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Multi-View Partitioning via Tensor Methods

Xinhai Liu, Shuiwang Ji, Wolfgang Glanzel, and Bart De Moeellow, IEEE

Abstract— Clustering by integrating multi-view representations
has become a crucial issue for knowledge discovery in hetero
geneous environments. However, most prior approaches asse
that the multiple representations share the same dimensign
limiting their applicability to homogeneous environments In this
paper, we present a novel tensor-based framework for integting
heterogeneous multi-view data in the context of spectral akter-
ing. Our framework includes two novel formulations; that is
multi-view clustering based on the integration of the Frobaius-
norm objective function (MC-FR-OI) and that based on matrix
integration in the Frobenius-norm objective function (MC-FR-
MI). We show that the solutions for both formulations can be
computed by tensor decompositions. We evaluated our methad
on synthetic data and two real-world data sets in comparison
with baseline methods. Experimental results demonstrate hiat
the proposed formulations are effective in integrating muti-view
data in heterogeneous environments.

Index Terms— Multi-view clustering, tensor decomposition,
spectral clustering, multi-linear singular value decompgition,
higher-order orthogonal iteration

I. INTRODUCTION

sources or from different feature representations. Coetpaith
the clustering that is implemented on single-view data, timul
view clustering is expected to yield robust and novel partit
results by exploiting the complementary information infefiént
views. One of the recent developments in clustering is tleetspl
clustering technique, which has seen an explosive pratifar
over the past several years [44]. Among many other factodd) s
as easy implementation and efficiency, one of the key adgaata
of spectral clustering is that it is based on the relaxatibra o
global clustering criterion (i.e., normalized cuts). Spalcclus-
tering has been widely employed in many real applicatioresnf
image segmentation to community detection. Although spkct
clustering [28] works well on single-view data, it is not Wwel
suited for the clustering of multi-view data, since it is éméntly
based on matrix decompositions.

Recently, several multi-view clustering algorithms haweeib
proposed [1], [3], [5], [25], [26], [37], [40], [47]. These uiti-
view clustering techniques have been shown to yield better
performance in comparison to single-view techniques. Hewe
prior methods have some limitations that prevent their wide
applicabilities, as we will discuss in the related work. Fatance,

In many real-world scenarios, each object can be describgaime techniques assume that the dimensions of the features i

by multiple sets of features. For example, in scientificréitare

multiple views are the same, limiting their applicability the

mining, both the textual content and the citation link bedwe homogeneous settings. Some other techniques only coatentr

articles are often used in the knowledge discovery prosg&s.

on the clustering of two-view data so that it might be hard to

In multiplex network analysis, we are given a set of multiplextend them to more than a two-view situation [3]. In additian
networks that share the same set of nodes but possess netwappropriate weighting scheme is lacking for these multipésvs

specific links representing different types of relatiopshbetween

although coordinating various information from them isoatse

nodes [29]. A particular instance of this scenario is theiaoc crucial step in gaining good clustering results [37], [4Aunified

network of university students, which may include symnzeli
connections from (i) Facebook friendship, (ii) pictureefrd-
ship, (iii) roommate relations, and (iv) student housimgeg
preference. These diverse individual activities resultmiultiple

framework that can integrate various types of multi-viewadia
lacking to date [26], [40].

Tensors are higher-order generalizations of matricesy Tihee
been successfully applied to several domains, such as ehemo

relationship networks among students. Such a learningasicen metrics, signal processing, Web search, data mining, sfigen

is called multi-view learning, since each feature set dbssra

computing and image recognition [10], [21], [22], [34], |38

view of the same set of underlying objects. A simple approa¢#5]. Traditionally, tensor-based methods have been usewbtel
to learn from these multi-view data is to learning from eachulti-view data [21], and tensor methods are very poweidols
view separately. However, such approaches fail to accoomt fo analyze the latent pattern hidden in multi-view data.sben

the complementary information encoded into different \@ew
Multi-view clustering refers to the clustering of the sarne¢ af
objects with multi-view features, either from various infation
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decompositions capture multi-linear structures in higreler
data-sets, where the data have more than two modes. Tensor de
compositions and multi-way analysis allow for extractirigden
(latent) components (cluster structure) and investigatiomplex
relationship among them.

In this paper, we propose a multi-view clustering framework
based on tensor methods. Our formulations model the multi-
view data as a tensor and seek a joint latent optimal subspace
by tensor analysis. Our framework can leverage the inherent
consistency among multi-view data and integrate theirimégion
seamlessly. Apart from other multi-view clustering stgigs,
which are usually devised for ad hoc application, our method
provides a general framework in which some limitations of
prior methods are overcome systematically. In particutar
framework can be extended to various types of multi-vienadat
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Almost any multiple similarity matrices of the same enstigre Kronecker product is denoted hy. For A € R/ veqA) =
allowed to be embedded into our framework. In addition, sinda;; as; - .. aU)T € R’! is the vector in which the columns of
our framework can obtain a joint optimal subspace, it can ¥ are stacked on top of each other. diags the column vector
easily extended to other related machine learning task$) as that is given by the diagonal of its matrix argument.
classification, spectral embedding and collaborativerifilge Our

framework consists of two novel algorithms: multi-view sfering Il. RELATED WORK

based on optimization integration of the Frobenius-norpeditve A Mylti-view clustering

function (MC-FR-OI) and that based on matrix integration in Bickel and Scheffere [3] propose a multi-view clustering

the Frobenius-norm objective function (MC-FR-MI). In peutar, - . .
MC-FR-MI can assign each view a suitable weight to boost thnéethod that extends-means and hierarchical clustering to deal

clustering. For each strategy, we provide the relevaniotelnased W'th data W'th two cond|.t|onally !ndependenjc VIEWS. A mult
. . . . . . view clustering strategy via canonical correlation anialy€CA)
solutions. Similar to other variants of PCA in machine |é&agn

o - .= is presented in [5]. This method assumes that the views are
applications [46], our strategy can be considered as a viel . .
PCA analysis. uncorrelated given the cluster label. The above algoritiomy

Figure 1 illustrates the potential benefit of multi-view stier- concentrate on the clustering of two-view data thus it migat

. . Lo hard to extend them to more than two-view situations. Mealewh
ing. The figure shows two groups of data points in a 3-D space

Suppose that due to limitations of the measurement systech (s Zlur[zs égaf'[sgrzullsz;tgp;lﬁﬁﬁil?vi;?Nasnye(:?rlilt I;:\Illljes\f[ver?:uarﬂ(;?ﬁo%?gh
as 2-D cameras in the real world), only 2-D projections ofdh@ . P g

. i o 3 y investigating multiple spectral dimension reduction. Astéring
points can b? opser\_/ed (such as, X-¥ prOJ_ectlon, Y°Z praject method based on linked matrix factorization is introduceduse
and X-Z projection in a 3-D X-Y-Z coordinate system). Each

of the three projections yields what we call a single-viev'zadamformmIon from multiple graphs in [41]. Zhaet al. [47] develop

set. The figure shows that separation of the two clusters tis r?OmuItl-wew clustering strategy via generalizing the nalized

. o cut from a single view to multiple views and subsequently
possible from any of the three projections separately. htewehe . L L
. - . . they build a multi-view transductive inference. In the abov
three views together do contain the information that wasere

in the original data. Combination of the three views does ng{gonthms, a common problem is that the analysis of intteren

automatically allow proper clustering. The middle rightripef relationship among multi-view data might be neglected. l&/hi

the figure shows the result of spectral projection by means 'O Our tensor based strategy, the multi-linear relatiopsiiong

multiple kemnel fusion (MKE). MKE does not yield satisfanto multi-view data is taken into account. Furt_hermore,_LcntgaI.
results here. In this paper we present a new class of algwifor propose a general model based on collective factorizatidhe

multi-view partitioning. The lower right part of Figure 1 ahs related matrices for clustering multi-type relationaladf7]. The

the results obtained by our MC-OI-MLSVD algorithm. The fate strfategy focuses on the clustering .Of multi-type mtetm_iaqlata
. . o objects, rather than on the clustering of the same objedtsy us
cluster structure hidden amid the multi-view data has bjdzeen . . .
multiple representations as in our research.
recovered here.
To the best of our knowledge, our work is the first unified ) ) o
attempt to address multi-view clustering within the framey B- COmmunity detection of multi-view networks
of tensor methods. The key contributions of our work can be Tang et al. propose the concept of feature integration to imple-
summarized as follows: ment the clustering of multi-view social networks [40]. Bdon
« We propose to model multi-view data as a tensor arf@odularity optimization, Muc_hat aI.[?Q] develop agenerallized
develop a new framework of multi-view clustering by tensoffamework of network quality functions that allow studies o
methods. community structure in a general setting encompassingarksv

« We present two novel multi-view clustering strategies witihat évolve over time, have multiple types of links (mulkxity),
their tensor solutions. and have multiple scales. These methods are applicabletifisp

« We systematically evaluate our methods on both a synthefPe of data with sparse links while our strategy is devised f
data set and two real applications. general data.

The rest of the paper is organized as follows. To start, Sec-
tion Il reviews the related work. Then, Section Il introdsc C. Kernel fusion and clustering ensemble
the concepts of spectral clustering. Next, Section IV prese Multiple kernel learning aims at finding a combination of
our tensor based multi-view clustering algorithms. Aftbatt kernels to optimize for classification or clustering [20R5].
Section V demonstrates the experimental results on syathebuch a solution might sound natural, but its underlying frin
data and practical applications. The related researctessave cipal is not clear [47]. In addition, the heavy computatioh o
discussed in Section VI. Finally, we conclude in Section. VIl their convex optimization makes them only applicable to lkma
Notation: To facilitate the distinction between scalars, vectorslatabases [25]. Meanwhile, with the recent research psegre
matrices, and higher-order tensors, the type of a given -quan tensor decomposition [32], our strategy has the poteiia
tity will be reflected by its representation: scalars areotieth tackle large-scale databases. Clustering ensemble iskatson
by lower-case letterga,b,...;a,8,...), vectors are written as as clustering aggregation or consensus clustering, whtelgriates
italic capital§A, B, ...), matrices correspond to boldface capidifferent partitions into a consolidated partition with ansensus
tals (A,B,...), and tensors are written as calligraphic letterfunction [1], [37]. However, clustering ensemble methodsally
(A, B,...). This notation is consistently used for lower-order partsoncentrate on single-view data to overcome the drawbadk of
of a given quantity. For instances;, a;; and a;;;, denote an means. In fact, clustering ensemble is embedded into categty
entry of a vectorA, a matrixA and a tensor4, respectively. The to facilitate the final partition.
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Fig. 1. Comparison of single-view projection versus muiéw projection.

D. Tensor based clustering vertexv;, defined as

. . . N
Sun et. al [38] introduce a dynamic tensor analysis (DTA) d; — Zsij’ 0

algorithm and its variants, and apply them to anomaly dietect
and multi-way latent semantic indexing. It seems their teltisg
method is designed for dynamic stream data. Dunkeivgl. [10] is the sum of all the weights of edges connecteduio The
apply PARAFAC decomposition for analyzing scientific pehli degree matribD is a diagonal matrix containing the vertex degrees
tion data with multiple linkage. Seleet al. create a new tensor di, ..., d on the diagonal. It follows from the spectral embedding
decomposition called Implicit Slice Canonical Decomposit formalism [28], [30], [35] that the Laplacian matrix is defuh as
(IMSCAND) to group information when multiple similaritiere L = D — S, and the normalized Laplacian matrix, corresponding
known [34]. The last two ideas that integrate multi-viewadas a to the normalized cuts (Ncut), is defined as

tensor are similar to ours. But our methods rely on a Tuckee-t
tensor decomposition. Furthermore, in these methodsjrajles
view data are considered equally important, while we widgant
a technique that compute weights for the different views.

J=1

Lneu=D""?LD™? =1 —sy, @)
where Sy is the normalized similarity matrix and defined as

Sy =D~ /25D 1/2, (3)

Ill. SPECTRAL CLUSTERING The matricesSy andL nqy have the same eigenvectors, and their

Spectral clustering was originally derived based on rdlara €igenvalues are related as) =1 — Abww) whereA(S¥) and
of the normalized cut formulation for clustering [35]. Inrpeular, Albww) are the eigenvalues f@y and Ly, respectively.
spectral clustering involves a matrix trace optimizationkpem
[28], [30]. We show in this paper that the spectral clustgrin . . .
formalism can be extended to deal with multi-view problem’g" Single-view spectral clustering
based on tensor computations. We first consider spectral clustering in the single-viewtisgt

Given a set ofN data points{z;}}, wherez; ¢ R? is the SupposeU € RV*M is the relaxed assignment matrix, wheve
ith data point, a similaritys;; > 0 can be defined for each pairis the number of data points and is the number of clusters.
of data pointsz; andx; based on some similarity measure. ArThe spectral clustering problem can be expressed as
intuitive way to represent this data set is using a graph (V, F) ) T
in which the verticesi” represent the data points and the edges min tracgU” L neu),
ei; € € characterize the similarity between data points quantified stulu=1.
by s;;. Usually, the similarity measure is symmetric, and the grap
is undirected. The affinity matrix of the graph is the matrixS It follows from the Ky Fan theorem [31] that the optimal sdadut
with entry in row: and column; equal tos;;. The degree of the to the optimization problem in (4) is given by the dominant

4
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eigenvectors oL ¢ Considering the relationship betwe&gp, K
and L neut, Spectral clustering can equivalently be formulated as I A
1
ij'ixtrace{UTSNU),
®)
stufu=1. K
Since Sy is positive semi-definite, spectral clustering can also 1
be formulated as the following Frobenius norm optimization
problem: R
2 Ay
max UL SyU|| 7,
ax U Sy U © :
stufu=1.

L . . . Fig. 3. Matrix unfolding of a third-order tensor
The objective functions in (5) and (6) are different, butytheve 9 9

the same solution, namely, the columns of the optimal madrix

span the dominant eigenspaceS3yf.
V. MULTI-VIEW SPECTRAL CLUSTERING VIA TENSOR

o : METHODS
B. Multi-view spectral clustering

We propose different strategies for the integration of iruiéw
data in the context of spectral clustering.

1) Multi-view clustering by trace maximization (MC-TR-I):
The first strategy is to add objective functions of the typé5p
associated with the different views. We consider:

Following the two multi-view clustering strategies dissed
above, we present the tensor-based solutions in this Se€am-
pared to the single-view spectral clustering, which is edhby
matrix decomposition, we formulate our multi-view cluster by
tensor decomposition. The overview of the tensor-basedhadet
is depicted in Figure 2. As shown in the left part of Figurehg t
. goal of single-view spectral clustering is to find an optifaaént

subspace from single-view data. In contrast, with mukéwidata,
max > tracgU” S{'U) = tracgU” () SyHL), (7) We want to obtain a joint optimal subspace with the aid of dens
k=1 k=1 methods.
stufu=1,

where S%“) is the normalized similarity matrix for théth view A. Background on tensors

andU is the common factor shared by the views. This correspondsin this section we provide some basic background on tensors
to Multiple Kernel Fusion (MKF) with a linear kernel [20], se and low multilinear rank approximation. We refer to [6]-[82],
Section V-A. [24], [36] for more details. A tensor is a multi-way array. erh
As an alternative, we may optimize a weighted combination efder of a tensor is the number of modes (or ways). A first-
objective functions, where the weights are learnt from taad order tensor is a vector, a second-order tensor is a matdxaan
K K tensor of order three or higher is called a higher-orderderse
Talk) T (k) only discuss third-order tensor methods that are relevarmut
max I;lwktrace(u SyU) = mgvxtrace(u (; w, Sy V), oroblem.
T Matrix unfolding is the process of re-ordering the elements
stUTU=1, W=>0and|Wllr = 1é of a tensor into a matrix. The mode-mode2 and mode3
®  ratrix unfoldings of a tensord € RI*/*K are denoted by
2) Multi-view clustering by integration of the Frobenius-A(l),A(Q) and A(S), respectively. The definition follows from
norm objective function (MC-FR-OIl):Note that all terms Figure 3.
in the objective functionZkK:1 E%ZI(UTSE\];)U)mm in (7) A tensor can be multiplied by a matrix as follows. Consider
are nonnegative, sinc«ésg\’f) is positive (semi)definite,; < matricesB € R"'*/, C € R7**7 andD € R¥*X | then the
k < K. Instead, we might consider the optimization ofnode-1 productd x; B, mode-2 productd x, C and mode-3
S 2%2:1(UT5§5)U)127@1m2- This corresponds to productA x; D are defined by

adding objective functions of the type in (6): I
K “ (Ax1B)i . = Z a;jkbiyi, Vit, gk,
max utsiPuz, i=1
X ; VT Sy Ul @ -
stufu=1. (Ax2Cijip = .Zl%kcjlj’ Vi, g1, k,
J=
3) Multi-view clustering by matrix integration in the K
Frobenius-norm objective function (MC-FR-MIAs counterpart (Ax3D)jjk, = Z aijkdi g, Vi, g, ki,
of (8) we consider: k=1

respectively. The Frobenius norm gf is defined by

K
max U (3" w SHU|1%, .
AT ];1 N (10) IAlr = afn)®.

st.UTU=1, W>0and W]z = 1. ik
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Data source 1 Data source 2 Data source V

4 J 4 J

Data source
g (1) 2 I V.
S s@ s¥
S Similarity matrix 1 Similarity matrix 2 Similarity matrix V
Similarity matrix @ @ @
Matrix based
spectral analysis Similarity tensor
g
Subjects
Optimal @

subspace

Tensor based
spectral analysis

Final partition Subjects

Optimal
subspace

Cluster label

Objects
SHEE

Final partition

Spectral Clustering of
single-view data

Cluster label

Obijects
I@I@a

Multi-view clustering
by tensor methods

Fig. 2. Comparison between single view (left) and multiavi@right) spectral clustering.

Multilinear singular value decomposition (MLSVD) is one ofmultilinear singular vectors afl. Contrary to the matrix case, the
the possible higher-order extensions of matrix singulduesa approximation is not optimal in general. However, the regil

decomposition (SVD) [7], [42], [43]. It decomposek as often fairly good and MLSVD truncation is easy to implement.
While in the matrix case the sum of the squared discarded
A=Bx1UxzVxzW, (11)  singular values give the approximation error, in the tersase

the discarded multilinear singular values yield an uppemioioon

in which the factor matricet) € R™>*!, v € R’/ andW ¢ t 7]
it [7].

RX*K are orthogonal and in which the core tengog R </ <K _ _ o
satisfies “all-orthogonality” and “ordering” constraintsee [7] There exist a number of algorithms for the actual optimaati

The factor matrices can be thought of as matrices of pricip® (12)—(13). The most popular technique is the higher-orde
components along each mode. The elements determine the orthogonal iteration (HOOI), which is an algorlthm_of thgeeﬂ
interaction of the factors in the different modes. The neasi hating least-squares (ALS) type [8], [23]. In each itemattep,

U,V and W can be computed as the matrices of left singuldp€ estimate of one of the matricesV, W is optimized, while
vectors ofA ;) € RVVK A € R7<KT andA ) € RE*17, the other two are kept fixed. It follows from
2
\

respectively. The columns &, V andW are the mode-1, mode- T T T2 T
2 and mode-3 singular vectors, respectively. The singuléues A > U™ X2 VI xs W[ p = U7 (A (V@ W)l
of the unfoldings are the mode-1, mode-2 and mode-3 singulhs the optimalU, given V and W, is determined by ther;-
values, respectively. o dimensional dominant subspace of the column spade gf(V @
Consider the following approximation problem: W). The optimization with respect t% and W is analogous.
In practice the convergence is observed to be linear, with a
convergence coefficient that is larger as the problem isebett
in which now U € RI*Ri v € R7*F2 and W e RE*Rs conditior_led in the sense of [12]. Alternativ_e algorithm_s Hne
are column-wise orthonormal Witk < 7, Ry < J, Ry < K, trust region method bas_ed on _truncated conjugate graahe{ms]_,
and in whichB3 € RF1XF2xRs_The triplet (Ry, Ry, Rs) is the .the qguasi-Newton algorithms in [33] and the Newtc.m. glgamh
trilinear rank of the approximénd and (12) is7 a éase of what i [11], [19]. Truncated MLSVD is often used as initial value
. ST Kumerical experiments in [17] suggest that, if there is a gap
known as low multilinear rank approximation. It can be ShOWBetween theR,th and the(R, + 1)th moden singular values
that .th_e minimization problem is equivalent with the foliay n=1,2,3, onencan expect algorithms to find the global optiml;m.
maximization problem (8], [23]: In the same paper it is proved that, if there is a gap and there
are nevertheless several local optima, then these are tloisein
terms of the cost function value and in terms of the matride¥
andW. The absence of a gap may indicate the presence of several
Analogous to low-rank matrix approximation, one may corlocal optima for which the cost function value is close. Rece
sider truncated MLSVD for solving (12)—(13), i.e., one mayesearch includes the generalization of numerical algmst for
take the columns otJ,V,W in (12)—(13) equal to the dominantlow-rank approximation of large matrices to low multilimeank

(14)

min ~“Bxi1UxsV x3W|? 12
U,V,W,BHA x1 U x2V x3W|%, (12)

2
max ||A x; UT xo VI xa W . (13)

WV
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approximation of large higher-order tensors [32]. all entries of P(U) are nonnegative. Gived, the optimalV is
just P(U) scaled to unit-norm, and hence satisfies automatically
B. Tensor construction .the nonnegatiyity cons.traint. The qyerall soluti.op canbmputed

in an alternating fashion by additionally deriving from (B)at

_Th((ejret ar:a si\éeral to ptlons_ for co?strl:c;mbg attenks_,or ftrc_’ma']g'mthe optimalU, ?iven W, follows from the dominant eigenspace
view data. In [15], a tensor is constructed by stacking thie of Zszl wkS(k . The computation of?(U) requiresO(2N?K)

by-feature matrices derived from multiple views in a tenaer f h N . K s g . 9
shown in the left part of Figure 4. This construction is On|¥ops,t e construction o), _; xSy~ also require(2NK)

. . . 2
applicable to the scenario of homogeneous data sourcese Wige lops and the computation of its eigensp&@N M*) flops. The

dimensions of different feature spaces are the same. Inrfesty pseudo-code is as follows.
multi-view applications deal with heterogeneous data cesiin - .
which the dimensions of various feature spaces are differeft/9orthm IV:2: MC-TR-I-EVDIT (
For inst-ance, in the applicat.ion to scient.ific. publicatioralgsis step 1. Initialize e.g. by MC-TR-I-EVD
in Section V-D, the dimension of the citation feature spage iwhile <!convergence-

8,305 while the dimension of the text feature space is maxa th iteration step 2.1. Obtait(U) o
600.000. iteration step 2.2. Calculate the weighting vectr

. . . . do { by scalingP(U) to unit-norm
Consequently, in this paper we make a construction that is iteration step 2.3. Obtain the relaxed assignment métrix

independent of data dimension, thereb)_/ enabling the mtmgr from the dominant eigenspace ozi;(wk)sx”
of heterogeneous data sources. We will work with the similarstep 3. Normalize the rows &f to unit length
ity tensor A € RNXNXK gptained by stacking the similarity step 4. (;alculate the clu_stm‘x with k-means orlJ
. 1) «(2) (K) . . . . return (idz : the clustering label
matricesSy’, Sy , - ,Sy ~ associated with the different views.
The construction of the similarity tensor is illustratedire right
part of Figure 4. Since the similarity of each view is compute
in a different space, normalization is required. In thispesg, D. MC-FR-OI
our definition of similarity matrix in (3) may be regarded as a We first discuss the objective function integration apphofoc

D <@ )
SV, S, ., S, M)

normalization step. multi-view clustering. The problem in (9) can be written as
2
max [ A x1 U" xo UT x5 1z, (16)
, elements , N Objects U
8| Oblect | ik 8| simitarity |4 view . . .
8| S in which U € RY*M has orthonormal columns. If we take into
,_ : account the equivalence between (12) and (13), the probéem c
P «I‘f >, S be visualized as in Figure 5.
2| feature | [w—view2 o Similarity | Ly ey 9,
o Matrix [~ g Matrix

[ View 1 [ View 1 Identity matrix

W feature N Objects
elements K

The formulation of object-feature-view tensor The formulation of similarity tensor K 1

K Views

. . . . PR . . N Obje T ted T M Subj;
Fig. 4. Comparison of different formulations of multi-vielarning using “ fects Decomposition. P N Objects
tensor methods. £ y £ " £
o Tensor o M Core 3
z . Tensor =
Joint optimal subspace
C. MC-TR-I Fig. 5. lllustration of multi-view clustering by objectiienction integration.

The column space of the optimal mattikin (7) is the domi-
nant eigenspace (EkK:l Sg\’f). The pseudo-code is as follows.  As explained in Section IV-A, an approximate solution to)(16
can be obtained from truncated MLSVD. Heté,is determined

Algorithm IV.1: MC-TR-I-EVD (s, s®, ) p) by the M dominant mode-1 singular vectors 4f i.e., it follows
from the M dominant left singular vectors oA ,,. Because of
comment: M is the number of clusters the partial symmetry ofd, A, yields the samd&). We call this
step 1. Build a combined similarity matrig" | s mthod MC-FR-OI-MLSVD. Although the approximat?on i§ not
step 2. ObtairJ by eigenvalue decomposition optimal, the results are often quite good and the algorithesasy
step i- (N:olrmlallze :]he fIOWSk&j tQhUE't length " to implement. The computational cost is low, namelys®{/2)
step 4. Calculate the clustefx with k-means o flops. The pseudo-code of MC-FR-OI-MLSVD is as follows:

return (idx : the clustering labgl

Algorithm IV.3: MC-FR-OI-MLSVD (S(),S® .. s(K) prp)

The problem in (8) can be written as:

max P(U) - W, comment: M is the number of clusters
u,w (15)  step 1. Build a similarity tensarl
st UfU=1 and IWp =1, step 2. Obtain the unfolding matri& ;)
step 3. ComputéJ from the subspace spanned by
o T (1) T(K) the M dominant left singular vectors &%)
where P(U) = (tracgU SN U) T .trace{U S{V U)> Note step 4. Normalize the rows &f to unit length
that, compared to (8), the nonnegativity constraintidrnas been step 5. Calculate the clustétx with k-means orlJ

dropped in (15). Since(" is positive (semi)definitel < k < K, ~ "etum (idx: the clustering labg|
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We can also look for the optimal solution in (16), for instancin (17) is not affected by the sign 6f/, we can assume that all
by means of the HOOI algorithm. The way one alternates betwetne weights are nonnegative.
conditional updates in HOOI makes that the iteratesUoand
V are different, despite the fact that is symmetric in its first
two modes. Upon convergence, the iterates Bbrand V will
match again. Using the estimate Of for updating in both the . . -
first and second mode may lead to divergence [8]. The matlyl‘fg'ghts of the different views.
W is not updated but set equal to the identity matrix here.
The resulting algorithm, called MC-FR-OI-HOOI, is presshis
Algorithm 1V.4 below. The computation of the product in easfth

If we take into account the equivalence between (12) and (13)
the problem can be visualized as in Figure 7. The maltfix
represents the optimal subspace and the vedtowields the

Weighting Vector

K
the two steps require8(2N2 M K) flops. The computation of the ki S rereor st L w ]
subspace additionally requires (K?2M?) flops if N > KM P Decomposition g m N Oblects
. 8 milar —- 3 8,
and OQN2K M) flops if N < KM [13]. 5 gul W[ ] 1]
=

Core Tensor
Joint optimal subspace (MxMx1)

Algorithm IV.4: MC-FR-OI-HOOI &™), 52 ... s nr)
Fig. 7. Multi-view clustering by matrix integration

step 1. Build a similarity tensad

step 2. Obtain the unfolding matricég ), Ay andA s
step 3. Obtain an initiaUy andVo by MLSVD

while <!convergence>

i/ierat(is/n gfg) 4.1U;41 in dominant subspace of Using the HOOI algorithm as described earlier, the pseude co
(1) (Vi FR.MI .
do iteration step 4.2V;41 in dominant subspace of of MC-FR-Ml is as follows:

AU ®1)

comment:i is the counter of iteration

step 5. Normalize the rows &f to unit length
step 6. Calculate the clust@x with k-means orlJ
return (idx : the clustering labgl

Algorithm IV.5:  MC-FR-MI-HOOI-DirecT (S(V), S, ..., U Ar)

Both MC-FR-OI-MLSVD and MC-FR-OI-HOOI imply a joint  step 1. Build a similarity tensast
matrix compression, as shown in Figure 6. In the case of lowtep 2. Obtain the unfolding matricés ), A2 andAs)

multilinear rank approximation, théM x M) frontal slices of  Step 3. Obtain an initiaUo, Vo andWo by MLSVD
while <!convergence>

the core tensor are not necessarily diagonal. iteration step 4.1U,1 in dominant subspace of
_— Ay (Vi ®W;)
Identity matrix . ( ) N . .
K do iteration step 4.2V, in dominant subspace of
o Ay(W; ® Uit1)
K Views iteration step 4.3W;; in dominant subspace of
oects Tascomposiion. o . Ay (Uit @ Vig)

2 o i) N Objects e . .

g > M % comment:i is the counter of iteration

4 2 m Core g step 5. Normalize the rows ofJ to unit length

- Joint opth step 6. Calculate the clust@ix with k-means orlJ
Tensorization Joint optimal subspace Tensorization . .
return (idz : the clustering label
Matricization Matricization
T
R
,_ Joint matrix

@ com;ress‘ion B(K)

gl —-

& | "o’ |+ B®

«S{H . .« . . . . B
N Objects B® An equivalent but more efficient implementation is obtained

_ _ ‘ o by taking into account thaWV is not a matrix but a vector.
Fig. 6. Joint matrix compression in MC-FR-OI. The pseudo code is given as Algorithm IV.6. The maty, |

in step 4.1 of Algorithm IV.5 is just equal to the product
(. SM (Wi 1)) V. Like-wise, the matrixV; 1 in step 4.2
E MC-ER-MI is equal to(> 7, S™ (Wi 1),)U;. 1. Alternating until conver-
. . gence between steps 4.1 and 4.2 of Algorithm V.5 yields &mees
The problem in (10) can be written as matrix for U and V. The scheme is known as the Orthogonal
Iteration for the computation of the dominant eigenspace of
A7) K, S™ (Wi 1), [13]. This yields step 4.3 in Algorithm V.6,
st.UTu =1, |\W||2F =1. where one may compute the eigenspace by an algorithm of
choice. Step 4.1 in Algorithm V.6 corresponds to the corapah
Note that, compared to (10), the nonnegativity constramniio  of (A x1 U;) x5 U;, the cost of which is dominated by the
has been dropped in (17). Sin&s is positive (semi)definite, computation ofA x; U, since M < N. This COStsO(2M N2 K)
UTSE\’f)U is positive (semi)definite] < k < K. Theorem 1 in the flops. The cost of the second stepd$2N? K) flops. The cost of
Appendix now implies that, for any, the entries of the optimal the third step is G(V A1 ?) flops. Hence, the overall computational
W have the same sign. Since the value of the objective functicost is Og(M + 1)N2K) flops per iteration [13].

2
max || A x UT s UT s W15,
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Algorithm IV.6:  MC-FR-MI-HOOI (S, 8., (K ar) « Adac\Vote [1]: Ayad & Kamel propose a cumulative vote
- — weighting method (AdacVote) to compute an empirical prob-
step 1. Build a similarity tensa#l bility distributi izina the clusteri bl
step 2. Obtain the unfolding matricds ), A andA s, ability distribution summarizing the clustering ensemble
step 3. Obtain an initiaUg by MLSVD o CP-ALS [4], [14]: The CANDECOMP/PARAFAC (CP) de-
while <!convergence> composition is usually solved by an alternating least segiar

iteration step 4.1. Calculaté/; 1 as the dominant left singular

vector ofA s, (U; & Uy) (ALS) algorithm, for which we use a tensor toolbox for

MATLAB [2]. We adopt the default initialization and pa-

do { iteration step 4.2. Compute a new integration maSix ; ) - .
as K (Wi 1), S rgmeter sett.mg as d_eflned in the toolbox itself.
iteration step 4.3. Obtaity;; by eigenvalue decomposition & o Linked matrix factorization (LMF): In Tang's work [41], a
comment:i is the counter of iteration guasi-Newton method named Limited memory BFGS (L-
step 5. Normalize the rows & to unit length BFGS) is adopted for the optimization of LMF. We imple-
step 6. Calculate the clustéix with k-means orlJ ment this algorithm with the aid of an optimization toolbox
retumn (idz : the clustering labgl for MATLAB named Poblano [9]. Since LMF is sensitive
to initialization, we initialize it by MLSVD that usually
Remark 1:In the MC-OI framework we discussed two vari- provides a good initialization. In addition, the optimimat
ants, namely MC-FR-OI-MLSVD and MC-FR-OI-HOOI. In the parameters are set as the default setting of the toolbox.

MC-
The

MI framework we have only discussed MC-FR-MI-HOOI.Fyrthermore, we initialize both MC-FR-OI-HOOI and MC-FR-
reason is that tests indicated that here mere truncatitve  \j-HOOI by truncated MLSVD. We initialize MC-TR-EVDit

MLSVD, in which in the third mode only one vector is retainedyth the result of MC-TR-I-EVD (MKF).
often yields results that are not satisfactory.

In

B. Performance measures

Regarding clustering evaluation, the data sets used in our
this Section, we report experimental results of the psepo experiments are provided with labels. Therefore the clirgje

V. EXPERIMENTAL EVALUATION

multi-view partition strategies in comparison with baselimulti- performance is evaluated comparing the automatic parsitieith

view

A. Baseline methods

clustering methods. the labels using Adaptive Rand Index (ARI) [16] and Normediz
Mutual Information (NMI) [37]. To evaluate the ARI and NMI
performance, we set the number of clusters for journal data t
M =17 and M = 14 for disease data.

We compare with the following six baseline methods. In order to overcome the drawback of tkemeans algorithm

Multiple kernel fusion (MKF): Joachimet al. [20] integrate which is sensitive to various initializations, we adopt teenbi-
different kernels by linear combination for hybrid cluster.  nation of clustering ensemble of SA method &aaheans for both

The similarity matrix defined in (3) can be regarded as spectral clustering and multi-view clustering. In partizuwe first
linear kernel as well. The clustering result of MKF is equalepeat each clustering method 50 times and use the SA method
to our MC-TR-I-EVD since the MC-TR-I-EVD is actually on the clustering ensemble to obtain the final consensuiigart

the average combination of multiple similarity matrices, sConsequently, the final partition obtained by each clusteri
we combine them for the comparsion. algorithm is unique.

Feature integration (FI) [40]: With the spectral analysis o

each view, their structure features are extracted and th&p Experiment on a synthetic multiplex network

integrated, and SVD is then implemented to obtain the cross- . ) . )
view principal components for clustering. We first evaluate and compare different clustering strategi

Strehl's clustering ensemble algorithm (SA) [37]: Strehl &PPlied to the synthetic multi-view data. The syntheticadags
Ghosh formulate the optimal consensus as the final partitidif€& communties (clusters), which have 50, 100 and 200 mem-
that shares the most information with the partitions dferS respectively [39]. We generate various views of imfivas

all single-view data to combine. Three heuristic consens@§10Nd these 350 vertices, that is, each view forms a netaik t
algorithms (cluster-based similarity partition algonthC- shares the_ same vertices but has a dn"fe_rent |nteract|dnrpat_
SPA], hyper-graph partition algorithm [HGPA] and metalOr €ach view, group members connect with each other fatigwi

clustering algorithm [MCLA]) based on graph partitioning® fandomly generated within-group interaction probapilithe
are employed to obtain the combined partition. In this Worlyjteractmn probability differs with respect to groups astishct

the ensemble consists of single partition from each vieve DYIEWS- After that, we add some noise to the network by rangloml
to the low computational costs of these techniques, it ikequ

cconnecting any two vertices with low probability. The diffat
feasible to use a supra-consensus function that evaluthtes”

iews demonstrate different interaction patterns. In thislti-
three approaches against the objective function and picd¢§W network that is called a multiplex network accordind28],
the best solution for a given situation [37]. Therefore vihic V& Construct four interaction matrices, each of whose efsne
exact heuristic consensuses algorithm is adopted relies B intéraction strength of a pair of vertices. The visulan of
each data. In our experiments, MCLA is adopted for all thréif€ four adjacent matrices is shown as Figure 8.
data sets since it obtains the largest ANMI value for each!" Table I, we list the clustering evaluations of spectral

data respectively. The code of SA is available by the authdf4!Stering for each single-view data as well as those of imult
1 view clustering methods. First, it is clear that most muiéw

clustering results are better than single-view clusteri@gults.

Ihttp://www.lans.ece.utexas.edu/ strehl/soft.html This could be easily explained by the patterns shown in Ei@ur
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B;. The ranking of these optimal weights is generally consiste
with the ranking of clustering performance. As shown, thp to
two largest coefficients correctly indicate the top two tmsgle-
view data @2 and As). Although the ranking of the top 2
weighting coefficients is not exactly consistent with thekiag

of the corresponding performance, their coefficients aree mear
(0.5288 in A2 and 0.5643 in A3).

D. Application on scientific documents analysis

In this Section, we apply our algorithms to the scientific
analysis of the Web of Science (WoS) journal set. Our ohjecti
is to map these journals into different subjects using ehirsg
algorithms.

1) Data description: Historically, bibliometric researchers
have focused solely on citation analysis or text analysis,not
on both simultaneously. Recently, many researchers havéedp

Fig. 8. Visualization of the adjacent matrices of a synthetiultiplex
network.

Methods NMT AR text mining and citation analysis to the journal set analy$he

S-AL 0.7605  0.7995 integration of lexical and citation information is a promip
Single View  S-A2 0.8928  0.9192 :

SA3 07198  0.8196 stratggy towards better mappings [25]. We adopt a .data _set

S-A4 0.6318  0.5599 obtained from the WoS database by Thomson Scientific which

MC-FR-OFMLSVD _ 0.9321 _ 0.9508 i ; i

MO FROLHOO!I . 09241 ©.9509 contains articles, letters, notes and reviews from thesy2a02
Multi View  MC-FR-MI-HOOI 0.9431 0.9670 till 2006. To create a balanced benchmark data for evaluatio

MC-TR-I-EVDit 0.9633  0.9717 we select seven categories consisting of 1424 journals. The

MKF 0.9156  0.9429 . . S

Al 08893 09243 titles, abstracts and keywords of the journal publicati@me

SA 0.9251  0.9540 indexed by a Jakarta Lucene based text mining program using

AdacVote 0.8951  0.9400 trolled bul Th iaht lculated bvr f

CPALS 05191  0.1274 no controlled vocabulary. The weights are calculated byr fou

weighting schemes: TF-IDF, IDF, TF and binary. Therefore, w
have obtained four data sources as the lexical information o
journals. These four kinds of text data are directly repmees

as similarity matrices. At the same time, four kinds of aiat
data represent link-based relationships among journalsanse-
quently, from them, we construct corresponding affinity nicas,
The first view of the network (left above) only shows one grougdenoted as cross-citation, co-citation, bibliographiaptimg and
and the fourth view (right below) involves another group twit binary cross-citation. The details of journal data are gmésd in
the other two groups hidden behind the noise. Thus, usirglesinSupplementary material 1

view is unlikely to recover the inherent cluster structuféis We implement the proposed tensor based multi-view clusgeri
phenomenon is also validated by the low NMI as well as ARhethods to integrate multi-view data on journal data. Tduata

of these two views. Applying multiple views helps reduce thghe performance, we also apply six popular multi-view @usig
noise and uncover the shared cluster structure. Seconghaceth methods mentioned in Section V to integrate multi-view data
with the five other baseline multi-view clustering stragsgiour To verify whether the integration of multi-view data by tens
tensor based clustering methods perform better. In péaticu methods indeed improves the clustering performance, we firs
MC-FR-OI-MLSVD, MC-FR-MI-HOOI and MC-TR-I-EVDit are  systematically compare the performance of all the indizidiata
obviously superior to others based on both NMI and ARI evalgources using spectral clustering. As shown in the left pért
ations. LMF performs wrongly on this data, and thus we orsit itTable lI, the best spectral clustering is obtained on TFiifa
comparison. (NMI1 0.7280, ARI 0.6601).

To evaluate whether the optimized weights assigned toesingl Next, we implement our tensor based multi-view clustering
view data are correlated with their clustering performanee on different types of multi-view data integrations detdilan
compare the ranking of weighting coefficients obtained by-MGSupplementary material 2 Text data and citation data are
FR-MI-HOOI with the ranking of the corresponding clusteyin heterogeneous data because they are generated from various
performance in Table II, where we list these weighting festofeature spaces (see clustering results of their integrafiom
as o; and we also list weighting factors by MC-TR-I-EVDit asTable 2 to Table 4). Multi-view data solely from text or citat is

homogeneous because it shares the same feature spaceusee cl
Sources 5, o Ranking ofa;  Performance ranking tering results of homogen_eoys integration of both text diata
AL 05036 0475 3 — Table 5 to Table 7 and citation data from Table 8 to Table 10).

TABLE |

EVALUATION OF CLUSTERING METHODS ON A FOUR VIEW SYNTHETIC MUITIPLEX NETWORK.

A2 0.4506  0.5288 2 1 As shown, the best multi-view clustering performance isoted
¥ e 4 z from MC-FR-MI-HOOI by integrating two homogeneous text
TABLE I data of TFIDF and IDF (NMI 0.8201, ARI 0.8229). Moreover, we

also find that the clustering performance of different inatign
schemes varies significantly based on the choice of sirgle-v
data. This implies that to some degree, the multi-view eltsg

THE WEIGHTING COEFFICIENTS OF MULTHVIEW DATA BY MC-MI-HOOI IN SYNTHETIC DATA.
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TFIDF spectral clustering (ARI=0.6601; NMI=0.7280) MC-OI-HOOI clustering (ARI=0.7262; NMI=0.7605)

performance depends on the quality of the single-view da
involved. For instance, in the best multi-view clusteringse
above, TFIDF and IDF are the two single-view data sourceb wi
the two best clustering performance.

Afterwards, we also investigate the performance of intégga
all single-view data using all compared multi-view clustgr
presented in the right part of Table Ill. In particular, of tie
methods we compared, the best performance is obtained by
MC-FR-OI-HOOI method (NMI 0.7605, ARI 0.7262).

The comparison between the ranking of weighting coeffisien
by MC-MI-HOOI with the ranking of clustering performance is
shown in Table IV, where we list these weighting factorseas
and we also list weighting factors by MC-TR-I-EVDit a%. 1
Because text and citation data are heterogeneous dataespue
separately compare each integration of each type of dats.éwin

0

100 100

True Class
True Class

200 200

250
6 7 1

250

6 7

3 4 5 3 4 5
Clustered Class Clustered Class

Fig. 9. Confusion matrices of journal data obtained by spéaiustering

feature space. In general, the ranking of these optimal M®iig
consistent with the ranking of their individual performand-or
instance, within the citation feature space, the top twgdsr
coefficients correctly indicate the top two best individwklta

on TFIDF (left) and MC-FR-OI-HOOQI (right). The numbers ofister labels
are consistent with the numbers of ESI journal categoriesach row, the
diagonal element represents the fraction of correctlytehesl journals and
the off-diagonal non-zero element represents the fractibmis-clustered
journals. (Data source: Thomson Reuters, Web of Science)

source (co-citation and cross-citation). In addition, vea see
although the values of these weighting factors by MC-FR-MI-
HOOI are different from the counterparts by MC-TR-I-EVOlg
ranking of weighting factors by MC-FR-MI-HOOI is the same tahat may affect the evaluation, we only keep the diseas¢héva
that by MC-TR-I-EVDit. 11 to 40 relevant genes. This step results in 14 genetic sisea
In Figure 9, two confusion matrices of journal data are depicand 278 genes. Because the present paper focuses on non-
ed to illustrate the partition difference between our mukw overlapping (“hard”) clustering, we additionally remové denes
clustering result (by MC-FR-OI-HOOI) and the best singiew that are relevant to multiple diseases and 17 genes whose ter
clustering result (on TFIDF data). The values of the masricesectors are empty for one of these ten vocabularies. Theinamga
are normalized according t8;; = C;/T;, whereT; is the total 245 disease relevant genes are clustered into 14 clusters an
number of journals belonging to standard label of ESI categobiologically evaluated by their disease labels. For eadabulary
i and C; is the number of thesé; journals that are clusteredbased gene-by-term data source, we create a similarityixmatr
to classj. The results show that the intuitive confusion matricegsing the value of the cosine similarity for two vectors. Tetails
correspond to the numerical evaluation results. For instathe of the disease gene data analysis are present8dpplementary
quality of clustering obtained by MC-FR-OI-HOOI (NMI 0.760 material 3.
ARI 0.7262) is higher than that of spectral clustering onOFIIn At first, as shown in the left part of Table V, the best clustgri
the confusion matrix of spectral clustering on TFIDF, 15rf@ls  performance of individual data sources is obtained on LDDB
belonging to Agriculture Science (Nr. 1) are mis-clusteted text mining profile (NMI 0.7088, ARI 0.5942). Next, we also
Environment Ecology (Nr. 3), and 60 journals are mis-cleste jmplement 45 types of integration of multi-view text mining
to Pharmacology and toxicology (Nr. 7). Meanwhile, by MC-FRyata for clustering. The clustering performance is preskrin
OI-HOOQI, the number of Agriculture Science (Nr. 1) journalsypplementary material 4 from Table 13 to Table 15. As
mis-clustered to Environment Ecology is reduced to 7, ard thhown, the best clustering performance is obtained by MGFR
number to Pharmacology and Toxicology is reduced to 26.  HOOI through integrating multi-view data by GO, MeSH, OMIM,
NCI, eVOC, KO, LDDB and MP (NMI 0.7687, ARI 0.6364).
E. Experiment on disease gene clustering Afterwards, we also investigate the clustering perforneané

Text mining helps biologists automatically collect diseas integrating all single-view data using all the multi-viewstering
gene associations from large volumes of biological literat Methods presented in the right part of Table V. In particular
Given a list of genes, we can generate a gene-by-term matdifiong all the relevant clustering methods, the best petdoce
by the retrieval from the medical literature analysis arieeal IS still obtained by the MC-FR-OI-HOOI method (NMI 0.7732,
system online (MEDLINE) database. We can also obtain mulfiR! 0.6473) as analyzed in the former experiment on journal
view gene-by-term matrices. The view represents a textnginidata. The multi-view C|UStering Stl'ategies with the nexo tvest
result retrieved by specific controlled vocabularies, leemmuilti- Performance are still our tensor methods, MC-FR-MI-HOO# (N
view text mining is featured as applying multiple contrdlle MI 0.7494, ARI 0.6015) and MC-FR-OI-MLSVD (NMI 0.7429,
vocabularies to retrieve the gene-centric perspectivem firee ARI 0.6030). All of our tensor based methods are not only belyo
text publications. The clustering methods can be implertenn  SPectral clustering results of any single-view data but algperior
these genes to get the group information, which can be etlizto the six baseline multi-view clustering methods, demuartistg
for further disease analysis. the power of our multi-view clustering strategy.

The data sets contain ten different gene-by-term text peofil In Table VI, we present the comparison between the ranking of
indexed by ten controlled vocabularies. The original disea weighting coefficients among multi-view data with the ramgkiof
related gene data set contains 620 genes that are known tath®ér corresponding clustering performance, where wetlisse
relevant to 29 diseases. To avoid the effect of imbalancesteds weighting factors asy; and we also list weighting factors by
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SC-Algorithm NMI ARI MC-Algorithm NMI ARI
S-TFIDF 0.7280 0.6601 MC-FR-OFMLSVD  0.7331  0.6615
S-IDF 0.7020 0.6422 MC-FR-OI-HOOI ~ 0.7605  0.7262
S-TF 0.6742  0.6305 MC-FR-MI-HOOI 0.7287  0.6756
s-Binary-Text 0.6432 0.6022 MC-TR-I-EVDit 0.7071  0.6612
S-cross-citation 0.6833  0.6057 MKF 0.7327  0.6787
S-co-citation 0.6815 0.6565 Fl 0.6944  0.6031
S-Bibliographic coupling  0.4398  0.3348 SA 0.7226  0.6952
S-Binary-citation 0.5831 0.5238  AdacVote 0.7454  0.7176
CP-ALS 0.7042  0.6377
LMF 0.5935  0.5058
TABLE llI
CLUSTERING PERFORMANCE ONNOS JOURNAL DATABASE
Text data Bi o; Ranking of «v; Performance ranking
TFIDF 0.6373 05890 1 T
IDF 0.4133 04519 3 2
TF 0.5845 0.5580 2 3
Binary-Text 0.2853 0.3708 4 4
Citation Bi a; Ranking ofa; Performance ranking
cross-citation 0.5085 0.5372 2 2
co-citation 0.5908 0.5771 1 1
Bibliographic coupling  0.5045 0.5095 3 4
Binary-citation 0.3166 0.3446 4 3
TABLE IV
THE WEIGHTING COEFFICIENTS OF MULTHVIEW DATA OBTAINED BY MC-MI-HOOI IN JOURNAL DATA.
. .. SC-Algorithm ~ NMI ARI MC-Algorithm NMI ARI
indicates the best individual data source (LDDB), while the S-MesH 0.7072 0.5134  MC-FR-OI-HOOI ~ 0.7732  0.6473
o P e S-OMIM 0.6971 0.4901 MC-FR-MI-HOOI ~ 0.7494 0.6015
smallest coefficient correctly |nd|caFes the worst mgluad datg anel 05153 03063 MO-TRIEVDIt 07218 05948
source (KO). As a whole, the ranking of these optimal weightss-evo 0.6048 0.3845 MKF 0.7002  0.5445
; ; ; ; S-KO 0.3187 0.1194 FI 0.6743  0.4830
are cor.1.S|stent with the ranking of the corresponding pe’rﬁmc.e.  SLDDB 07088 05042 SA 0.7016  0.5495
In addition, we can see although the values of these weightin s.mp 0.6582 0.4962 AdacVote 0.6093  0.5349
factors by MC-MI-HOOI are different from the counterpartg b g'ﬁ’r\]‘ior';‘tED g-ggég 0655283 Cm*'p-s 0-072‘528 0-05}1%2
MC-TR-I-EVDit, the ranking of weighting factors by MC-FR- P : . : :
MI-HOOI is almost the same to that by MC-TR-I-EVDit. TABLEV
In Figure 10, two confusion matrices of disease gene data CLUSTERING PERFORMANCE ON DISEASE DATA SET
are depicted to illustrate the partition difference betwerir
multi-view clustering (by MC-FR-OI-HOOI) and the best dieg
view clustering result (on LDDB). The values of the matrices sources  8; a; Ranking ofa;  Performance ranking
are normalized according t8,;; = C;/T;, whereT; is the total '\GASSH gégég gég‘;‘; 3 g
number of genes belonging to disease categoand C; is the OMIM 02537 02973 4 3
number of thesel; genes that are clustered to classin the N\?c') %-22‘;115; %-2332'11 63 %
. .- . e . .
first place, it is worth noting that MC-FR-OI-HOOI reduces th KO 01310 02216 10 10
number of mis-clustered genes for breast cancer (Nr. 1)tahen  LDDB 0.7228  0.5303 1 1
; MP 0.2725 03113 2 5
retardation (Nr. 10), muscular dystrophy (Nr.11) and npatby . SNOMED 02110 05713 8 4
(Nr. 12). Second, there are several diseases where carisiste Uniprot 0.2405 0.2970 5 7
mis-clustering occurs in both methods, such as, cataract (N TABLE VI

3)’ CharCOt ma”e tOOth d|Sease (Nr 4) and dlabetes (Nr 6) THE WEIGHTING COEFFICIENTS OF MULTYVIEW DATA OBTAINED BY MC-FR-MI-HOOI IN DISEASE DATA.

The intuitive confusion matrices correspond to the nunaéric
evaluation results. As shown in Table V, the quality of chuistg
obtained by MC-FR-OI-HOOI (NMI 0.7605, ARI 0.7262) is
higher than that of LDDB.

**Q1.1 In spectral clustering, checking the “elbow” of thecluster numbers indicated by the arrows. Moreover, in Fglr
plot of the eigenvalues of single-view data provides a Istigri @nd Figure 2 oSupplementary material 5 we also compare the
estimate of the number of clusters [28]. Analogous, in onste 1-mode singular value curves using different tensors ofrjali
approach the plot of mode-1 singular values of the simjlarid@@ and gene-disease data. Those tensors are generated fro
tensor provides a heuristic estimate of the number of aisistedifferent numbers of views, for instance, in journal datee w
In Figure 11 we plot the 20 dominant mode-1 singular values fgenerate different tensors by using various combinatiooe f

our three data sets. The elbow for the synthetic data is leet@e WO t0 Seven views.
and 4. The real number of clusters is 3. The middle and right As shown, for each data, the 1-mode singular value plot i@qui
parts of Figure 11 show the elbow plots for the journal daigtable w.r.t. the different combinations of multiple views

and the disease data, respectively. For our analysis wethsed To investigate the computational time, we benchmark owsden
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Fig. 11. Plot of the top 20 1-mode singular values of tensorsstucted
from different multi-view data (synthetic data on the Igfturnal data on the

Fig. 10.  Confusion matrices of disease gene data obtainedpleygtral iddl d di dat the right). All ible views axfhedat
clustering on LDDB (left) and MC-FR-OI-HOOI (right). The mbers of renr;plsy:(?to éf)?]asfﬁjctatr?e:g tenesgr%. ) possible views amihedata are

cluster labels are consistent with the numbers of disedsesach row, the
diagonal element represents the fraction of correctlytetesl genes and the
off-diagonal non-zero element represents the fraction isfclustered genes

kernels (similarity matrices) in a simple way using the ager

Algorithm disease data _journal data sum of multiple similarities. Thus, such a simple combioati

MC-FR-O-MLSVD _ 4.82 33.34 | he discriminati bility of h Kk |

MC-FR-OI-HOOI 032 64.08 neglects the discriminating capability of eac erne.c&e_lc

MC-FR-MI-HOOI 2.79 41.75 clustering ensemble methods (SA and Adac\Vote) rely on eliscr

MC-TR-I-EVDit 2.78 8.34 ; : , e :

MKE 193 397 hard clustering. Using only the final partition informatisaems

Fi 3.94 20.06 too fragile to integrate.

SA 37.29 60.94 . " i i :

Adacvote 3731 1467 In_addmon, _because thg partition of every single V|evvad|_at

CP-ALS 7.82 127.55 required, the implementation of clustering ensemble nushe

LMF 940 20341 not efficient as shown in Table VII.

TABLE VI Third, considering LMF, we found that the clustering per-

COMPARISON OFCPU TIME IN SECONDS FOR REAL DATA formance relies on the initialization, and hence the partit

results are quite unstable. Moreover, its optimization maeésm
consumes much time.
Fourth, for CP-ALS, the failure might be due to the un-

based multi-view clustering algorithms with 6 different Ithu Orthogonal property of the relaxed assignment mauixafter
view clustering methods on the two application data sets. Aghsor decomposition. The reason is that the similarityrimat
shown in Table VII, our three tensor based strategies (MGaFR in (3) we adopted to construct the tensor corresponds to thg N
MLSVD, MC-FR-OI-HOOI and MC-FR-MI-HOOI) are efficient. based Laplacian matrix that requires the orthogonal paatin
For instance, they are faster than four multi-view clusigrneth- spectral clustering.
ods (SA, AdacVote, CP-ALS and LMF). Obviously, MC-FR-OI- Meanwhile, our tensor based multi-view spectral clusgedan
MLSVD is more efficient. **Q1.3 The difference of the computa be thought of as a “Multi-view PCA" analysis, which integat
tion time of our three algorithms is caused by the differdrtheir multi-view information seamlessly and forms a joint optima
computational complexity. The computational complexitptC- ~ subspace. Therefore our strategy can extract the latetgrpat
FR-OI-MLSVD is O(6N(M)?); the computational complexity of shared by all views and filter out irrelevant information aise.
MC-FR-OI-HOOI is O6NK?M?) if N > KM and OeN?K M) The tensor based multi-view clustering of optimizatioregration
flops if N < KM; and the computational complexity of MC-FR-strategy (MC-FR-OI-MLSVD and MC-FR-OI-HOOI) leverages
MI-HOOI is O(2(M + 1)N?K). the effect of each single-view data in an appropriate wayenthie

On the other hand, although MKF and FI seem more efficieftnsor based multi-view clustering of matrix integratidrategy
than our three tensor based algorithms, our proposed meth@dC-FR-MI-HOQI) is able to utilize the linear relationshipf
yield much better performance or more enriched informagthe Mmulti-view data for joint analysis.
weighting factors of the single views).

Meanwhile, the two clustering ensemble methods SA and VII. CONCLUSION AND OQUTLOOK

Ada_c_\/ote require more cqmputanon time since they _mvohe bowe proposed a multi-view clustering framework based on-high
part!tlon pf each single-view dat?- Consequently, _W'th bam order analogues of the matrix Singular Value Decomposition
of views increasing, the computanonlof thg clustering entse (SVD) and Principal Component Analysis (PCA). Our framekvor
method will become more and more intensive. can be regarded as a multi-view extension of spectral cingte
With our tensor formulation, both heterogeneous and homoge
VI. DISCUSSION neous information can be integrated to facilitate the eltisgy
Based on the clustering performance of the multi-view clusask.
tering strategies, first, MKF is efficient when compared with We presented two new multi-view clustering strategies:timul
tensor based strategies. However, MKF only combines nhltipsiew clustering by the integration of the Frobenius-norrnjeotive
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function (MC-FR-OI) as well as the matrix integration in theelated fundings: GOA-AMBIORICS, CoE-EF/05/006(OPTEC),
Frobenius-norm objective function (MC-FR-MI). The relava IOF-SCORES4CHEM, FWO-G0452.04, FWO-G.0499.04, FWO-
tensor based solutions are proposed, which are eithettivieraG.0211.05, FWO-G.0226.06, FWO-G.0321.06, FWO-G.0302.07
optimization or efficient approximation. All of them are @ge FWO-ICCoS, FWO-ANMMM, FWO-MLDM, IWT-McKnow-E,
of utilizing the global information of multi-view data wigltaking Eureka-Fliteplus, IAP-P6/04, ERNSI; (5) Flemish Governine
the effect of single-view data into consideration. Funthere, Center for R&D Monitoring.
these different methods can be applied to various practiced
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