�1 < fs;t�1

fs;t�1; t > 1; yt�1 ¼ fs;t�1:

8>>><
>>>:

ð26Þ
where g is the learning rate which must be strictly positive. The start value fs;start can be set equal to 0, equal to the first data
point, or equal to the quantile value of a number of datapoints. Datapoints used to determine fs;start should not be used for the
online updating. The number of times yt1

exceeds fs;t1 for t1 going from 1 to t is denoted as v t . We can now express fs;tþ1 as
fs;tþ1 ¼ fs;1 þ g sv t þ ðs� 1Þðt � v tÞð Þ ¼ fs;1 þ gt
v t

t
� ð1� sÞ

� �
: ð27Þ
Conversely, v t can be expressed in function of fs;tþ1 as follows
v t ¼
fs;tþ1 � fs;1

g
þ ð1� sÞt: ð28Þ
Theorem 5. Assuming there exists an interval ½ymin; ymax� with ymin; ymax finite such that fs;start and all yt belong to this interval, the
frequency of violations converges to 1� s for t going to 1
lim
t!1

v t

t
¼ 1� s: ð29Þ
Proof 5. Because all yt belong to the interval ½ymin; ymax�, all fs;t belong to the interval ½ymin þ g s� 1ð Þ; ymax þ gs� and
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jfs;tþ1 � fs;1j 6 C ) gt
v t

t
� ð1� sÞ

			 			 6 C ) v t

t
� ð1� sÞ

			 			 6 C
gt

ð30Þ
where C ¼ ymax � ymin þ gmaxðs;1� sÞ. Expression (30) shows the distance between v t
t and ð1� sÞ converges to zero for t

going to 1. h
Theorem 6. Assuming all yt belong to the interval ½ymin; ymax� with ymin; ymax finite, the performance indicator PI2 of the test set
converges to 0:5 for t !1.
Proof 6. Suppose the random variable Xt follows a binomial distribution which yields a violation with probability 1� s in a
sequence containing t datapoints, then PI2 expresses the probability the number of violations and thus Xt is at least v t . The
mean and the standard deviation of Xt equal
lX;t ¼ tð1� sÞ ð31Þ
rX;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsð1� sÞ

p
: ð32Þ
From Eq. (30) we can now conclude
jv t � lX;t j
rX;t

6
C

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsð1� sÞ

p ; ð33Þ
which implies
lim
t!1

v t � lX;t

rX;t
¼ 0: ð34Þ
According to the central limit theorem, the cumulative distribution function (CDF) of Xt converges pointwise to the CDF of a
normal distribution with mean lX;t and standard deviation rX;t for n going to1. Because, as n approaches1;v t is distanced 0
standard deviations from lX;t , the CDF of Xt in v t equals 0:5 and PI2 becomes 0:5. h

The pseudo-code for the algorithm explained in this section is shown in Algorithm 2.

Algorithm 2. Given xtest ; ytest;g and fs;start , calculate fs;tðxt;testÞ and update fs;t for t ¼ 1; . . . ;ntest .
fs;1  fs;start

for t ¼ 1! ntest do
if yt;test > fs;t then

fs;tþ1  fs;t þ sg
else if yt;test < fs;t then

fs;tþ1  fs;t þ ðs� 1Þg
else

fs;tþ1  fs;t
end if

end for
6.4. Kernel-based quantile estimation with online adaptation of the constant offset

In this section we will present the final algorithm that combines the algorithms explained in the previous two sections. Addi-
tionally we define the input vectors and explain how the data is preprocessed. The final algorithm consists of three stages.

� Preprocessing phase: in this phase the inputs and corresponding outputs are generated from the response times RTt . We
will predict the logarithm of response times instead of the response times themselves because this avoids our algorithm
to make predictions below zero. The input vectors can be past response times (autoregressive), the quantile values of sets
of past response times or the time at which the service starts. The best choice for the input vectors depends on the specific
dataset one wants to make predictions on.
� Training phase: secondly we optimize a and b on the training set using Algorithm 1 to predict the logarithm of the

response time.
� Online updating phase: finally we try to predict logðytÞ � fsðxtÞwith a function denoted as ds;t using Algorithm 2. The opti-

mal ds;start can be determined using a validation set or can be set to 0. We add dt to fsðxtÞ to make the final prediction. The
latter is equivalent to updating the constant offset bt such that bt equals bþ dt .



Table 7
Toy dataset used to illustrate the kernel-based quantile estimator with online adaptation of the constant offset. The time, input vector and output vector are
denoted respectively as t; xt and yt . The kernel-based quantile estimator without and with online adaptation are denoted respectively as f and gt . The function gt

equals f plus the online adaptation function dt . The quantile parameter s equals 0:75. For simplicity we use fixed hyperparameters: the regularization
parameter k equals 0, the kernel is linear and the learning rate g equals 0:1. The first four datapoints are training data and the last four data points are test data.
The initial value of the online adaptation parameter (d5) is set to 0.

t Training data Test data

1 2 3 4 5 6 7 8

xtð¼ tÞ 1 2 3 4 5 6 7 8
yt 0.9 2.3 2.9 4.1 5.1 6.2 6.9 7.8

f ðxtÞ 1.4 2.3 3.2 4.1 5.0 5.9 6.8 7.7
dt n n n n 0 0.075 0.15 0.125
gtðxtÞ n n n n 5.0 5.975 6.95 7.825
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This final algorithm performs well on both PI1 and PI2. To further clarify how this algorithm works, we will illustrate it
using the toy example shown in Table 7. First the estimator f is learned using the training data and d5 is set to zero. At time
5 the predicted value g5ð5Þ ¼ 5:0 is smaller than the true value yt ¼ 5:1 and therefore the online adaptation parameter is
increased as follows d6 ¼ d5 þ s � g ¼ 0þ 0:75 � 0:1. At time 6 the predicted value equal to 5:975 is still smaller than the true
value equal to 6:2 and thus d7 ¼ d6 þ s � g. At time 7 the predicted value is larger than the true value and d8 ¼ d7 þ ðs� 1Þ � g.

7. Experimental evaluation

We limit the experimental evaluation to predicting the response time. In a first scenario we predict the response time of
an individual service, in a second scenario we predict the response time of an entire workflow.

7.1. Prediction for individual services

Algorithm 3. Given the true response times RTt for t ¼ 1; . . . ;nþ L generate the input vectors xt and the output values yt for
t ¼ 1; . . . ;n. RTt is the true response time at time t; xt is the input vector at time t þ L and yt is the output vector at time t þ L.
The function quantile s;Xð Þ expresses the s-quantile value of the set X .
for t ¼ 1! n do

q1;t  quantile s; fRTig
tþL

4�1
i¼t

� �
q2;t  quantile s; fRTig

tþL
2�1

i¼tþL
4

� �
q3;t  quantile s; fRTig

tþ3L
4�1

i¼tþL
2

� �
q4;t  quantile s; fRTigtþL�1

i¼tþ3L
4

� �
xt  ½logðq1;tÞ; logðq2;tÞ; logðq3;tÞ; logðq4;tÞ�

T

yt  logðRTtþLÞ
end for

The kernel-based quantile estimator (KQ) explained in Section 6.2 and the kernel-based quantile estimator with online
adaptation of the constant offset (KQOA) explained in Section 6.4 will be evaluated using a real-life data set discussed in
Appendix B: the Movie Dataset. We also compare the performance of our algorithms to a sliding window approach, which
is used in related work [21].

The kernel we use is a RBF-kernel. The input vectors are quantile values of sets of past response time as shown in Algo-
rithm 3. KQ has three hyperparameters: the regularization parameter k, the kernel parameter r and the lag L. KQOA has an
extra parameter: the online learning rate g. The training set consists of the first 700 datapoints and will be used to find the
optimal a and b, given the hyperparameters. The validation set consists of the next 300 datapoints and will be used to opti-
mize the hyperparameters k;r and L. The learning rate g of the second algorithm allows adaptation to unexpected events
and should not be chosen too small. Unexpected behavior that might happen in the test set might not happen in the
validation set. We have chosen g as big as possible such that the performance according to performance indicator I on
the validation set does not increase with more than 2%.

When the optimal hyperparameters are found, the algorithm is retrained on both the training and the validation set.
The performance will then be evaluated using the test set which contains the remaining 4000 datapoints. We compare



Fig. 9. Quantile estimation for the Movie Dataset using the kernel-based quantile estimator with online adaptation of the constant offset (KQOA) and the
sliding window estimator (SW). The upper figure shows the results for data point 0–5000. The lower figure zooms in on data point 4000–4500.

Table 8
Comparison of the performance of the Kernel-based Quantile Estimator with Online Adaptation of
Constant Offset (KQOA) and the Sliding Window Quantile Estimator (SWQ) on the Movie Dataset (a)
and the Movie Dataset with an increase of 15s in response time of 50 randomly selected test set
datapoints (b). PI1 equals the cumulative pinball loss, PI2(%) is the probability an estimator with true
quantile value 99% causes equal or more violations and fv;test is the number of violations in the test
set per 100 datapoints.

PI1 PI2(%) fv;test

(a) Movie dataset
KQOA 0.0635 58.5 0.98
KQ 0.0637 99.6 0.63
SWQ 0.0974 0.0 1.85

PI2(%) fv;test

(b) Adjusted movie dataset
KQOA 6.9 1.25
KQ 0.0 1.75
SWQ 0.0 2.95
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our algorithms to a sliding window quantile estimator with windowsize w. The latter estimator uses the s-quantile value of
the lasts w datapoints as s-quantile estimation for the next datapoint. The parameter w is optimized using the first 1000
datapoints as training set and evaluated using the next 4000 datapoints as test set. The KQOA and SW quantile estimations
for the Movie Dataset are shown in Fig. 9. The lower figure zooms in on the area between data point 4000 and 4500. The
performances of the estimators for a quantile value of 99% are summarized in Table 8(a). According to PI1 the expected cost
using the kernel-based algorithms is approximately 30% lower compared to the sliding window algorithm. According to PI2

the probability an estimator with true quantile value 99% causes equal or more violations than the estimator is quite big for
the kernel-based algorithms and almost non-existing for the sliding window estimator.
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We can conclude our algorithms performs significantly better than the sliding window estimator on both PI1 and PI2.
Without online adaptation, however, we cannot guarantee that PI2 will not converge to zero. With online adaptation, given
certain assumptions, we can. To show the effect of the online adaptation, we increased the response time of 50 randomly
selected datapoints of the test set by 15 s. This causes the KQ algorithm to perform bad because these spikes only appear
in the test set and are thereby not learned during the training period. In Table 8(b), we can see that for this experiment only
KQOA has a value for PI2 that differs significantly from zero. The optimal hyperparameters for our algorithms are:
L ¼ 24;r ¼ 500; k ¼ 0:005 and g ¼ 0:1. The optimal window size for the sliding window quantile estimator equals 92.

7.2. Prediction for composite services

For predicting the response time of composite services, we need to calculate the simulated response times according to
the technique explained in Section 5. We use the e-health case study described in Section 2.1, where each elementary service
has a response time according to simulated data for a long-running process. Rosario et al. [21] validated the use of certain
families of distributions and performed their best fit on measured data real-life web services. They observed that the Gamma
and the log–logistic distributions were a reasonably good fit for the response times.

To simulate data for the elementary services, we will assume the number of working hours needed to complete a task is
modeled as log–logistic distributed random variables. The log–logistic distribution is similar in shape to the log–normal
distribution but has heavier tails. The probability density function depends on a and b:
Table 9
Parame

Serv

Post
Radi
Scree
Scree
Scree
Repo
Billin
Post
f ðx;a;bÞ ¼
b
a

� �
x
a

� �b�1

1þ x
a

� �bh i2 : ð35Þ
Some of the services in our case study require human interaction and thus we assume the completion time of a task is sub-
ject to working hours of the service. Depending on the service, a working day starts and ends at a specific hour and are open
or closed on Saturdays and Sundays. An overview of our assumptions is shown in Table 9. Outside the range of working hours
the progress of the task is freezed. For example, if a working day starts at 8 h and ends at 16 h, then a task taking 9 working
hours to complete that starts at 10 h on Monday will end at 11 h on Tuesday. The response time of 25 h consist of 6 working
hours within the same day, 16 non-working hours and 3 working hours the next day. We assume monitoring is done every
hour. The generated response times for all elementary services of the e-health workflow are shown in Fig. 10. The graph at
the bottom represents the resulting composite response time, calculated using the PNET-system described in Section 5.

We will compare the Kernel-Based Quantile estimator (KQ) explained in Section 6.2 and the Kernel-Based Quantile esti-
mator with Online Adaptation of the constant offset (KQOA) explained in Section 6.4 to the probabilistic approach using Boo-
strap-Based Simulations explained in the paper of Rosario [21]. In this work, they use bootstrap based Monte Carlo (BBMC)
simulations to estimate a composite QoS value by repeatedly drawing QoS values from the probability distributions of the
constituting elementary services and composing them using soft contract rules. The training set consists of the first 4 weeks,
the validation set (used to optimize hyperparameters) of the next 4 weeks and the test set consists of the last 8 weeks. After
optimizing the hyperparameters the algorithm is retrained on both the validation and training set. BBMC uses past response
time as input which has the problem that recent executions of individual services may not have ended yet. Their response
time is thus unknown. We solve this by sliding the window backwards in time until all response times within and before the
window are known. As shown in Algorithm 4, we take the time (in h) within a week as input vector for KQ and KQOA, be-
cause we a priori know there is weekly seasonality. The KQOA and BBMC quantile estimations for the e-health application
are shown in Fig. 11. Table 10 shows KQ and KQOA perform better than BBMC and shows the number of violations for BBMC
is very low.

The estimated quantile value of BBMC overestimates the true quantile value which can be explained as follows: the BBMC
does not take into account the mutual dependencies due to time dependencies as we illustrated in Section 2.4. For some ser-
vices the progress freezes during the weekends. The response time of these services on Friday evening will be very high. The
Monte Carlo simulation combines random samples of the services response times, without considering if this combination
ter assumptions for elementary services of e-health case study.

ices Parameters

Start (h) End (h) Weekend a b

1 8 15 Closed logð10Þ 1=8
ology 9 18 Closed logð14Þ 1=10
ning 1 8 20 Saturday logð12Þ 1=9
ning 2 8 22 Closed logð12Þ 1=7
ning 3 8 20 Saturday logð15Þ 1=7
rt 0 24 Open logð2Þ 1=10
g 0 24 Open logð5Þ 1=4
2 8 15 Closed logð10Þ 1=8



Fig. 10. Overview of response times of elementary service (a–h) and resulting simulated response time of composite service (i) for e-health case-study
(horizontal axis: time (in h) – vertical axis: response time (in h)).
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can occur in practice. The worst case scenario using Monte Carlo thus becomes worse than the ‘actual’ worst case scenario
which causes the estimated 99%-quantile value to be too high. The approach used in KQ and KQOA of first composing the
response times as explained in Section 5 and then estimating the quantile values avoids this problem. Another reason for the
poor performance of BBMC is that it cannot learn the seasonality patterns.



Fig. 11. Quantile estimation for the e-health application using the kernel-based quantile estimator with online adaptation of the constant offset (KQOA) and
the bootstrap based Monte Carlo estimator (BBMC).

Table 10
Comparison of the performance of the Kernel-based Quantile Estimator (KQ), Kernel-based Quantile estimator with Online
Adaptation of Constant Offset (KQOA) and the probabilistic approach using Boostrap-Based Simulations (BBMC) on the E-Health
Dataset. PI1 equals the cumulative pinball loss, PI2(%) is the probability an estimator with true quantile value 99% causes equal or
more violations and fv ;test is the number of violations in the test set per 100 datapoints. The chosen hyperparameters for KQOA and/
or KQ are: r ¼ 50; k ¼ 0:01 and g ¼ 0:02. The chosen window-size for BBMC equals 300.

PI1 PI2(%) fv;test

KQOA 0.795 69.1 0.89
KQ 0.857 3.3 1.56
BBMC 1.212 100.0 0.0

Fig. 12. Time-varying RTs of online web service.

Table 11
Confusion matrix.
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Algorithm 4. Given the true response times RTt for t ¼ 1; . . . ;n generate the input vectors xt and the output values yt for
t ¼ 1; . . . ;n.
for t ¼ 1! n do
xt  t mod 24 � 7
yt  RTt

end for
8. Conclusion

In this paper we developed a two-step approach to accurately predict QoS quantiles for composite services. The first step,
which is based on Petri nets, derives simulated QoS-values of a workflow composition from those of its constituent elemen-
tary services. In a second step we focus on the response time and try to predict future response times of composite services
based on the simulated response times using a kernel-based quantile estimator with online adaptation of the constant offset.
The latter algorithm has a batch and an online learning phase. During the batch learning phase it tries to minimize, in a reg-
ularized manner and given certain assumptions, the occurrence of two types of errors: a type I error occurs when a service is
rejected in which the real response time is smaller than the agreed response time and a type II error occurs when a service is
accepted in which the real response time exceeds the agreed response time. The online learning phase is necessary to assure
that the probability an estimator with true quantile value equal to the agreed quantile value causes equal or more violations,
converges to 50% for the number of test datapoints going to infinity. The latter implies the number of times the true response
time exceeds the estimated response time converges to the agreed quantile value.

We evaluated our prediction algorithm on one elementary service, an automated service using real-life web service data,
and on one composite service, a service with human interaction using simulated data. On the first dataset our algorithm
caused a loss 30% lower than a sliding window estimator and on the second dataset our algorithm significantly outper-
formed the probabilistic approach using Boostrap-Based Simulations (BBMC) explained in the paper of Rosario et al. [21].

Despite the promising results our approach has some limitations:

� When making small changes to the composition, the kernel-based quantile estimator needs to be retrained completely.
This makes it expensive to use this algorithm as a part of a composition selection procedure. It can however still be used
to verify whether a chosen composition satisfies the SLO. Once the algorithm is trained, however, doing prediction on the
chosen composition for future time steps is relatively cheap because the training does not need to be redone.
� The prediction algorithms are most effective for processes with variable QoS that changes according to recognizable pat-

terns. Typically this is the case for long-running processes that require human interaction. When the QoS attributes of
candidate services are close to random, the use of prediction algorithms is not effective and will only slow down the com-
position process. The first step, where composite QoS-values of a workflow composition are derived from those of its ele-
mentary services, however, is suitable for all types of processes, and can easily be combined with other estimation
techniques.

9. Future work

Our future work includes a practical implementation of QoS-aware service composition using the algorithms presented in
this paper. Currently we are evaluating our approach in the context of Cloud Computing. Software as a service (SaaS), some-
times referred to as ‘‘Software on Demand’’, is an emerging mechanism of releasing software applications to customers. From
a technical perspective, an import issue in ‘‘software on demand’’ is the customization for the SaaS application to serve mul-
tiple tenants, each having their own service level requirements. Our goal is to have a practically efficient solution to address
customization of business processes with a focus on run-time assurance of service quality and service level agreements. For
the implementation we use the framework discussed in [8]. The framework extends the WS-BPEL language with policy-
based reconfiguration capabilities. The framework is based on the Model-View-Controller (MVC) pattern and is implemented
in Ruby On Rails (RoR). To achieve accurate estimates of the response times of the individual services and extend them to an
estimate for the composite service, we will use the techniques described in this work. The logic to efficiently select appro-
priate services among available services will be implemented using the reconfiguration support of the framework. A chal-
lenge here is to implement an efficient selection algorithm that takes into account the stochastic behavior of the QoS
estimates of candidate services by integrating the QoS estimation techniques presented in this work.
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Appendix A

Theorem 7. Optimization problem
4 http
5 http
6 http
min
fs2H

PðType I errorjfsÞð1� sÞ þ PðType II errorjfsÞs ðA:1Þ

such that PðType II errorjaccepted; f sÞ 6 1� s ðA:2Þ
has the same solutions as optimization problem
min
fs2H

PðType II errorjaccepted; f sÞ þ PðrejectedjfsÞ ð1� sÞ � PðType II errorjaccepted; f sÞð Þ ðA:3Þ

such that ð1� sÞ � PðType II errorjaccepted;fsÞP 0: ðA:4Þ
Proof 7. For simplicity we do the proof for the optimization problem without constraint (A.2), nevertheless it still holds with
the constraint. First we rewrite Eq. (A.1) as
min
fs2H

PðType I errorjfsÞ � PðType II errorjfsÞð Þð1� sÞ þ PðType II errorjfsÞ:
As can be derived from the confusion matrix in Table 11, the following equation hold
PðType I errorjfsÞ þ PðViolationjfsÞ ¼ PðRejectedjfsÞ þ PðType II errorjfsÞ: ðA:5Þ
The number of violations is a constant in the sense that it does not depend on whether we accept the request or not,
therefore
PðViolationjfsÞ ¼ PðViolationÞ: ðA:6Þ
After applying Eqs. (A.5) and (A.6), the optimization problem becomes
min
fs2H

PðRejectedjfsÞ � PðViolationÞð Þð1� sÞ þ PðType II errorjfsÞ:
The term PðViolationÞð1� sÞ is a constant for a given data set and can therefore be omitted from the optimization problem
without affecting the optimum
min
fs2H

PðRejectedjfsÞð1� sÞ þ PðType II errorjfsÞ:
If we replace
PðType II errorjfsÞ ¼ PðType II errorjAccepted; fsÞð1� PðRejectedjfsÞÞ
in the optimization problem, we get the statement we had to proof: optimization problem (A.3). h
Appendix B

A current problem for experiments regarding QoS of real web services is the lack of available datasets. For our analyses,
we found no usable time series on Quality of Web Service attributes. Service providers usually only publish average values
for their services. The QWS dataset4 of Al-Masri and Mahmoud. [2] includes measurements of 9 QoS attributes for 2500 real
web services. Each service was tested over a 10-min period for three consecutive days. However, only the average QoS values
are publicly available. Another public dataset is WS-DREAM5 which offers real invocation info on 100 web services by using 150
distributed computer nodes located all over the world. The dataset contains data on consecutive invocations of the services but
is limited to 100 time series datapoints per service, which is not sufficient for our experiments. There is also no labeling on the
time span of the different invocations of a service. Both datasets are restricted to short-running automated web services.

To cope with the data problem, we have collected real time series data for short-running online services ourselves. We
used Web Inject,6 a free client-side monitoring tool for automated testing of web applications and web services. The tool allows
://www.uoguelph.ca/�qmahmoud/qws/index.html.
://www.wsdream.net/wsdream/.
://www.webinject.org/.

http://www.uoguelph.ca/~qmahmoud/qws/index.html
http://www.uoguelph.ca/~qmahmoud/qws/index.html
http://www.wsdream.net/wsdream/
http://www.webinject.org/
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to send soap requests to web services to analyse their response time and fault counts. We monitored a set of 8 popular online
web services over a 2-min period for 7 consecutive days. Fig. 12 illustrates the response time of a web service that allows a
client to retrieve information on movies and theaters in the US. We can observe that a QoS attribute like response time can
be very dynamic in time.
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