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Abstract

Background: DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment

selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost

a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or

clarify abnormal cases. The main input to these class predictors are high dimensional data with many variables and few

observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection

and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction

tools are available based on these techniques.

Results: Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality

reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we

propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation

for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support

Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we

compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other

well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of

Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance

of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies.

Conclusion: We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature

transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature
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selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature

selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover,

the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

Introduction

Biomarker discovery and prognosis prediction are essential for improved personalized cancer treatment. Microarray

technology is a significant tool for gene expression analysis and cancer diagnosis. Typically, microarray data sets are

used for class discovery [1,2] and prediction [3,4]. The high dimensionality of the input feature space in comparison

with the relatively small number of subjects is a widespread concern; hence some form of dimensionality reduction

is often applied. Feature selection and feature transformation are two commonly used dimensionality reduction

techniques. The key difference between feature selection and feature transformation is that, in the former only a

subset of original features is selected while the latter is based on generation of new features.

In this genomic era, several classification and dimensionality reduction methods are available for analyzing

and classifying microarray data. Prediction Analysis of Microarray (PAM) [5] is a statistical technique for class

prediction from gene expression data using Nearest Shrunken Centroids (NSC). PAM identifies subsets of genes that

best characterize each class. LS-SVM is a promising method for classification, because of its solid mathematical

foundations which convey several salient properties that other methods hardly provide. A commonly used technique

for feature selection, t-test, assumes that the feature values from two different classes follow normal distributions.

Several studies, especially microarray analysis, have used t-test and LS-SVM together to improve the prediction

performance by selecting key features [6, 7]. The Least Absolute Shrinkage and Selection Operator (Lasso) [8] is

often used for gene selection and parameter estimation in high-dimensional microarray data [9]. The Lasso shrinks

some of the coefficients to zero, and extend of shrinkage is determined by the tuning parameter, often obtained

from cross validation.

Inductive learning systems were successfully applied in a number of medical domains, e.g. in localization of

primary tumors, prognostic of recurring breast cancer, diagnosis of thyroid diseases, and rheumatology [10]. An

induction algorithm is used to learn a classifier, which maps the space of feature values into the set of class values.

This classifier is later used to classify new instances, with the unknown classifications (class labels). Researchers

and practitioners realize that the effective use of these inductive learning systems requires data preprocessing,

before a learning algorithm could be applied [11]. Due to the instability of feature selection techniques, it might be

difficult or even impossible to remove irrelevant and/or redundant features from a data set. Feature transformation
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techniques, such as KPCA, discover a new feature space having fewer dimensions through a functional mapping,

while keeping as much information, as possible in the data set.

KPCA, which is a generalization of PCA, a nonlinear dimensionality reduction technique that has proven to be

a powerful pre-processing step for classification algorithms. It has been studied intensively in the last several years

in the field of machine learning and has claimed success in many applications [12]. An algorithm for classification

using KPCA was developed by Liu et al. [13]. KPCA was proposed by Schölkopf and Smola [14], by mapping

features sets to a high-dimensional feature space (possibly infinite) and applying Mercer’s theorem. Suykens et

al. [15, 16] proposed a simple and straightforward primal-dual support vector machine formulation to the PCA

problem.

To perform KPCA, the user first transforms the input data x from the original input space F0 into a higher-

dimensional feature space F1 with a nonlinear transform x→ Φ(x) where Φ is a nonlinear function. Then a kernel

matrix K is formed using the inner products of new feature vectors. Finally, a PCA is performed on the centralized

K, which is an estimate of the covariance matrix of the new feature vectors in F1. One of the commonly used

kernel function is radial basis function (RBF) kernel: K(xi, xj) = exp(− ||xi−xj ||2
2h2 ) (RBF kernel with bandwidth

h). Traditionally the optimal parameters (bandwidth and number of principal components) of RBF kernel function

are selected in a trial and error fashion.

Pochet et al. [17] proposed an optimization algorithm for KPCA with RBF kernel followed by Fisher Discrim-

inant Analysis (FDA) to find the parameters of KPCA. In this case, the parameter selection is coupled with the

corresponding classifier. This means that the performance of the final procedure depends on the chosen classifier.

Such a procedure could produce possible inaccurate results in the case of weak classifiers. In addition, this appears

to be a time consuming procedure, while tuning the parameters of KPCA.

Most classification methods have inherent problem with high dimensionality of microarray data and hence

require dimensionality reduction. The ultimate goal of our work is to design a powerful preprocessing step, decou-

pled from the classification method, for large dimensional data sets. In this paper, initially we explain an LS-SVM

approach to KPCA. Next, by following the idea of least squares cross-validation in kernel density estimation, we

propose a new data-driven bandwidth selection criterion for KPCA. The tuned LS-SVM formulation to KPCA is

applied to several data sets and serves as a dimensionality reduction technique for a final classification task. In

addition, we compared the proposed strategy with an existing optimization algorithm for KPCA, as well as with

other preprocessing steps. Finally, for the sake of comparison, we applied LS-SVM on whole data sets, PCA+LS-

SVM, t-test + LS-SVM, PAM and Lasso. Randomization on all data sets are carried out in order to get a more

reliable idea of the expected performance.
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Data sets

In our analysis, we collected 11 publicly available binary class data sets (diseased vs. normal). The data sets

are: colon cancer data [18, 19], breast cancer data [20], pancreatic cancer premalignant data [21, 22], cervical

cancer data [23], acute myeloid leukemia data [24], ovarian cancer data [21], head & neck squamous cell carcinoma

data [25], early-early stage duchenne muscular dystrophy(EDMD) data [26], HIV encephalitis data [27], high grade

glioma data [28], and breast cancer data [29]. In breast cancer data [29] and high grade glioma data, all data

samples have already been assigned to a training set or test set. The breast cancer data in [29] contains missing

values; those values have been imputed based on the nearest neighbor method.

An overview of the characteristics of all the data sets can be found in Table 1. In all the cases, 2/3rd of the

data samples of each class are assigned randomly to the training and the rest to the test set. These randomizations

are the same for all numerical experiments on all data sets. This split was performed stratified to ensure that the

relative proportion of outcomes sampled in both training and test set was similar to the original proportion in the

full data set. In all these cases, the data were standardized to zero mean and unit variance.

Methods

The methods used to set up the case studies can be subdivided into two categories: dimensionality reduction using

the proposed criterion and subsequent classification.

LS-SVM approach to KPCA

The PCA analysis problem is interpreted as a one-class modeling problem with a target value equal to zero around

which the variance is maximized. This results into a sum of squared error cost function with regularization. The

score variables are taken as additional error variables. We now follow the usual SVM methodology of mapping

the d-dimensional data from the input space to a high-dimensional feature space φ : Rd → Rnh , where nh can be

infinite, and apply Mercer’s theorem [30].

Our objective is the following

max
v

N∑
k=1

[0− vT (φ(xk)− µ̂φ))]2 (1)

with µ̂φ = (1/N)
∑N
k=1 φ(xk) and v is the eigenvector in the primal space with maximum variance. This formulation

states that one considers the difference between vT (φ(xk)− µ̂φ) (the projected data points to the target space) and

the value 0 as error variables. The projected variables correspond to what is called score variables. These error

variables are maximized for the given N data points. Next, by adding a regularization term we also want to keep
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the norm of v small. The following optimization problem is formulated now in the primal weight space

max
v,e

JP (v, e) = γ
1

2

N∑
k=1

e2k −
1

2
vT v (2)

such that

ek = vT (φ(xk)− µφ), k = 1, ..., N.

The Lagrangian yields

L(w, e;α) = γ
1

2

N∑
k=1

e2k −
1

2
vT v −

N∑
k=1

αk(ek − vT (φ(xk)− µ̂φ))

with conditions for optimality

∂L
∂v

= 0→ v =

N∑
k=1

αk(φ(xk)− µ̂φ)

∂L
∂ek

= 0→ αk = γek k = 1, . . . , N

∂L
∂αk

= 0→ ek − vT (φ(xk)− µ̂φ) = 0, k = 1, . . . , N.

By elimination of variables e and w, one obtains

1

γ
αk −

N∑
l=1

αl(φ(xl)− µ̂φ)T (φ(xk)− µ̂φ) = 0 k = 1, . . . , N.

Defining λ = 1
γ , one obtains the following dual problem

Ωcα = λα

where Ωc denotes the centered kernel matrix with ijth entry: Ωc,i,j = K(xi, xj) - 1
N

∑N
r=1K(xi, xr) -

1
N

∑N
r=1K(xj , xr) + 1

N2

∑N
r=1

∑N
s=1K(xr, xs).

Data-Driven Bandwidth Selection for KPCA

Model selection is a prominent issue in all learning tasks, especially in KPCA. Since KPCA is an unsupervised

technique, formulating a data-driven bandwidth selection criterion is not trivial. Until now, no such data-driven

criterion was available to tune the bandwidth (h) and number of components (k) for KPCA. Typically these

parameters are selected by trial and error. Analogue to least squares cross validation [31, 32] in kernel density

estimation, we propose a new data driven selection criterion for KPCA. Let

zn(x) = ΣNi=1α
(n)
i K(xi, x)
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where K(xi, xj) = exp(− ||xi−xj ||2
2h2 ) (RBF kernel with bandwidth h) and set the target equal to 0 and denote by

zn(x) the score variable of sample x on nth eigenvector α(n). Here, the score variables are expressed in terms of

kernel expressions in which every training point contributes. These expansions are typically dense (nonsparse). In

Equation 2, the KPCA uses L2 lose function. Here we have chosen the L1 loss function to induce sparsness in

KPCA. By extending the formulation in Equation 2 to L1 loss function, the following problem can be formulated

for kernel PCA.

max
v,e

JP (v, e) = γ
1

2

N∑
k=1

L1(ek)− 1

2
vT v

such that

ek = vT (φ(xk)− µφ), k = 1, ..., N.

We propose the following tuning criterion for the bandwidth h which maximizes the L1 loss function of KPCA:

J(h) = argmax
h∈R+

0

E

∫
|zn(x)|dx, (3)

where E denotes the expectation operator. Maximizing Equation (3) would lead to overfitting since we used all
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Figure 1: Bandwidth selection of KPCA for a fixed number of components. Retaining (a) 5 components for cervical
cancer data set (b) 15 components for colon cancer data set.

the training data in the criterion. Instead, we work with Leave-One-Out cross validation (LOOCV) estimation of

zn(x) to obtain the optimum bandwidth h of KPCA, which gives projected variables with maximal variance. A

finite approximation to Equation (3) is given by

J(h) = argmax
h∈R+

0

1

N

N∑
j=1

∫
|z(−j)n (x)|dx (4)
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where N is the number of samples and z
(−j)
n denotes the score variable with the jth observation is left out. In case

the leave-one-out approach is computationally expensive, one could replace it with a leave v group out strategy (v-

fold cross-validation). Integration can be performed by means of any numerical technique. In our case, we have

used trapezoidal rule. The final model with optimum bandwidth is constructed as follows:

Ωc,ĥmax
α = λα,

where ĥmax = maxh∈R+
0

1
N

∑N
j=1

∫
|z(−j)n (x)|dx. Figure 1 shows the bandwidth selection for cervical and colon

cancer data sets for fixed number of components. To also retain the optimum number of components of KPCA,

we modify Equation (4) as follows:

Figure 2: Data-Driven Bandwidth Selection for KPCA

J(h, k) = argmax
h∈R+

0 ,k∈N0

1

N

k∑
n=1

N∑
j=1

∫
|z(−j)n (x)|dx (5)

where k = 1, . . . , N . Figure 2 illustrate the proposed model. Figure 3 shows the surface plot of Equation (5) for
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Figure 3: Model selection for KPCA-optimal bandwidth and number of components.(a) Cervical cancer (b) Colon
cancer.
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Figure 4: Slice plot for the Model selection for KPCA for the optimal bandwidth.(a) Cervical cancer (b) Colon
cancer.

various values of h and k. Thus, the proposed data-driven model can obtain the optimal bandwidth for KPCA,

while retaining minimum number of eigenvectors which capture the majority of the variance of the data. Figure 4

shows a slice of the surface plots. The values of the proposed criterion were re-scaled to be maximum 1. The

parameters that maximize Equation (5) are h = 70.71 and k = 5 for cervical cancer data and h = 43.59 and k = 15

for colon cancer data.

Classification Models

The constrained optimization problem for an LS-SVM [16,33] for classification has the following form:

min
w,b,e

(
1

2
wTw + γ

1

2
ΣNk=1e

2
k)
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subject to:

yk[wTφ(xk) + b] = 1− ek, k = 1, . . . , N

where φ(.): Rd → Rdh is a nonlinear function which maps the d-dimensional input vector x from the input space

to the dh-dimensional feature space, possibly infinite. In the dual space the solution is given by[
0 yT

y Ω + I
γ

] [
b
β

]
=

[
0
1v

]
with y = [y1, . . . , yN ]T , 1N = [1, . . . , 1]T , e = [e1, . . . , eN ]T , β = [β1, . . . , βN ]T and Ωi,j = yiyjK(xi, xj) where

K(xi, xj) is the kernel function. The classifier in the dual space takes the form

y(x) = sign[

N∑
k=1

βkykK(x, xk) + b] (6)

where βk are Lagrange multipliers.

Results

First we considered nine data sets described in Table 1. We have chosen the RBF kernelK(xi, xj) = exp(− ||xi−xj ||2
2h2 )

for KPCA. In this section all the steps are implemented using Matlab R2012b and LS-SVMlab v1.8 toolbox

[34]. Next, we compared the performance of the proposed method with classical PCA and an existing tuning

algorithm for RBF-KPCA developed by Pochet et al. [17]. Later, with the intention to comprehensively compare

PCA+LS-SVM and KPCA+LS-SVM with other classification methods, we applied four widely used classifiers to

the microarray data, being LS-SVM on whole data sets, t-test + LS-SVM, PAM and Lasso. To fairly compare

kernel functions of the LS-SVM classifier; linear, RBF and polynomial kernel functions are used (in Table 2 referred

to as linear/poly/RBF). The average test accuracies and execution time for all these methods when applied to the

9 case studies are shown in Table 2 and Table 4 respectively. Statistical significance test results (two-sided signed

rank test) are given in Table 3 which compares the performance of KPCA with other classifiers. For all these

methods, training on 2/3rd of the samples and testing on 1/3rd of the samples was repeated 30 times.

Comparison between the proposed criterion and PCA

For each data set, the proposed methodology is applied. This methodology consists of two steps. First, Equation (5)

is maximized in order to obtain an optimal bandwidth h and corresponding number of components k. Second,

the reduced data set is used to perform a classification task with LS-SVM. We retained 5 and 15 components

respectively for cervical and colon cancer data sets. For PCA, the optimal number of components were selected by

slightly modifying the Equation 5, i.e., which performed only for the components k. Figure 5 shows the plots of the
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Figure 5: Plot for the selection of optimal number of components for PCA.(a) Cervical cancer (b) Colon cancer.

optimal components selection of PCA. Thus we retained 13 components and 15 components for cervical and colon

cancer respectively for PCA. Similarly, we obtained number of components of PCA and the number of components

with corresponding bandwidth for KPCA for the remaining data sets.

The score variables (projection of samples onto the direction of selected principal components) are used to

develop an LS-SVM classification model. The averaged test AUC values over the 30 random repetitions were

reported.

Comparison between the proposed criterion and an existing optimization algorithm for RBF-KPCA

We selected two experiments from Pochet et al. [17] (last two data sets in Table 1), being high-grade glioma and

breast cancer II data sets. We repeated the same experiments as reported in Pochet et al. [17] and compared

with the proposed strategy. The results are shown in Table 5. The three dimensional surface plot of LOOCV

performance of the method proposed by [17] for the high-grade glioma data set is shown in Figure 6, with the

optimal h = 114.018 and k = 12. The optimum parameters are h = 94.868 and k = 10 obtained by the proposed

strategy (see Equation (5)) for the same data set. When looking at test AUC in Table 5, both case studies applying

the proposed strategy, perform better than the method proposed by Pochet et al. [17] with less variability. In

addition, the tuning method Pochet et al. [17] appears to be quite time consuming, whereas the proposed model

enjoys a distinctive advantage with its low time complexity to carry out the same process.
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Figure 6: LOO-CV performance of optimization algorithm [17] on high-grade glioma data set

Comparison between the proposed criterion and other classifiers

When looking specifically at all these methods in term of test AUC, we note that LS-SVM performance was slightly

low on PCA. On breast cancer I, cervical cancer and HIV encephalitis data sets LS-SVM with linear kernel performs

significantly better in terms of test AUC. The t-test + LS-SVM classifier shows the best test AUC for Leukemia

and EDMD data sets. LS-SVM with linear kernel and t-test + LS-SVM classifiers have approximately the same

test AUC on ovarian cancer and head & neck squamous cell carcinoma data sets. The proposed strategy with

LS-SVM (RBF) classifiers offer better test AUC for colon cancer, breast cancer I, cervical cancer and head & neck

squamous cell carcinoma data sets. Only on pancreatic data set, Lasso outperformed all other case studies. The

test AUC of PAM was significantly worse on all data sets except DMD data set.

Discussions

The obtained test AUC of different classifiers on nine data sets, do not direct to a common conclusion that one

method outperforms the other. Instead, it shows that each of these methods have its own advantage in classification

tasks. When considering classification problems without dimensionality reduction, the regularized LS-SVM classifier

shows a good performance on 50 percentage of data sets. Up till now, most microarray data sets are smaller in the

sense of number of features and samples, but it is expected that these data sets might become larger or perhaps

represent more complex classification problems in the future. In this situation, dimensionality reduction processes
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(feature selection and feature transformation) become quite prominent.

The selected features of feature selection method such as t-test, PAM and Lasso widely vary for each random

iteration. Further, the classification performance of these methods on each iteration depends on the number of

features selected. Table 6 shows the range, i.e. minimum and maximum number of features selected on 30 iterations.

PAM and Lasso outperformed only in two case studies. However PAM is a user friendly toolbox for gene selection

and classification tasks, its performance depends heavily on the selected features. In addition, it is interesting that

the Lasso selected only very small subsets of the actual data sets. But, in the Lasso, the amount of shrinkage varies,

depending on the value of the tuning parameter, which is often determined by cross validation [35]. The number of

genes selected as the outcome-predictive genes, generally decrease as the value of the tuning parameter increases.

The optimal value of the tuning parameter, that maximizes the prediction accuracy is determined; however, the

set of genes identified using the optimal value contains the non-outcome-predictive genes (ie, false positive genes)

in many cases [9].

The test AUC on all nine case studies shows that KPCA performs better than classical PCA. But the parameters

of KPCA need to be optimized. But here we have used LOOCV approach for parameters selection (bandwidth and

number of components) of KPCA. In the optimization algorithm proposed by Pochet et al. [17], the combination

of KPCA with RBF kernel and selection of principal components followed by FDA tends to result in overfitting.

The proposed parameter selection criterion of KPCA with RBF kernel, often results in test set performances (see

Table 4) that is better than using KPCA with a linear kernel, which reported in Pochet et al. Thus it means

that LOOCV in the proposed parameter selection criterion does not encounter an overfitting for KPCA with RBF

kernel function. In addition, the optimization algorithm proposed by Pochet et al. is completely coupled with the

subsequent classifier and thus it appears to be very time-consuming.

In combination with classification methods, microarray data analysis can be useful to guide clinical management

in cancer studies. In this study, several mathematical and statistical techniques were evaluated and compared in

order to optimize the performance of clinical predictions based on microarray data. Considering the possibility of

increasing size and complexity of microarray data sets in future, dimensionality reduction and nonlinear techniques

have its own significance. In many cases, in a specific application context the best feature set is still important (e.g.

drug discovery). While considering the stability and performance (both accuracy and execution time) of classifiers,

the proposed methodology has its own importance to predict classes, of future samples of known disease cases.
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Conclusion

The objective in, class prediction with microarray data is an accurate classification of cancerous samples which

allows directed and more successful therapies. In this paper, we proposed a new data-driven bandwidth selection

criterion for KPCA (which is a well defined preprocessing technique). In particular, we optimize the bandwidth

and the number of components to maximize, the projected variance of KPCA. In addition, we compared several

data preprocessing techniques prior to classification. In all the case studies, most of these data preprocessing steps

performed well on classification with approximately similar performance. We observed that in feature selection

methods selected features widely vary on each iteration. Hence it is difficult, even impossible to design a stable class

predictor for future samples with these methods. Experiments on nine data sets show that the proposed strategy

provides a stable preprocessing algorithm for classification of high dimensional data with good performance on test

data.

The advantages of the proposed KPCA+LS-SVM classifier were presented in four aspects. First, we propose a

data-driven bandwidth selection criterion for KPCA by tuning the optimum bandwidth and the number of principal

components. Second, we illustrate that the performance of the proposed strategy is significantly better than an

existing optimization algorithm for KPCA. Third, its classification performance is not sensitive to any number

of selected genes, so the proposed method is more stable than others proposed in literature. Fourth, it reduces

the dimensionality of the data while keeping as much information as possible of the original data. This leads to

computationally less expensive and more stable results for massive microarray classification.
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PJ, Rouzier R, Sneige N, Ross JS, Vidaurre T, Gómez HL, Hortobagyi GN, Pusztai L: Pharmacogenomic pre-
dictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and
cyclophosphamide in breast cancer. J Clin Oncol 2006, 24:4236–4244.

21. FDA-NCI Clinical Proteomics Program Databank [http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp].

22. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA,
Kawaguchi Y, Johann D, Liotta LA, Crawford ME H Cand Putt, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson
DA: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell
2003, 4(6):437–50.

15



23. Wong YF, Selvanayagam ZE, Wei N, Porter J: Expression genomics of cervical cancer: molecular classification
and prediction of radiotherapy response by DNA microarray. Clin Cancer Res 2003, 9(15):5486–92.

24. Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W: Identification of genes with abnormal expression changes in
acute myeloid leukemia. Genes Chromosomes Cancer 2008, 47(1):8–20.

25. Kuriakose MA, Chen WT, He ZM, Sikora AG: Selection and validation of differentially expressed genes in
head and neck cancer. Cell Mol Life Sci 2004, 61(11):1372–83.

26. Pescatori M, Broccolini A, Minetti C, Bertini E: Gene expression profiling in the early phases of DMD: a
constant molecular signature characterizes DMD muscle from early postnatal life throughout disease
progression. FASEB J 2007, 21(4):1210–26.

27. Masliah E, Roberts ES, Langford D, Everall I: Patterns of gene dysregulation in the frontal cortex of patients
with HIV encephalitis. J Neuroimmunol 2004, 157(1-2):163–75.

28. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd U Cand Pohl, Hartmann C, McLaughlin ME,
Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN: Gene expression-based classification
of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003,
63:1602–1607.

29. van’t Veer LJ, Dai H, Van De Vijver MJ, HeY D, Hart AAM, Mao M, Peterse HL, Van Der Kooy K, Marton MJ,
Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernard R, Friend SH: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002, 415:530–536.

30. Mercer J: Functions of positive and negative type and their connection with the theory of integral equa-
tions. Philosophical Transactions of the Royal Society A 1909, 209:415–446.

31. Bowman AW: An Alternative Method of Cross-Validation for the Smoothing of Density Estimates.
Biometrika 1984, 71:353–360.

32. Rudemo M: Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 1982, 9:65–78.

33. Suykens JAK, Vandewalle J: Least Squares Support Vector Machine classifiers. Neural Processing Letters 1999,
9:293–300.

34. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens
JAK: LS-SVMlab Toolbox User’s Guide version 1.8 2010.

35. Verweij PJ, Houwelingen HC: Cross-validation in survival analysis. Stat Med 1993, 12:2305–14.

Figures
Figure 1 - Bandwidth selection for KPCA: cervical and colon cancer

Bandwidth selection of KPCA for a fixed number of components (A): 5 components for cervical cancer (B) 15

components for colon cancer.

Figure 2 - Data-Driven Bandwidth Selection for KPCA

Leave-one-out cross validation (LOOCV) for KPCA.

Figure 3 - Model selection for KPCA

(A) cervical cancer (B) colon cancer

Figure 4 - Slice plot for the model selection for KPCA

(A) cervical cancer (B) colon cancer
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Figure 5 - LOOCV performance of the optimization algorithm [17] on high-grade glioma data set
Figure 6 - Plot for the selection of optimal number of components for PCA

(A) cervical cancer (B) colon cancer.

Tables
Table 1: Summary of the 11 binary disease data sets

Table 1: Summary of the 11 binary disease data sets.

Data set #Samples #Genes
Class 1 Class2

1: Colon 22 40 2000

2: Breast cancer I 34 99 5970

3: Pancreatic 50 50 15154

4: Cervical 8 24 10692

5: Leukemia 26 38 22283

6: Ovarian 91 162 15154

7: Head & neck squamous

cell carcinoma 22 22 12625

8: Duchenne muscular dystrophy 23 14 22283

9: HIV encephalitis 16 12 12625

10: High grade glioma 29 21 12625

11: Breast cancer II 19 78 24188

Table 2: Comparison of classifiers: Mean AUC(std) of 30 iterations
Table 3: Statistical significance test results which compares KPCA with other classifiers: whole data, PCA,
t-test, PAM and Lasso.
Table 4: Summary of averaged execution time of classifiers over 30 iterations in seconds
Table 5: Comparison of performance of proposed criterion with the method proposed by Pochet et al. [17]
Table 6: Summary of the range (minimum to maximum) of features selected over 30 iterations
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Table 2: Comparison of classifiers: Mean AUC(std) of 30 iterations

Data set Kernel function for Classification preprocessing + LS-SVM classifier PAM Lasso

whole data PCA KPCA t-test(p<0.05)

RBF 0.769(0.127) 0.793(0.081) 0.822(0.088) 0.835(0.078)

I lin 0.822(0.068) 0.837(0.088) 0.864(0.078) 0.857(0.078) 0.787(0.097) 0.837(0.116)

poly 0.818(0.071) 0.732(0.072) 0.825(0.125) 0.845(0.017)

RBF 0.637(0.146) 0.749(0.093) 0.780(0.076) 0.779(0.082)

II lin 0.803(0.059) 0.772(0.094) 0.790(0.075) 0.751(0.071) 0.659(0.084) 0.766(0.074)

poly 0.701(086) 0.752(0.063) 0.753(0.072) 0.784(0.059)

RBF 0.832(0.143) 0.762(0.066) 0.879(0.058) 0.921(0.027)

III lin 0.915(0.043) 0.785(0.063) 0.878(0.066) 0.941(0.036) 0.707(0.067) 0.9359( 0.0374)

poly 0.775(0.080) 0.685(0.105) 0.8380(0.068) 0.858(0.042)

RBF 0.615(0.197) 0.853(0.112) 0.867(0.098) 0.808(0.225)

IV lin 0.953(0.070) 0.917(0.083) 0.929(0.077) 0.987(0.028) 0.759(0.152) 0.707(0.194)

poly 0.762(0.118) 0.811(0.140) 0.840(0.131) 0.779(0.123)

RBF 0.807(0.238) 0.790(0.140) 0.976(0.035) 0.998(0.005)

V lin 0.997(0.005) 0.528(0.134) 0.982(0.022) 0.998(0.006) 0.923(0.062) 0.934(0.084)

poly 0.942(0.051) 0.804(0.121) 0.975(0.028) 0.965(0.049)

RBF 0.998(0.001) 0.982(0.002) 0.984(0.012) 0.998(0.004)

VI lin 0.990(0.005) 0.973(0.002) 0.978(0.013) 0.993(0.013) 0.960(0.016) 0.951(0.045)

poly 0.998(0.006) 0.985(0.016) 0.973(0.018) 0.995(0.011)

RBF 0.946(0.098) 0.941(0.057) 0.932(0.071) 0.967(0.048)

VII lin 0.983(0.025) 0.947(0.047) 0.954(0.051) 0.987(0.022) 0.931(0.058) 0.952(0.030)

poly 0.785(0.143) 0.903(0.078) 0.915(0.080) 0.920(0.025)

RBF 0.823(0.159) 0.923(0.096) 0.858(0.113) 0.950(0.150)

VIII lin 0.840(0.164) 0.969(0.044) 0.800(0.019) 0.999(0.005) 0.982(0.050) 0.890(0.081)

poly 0.781(0.186) 0.870(0.117) 0.785(0.121) 0.998(0.007)

RBF 0.638(0.210) 0.823(0.159) 0.852(0.180) 0.815(0.200)

IX lin 0.931(0.126) 0.840(0.164) 0.846(0.143) 0.930(0.139) 0.703(0.175) 0.705(0.174)

poly 0.841(0.176) 0.781(0.186) 0.798(0.193) 0.768(0.193)

p-value: False Discovery Rate (FDR) corrected.
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Table 3: Statistical significance test which compares KPCA with other classifiers: whole data, PCA, t-test, PAM
and Lasso. P-values of two-sided signed test are given.

kernel Dataset I II III IV V VI VII VIII IX

function

whole data 0.572 0.201 0.185 3.00E-04 0.115 8.16E-03 0.041 0.004 0.003

PCA 1.00E-03 4.20E-05 7.25E-05 3.00E-04 5.65E-09 1.00E-07 0.005 1.00E-04 2.80E-03

RBF t-test 0.856 0.711 0.999 0.458 1.30E-04 8.70E-05 0.064 0.0001 0.678

PAM 0.362 1.22E-05 5.00E-05 0.016 0.029 8.52E-03 0.69 4.82E-05 3.00E-04

Lasso 0.016 0.585 2.82E-05 0.029 0.23 3.00E-04 0.987 7.80E-06 0.004

whole data 0.919 0.061 0.997 0.919 0.989 0.664 0.791 1.87E-04 0.839

PCA 1.53E-05 2.16E-04 2.60E-10 1.54E-09 2.56E-09 5.43E-06 1.23E-07 1.86E-09 3.40E-08

lin t-test 0.988 0.043 0.144 0.664 0.031 0.023 0.995 0.109 0.989

PAM 0.008 7.53E-05 8.43E-03 3.00E-04 7.53E-05 3.53E-05 3.00E-04 0.876 0.005

Lasso 0.099 0.099 9.84E-04 4.23E-07 1.00E-04 9.86E-03 5.00E-04 0.963 4.23E-07

whole data 0.956 0.002 0.901 8.31E-12 9.00E-04 1.18E-08 1.54E-08 0.327 0.424

PCA 2.60E-03 7.60E-05 8.70E-09 9.00E-06 1.54E-08 8.91E-04 6.55E-09 5.43E-06 1.00E-11

poly t-test 0.557 0.585 0.005 0.856 0.031 0.043 0.985 1.00E-04 0.3612

PAM 0.024 1.00E-04 0.003 0.008 0.006 0.016 3.00E-04 0.004 0.013

Lasso 0.002 0.998 9.22E-06 3.51E-09 0.100 0.016 1.26E-08 2.16E-04 0.087

Table 4: Summary of averaged execution time of classifiers over 30 iterations in seconds.

Dataset whole data PCA KPCA t-test (p < 0.05) PAM Lasso

1: Colon 17 10 18 13 8 72

2: Breast 56 38 54 42 12 258

3: Pancreatic 17 12 26 19 20 453

4: Cervical 43 28 29 33 43 106

5: Leukemia 225 185 184 195 28 680

6: Ovarian 51 25 39 44 19 865

7: Head & neck squamous

cell carcinoma 59 39 45 47 30 238

8: Duchenne muscular dystrophy 146 115 113 110 80 20100

9: HIV encephalitis 45 27 27 28 88 118
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Table 5: Comparison of performance of proposed criterion with the method proposed by Pochet et al. [17]: Averaged
test AUC(std) over 30 iterations and execution time in minutes

Data set proposed strategy Pochet et al. [17]

Test AUC time Test AUC time

high-grade glioma data 0.746(0.071) 2 0.704(0.104) 38

breast cancer II 0.6747(0.1057) 4 0.603(0.157) 459

Table 6: Summary of the range (minimum to maximum) of features selected over 30 iterations.

Dataset t-test (p < 0.05) PAM Lasso

1: Colon 197-323 15-373 8-36

2: Breast 993-1124 13-4718 7-87

3: Pancreatic 2713-4855 3-1514 12-112

4: Cervical 5858-6756 2-10692 5-67

5: Leukemia 1089-2654 137-11453 2-69

6: Ovarian 7341-7841 34-278 62-132

7: Head and neck squamous

cell carcinoma 307-831 1-12625 3-35

8: Duchenne muscular dystrophy 973-2031 129-22283 8-24

9: HIV encephalitis 941-1422 1-12625 1-20
p-value: False Discovery Rate (FDR) corrected.
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