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Stability of Coupled Local Minimizers Within the
Lagrange Programming Network Framework

Xuyang Lou and Johan A. K. Suykens, Senior Member, IEEE

Abstract—Coupled local minimizers (CLMs) turn out to be
a potential global optimization strategy to explore a search
space, avoid overfitting and produce good generalization. In this
paper, convergence properties of CLMs based on an augmented
Lagrangian function in the context of equality constrained mini-
mization, are studied.We first consider the augmented Lagrangian
by taking the objective of minimizing the average cost of an en-
semble of local minimizers subject to pairwise synchronization
constraints. Then we study an array of CLMs within the Lagrange
programming network framework and analyze the local stability
of CLMs using a linearization strategy. We further show that,
under some mild conditions, global asymptotical stability of the
unique equilibrium point of the network can be guaranteed.
Afterwards, some sufficient conditions are presented to ensure
the stability of synchronization between any two minimizers via a
directed graph method. The results show that the CLMs usually
can be synchronized if the penalty factors in the array of CLMs
are chosen large enough. It is worth pointing out that CLMs
possess the capability of global exploration in the search space
and the advantage of faster running time on convex problems in
comparison with most of the neural network approaches, which
is also illustrated through two test functions and their numerical
simulations.

Index Terms—Coupled local minimizers, Lagrange program-
ming network, augmented Lagrangian, stability, synchronization.

I. INTRODUCTION

O PTIMIZATION problems are abound in many fields of
engineering, biology, physics, chemistry and economics.

Many of them are related to the minimization of a cost func-
tion with several local optima. There are many well-developed
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methods for local optimization problems, such as steepest de-
scent, Newton’s, conjugate gradient, quasi-Newton, Levenberg-
Marquardt and sequential quadratic programming [1]–[3].
For constrained optimization problems, the augmented

Lagrangian method, which combines both the Lagrange and
the penalty methods, has been serving as a fundamental so-
lution methodology and effectively overcome the zigzagging
problems or the possible infinity problems of penalty terms
associated with the Lagrange method or the penalty method
when used alone. Recently, research on convergence properties
of augmented Lagrangian methods also has received a lot of
attention. Nguyen and Strodiot [4] proved the local conver-
gence of a modified exponential Lagrangian method. Luo et al.
[5] presented new convergence properties of the primal-dual
method based on four types of augmented Lagrangian func-
tions in the context of constrained global optimization. Li [6]
proposed an augmented Lagrange-Hopfield method based on
the augmented Lagrange method and improved Hopfield-type
neural network method in both the convergence and the solu-
tion quality in solving combinatorial optimization. Huang and
Yang [7] showed that the first-order and second-order necessary
optimality conditions of Rockafellar’s augmented Lagrangian
problems converge to those of the original problem. Hager
[8] and Yamashita [9] investigated the global convergence of
Rockafellar’s augmented Lagrangian methods for nonconvex
inequality-constrained problems.
Due to the parallel computational capacity and facilitation

through electronic hardware implementation of recurrent neural
networks, many Hopfield-type recurrent neural network models
have been proposed to resolve various kinds of optimization
problems since Tank and Hopfield’s seminal work [10], such
as linear variational inequalities [11]–[13], quadratic program-
ming problem [14], [15], and nonlinear convex programming
[16]–[20].
Among them, Zhang and Constantinides [17] proposed a

recurrent neural network based on an augmented Lagrangian
function for solving nonlinear optimization problems with
equality constraints and examined its local asymptotical sta-
bility at Karush-Kuhn-Tucker (KKT) points that correspond
to local optima under mild conditions. Xia [19] developed a
Lagrange network for nonlinear convex programming problem
with linear equality constraints and proved the global con-
vergence of the Lagrange programming networks based on a
basic Lyapunov function. In [15], Yang and Cao designed a
neural-network-based solution to the quadratic programming
problem with equality constraints. Afterwards, aiming at the
improper definition of projection operator in [15], Cheng et al.
[11] presented an improved delayed projection neural network
for solving a class of linear variational inequalities, where the
monotonicity assumption on the linear variational inequality

1549-8328/$31.00 © 2012 IEEE
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is removed. Recently, the authors in [21] introduced a simple
neural network for a class of variational inequality problems and
provided several sufficient conditions to ensure its asymptotical
stability without estimating the Lipschitz constant which was
required in [18]. To solve the nonlinear convex programming
problem with linear and nonlinear constraints, Gao proposed a
new neural network in [22], however, its stability required the
initial point lying in a convex set. To overcome this drawback,
Gao et al. presented a new neural network model for solving
constrained variational inequality problems by converting
the necessary and sufficient conditions for the solution into a
system of nonlinear projection equations [12]. Although the
achievement is rich and application of neural networks in the
field of optimization problems has proliferated in recent years,
most of these results focus on convergence of the methods
without considering the capability of global optimization.
It is well known, however that there are many optimization

problems requiring global exploration of the search space. For
example, global minimum energy conformations of a molecule
can have a dramatic effect on its activity [23]. The develop-
ment of the global optimization method, which reaches global
minima without being trapped at local minima, has been inves-
tigated extensively. Among popular methods for global explo-
ration of the search space, meta-heuristics, in which heuristics
are combined based on a very good search strategy, called di-
versification and intensification [24], [25], have received a great
deal of attention. Most meta-heuristics are multipoint optimiza-
tion methods, which use coupled multiple search points moving
stochastically. Examples of these methods include the genetic
algorithm [26], and particle swarm optimization [27]. Never-
theless, in these methods, interaction among all search points is
mainly used as the driven force, and they require a large number
of function evaluations since they are based on probabilistic
searching without the use of any gradient information. There-
fore, both of them share the disadvantage of losing diversity
once all of the search points are attracted to one search point.
In 2001, Suykens et al. proposed a new method of coupled

local minimizers (CLMs) [28], which is achieved byminimizing
the average energy cost of the ensemble, subject to synchroniza-
tion constraints between the state vectors of the individual local
minimizers. This method can be formulated as a set of coupled
Lagrange programming networks whose states exchange infor-
mation via the coupling. It has been tested with the optimization
of Lennard-Jones clusters and supervised training of neural net-
works. Recently, the method has been successfully applied to
finite element model updating using experimental modal data
[29], and shown that the global minimum is expected to be
found more easily because of the simultaneous searching and
cooperative behavior among multiple points. For more details
about the underlying principles of this method, we refer the
readers to [30]–[33]. Although some progress has been made
in global optimization problems by using CLMs, the conver-
gence of this method has not yet been established. We address
the issue in this paper by providing a theoretical analysis for the
method. To achieve this goal, a Lagrangian programming net-
work is firstly constructed based on an augmented Lagrangian
taking the objective of minimizing the average cost of an en-
semble of local minimizers subject to pairwise synchronization
constraints. Then, local stability analysis of the network is car-

ried out through linearization techniques and eigenvalue anal-
ysis. Subsequently, we show that the global convergence to a
unique optimal solution can be achieved under a mild condition.
Finally, two test functions and their numerical simulations are
provided to illustrate the effectiveness of the proposed method.
Throughout this paper, we use the following notations. de-

notes the -dimensional real space. .
. ( , respectively) is the transpose of vector

(matrix , respectively). represents
is a positive definite matrix. represents the -di-

mensional identity matrix. is the Euclidean norm of a vector
and denotes the spectral norm of a matrix . For two

vectors and . is used for
represent a block diagonal matrix. and denote
the gradient and Hessian of function at , respectively. is
the set of times continuously differentiable functions. “ ” de-
notes the Kronecker product.
The paper is organized as follows. In Section II, we recall the

mechanism of CLMs and construct the array of CLMs within
the Lagrange programming network framework. In Section III,
we present a basic sufficient condition for optimality of our
problem. In Section VI, we come up with some sufficient con-
ditions for local and global stability of CLMs. In Section V, we
analyze the synchronization of CLM ensemble by means of a
directed graph method. We give an extension of our main re-
sults to the nonlinear optimization problem with equality con-
straints in Section VI. In Section VII, two test functions are pre-
sented to demonstrate the performance of the results. Finally,
in Section VIII, we draw conclusions about the main contribu-
tions.

II. COUPLED LOCAL MINIMIZERS (CLMS)

Consider the following unconstrained problem of minimiza-
tion of a twice continuously differentiable cost function

(1)

By the steepest descent method, a simple continuous time local
optimization algorithm can be carried out for this problem:

with the step size. Here, alternatively, using
the CLM scheme in [28], we aim at minimizing the average
energy cost of an ensemble consisting of
local minimizers, subject to pairwise state equality constraints:

(2)

with states . For the equality constraints in (2),
we introduce Lagrange multipliers
and give the augmented Lagrangian:

(3)
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where represents the learning rate and
denote the penalty factors emphasizing the importance of

each of the soft synchronization constraints. For further analysis
convenience, let us rewrite (3) into a compact vector form:

(4)

where

...
...

...

...
...

...
...

...

is shown at the bottom of the page.
From this augmented Lagrangian (4), we can derive the fol-

lowing Lagrange programming network [17]:

(5)

By substituting (4) into (5), one can obtain the following array
of CLMs in vector form:

(6)

where

...

is shown at the bottom of the page, and

...
...

...
...

...

Remark 1: It is worth mentioning that has
full column rank , and is symmetric and all of its
eigenvalues are positive except that one of them equals zero.
Hence, .

III. SUFFICIENT CONDITIONS FOR OPTIMALITY

Before giving our main results, we introduce the regularity
condition and second order sufficient conditions for optimality,
as a preparation for theoretical analysis.
Consider the following general nonlinear programming

problem with equality constraints:

(7)

where , are twice con-
tinuously differentiable functions. Define a Lagrangian

as

(8)

...
...

...
...

...
...

...

...
...

...
...

...
...

...
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where and .
Then we have the following classical optimization results.
Definition 1 [1]: Let be a vector such that
. We say that is a regular point if the gradients

are linearly independent.
Definition 2 [35]: A point is said to be a strict minimum

of the problem in (7) if ,
where is a neighborhood of with the radius
and is the feasible region of the problem.
Definition 3 [19]: A function is said to be

monotonically increasing if, for each pair of points

where denotes an inner product; is said to be strictly
monotonically increasing if the above strict inequality holds
whenever .
Proposition 1 [2]: Assume that and are twice continu-

ously differentiable, and let and satisfy

(9)

(10)

for all with . Then is a strict local
minimum of subject to .
Lemma 1 [2]: Let and be two symmetric matrices. As-

sume that is positive semidefinite and is positive definite
on the null space of , that is, for all with

. Then there exists a scalar such that

Now we give our sufficiency optimality condition for opti-
mality of problem (2) as follows.
Lemma 2: Let be a regular point and together with its asso-

ciated Lagrange multiplier vector satisfies the sufficiency as-
sumptions of Proposition 1, then is a strict local minimum of

over , where .
Proof: The Lagrangian defined in (8) for problem (2)

is given by

From (4), the gradient and Hessian of with respect to
are

(11)

(12)

where .
In particular, if and satisfy the conditions (9) and (10)

of Proposition 1, we have

(13)

On the other hand, it follows from (12) that

where .
By the condition (10), we have that

(14)

for all with . By applying Lemma 1 with
and , it follows that there

exists a scalar such that

(15)

for all .
Using the sufficient optimality condition for unconstrained

optimization [2], we conclude from (13) and (15), that for
is an unconstrained local minimum of . In partic-

ular, there exist and such that

(16)

Since for all with , we have
and , so it follows from (16) that

(17)

with . Therefore, is a strict local
minimum of over .

IV. STABILITY OF CLMS

Tomake the array (6) of CLMs or the Lagrange programming
network (6) of practical sense, the equilibrium point
should furthermore be asymptotically stable, so that the network
will always converge to from an arbitrary initial point
within the attraction domain of . In what follows, we
shall analyze local stability and global stability of each CLM

in the network (6). For further analysis conve-
nience, let us denote and

(18)

A. Local Stability

Let us first present local stability of the network (6).
Theorem 1: Let be a stationary point of

. Then the Lagrange programming network (6) is locally
asymptotically stable at for some penalty factors

satisfying , where is a
strict local minimum of the problem (2).
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Proof: See Appendix A.

B. Global Stability

Next, we shall carry out the global stability analysis for the
networks through the Lyapunov function method. Before doing
this, we first provide a theorem for guaranteeing the uniqueness
of the equilibrium point of the network (6).
Theorem 2: Suppose that the Hessian

is positive definite for all , where is the desired
optimization domain, then the unique equilibrium point of the
Lagrange programming network (6) is given by

(19)

where is a unique optimal solution to (2).
Proof: See Appendix B.

Theorem 3: Suppose that the Hessian
is positive definite for all , where is the desired
optimization domain, then the Lagrange programming network
(6) is stable in the Lyapunov sense and is globally convergent
to an equilibrium point of (6), which corresponds to a unique
optimal solution of (2).

Proof: See Appendix C.

V. SYNCHRONIZATION OF CLM ENSEMBLE

In order to derive a common local minimum, the CLM should
converge to a common point so it is also necessary to ana-
lyze the synchronization of the CLM ensemble, that is, the sta-
bility of synchronization between and .
Since all local minimizers will be synchronized together ulti-
mately, in the following, we shall generally prove the stability
of synchronization between any two minimizers and
for by using the directed graph method [36].
Definition 4 [36]: is the class of irreducible symmetric

real matrices with zero row sums and nonpositive off-diagonal
elements.
Definition 5 [36]: Given an by matrix , a function

is -uniformly decreasing if

(20)

for some and all .
Theorem 4: Let be an by time-varying matrix and
be an by symmetric positive definite matrix such that

is -uniformly de-
creasing. Then the network (6) synchronizes in the sense that

as for all , which means the
asymptotical stability of synchronization between any two min-
imizers and for has been guaranteed,
if there exists a by matrix in such that

(21)

Proof: See Appendix D.
Remark 2: Theorem 4 provides a condition of guaranteeing

the stability of synchronization among CLMs, but it is difficult
to find the matrix satisfying the conditions and inefficient

to verify the conditions at every instant in practice. However,
if the penalty factors are chosen large enough,
the CLMs usually can be synchronized. More specifically, lin-
earization of at leads to

. If
holds at some time, will be
-uniformly decreasing at this time. Meanwhile, a sufficient
condition for ensuring inequality (21) is

. Therefore, if we choose appropriately
such that

(22)

all coupled local minimizers will be synchronized.
Remark 3: Due to the dynamic nature and the convenient

conversion from an optimization problem to a dynamical
system, at present, several neural networks have been devel-
oped to solve optimization problems [11], [21], [22], [12]–[14],
[16]. Compared with the conventional numerical optimization
method, the neural network approach has an advantage of a low
computational complexity and faster running times thanks to
the potential of electronic implementation. Though the fruitful
achievements of neural network approaches in various kinds of
optimization problems and related applications, most of them
can be regarded as standard local optimization techniques and
lack the capability of global optimization. In order to obtain a
global optimal solution for nonconvex optimization problems,
multistart searching processes are usually needed, that is, trying
different starting points and running the processes indepen-
dently from each other and selecting the best result from all
trials. Different from neural network approaches, the CLM
method is based on a cooperative search mechanism realised
by minimizing the average cost of the population. Thanks to
the coupling mechanism, the CLMs are able to exchange in-
formation which results in a better performance than multistart
local optimization. Therefore, a global optimal solution of the
original problem can be obtained. The advantages of CLM over
several neural network approaches will be further illustrated in
the next section.
Remark 4: In [38], Hou proposed a hierarchical recurrent

neural network (LHONN) consisting of two hierarchically
structured sub-networks. The two kinds of sub-networks can
work simultaneously and the constraints of state equations are
imbedded into the lower level sub-network. Though the states
in subsystems decomposed from a large-scale system are cou-
pled with each other, the neural network approach essentially
differs from the proposed CLM scheme in three aspects. First,
each state in the subsystems is updated based on one of its
neighbors and the dynamic evolution of LHONN aims at the
control variables instead of state variables, while the dynamic
evolution of CLMs is with respect to the state variables and
the evolution of each state is not only related to its own history
but also its neighbors. Second, from the basic idea point of
view, LHONN is related to hierarchical structures and more
applicable to optimal control problems, while CLM comes
from incorporating principles of master-slave dynamics and
mainly focuses on a different and broader context of solving
differentiable optimization problems. Third, since there are
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no interactions among control variables when regarding the
control variable as decision variables in LHONN, LHONN is
actually a local optimization method while CLM can be con-
sidered as a valuable alternative that combines the advantages
of local gradient-based algorithms with global exploration.

VI. EXTENSION TO PROBLEMS WITH EQUALITY CONSTRAINTS

In this section, we shall extend our results to the nonlinear
optimization problem with equality constraints:

(23)

where .
By applying the CLM scheme in Section II, the problem (23)

can be formulated as follows by introducing local minimizers:

(24)

For these equality constraints, let us introduce Lagrange
multipliers , and penalty factors

. Then one defines the augmented Lagrangian:

Similar to the analysis in (3)–(6), we obtain the following
Lagrange programming network

(25)

where

...
...

and are the same with the definitions in (6).
For the stability of (25), we present the following theorem

whose proof is similar to Theorem 3, thus we omit the detailed
proof hereafter.

Theorem 5: Suppose that is positive definite
everywhere, where

then the Lagrange programming network (25) is stable in the
Lyapunov sense and is globally convergent to an equilibrium
point of (25), which corresponds to a unique optimal solution
of (24) or (23).

VII. ILLUSTRATIVE EXAMPLES

The theoretical results about local and global stability of La-
grange programming networks generated by CLMs discussed
in the previous sections are further illustrated now by the fol-
lowing numerical examples.
Example 1: Let us recall the double well cost function [28]

(26)

with global minimum located at and a local min-
imum .
Following the procedure in Section 2, one can derive a net-

work (6) with coupled local minimizers. Here,

...

It can be seen that does not always hold,
which implies that may not hold.
Therefore, according to Theorem 3, it is insufficient to say
that the Lagrange programming network (6) will globally
converge to an equilibrium point. However, according to
Theorem 1, the Lagrange programming network (6) is local
asymptotically stable for penalty factors
satisfying with .
Let us choose , and take

in Theorem 4
where is a by matrix with all 1’s. It is easy to verify
that by (21) (actually, the maximum eigenvalue of
is ). Therefore, all CLMs will
synchronize as . Fig. 1 shows the convergence behaviors
of local minimizers, with 8 local minimizers starting
randomly from (blue solid line), 2 local minimizers
starting randomly from (red dashed line). We can
find that all the 8 local minimizers near the local minimum
have been pulled out the region and converge to the global
minimum. This is because the local optimizers have
exchanged information through the synchronization constraints

during the optimization process,
which helps finding the global minimum easily. Figs. 2, 3 and 4
show comparison results based on the same initial values using
the neural network approaches proposed in [12], [16] and [11],
respectively. It is shown that the global minimum is achieved
from all initial values by the CLM scheme while not by the
neural network approaches. Note that the convergence speed
by the CLM method is much more slow compared to the neural
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Fig. 1. Convergence behavior of the decision variable using CLM for Ex-
ample 1.

Fig. 2. Neural network approach in [12] (here, ) for the same problem
as in Fig. 1 with the same initial conditions.

Fig. 3. Neural network approach in [16] for the same problem as in Fig. 1 with
the same initial conditions.

network approaches. The reason is that for the nonconvex
function (26), those local minimizers near the local optimum

Fig. 4. Delayed neural network approach in [11] (here, ) for the
same problem as in Fig. 1 with the same initial conditions.

Fig. 5. Convergence behavior of the decision variable using CLMwith
in Example 1.

basin move out of the basin one by one due to the ring-type
interactions among local minimizers. In fact, in this example,
the interactions among local minimizers do not help enhancing
the convergence speed. It is only because the CLMs with
coupling try to do more explorations and reach the global min-
imum. However, it is not implying that our method has slower
convergence speed than those neural network approaches.
To demonstrate this point, we do the above experiment with

again and show the CLM results in Fig. 5.
It is seen that due to the stronger interactions among CLMs, the
local minimizers converge to an equilibrium point with a faster
speed than the neural network approaches, but at the price of
getting a local optimum. It is worth mentioning that the search
points by the neural network approaches are not synchronized
though they can also converge quickly. Here, the interactions
existing in the CLM scheme help to do more explorations
of the search space. As a comparison illustration, in the next
example, the interactions in our scheme will help to increase
the convergence speed due to the convexity of that function.
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Fig. 6. Convergence behavior of the decision variable using CLM for Ex-
ample 2.

Example 2: Consider the following quadratic programming
problem:

(27)

where

...
...

...
...

...
...

...

The quadratic programming problem has an optimal so-
lution and the optimal value of the objective function is

. While performing the CLM array (6) within
the Lagrange programming network framework, since
and , we have .
Therefore, by applying Theorem 3, the Lagrange programming
network (6) is stable and globally convergent to an equilib-
rium point of (6), which corresponds to a unique optimal
solution of (27). In simulation, we choose
and . Initial values are randomly chosen
from . Similar to the choices in Example 1, let us take

in Theorem 4 where
is a by matrix with all 1’s. One can also obtain that

according to (21). Therefore, all CLMs
will synchronize as .
Fig. 6 shows the convergence behaviors of 100 decision

variables with local minimizers each. Comparing to
the results, which are shown in Figs. 7 and 8 and based on
neural network approaches proposed in [11], [37], it is found
that the minimum is reached much more quickly by the CLM
scheme in comparison to the neural network approaches. Since
the quadratic programming problem in this example is convex,
all CLMs can individually converge to the same optimal solu-
tion. Thereby, the interactions here among the CLMs help to
accelerate the converge speed.

Fig. 7. Neural network approach in [11] for the problem in Example 2.

Fig. 8. Neural network approach in [37] for the problem in Example 2.

VIII. CONCLUSION

In this paper, we have analyzed the stability of CLMs and the
synchronization of CLMs within the Lagrange programming
network framework. We first dealt with the unconstrained
optimization problem which can be transformed into a non-
linear optimization problem with linear equality constraints
under the CLM scheme. We then presented conditions for
stability of the Lagrange programming networks to the new
optimization problem. Furthermore, we have also provided
conditions for the synchronization of CLMs in order to ensure
that all CLMs converge to a common optimization solution.
Finally, simulations of two test functions have been performed
to illustrate the effectiveness and advantages of the obtained
results. We hope that these results will offer insight into CLMs
within the Lagrange programming network framework, and
consequently reveal deeper implications for the CLM scheme
to unconstrained optimization problems. In future work, the
current analytical work can be further extended to inequality
constrained optimization problems.
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APPENDIX A

Proof of Theorem 1: To begin with, let us linearize (6) at
the equilibrium point . The local characteristic of the
equilibrium is determined by the linearized system. Taking

(28)

into account, the linearized system is given by

(29)

Define

We shall prove that the real part of each eigenvalue of is
strictly positive provided that there exist some penalty factors

satisfying .
First, let us denote the complex conjugate of a complex

vector and the real part of a complex number . Let
be an eigenvalue of , and let

(30)

be a corresponding eigenvector, where and are complex
vectors of dimension and , respectively. Then we
have

(31)

On the other hand, using the definition of

(32)

Since for any real matrix

it follows from (31) and (32) that

(33)

Moreover, for any positive definite matrix , we have

(34)

so it follows from (33) and the positive definiteness assumption
on that either or else .
But if , the equation yields . From the
definition of , it is easy to derive . This contradicts our
earlier assumption (30). Consequently we must have
. Thus the real part of each eigenvalue of is strictly positive,

which means that is strictly negative definite. Therefore,
is locally asymptotically stable (see, [39]).

APPENDIX B

Proof of Theorem 2: Since the Jacobian matrix of the map-
ping given in (18)

(35)

is positive semidefinite, is monotonically increasing.
Thus, the solution set is convex [34], that is to say,
for any two solutions and of , and any

is also a solution of .
Hence the set of the equilibrium points of the Lagrange pro-
gramming network (6) is convex. Since these equilibrium
points satisfy

(36)

their set can be expressed as

(37)

To prove the uniqueness of the optimal solution, suppose that
there exist and .
Substituting them into (36) and combining the equations yield

(38)

where
. Multiplying by on the left side of

(38), one can further derive

(39)

Since is positive definite,
is strictly monotonically increasing

as increases. Therefore, (39) implies that .
Then we can further get . Substituting

into the first equation of (38), it follows that
, so

(40)

Furthermore, since has full rank (see, Remark 1), then the
linear system has only one zero solution. Therefore,

must imply that . That is,
. So, the Lagrange programming network (6) has a

unique equilibrium point.
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APPENDIX C

Proof of Theorem 3: Consider the following Lyapunov
function:

(41)

where is defined in (18) and is a stationary
point of the Lagrangian (4). Differentiating with respect
to time gives

(42)

where has been given in (35).
Using the assumption and using

the fact , it follows that

(43)

Therefore, the Lagrange programming network (6) is stable
in the Lyapunov sense. From (41), we have

(44)

for any initial point , so there exist a convergent subsequence

such that , where
satisfying

(45)

We now show that is an equilibrium point of (6). It can be
seen that (45) holds if and only if

(46)

Because is positive definite, the first equation of
(46) implies

(47)

For the stationary point of the La-
grangian (4), we know that

(48)

Combining (47) with (48) yields

(49)

On one hand, by utilizing the fact , we have

(50)

On the other hand, substituting (47) into the second equation
of (46) yields

(51)

or equivalently

(52)

Therefore, substituting the above equation into (50), we de-
rive

(53)

From (50) and (53), it follows that

(54)

Because is positive definite,
is strictly monotonically increasing

as increases. Therefore, (54) implies that and
. Moreover, it follows from (49) that

. Hence, is a stationary point of the Lagrangian (4)
and thus is an equilibrium point of (6).
Now let us define another Lyapunov function

(55)

One can obtain that

(56)

Therefore, there exists such that for all ,
we have

(57)

Similarly, we can obtain . It follows that for

(58)

for decrease as . So we have

(59)

and

(60)

Hence, the Lagrange programming network (6) is globally con-

vergent to an equilibrium point , where is the
optimal solution of (2).

APPENDIX D

Proof of Theorem 4: Since the matrix and is
symmetric positive definite, . And from the defini-
tion of in (6), is a matrix with zero column sums. Hence,
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is a symmetric matrix with zero row sums and nonposi-
tive off-diagonal elements, so is . Therefore, we can get

and ,
and then construct the Lyapunov function

Calculating the derivative of along trajectories of (6)
yields

...

(61)

where . By means of the -uniformly de-
creasing condition and

(62)

Note that , so for . For
each and , and sufficiently large such that if

, then

(63)

This implies that for large enough . There-
fore, . Irreducibility of implies that
enough are nonzero to ensure . The
proof is completed.
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