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Abstract— Clustering by integrating multi-view representations
has become a crucial issue for knowledge discovery in hetero-
geneous environments. However, most prior approaches assume
that the multiple representations share the same dimension,
limiting their applicability to homogeneous environments. In this
paper, we present a novel tensor-based framework for integrating
heterogeneous multi-view data in the context of spectral cluster-
ing. Our framework includes two novel formulations; that is
multi-view clustering based on the integration of the Frobenius-
norm objective function (MC-FR-OI) and that based on matrix
integration in the Frobenius-norm objective function (MC-FR-
MI). We show that the solutions for both formulations can be
computed by tensor decompositions. We evaluated our methods
on synthetic data and two real-world data sets in comparison
with baseline methods. Experimental results demonstrate that
the proposed formulations are effective in integrating multi-view
data in heterogeneous environments.

Index Terms— Multi-view clustering, tensor decomposition,
spectral clustering, multi-linear singular value decomposition,
higher-order orthogonal iteration

I. I NTRODUCTION

In many real-world scenarios, each object can be described
by multiple sets of features. For example, in scientific literature
mining, both the textual content and the citation link between
articles are often used in the knowledge discovery processes [25].
In multiplex network analysis, we are given a set of multiple
networks that share the same set of nodes but possess network-
specific links representing different types of relationships between
nodes [29]. A particular instance of this scenario is the social
network of university students, which may include symmetrized
connections from (i) Facebook friendship, (ii) picture friend-
ship, (iii) roommate relations, and (iv) student housing-group
preference. These diverse individual activities result inmultiple
relationship networks among students. Such a learning scenario
is called multi-view learning, since each feature set describes a
view of the same set of underlying objects. A simple approach
to learn from these multi-view data is to learning from each
view separately. However, such approaches fail to account for
the complementary information encoded into different views.

Multi-view clustering refers to the clustering of the same set of
objects with multi-view features, either from various information
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sources or from different feature representations. Compared with
the clustering that is implemented on single-view data, multi-
view clustering is expected to yield robust and novel partition
results by exploiting the complementary information in different
views. One of the recent developments in clustering is the spectral
clustering technique, which has seen an explosive proliferation
over the past several years [44]. Among many other factors, such
as easy implementation and efficiency, one of the key advantages
of spectral clustering is that it is based on the relaxation of a
global clustering criterion (i.e., normalized cuts). Spectral clus-
tering has been widely employed in many real applications, from
image segmentation to community detection. Although spectral
clustering [28] works well on single-view data, it is not well
suited for the clustering of multi-view data, since it is inherently
based on matrix decompositions.

Recently, several multi-view clustering algorithms have been
proposed [1], [3], [5], [25], [26], [37], [40], [47]. These multi-
view clustering techniques have been shown to yield better
performance in comparison to single-view techniques. However,
prior methods have some limitations that prevent their wide
applicabilities, as we will discuss in the related work. Forinstance,
some techniques assume that the dimensions of the features in
multiple views are the same, limiting their applicability to the
homogeneous settings. Some other techniques only concentrate
on the clustering of two-view data so that it might be hard to
extend them to more than a two-view situation [3]. In addition, an
appropriate weighting scheme is lacking for these multipleviews
although coordinating various information from them is also one
crucial step in gaining good clustering results [37], [41].A unified
framework that can integrate various types of multi-view data is
lacking to date [26], [40].

Tensors are higher-order generalizations of matrices. They have
been successfully applied to several domains, such as chemo-
metrics, signal processing, Web search, data mining, scientific
computing and image recognition [10], [21], [22], [34], [38],
[45]. Traditionally, tensor-based methods have been used to model
multi-view data [21], and tensor methods are very powerful tools
to analyze the latent pattern hidden in multi-view data. Tensor
decompositions capture multi-linear structures in higher-order
data-sets, where the data have more than two modes. Tensor de-
compositions and multi-way analysis allow for extracting hidden
(latent) components (cluster structure) and investigating complex
relationship among them.

In this paper, we propose a multi-view clustering framework
based on tensor methods. Our formulations model the multi-
view data as a tensor and seek a joint latent optimal subspace
by tensor analysis. Our framework can leverage the inherent
consistency among multi-view data and integrate their information
seamlessly. Apart from other multi-view clustering strategies,
which are usually devised for ad hoc application, our method
provides a general framework in which some limitations of
prior methods are overcome systematically. In particular,our
framework can be extended to various types of multi-view data.
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Almost any multiple similarity matrices of the same entities are
allowed to be embedded into our framework. In addition, since
our framework can obtain a joint optimal subspace, it can be
easily extended to other related machine learning tasks, such as
classification, spectral embedding and collaborative filtering. Our
framework consists of two novel algorithms: multi-view clustering
based on optimization integration of the Frobenius-norm objective
function (MC-FR-OI) and that based on matrix integration in
the Frobenius-norm objective function (MC-FR-MI). In particular,
MC-FR-MI can assign each view a suitable weight to boost the
clustering. For each strategy, we provide the relevant tensor based
solutions. Similar to other variants of PCA in machine learning
applications [46], our strategy can be considered as a multi-view
PCA analysis.

Figure 1 illustrates the potential benefit of multi-view cluster-
ing. The figure shows two groups of data points in a 3-D space.
Suppose that due to limitations of the measurement system (such
as 2-D cameras in the real world), only 2-D projections of thedata
points can be observed (such as, X-Y projection, Y-Z projection
and X-Z projection in a 3-D X-Y-Z coordinate system). Each
of the three projections yields what we call a single-view data
set. The figure shows that separation of the two clusters is not
possible from any of the three projections separately. However, the
three views together do contain the information that was present
in the original data. Combination of the three views does not
automatically allow proper clustering. The middle right part of
the figure shows the result of spectral projection by means of
multiple kernel fusion (MKF). MKF does not yield satisfactory
results here. In this paper we present a new class of algorithms for
multi-view partitioning. The lower right part of Figure 1 shows
the results obtained by our MC-OI-MLSVD algorithm. The latent
cluster structure hidden amid the multi-view data has clearly been
recovered here.

To the best of our knowledge, our work is the first unified
attempt to address multi-view clustering within the framework
of tensor methods. The key contributions of our work can be
summarized as follows:

• We propose to model multi-view data as a tensor and
develop a new framework of multi-view clustering by tensor
methods.

• We present two novel multi-view clustering strategies with
their tensor solutions.

• We systematically evaluate our methods on both a synthetic
data set and two real applications.

The rest of the paper is organized as follows. To start, Sec-
tion II reviews the related work. Then, Section III introduces
the concepts of spectral clustering. Next, Section IV presents
our tensor based multi-view clustering algorithms. After that,
Section V demonstrates the experimental results on synthetic
data and practical applications. The related research issues are
discussed in Section VI. Finally, we conclude in Section VII.
Notation: To facilitate the distinction between scalars, vectors,
matrices, and higher-order tensors, the type of a given quan-
tity will be reflected by its representation: scalars are denoted
by lower-case letters(a, b, . . . ;α, β, . . .), vectors are written as
italic capitals(A,B, . . .), matrices correspond to boldface capi-
tals (A,B, . . .), and tensors are written as calligraphic letters
(A,B, . . .). This notation is consistently used for lower-order parts
of a given quantity. For instance,ai, aij and aijk denote an
entry of a vectorA, a matrixA and a tensorA, respectively. The

Kronecker product is denoted by⊗. For A ∈ R
I×J , vec(A) =

(a11 a21 . . . aIJ )
T ∈ R

JI is the vector in which the columns of
A are stacked on top of each other. diag(·) is the column vector
that is given by the diagonal of its matrix argument.

II. RELATED WORK

A. Multi-view clustering

Bickel and Scheffere [3] propose a multi-view clustering
method that extendsk-means and hierarchical clustering to deal
with data with two conditionally independent views. A multi-
view clustering strategy via canonical correlation analysis (CCA)
is presented in [5]. This method assumes that the views are
uncorrelated given the cluster label. The above algorithmsonly
concentrate on the clustering of two-view data thus it mightbe
hard to extend them to more than two-view situations. Meanwhile
our strategy is applicable to any multi-view situation. Long et
al. [26] formulate a multi-view spectral clustering method while
investigating multiple spectral dimension reduction. A clustering
method based on linked matrix factorization is introduced to fuse
information from multiple graphs in [41]. Zhouet al. [47] develop
a multi-view clustering strategy via generalizing the normalized
cut from a single view to multiple views and subsequently
they build a multi-view transductive inference. In the above
algorithms, a common problem is that the analysis of inherent
relationship among multi-view data might be neglected. While
in our tensor based strategy, the multi-linear relationship among
multi-view data is taken into account. Furthermore, Longet al.
propose a general model based on collective factorization of the
related matrices for clustering multi-type relational data [27]. The
strategy focuses on the clustering of multi-type interrelated data
objects, rather than on the clustering of the same objects using
multiple representations as in our research.

B. Community detection of multi-view networks

Tang et al.propose the concept of feature integration to imple-
ment the clustering of multi-view social networks [40]. Based on
modularity optimization, Muchaet al. [29] develop a generalized
framework of network quality functions that allow studies of
community structure in a general setting encompassing networks
that evolve over time, have multiple types of links (multiplexity),
and have multiple scales. These methods are applicable to specific
type of data with sparse links while our strategy is devised for
general data.

C. Kernel fusion and clustering ensemble

Multiple kernel learning aims at finding a combination of
kernels to optimize for classification or clustering [20], [25].
Such a solution might sound natural, but its underlying prin-
cipal is not clear [47]. In addition, the heavy computation of
their convex optimization makes them only applicable to small
databases [25]. Meanwhile, with the recent research progress
in tensor decomposition [32], our strategy has the potential to
tackle large-scale databases. Clustering ensemble is alsoknown
as clustering aggregation or consensus clustering, which integrates
different partitions into a consolidated partition with a consensus
function [1], [37]. However, clustering ensemble methods usually
concentrate on single-view data to overcome the drawback ofk-
means. In fact, clustering ensemble is embedded into our strategy
to facilitate the final partition.
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Fig. 1. Comparison of single-view projection versus multi-view projection.

D. Tensor based clustering

Sun et. al [38] introduce a dynamic tensor analysis (DTA)
algorithm and its variants, and apply them to anomaly detection
and multi-way latent semantic indexing. It seems their clustering
method is designed for dynamic stream data. Dunlavyet al. [10]
apply PARAFAC decomposition for analyzing scientific publica-
tion data with multiple linkage. Seleeet al. create a new tensor
decomposition called Implicit Slice Canonical Decomposition
(IMSCAND) to group information when multiple similaritiesare
known [34]. The last two ideas that integrate multi-view data as a
tensor are similar to ours. But our methods rely on a Tucker-type
tensor decomposition. Furthermore, in these methods, all single-
view data are considered equally important, while we will present
a technique that compute weights for the different views.

III. SPECTRAL CLUSTERING

Spectral clustering was originally derived based on relaxation
of the normalized cut formulation for clustering [35]. In particular,
spectral clustering involves a matrix trace optimization problem
[28], [30]. We show in this paper that the spectral clustering
formalism can be extended to deal with multi-view problems
based on tensor computations.

Given a set ofN data points{xi}
N
i=1 wherexi ∈ R

d is the
ith data point, a similaritysij ≥ 0 can be defined for each pair
of data pointsxi andxj based on some similarity measure. An
intuitive way to represent this data set is using a graphG = (V, E)

in which the verticesV represent the data points and the edges
eij ∈ ε characterize the similarity between data points quantified
by sij . Usually, the similarity measure is symmetric, and the graph
is undirected. The affinity matrix of the graphG is the matrixS
with entry in row i and columnj equal tosij . The degree of the

vertexvi, defined as

di =
N
∑

j=1

sij , (1)

is the sum of all the weights of edges connected tovi. The
degree matrixD is a diagonal matrix containing the vertex degrees
d1, ..., dN on the diagonal. It follows from the spectral embedding
formalism [28], [30], [35] that the Laplacian matrix is defined as
L = D − S, and the normalized Laplacian matrix, corresponding
to the normalized cuts (Ncut), is defined as

LNcut = D−1/2LD−1/2 = I − SN , (2)

whereSN is the normalized similarity matrix and defined as

SN = D−1/2SD−1/2. (3)

The matricesSN andLNcut have the same eigenvectors, and their
eigenvalues are related asλ(SN ) = 1− λ(LNcut), whereλ(SN ) and
λ(LNcut) are the eigenvalues forSN andLNcut, respectively.

A. Single-view spectral clustering

We first consider spectral clustering in the single-view setting.
SupposeU ∈ R

N×M is the relaxed assignment matrix, whereN

is the number of data points andM is the number of clusters.
The spectral clustering problem can be expressed as

min
U

trace(UT LNcutU),

s.t. UT U = I .
(4)

It follows from the Ky Fan theorem [31] that the optimal solution
to the optimization problem in (4) is given by theM dominant
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eigenvectors ofLNcut. Considering the relationship betweenSN

andLNcut, spectral clustering can equivalently be formulated as

max
U

trace(UT SNU),

s.t. UT U = I .
(5)

Since SN is positive semi-definite, spectral clustering can also
be formulated as the following Frobenius norm optimization
problem:

max
U

‖UT SNU‖
2

F ,

s.t. UT U = I .
(6)

The objective functions in (5) and (6) are different, but they have
the same solution, namely, the columns of the optimal matrixU
span the dominant eigenspace ofSN .

B. Multi-view spectral clustering

We propose different strategies for the integration of multi-view
data in the context of spectral clustering.

1) Multi-view clustering by trace maximization (MC-TR-I):
The first strategy is to add objective functions of the type in(5),
associated with the different views. We consider:

max
U

K
∑

k=1

trace(UT S(k)
N U) = trace(UT (

K
∑

k=1

S(k)
N )U),

s.t. UT U = I ,

(7)

whereS(k)
N is the normalized similarity matrix for thekth view

andU is the common factor shared by the views. This corresponds
to Multiple Kernel Fusion (MKF) with a linear kernel [20], see
Section V-A.

As an alternative, we may optimize a weighted combination of
objective functions, where the weights are learnt from the data:

max
U,W

K
∑

k=1

wktrace(UT S(k)
N U) = max

U,W
trace(UT (

K
∑

k=1

wkS(k)
N )U),

s.t. UT U = I , W > 0 and‖W ‖F = 1.

(8)

2) Multi-view clustering by integration of the Frobenius-
norm objective function (MC-FR-OI):Note that all terms
in the objective function

∑K
k=1

∑M
m=1(U

T S(k)
N U)mm in (7)

are nonnegative, sinceS(k)
N is positive (semi)definite,1 6

k 6 K. Instead, we might consider the optimization of
∑K

k=1

∑M
m1=1

∑M
m2=1(U

T S(k)
N U)2m1m2

. This corresponds to
adding objective functions of the type in (6):

max
U

K
∑

k=1

‖UT S(k)
N U‖2F ,

s.t. UT U = I .

(9)

3) Multi-view clustering by matrix integration in the
Frobenius-norm objective function (MC-FR-MI):As counterpart
of (8) we consider:

max
U,W

‖UT (

K
∑

k=1

wkS(k)
N )U‖2F ,

s.t. UT U = I , W> 0 and‖W‖F = 1.

(10)
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Fig. 3. Matrix unfolding of a third-order tensor

IV. M ULTI -VIEW SPECTRAL CLUSTERING VIA TENSOR

METHODS

Following the two multi-view clustering strategies discussed
above, we present the tensor-based solutions in this Section. Com-
pared to the single-view spectral clustering, which is solved by
matrix decomposition, we formulate our multi-view clustering by
tensor decomposition. The overview of the tensor-based method
is depicted in Figure 2. As shown in the left part of Figure 2, the
goal of single-view spectral clustering is to find an optimallatent
subspace from single-view data. In contrast, with multi-view data,
we want to obtain a joint optimal subspace with the aid of tensor
methods.

A. Background on tensors

In this section we provide some basic background on tensors
and low multilinear rank approximation. We refer to [6]–[8], [22],
[24], [36] for more details. A tensor is a multi-way array. The
order of a tensor is the number of modes (or ways). A first-
order tensor is a vector, a second-order tensor is a matrix and a
tensor of order three or higher is called a higher-order tensor. We
only discuss third-order tensor methods that are relevant to our
problem.

Matrix unfolding is the process of re-ordering the elements
of a tensor into a matrix. The mode-1, mode-2 and mode-3
matrix unfoldings of a tensorA ∈ R

I×J×K are denoted by
A(1),A(2) and A(3), respectively. The definition follows from
Figure 3.

A tensor can be multiplied by a matrix as follows. Consider
matricesB ∈ R

I1×I , C ∈ R
J1×J and D ∈ R

K1×K , then the
mode-1 productA ×1 B, mode-2 productA ×2 C and mode-3
productA×3 D are defined by

(A×1 B)i1jk =

I
∑

i=1

aijkbi1i, ∀i1, j, k,

(A×2 C)ij1k =

J
∑

j=1

aijkcj1j , ∀i, j1, k,

(A×3 D)ijk1
=

K
∑

k=1

aijkdk1k, ∀i, j, k1,

respectively. The Frobenius norm ofA is defined by

‖A‖F = (
∑

ijk

a2ijk)
1

2 .
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Fig. 2. Comparison between single view (left) and multi-view (right) spectral clustering.

Multilinear singular value decomposition (MLSVD) is one of
the possible higher-order extensions of matrix singular value
decomposition (SVD) [7], [42], [43]. It decomposesA as

A = B ×1 U ×2 V ×3 W, (11)

in which the factor matricesU ∈ R
I×I , V ∈ R

J×J and W ∈

R
K×K are orthogonal and in which the core tensorB ∈ R

I×J×K

satisfies “all-orthogonality” and “ordering” constraints, see [7].
The factor matrices can be thought of as matrices of principal
components along each mode. The elements ofB determine the
interaction of the factors in the different modes. The matrices
U,V and W can be computed as the matrices of left singular
vectors ofA(1) ∈ R

I×JK , A(2) ∈ R
J×KI and A(3) ∈ R

K×IJ ,
respectively. The columns ofU,V andW are the mode-1, mode-
2 and mode-3 singular vectors, respectively. The singular values
of the unfoldings are the mode-1, mode-2 and mode-3 singular
values, respectively.

Consider the following approximation problem:

min
U,V,W,B

‖A − B ×1 U ×2 V ×3 W‖2F , (12)

in which now U ∈ R
I×R1 , V ∈ R

J×R2 and W ∈ R
K×R3

are column-wise orthonormal withR1 6 I, R2 6 J , R3 6 K,
and in whichB ∈ R

R1×R2×R3 . The triplet (R1, R2, R3) is the
trilinear rank of the approximand and (12) is a case of what is
known as low multilinear rank approximation. It can be shown
that the minimization problem is equivalent with the following
maximization problem [8], [23]:

max
U,V,W

‖A ×1 UT ×2 VT ×3 WT ‖
2

F . (13)

Analogous to low-rank matrix approximation, one may con-
sider truncated MLSVD for solving (12)–(13), i.e., one may
take the columns ofU,V,W in (12)–(13) equal to the dominant

multilinear singular vectors ofA. Contrary to the matrix case, the
approximation is not optimal in general. However, the result is
often fairly good and MLSVD truncation is easy to implement.
While in the matrix case the sum of the squared discarded
singular values give the approximation error, in the tensorcase
the discarded multilinear singular values yield an upper bound on
it [7].

There exist a number of algorithms for the actual optimization
in (12)–(13). The most popular technique is the higher-order
orthogonal iteration (HOOI), which is an algorithm of the alter-
nating least-squares (ALS) type [8], [23]. In each iteration step,
the estimate of one of the matricesU,V,W is optimized, while
the other two are kept fixed. It follows from

‖A ×1 UT ×2 VT ×3 WT ‖
2

F = ‖UT (A(1)(V ⊗ W))‖
2

F
(14)

that the optimalU, given V and W, is determined by theR1-
dimensional dominant subspace of the column space ofA(1)(V⊗

W). The optimization with respect toV and W is analogous.
In practice the convergence is observed to be linear, with a
convergence coefficient that is larger as the problem is better
conditioned in the sense of [12]. Alternative algorithms are the
trust region method based on truncated conjugate gradient in [18],
the quasi-Newton algorithms in [33] and the Newton algorithms
in [11], [19]. Truncated MLSVD is often used as initial value.
Numerical experiments in [17] suggest that, if there is a gap
between theRnth and the(Rn + 1)th mode-n singular values,
n = 1, 2, 3, one can expect algorithms to find the global optimum.
In the same paper it is proved that, if there is a gap and there
are nevertheless several local optima, then these are close, both in
terms of the cost function value and in terms of the matricesU, V
andW. The absence of a gap may indicate the presence of several
local optima for which the cost function value is close. Recent
research includes the generalization of numerical algorithms for
low-rank approximation of large matrices to low multilinear rank
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approximation of large higher-order tensors [32].

B. Tensor construction

There are several options for constructing a tensor from multi-
view data. In [15], a tensor is constructed by stacking the object-
by-feature matrices derived from multiple views in a tensoras
shown in the left part of Figure 4. This construction is only
applicable to the scenario of homogeneous data sources, where the
dimensions of different feature spaces are the same. In fact, many
multi-view applications deal with heterogeneous data sources in
which the dimensions of various feature spaces are different.
For instance, in the application to scientific publication analysis
in Section V-D, the dimension of the citation feature space is
8,305 while the dimension of the text feature space is more than
600,000.

Consequently, in this paper we make a construction that is
independent of data dimension, thereby enabling the integration
of heterogeneous data sources. We will work with the similar-
ity tensor A ∈ R

N×N×K obtained by stacking the similarity
matricesS(1)

N ,S(2)
N , · · · ,S(K)

N associated with the different views.
The construction of the similarity tensor is illustrated inthe right
part of Figure 4. Since the similarity of each view is computed
in a different space, normalization is required. In this respect,
our definition of similarity matrix in (3) may be regarded as a
normalization step.
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Fig. 4. Comparison of different formulations of multi-viewlearning using
tensor methods.

C. MC-TR-I

The column space of the optimal matrixU in (7) is the domi-
nant eigenspace of

∑K
k=1 S(k)

N . The pseudo-code is as follows.

Algorithm IV.1: MC-TR-I-EVD (S(1),S(2), ...,S(K),M )

comment:M is the number of clusters

step 1. Build a combined similarity matrix
∑

K

k=1 S(k)
N

step 2. ObtainU by eigenvalue decomposition
step 3. Normalize the rows ofU to unit length
step 4. Calculate the clusteridx with k-means onU
return (idx : the clustering label)

The problem in (8) can be written as:

max
U,W

P (U) · W,

s.t. UT U = I and‖W‖F = 1,
(15)

where P (U) =
(

trace(UT S(1)
N U) . . . trace(UT S(K)

N U)
)

. Note
that, compared to (8), the nonnegativity constraint onW has been
dropped in (15). SinceS(k)

N is positive (semi)definite,1 6 k 6 K,

all entries ofP (U) are nonnegative. GivenU, the optimalW is
just P (U) scaled to unit-norm, and hence satisfies automatically
the nonnegativity constraint. The overall solution can be computed
in an alternating fashion by additionally deriving from (8)that
the optimalU, given W , follows from the dominant eigenspace
of

∑K
k=1 wkS(k)

N . The computation ofP (U) requiresO(2N2K)

flops, the construction of
∑K

k=1 wkS(k)
N also requiresO(2N2K)

flops and the computation of its eigenspaceO(6NM2) flops. The
pseudo-code is as follows.

Algorithm IV.2: MC-TR-I-EVDIT (S(1)
N

,S(2)
N

, ...,S(K)
N

,M )

step 1. Initialize e.g. by MC-TR-I-EVD
while <!convergence>

do



















iteration step 2.1. ObtainP (U)
iteration step 2.2. Calculate the weighting vectorW
by scalingP (U) to unit-norm
iteration step 2.3. Obtain the relaxed assignment matrixU
from the dominant eigenspace of

∑

K

k=1(wk)S
(k)
N

step 3. Normalize the rows ofU to unit length
step 4. Calculate the clusteridx with k-means onU
return (idx : the clustering label)

D. MC-FR-OI

We first discuss the objective function integration approach for
multi-view clustering. The problem in (9) can be written as

max
U

‖A ×1 UT ×2 UT ×3 I‖
2

F , (16)

in which U ∈ R
N×M has orthonormal columns. If we take into

account the equivalence between (12) and (13), the problem can
be visualized as in Figure 5.
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Fig. 5. Illustration of multi-view clustering by objectivefunction integration.

As explained in Section IV-A, an approximate solution to (16)
can be obtained from truncated MLSVD. Here,U is determined
by theM dominant mode-1 singular vectors ofA, i.e., it follows
from theM dominant left singular vectors ofA(1). Because of
the partial symmetry ofA, A(2) yields the sameU. We call this
method MC-FR-OI-MLSVD. Although the approximation is not
optimal, the results are often quite good and the algorithm is easy
to implement. The computational cost is low, namely O(6NM2)
flops. The pseudo-code of MC-FR-OI-MLSVD is as follows:

Algorithm IV.3: MC-FR-OI-MLSVD (S(1),S(2), ...,S(K),M )

comment:M is the number of clusters

step 1. Build a similarity tensorA
step 2. Obtain the unfolding matrixA(1)

step 3. ComputeU from the subspace spanned by
theM dominant left singular vectors ofA(1)

step 4. Normalize the rows ofU to unit length
step 5. Calculate the clusteridx with k-means onU
return (idx: the clustering label)
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We can also look for the optimal solution in (16), for instance
by means of the HOOI algorithm. The way one alternates between
conditional updates in HOOI makes that the iterates forU and
V are different, despite the fact thatA is symmetric in its first
two modes. Upon convergence, the iterates forU and V will
match again. Using the estimate ofU for updating in both the
first and second mode may lead to divergence [8]. The matrix
W is not updated but set equal to the identity matrix here.
The resulting algorithm, called MC-FR-OI-HOOI, is presented as
Algorithm IV.4 below. The computation of the product in eachof
the two steps requiresO(2N2MK) flops. The computation of the
subspace additionally requires O(6NK2M2) flops if N > KM

and O(2N2KM) flops if N < KM [13].

Algorithm IV.4: MC-FR-OI-HOOI (S(1),S(2), ...,S(K),M )

step 1. Build a similarity tensorA
step 2. Obtain the unfolding matricesA(1), A(2) andA(3)

step 3. Obtain an initialU0 andV0 by MLSVD
while <!convergence>

do











iteration step 4.1.Ui+1 in dominant subspace of
A(1)(Vi ⊗ I)
iteration step 4.2.Vi+1 in dominant subspace of
A(2)(Ui ⊗ I)

comment: i is the counter of iteration

step 5. Normalize the rows ofU to unit length
step 6. Calculate the clusteridx with k-means onU
return (idx : the clustering label)

Both MC-FR-OI-MLSVD and MC-FR-OI-HOOI imply a joint
matrix compression, as shown in Figure 6. In the case of low
multilinear rank approximation, the(M × M) frontal slices of
the core tensor are not necessarily diagonal.
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E. MC-FR-MI

The problem in (10) can be written as

max
U,W

‖A ×1 UT ×2 UT ×3 WT ‖
2

F ,

s.t. UT U = I , ‖W‖2F = 1.

(17)

Note that, compared to (10), the nonnegativity constraint on W

has been dropped in (17). SinceS(k)
N is positive (semi)definite,

UT S(k)
N U is positive (semi)definite,1 6 k 6 K. Theorem 1 in the

Appendix now implies that, for anyU, the entries of the optimal
W have the same sign. Since the value of the objective function

in (17) is not affected by the sign ofW , we can assume that all
the weights are nonnegative.

If we take into account the equivalence between (12) and (13),
the problem can be visualized as in Figure 7. The matrixU
represents the optimal subspace and the vectorW yields the
weights of the different views.

W
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Fig. 7. Multi-view clustering by matrix integration

Using the HOOI algorithm as described earlier, the pseudo code
of MC-FR-MI is as follows:

Algorithm IV.5: MC-FR-MI-HOOI-DIRECT (S(1),S(2), ..., S(K),M )

step 1. Build a similarity tensorA
step 2. Obtain the unfolding matricesA(1), A(2) andA(3)

step 3. Obtain an initialU0, V0 andW0 by MLSVD
while <!convergence>

do



























iteration step 4.1.Ui+1 in dominant subspace of
A(1)(Vi ⊗ Wi)
iteration step 4.2.Vi+1 in dominant subspace of
A(2)(Wi ⊗ Ui+1)
iteration step 4.3.Wi+1 in dominant subspace of
A(3)(Ui+1 ⊗ Vi+1)

comment: i is the counter of iteration

step 5. Normalize the rows ofU to unit length
step 6. Calculate the clusteridx with k-means onU
return (idx : the clustering label)

An equivalent but more efficient implementation is obtained
by taking into account thatW is not a matrix but a vector.
The pseudo code is given as Algorithm IV.6. The matrixUi+1

in step 4.1 of Algorithm IV.5 is just equal to the product
(
∑K

k=1 S(k)(Wi+1)k)Vi. Like-wise, the matrixVi+1 in step 4.2
is equal to(

∑K
k=1 S(k)(Wi+1)k)Ui+1. Alternating until conver-

gence between steps 4.1 and 4.2 of Algorithm IV.5 yields the same
matrix for U and V. The scheme is known as the Orthogonal
Iteration for the computation of the dominant eigenspace of
∑K

k=1 S(k)(Wi+1)k [13]. This yields step 4.3 in Algorithm IV.6,
where one may compute the eigenspace by an algorithm of
choice. Step 4.1 in Algorithm IV.6 corresponds to the computation
of (A ×1 Ui) ×2 Ui, the cost of which is dominated by the
computation ofA×1 Ui sinceM ≪ N . This costsO(2MN2K)

flops. The cost of the second step isO(2N2K) flops. The cost of
the third step is O(6NM2) flops. Hence, the overall computational
cost is O(2(M + 1)N2K) flops per iteration [13].
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Algorithm IV.6: MC-FR-MI-HOOI (S(1),S(2), ..., S(K),M )

step 1. Build a similarity tensorA
step 2. Obtain the unfolding matricesA(1), A(2) andA(3)

step 3. Obtain an initialU0 by MLSVD
while <!convergence>

do























iteration step 4.1. CalculateWi+1 as the dominant left singular
vector ofA(3)(Ui ⊗ Ui)

iteration step 4.2. Compute a new integration matrixS̃
as

∑

K

k
(Wi+1)kS(k)

iteration step 4.3. ObtainUi+1 by eigenvalue decomposition of̃S
comment: i is the counter of iteration

step 5. Normalize the rows ofU to unit length
step 6. Calculate the clusteridx with k-means onU
return (idx : the clustering label)

Remark 1: In the MC-OI framework we discussed two vari-
ants, namely MC-FR-OI-MLSVD and MC-FR-OI-HOOI. In the
MC-MI framework we have only discussed MC-FR-MI-HOOI.
The reason is that tests indicated that here mere truncationof the
MLSVD, in which in the third mode only one vector is retained,
often yields results that are not satisfactory.

V. EXPERIMENTAL EVALUATION

In this Section, we report experimental results of the proposed
multi-view partition strategies in comparison with baseline multi-
view clustering methods.

A. Baseline methods

We compare with the following six baseline methods.

• Multiple kernel fusion (MKF): Joachimset al. [20] integrate
different kernels by linear combination for hybrid clustering.
The similarity matrix defined in (3) can be regarded as a
linear kernel as well. The clustering result of MKF is equal
to our MC-TR-I-EVD since the MC-TR-I-EVD is actually
the average combination of multiple similarity matrices, so
we combine them for the comparsion.

• Feature integration (FI) [40]: With the spectral analysis of
each view, their structure features are extracted and then
integrated, and SVD is then implemented to obtain the cross-
view principal components for clustering.

• Strehl’s clustering ensemble algorithm (SA) [37]: Strehl &
Ghosh formulate the optimal consensus as the final partition
that shares the most information with the partitions of
all single-view data to combine. Three heuristic consensus
algorithms (cluster-based similarity partition algorithm [C-
SPA], hyper-graph partition algorithm [HGPA] and meta-
clustering algorithm [MCLA]) based on graph partitioning
are employed to obtain the combined partition. In this work,
the ensemble consists of single partition from each view. Due
to the low computational costs of these techniques, it is quite
feasible to use a supra-consensus function that evaluates all
three approaches against the objective function and picks
the best solution for a given situation [37]. Therefore which
exact heuristic consensuses algorithm is adopted relies on
each data. In our experiments, MCLA is adopted for all three
data sets since it obtains the largest ANMI value for each
data respectively. The code of SA is available by the authors
1.

1http://www.lans.ece.utexas.edu/ strehl/soft.html

• AdacVote [1]: Ayad & Kamel propose a cumulative vote
weighting method (AdacVote) to compute an empirical prob-
ability distribution summarizing the clustering ensemble.

• CP-ALS [4], [14]: The CANDECOMP/PARAFAC (CP) de-
composition is usually solved by an alternating least squares
(ALS) algorithm, for which we use a tensor toolbox for
MATLAB [2]. We adopt the default initialization and pa-
rameter setting as defined in the toolbox itself.

• Linked matrix factorization (LMF): In Tang’s work [41], a
quasi-Newton method named Limited memory BFGS (L-
BFGS) is adopted for the optimization of LMF. We imple-
ment this algorithm with the aid of an optimization toolbox
for MATLAB named Poblano [9]. Since LMF is sensitive
to initialization, we initialize it by MLSVD that usually
provides a good initialization. In addition, the optimization
parameters are set as the default setting of the toolbox.

Furthermore, we initialize both MC-FR-OI-HOOI and MC-FR-
MI-HOOI by truncated MLSVD. We initialize MC-TR-EVDit
with the result of MC-TR-I-EVD (MKF).

B. Performance measures

Regarding clustering evaluation, the data sets used in our
experiments are provided with labels. Therefore the clustering
performance is evaluated comparing the automatic partitions with
the labels using Adaptive Rand Index (ARI) [16] and Normalized
Mutual Information (NMI) [37]. To evaluate the ARI and NMI
performance, we set the number of clusters for journal data to
M = 7 andM = 14 for disease data.

In order to overcome the drawback of thek-means algorithm
which is sensitive to various initializations, we adopt thecombi-
nation of clustering ensemble of SA method andk-means for both
spectral clustering and multi-view clustering. In particular, we first
repeat each clustering method 50 times and use the SA method
on the clustering ensemble to obtain the final consensus partition.
Consequently, the final partition obtained by each clustering
algorithm is unique.

C. Experiment on a synthetic multiplex network

We first evaluate and compare different clustering strategies
applied to the synthetic multi-view data. The synthetic data has
three communties (clusters), which have 50, 100 and 200 mem-
bers respectively [39]. We generate various views of interactions
among these 350 vertices, that is, each view forms a network that
shares the same vertices but has a different interaction pattern.
For each view, group members connect with each other following
a randomly generated within-group interaction probability. The
interaction probability differs with respect to groups at distinct
views. After that, we add some noise to the network by randomly
connecting any two vertices with low probability. The different
views demonstrate different interaction patterns. In thismulti-
view network that is called a multiplex network according to[29],
we construct four interaction matrices, each of whose elements is
the interaction strength of a pair of vertices. The visualization of
the four adjacent matrices is shown as Figure 8.

In Table I, we list the clustering evaluations of spectral
clustering for each single-view data as well as those of multi-
view clustering methods. First, it is clear that most multi-view
clustering results are better than single-view clusteringresults.
This could be easily explained by the patterns shown in Figure 8.
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Fig. 8. Visualization of the adjacent matrices of a synthetic multiplex
network.

.

Methods NMI ARI
S-A1 0.7605 0.7995

Single View S-A2 0.8928 0.9192
S-A3 0.7198 0.8196
S-A4 0.6318 0.5599
MC-FR-OI-MLSVD 0.9321 0.9508
MC-FR-OI-HOOI 0.9241 0.9509

Multi View MC-FR-MI-HOOI 0.9431 0.9670
MC-TR-I-EVDit 0.9633 0.9717
MKF 0.9156 0.9429
FI 0.8893 0.9243
SA 0.9251 0.9540
AdacVote 0.8951 0.9400
CP-ALS 0.5491 0.1274

TABLE I

EVALUATION OF CLUSTERING METHODS ON A FOUR VIEW SYNTHETIC MULTIPLEX NETWORK.

The first view of the network (left above) only shows one group,
and the fourth view (right below) involves another group with
the other two groups hidden behind the noise. Thus, using single
view is unlikely to recover the inherent cluster structure.This
phenomenon is also validated by the low NMI as well as ARI
of these two views. Applying multiple views helps reduce the
noise and uncover the shared cluster structure. Second, compared
with the five other baseline multi-view clustering strategies, our
tensor based clustering methods perform better. In particular,
MC-FR-OI-MLSVD, MC-FR-MI-HOOI and MC-TR-I-EVDit are
obviously superior to others based on both NMI and ARI evalu-
ations. LMF performs wrongly on this data, and thus we omit its
comparison.

To evaluate whether the optimized weights assigned to single-
view data are correlated with their clustering performance, we
compare the ranking of weighting coefficients obtained by MC-
FR-MI-HOOI with the ranking of the corresponding clustering
performance in Table II, where we list these weighting factors
asαi and we also list weighting factors by MC-TR-I-EVDit as

Sources βi αi Ranking ofαi Performance ranking
A1 0.5036 0.4725 3 3
A2 0.4506 0.5288 2 1
A3 0.5316 0.5643 1 2
A4 0.5106 0.4433 4 4

TABLE II

THE WEIGHTING COEFFICIENTS OF MULTI-VIEW DATA BY MC-MI-HOOI IN SYNTHETIC DATA .

βi. The ranking of these optimal weights is generally consistent
with the ranking of clustering performance. As shown, the top
two largest coefficients correctly indicate the top two bestsingle-
view data (A2 and A3). Although the ranking of the top 2
weighting coefficients is not exactly consistent with the ranking
of the corresponding performance, their coefficients are quite near
(0.5288 in A2 and 0.5643 in A3).

D. Application on scientific documents analysis

In this Section, we apply our algorithms to the scientific
analysis of the Web of Science (WoS) journal set. Our objective
is to map these journals into different subjects using clustering
algorithms.

1) Data description: Historically, bibliometric researchers
have focused solely on citation analysis or text analysis, but not
on both simultaneously. Recently, many researchers have applied
text mining and citation analysis to the journal set analysis. The
integration of lexical and citation information is a promising
strategy towards better mappings [25]. We adopt a data set
obtained from the WoS database by Thomson Scientific which
contains articles, letters, notes and reviews from the years 2002
till 2006. To create a balanced benchmark data for evaluation,
we select seven categories consisting of 1424 journals. The
titles, abstracts and keywords of the journal publicationsare
indexed by a Jakarta Lucene based text mining program using
no controlled vocabulary. The weights are calculated by four
weighting schemes: TF-IDF, IDF, TF and binary. Therefore, we
have obtained four data sources as the lexical information of
journals. These four kinds of text data are directly represented
as similarity matrices. At the same time, four kinds of citation
data represent link-based relationships among journals and conse-
quently, from them, we construct corresponding affinity matrices,
denoted as cross-citation, co-citation, bibliographic coupling and
binary cross-citation. The details of journal data are presented in
Supplementary material 1.

We implement the proposed tensor based multi-view clustering
methods to integrate multi-view data on journal data. To evaluate
the performance, we also apply six popular multi-view clustering
methods mentioned in Section V to integrate multi-view data.
To verify whether the integration of multi-view data by tensor
methods indeed improves the clustering performance, we first
systematically compare the performance of all the individual data
sources using spectral clustering. As shown in the left partof
Table III, the best spectral clustering is obtained on TFIDFdata
(NMI 0.7280, ARI 0.6601).

Next, we implement our tensor based multi-view clustering
on different types of multi-view data integrations detailed in
Supplementary material 2. Text data and citation data are
heterogeneous data because they are generated from various
feature spaces (see clustering results of their integration from
Table 2 to Table 4). Multi-view data solely from text or citation is
homogeneous because it shares the same feature space (see clus-
tering results of homogeneous integration of both text datafrom
Table 5 to Table 7 and citation data from Table 8 to Table 10).
As shown, the best multi-view clustering performance is obtained
from MC-FR-MI-HOOI by integrating two homogeneous text
data of TFIDF and IDF (NMI 0.8201, ARI 0.8229). Moreover, we
also find that the clustering performance of different integration
schemes varies significantly based on the choice of single-view
data. This implies that to some degree, the multi-view clustering
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performance depends on the quality of the single-view data
involved. For instance, in the best multi-view clustering case
above, TFIDF and IDF are the two single-view data sources with
the two best clustering performance.

Afterwards, we also investigate the performance of integrating
all single-view data using all compared multi-view clustering
presented in the right part of Table III. In particular, of all the
methods we compared, the best performance is obtained by the
MC-FR-OI-HOOI method (NMI 0.7605, ARI 0.7262).

The comparison between the ranking of weighting coefficients
by MC-MI-HOOI with the ranking of clustering performance is
shown in Table IV, where we list these weighting factors asαi

and we also list weighting factors by MC-TR-I-EVDit asβi.
Because text and citation data are heterogeneous data sources, we
separately compare each integration of each type of data in its own
feature space. In general, the ranking of these optimal weights is
consistent with the ranking of their individual performance. For
instance, within the citation feature space, the top two largest
coefficients correctly indicate the top two best individualdata
source (co-citation and cross-citation). In addition, we can see
although the values of these weighting factors by MC-FR-MI-
HOOI are different from the counterparts by MC-TR-I-EVDit,the
ranking of weighting factors by MC-FR-MI-HOOI is the same to
that by MC-TR-I-EVDit.

In Figure 9, two confusion matrices of journal data are depict-
ed to illustrate the partition difference between our multi-view
clustering result (by MC-FR-OI-HOOI) and the best single-view
clustering result (on TFIDF data). The values of the matrices
are normalized according toRij = Cj/Ti, whereTi is the total
number of journals belonging to standard label of ESI category
i and Cj is the number of theseTi journals that are clustered
to classj. The results show that the intuitive confusion matrices
correspond to the numerical evaluation results. For instance, the
quality of clustering obtained by MC-FR-OI-HOOI (NMI 0.7605,
ARI 0.7262) is higher than that of spectral clustering on TFIDF. In
the confusion matrix of spectral clustering on TFIDF, 15 journals
belonging to Agriculture Science (Nr. 1) are mis-clusteredto
Environment Ecology (Nr. 3), and 60 journals are mis-clustered
to Pharmacology and toxicology (Nr. 7). Meanwhile, by MC-FR-
OI-HOOI, the number of Agriculture Science (Nr. 1) journals
mis-clustered to Environment Ecology is reduced to 7, and the
number to Pharmacology and Toxicology is reduced to 26.

E. Experiment on disease gene clustering

Text mining helps biologists automatically collect disease-
gene associations from large volumes of biological literature.
Given a list of genes, we can generate a gene-by-term matrix
by the retrieval from the medical literature analysis and retrieval
system online (MEDLINE) database. We can also obtain multi-
view gene-by-term matrices. The view represents a text mining
result retrieved by specific controlled vocabularies, hence multi-
view text mining is featured as applying multiple controlled
vocabularies to retrieve the gene-centric perspectives from free
text publications. The clustering methods can be implemented on
these genes to get the group information, which can be utilized
for further disease analysis.

The data sets contain ten different gene-by-term text profiles
indexed by ten controlled vocabularies. The original disease-
related gene data set contains 620 genes that are known to be
relevant to 29 diseases. To avoid the effect of imbalanced clusters

Clustered Class

T
ru

e 
C

la
ss

TFIDF spectral clustering (ARI=0.6601; NMI=0.7280)

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

250

200

150

100

50

0

Clustered Class

T
ru

e 
C

la
ss

MC−OI−HOOI clustering (ARI=0.7262; NMI=0.7605)

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

250

200

150

100

50

0

Fig. 9. Confusion matrices of journal data obtained by spectral clustering
on TFIDF (left) and MC-FR-OI-HOOI (right). The numbers of cluster labels
are consistent with the numbers of ESI journal categories. In each row, the
diagonal element represents the fraction of correctly clustered journals and
the off-diagonal non-zero element represents the fractionof mis-clustered
journals. (Data source: Thomson Reuters, Web of Science)

that may affect the evaluation, we only keep the diseases that have
11 to 40 relevant genes. This step results in 14 genetic diseases
and 278 genes. Because the present paper focuses on non-
overlapping (“hard”) clustering, we additionally remove 16 genes
that are relevant to multiple diseases and 17 genes whose term
vectors are empty for one of these ten vocabularies. The remaining
245 disease relevant genes are clustered into 14 clusters and
biologically evaluated by their disease labels. For each vocabulary
based gene-by-term data source, we create a similarity matrix
using the value of the cosine similarity for two vectors. Thedetails
of the disease gene data analysis are presented inSupplementary
material 3.

At first, as shown in the left part of Table V, the best clustering
performance of individual data sources is obtained on LDDB
text mining profile (NMI 0.7088, ARI 0.5942). Next, we also
implement 45 types of integration of multi-view text mining
data for clustering. The clustering performance is presented in
Supplementary material 4 from Table 13 to Table 15. As
shown, the best clustering performance is obtained by MC-FR-OI-
HOOI through integrating multi-view data by GO, MeSH, OMIM,
NCI, eVOC, KO, LDDB and MP (NMI 0.7687, ARI 0.6364).
Afterwards, we also investigate the clustering performance of
integrating all single-view data using all the multi-view clustering
methods presented in the right part of Table V. In particular,
among all the relevant clustering methods, the best performance
is still obtained by the MC-FR-OI-HOOI method (NMI 0.7732,
ARI 0.6473) as analyzed in the former experiment on journal
data. The multi-view clustering strategies with the next two best
performance are still our tensor methods, MC-FR-MI-HOOI (N-
MI 0.7494, ARI 0.6015) and MC-FR-OI-MLSVD (NMI 0.7429,
ARI 0.6030). All of our tensor based methods are not only beyond
spectral clustering results of any single-view data but also superior
to the six baseline multi-view clustering methods, demonstrating
the power of our multi-view clustering strategy.

In Table VI, we present the comparison between the ranking of
weighting coefficients among multi-view data with the ranking of
their corresponding clustering performance, where we listthese
weighting factors asαi and we also list weighting factors by
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SC-Algorithm NMI ARI MC-Algorithm NMI ARI
S-TFIDF 0.7280 0.6601 MC-FR-OI-MLSVD 0.7331 0.6615
S-IDF 0.7020 0.6422 MC-FR-OI-HOOI 0.7605 0.7262
S-TF 0.6742 0.6305 MC-FR-MI-HOOI 0.7287 0.6756
s-Binary-Text 0.6432 0.6022 MC-TR-I-EVDit 0.7071 0.6612
S-cross-citation 0.6833 0.6057 MKF 0.7327 0.6787
S-co-citation 0.6815 0.6565 FI 0.6944 0.6031
S-Bibliographic coupling 0.4398 0.3348 SA 0.7226 0.6952
S-Binary-citation 0.5831 0.5238 AdacVote 0.7454 0.7176

CP-ALS 0.7042 0.6377
LMF 0.5935 0.5058

TABLE III

CLUSTERING PERFORMANCE ONWOS JOURNAL DATABASE

Text data βi αi Ranking ofαi Performance ranking
TFIDF 0.6373 0.5890 1 1
IDF 0.4133 0.4519 3 2
TF 0.5845 0.5580 2 3
Binary-Text 0.2853 0.3708 4 4
Citation βi αi Ranking ofαi Performance ranking
cross-citation 0.5085 0.5372 2 2
co-citation 0.5908 0.5771 1 1
Bibliographic coupling 0.5045 0.5095 3 4
Binary-citation 0.3166 0.3446 4 3

TABLE IV

THE WEIGHTING COEFFICIENTS OF MULTI-VIEW DATA OBTAINED BY MC-MI-HOOI IN JOURNAL DATA .

MC-TR-I-EVDit asβi. As shown, the largest coefficient correctly
indicates the best individual data source (LDDB), while the
smallest coefficient correctly indicates the worst individual data
source (KO). As a whole, the ranking of these optimal weights
are consistent with the ranking of the corresponding performance.
In addition, we can see although the values of these weighting
factors by MC-MI-HOOI are different from the counterparts by
MC-TR-I-EVDit, the ranking of weighting factors by MC-FR-
MI-HOOI is almost the same to that by MC-TR-I-EVDit.

In Figure 10, two confusion matrices of disease gene data
are depicted to illustrate the partition difference between our
multi-view clustering (by MC-FR-OI-HOOI) and the best single-
view clustering result (on LDDB). The values of the matrices
are normalized according toRij = Cj/Ti, whereTi is the total
number of genes belonging to disease categoryi and Cj is the
number of theseTi genes that are clustered to classj. In the
first place, it is worth noting that MC-FR-OI-HOOI reduces the
number of mis-clustered genes for breast cancer (Nr. 1), mental
retardation (Nr. 10), muscular dystrophy (Nr.11) and neuropathy
(Nr. 12). Second, there are several diseases where consistent
mis-clustering occurs in both methods, such as, cataract (Nr.
3), charcot marie tooth disease (Nr. 4) and diabetes (Nr. 6).
The intuitive confusion matrices correspond to the numerical
evaluation results. As shown in Table V, the quality of clustering
obtained by MC-FR-OI-HOOI (NMI 0.7605, ARI 0.7262) is
higher than that of LDDB.

**Q1.1 In spectral clustering, checking the “elbow” of the
plot of the eigenvalues of single-view data provides a heuristic
estimate of the number of clusters [28]. Analogous, in our tensor
approach the plot of mode-1 singular values of the similarity
tensor provides a heuristic estimate of the number of clusters.
In Figure 11 we plot the 20 dominant mode-1 singular values for
our three data sets. The elbow for the synthetic data is between 2
and 4. The real number of clusters is 3. The middle and right
parts of Figure 11 show the elbow plots for the journal data
and the disease data, respectively. For our analysis we usedthe

SC-Algorithm NMI ARI MC-Algorithm NMI ARI
S-GO 0.5367 0.3657 MC-FR-OI-MLSVD 0.7429 0.6030
S-MeSH 0.7072 0.5134 MC-FR-OI-HOOI 0.7732 0.6473
S-OMIM 0.6971 0.4901 MC-FR-MI-HOOI 0.7494 0.6015
S-NCI 0.5153 0.3063 MC-TR-I-EVDit 0.7218 0.5948
S-eVO 0.6048 0.3845 MKF 0.7002 0.5445
S-KO 0.3187 0.1194 FI 0.6743 0.4830
S-LDDB 0.7088 0.5942 SA 0.7016 0.5495
S-MP 0.6582 0.4962 AdacVote 0.6093 0.5349
S-SNOMED 0.6819 0.5205 CP-ALS 0.7241 0.5154
S-Uniprot 0.5692 0.3303 LMF 0.6058 0.4402

TABLE V

CLUSTERING PERFORMANCE ON DISEASE DATA SET.

Sources βi αi Ranking ofαi Performance ranking
GO 0.1818 0.2544 9 8
MeSH 0.2325 0.2842 7 2
OMIM 0.2537 0.2973 4 3
NCI 0.2418 0.2931 6 9
eVO 0.2717 0.3021 3 6
KO 0.1310 0.2216 10 10
LDDB 0.7228 0.5303 1 1
MP 0.2725 0.3113 2 5
SNOMED 0.2110 0.2713 8 4
Uniprot 0.2405 0.2970 5 7

TABLE VI

THE WEIGHTING COEFFICIENTS OF MULTI-VIEW DATA OBTAINED BY MC-FR-MI-HOOI IN DISEASE DATA.

cluster numbers indicated by the arrows. Moreover, in Figure 1
and Figure 2 ofSupplementary material 5, we also compare the
1-mode singular value curves using different tensors of journal
data and gene-disease data. Those tensors are generated from
different numbers of views, for instance, in journal data, we
generate different tensors by using various combinations from
two to seven views.

As shown, for each data, the 1-mode singular value plot is quite
stable w.r.t. the different combinations of multiple views.

To investigate the computational time, we benchmark our tensor
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Fig. 10. Confusion matrices of disease gene data obtained byspectral
clustering on LDDB (left) and MC-FR-OI-HOOI (right). The numbers of
cluster labels are consistent with the numbers of diseases.In each row, the
diagonal element represents the fraction of correctly clustered genes and the
off-diagonal non-zero element represents the fraction of mis-clustered genes

Algorithm disease data journal data
MC-FR-OI-MLSVD 4.82 33.34
MC-FR-OI-HOOI 9.32 64.98
MC-FR-MI-HOOI 2.79 41.75
MC-TR-I-EVDit 2.78 8.34
MKF 1.23 3.97
FI 3.94 20.06
SA 37.29 60.94
AdacVote 37.31 44.67
CP-ALS 7.82 127.55
LMF 9.40 203.41

TABLE VII

COMPARISON OFCPU TIME IN SECONDS FOR REAL DATA

based multi-view clustering algorithms with 6 different multi-
view clustering methods on the two application data sets. As
shown in Table VII, our three tensor based strategies (MC-FR-OI-
MLSVD, MC-FR-OI-HOOI and MC-FR-MI-HOOI) are efficient.
For instance, they are faster than four multi-view clustering meth-
ods (SA, AdacVote, CP-ALS and LMF). Obviously, MC-FR-OI-
MLSVD is more efficient. **Q1.3 The difference of the computa-
tion time of our three algorithms is caused by the different of their
computational complexity. The computational complexity of MC-
FR-OI-MLSVD is O(6N(M)2); the computational complexity of
MC-FR-OI-HOOI is O(6NK2M2) if N > KM and O(2N2KM)
flops if N < KM ; and the computational complexity of MC-FR-
MI-HOOI is O(2(M + 1)N2K).

On the other hand, although MKF and FI seem more efficient
than our three tensor based algorithms, our proposed methods
yield much better performance or more enriched information(the
weighting factors of the single views).

Meanwhile, the two clustering ensemble methods SA and
AdacVote require more computation time since they involve the
partition of each single-view data. Consequently, with number
of views increasing, the computation of the clustering ensemble
method will become more and more intensive.

VI. D ISCUSSION

Based on the clustering performance of the multi-view clus-
tering strategies, first, MKF is efficient when compared with
tensor based strategies. However, MKF only combines multiple
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Fig. 11. Plot of the top 20 1-mode singular values of tensors constructed
from different multi-view data (synthetic data on the left,journal data on the
middle and disease data on the right). All possible views of each data are
employed to construct these tensors.

kernels (similarity matrices) in a simple way using the average
sum of multiple similarities. Thus, such a simple combination
neglects the discriminating capability of each kernel. Second,
clustering ensemble methods (SA and AdacVote) rely on discrete
hard clustering. Using only the final partition informationseems
too fragile to integrate.

In addition, because the partition of every single-view data is
required, the implementation of clustering ensemble methods is
not efficient as shown in Table VII.

Third, considering LMF, we found that the clustering per-
formance relies on the initialization, and hence the partition
results are quite unstable. Moreover, its optimization mechanism
consumes much time.

Fourth, for CP-ALS, the failure might be due to the un-
orthogonal property of the relaxed assignment matrixU after
tensor decomposition. The reason is that the similarity matrix
in (3) we adopted to construct the tensor corresponds to the Ncut
based Laplacian matrix that requires the orthogonal partition in
spectral clustering.

Meanwhile, our tensor based multi-view spectral clustering can
be thought of as a “Multi-view PCA” analysis, which integrates
multi-view information seamlessly and forms a joint optimal
subspace. Therefore our strategy can extract the latent pattern
shared by all views and filter out irrelevant information or noise.
The tensor based multi-view clustering of optimization integration
strategy (MC-FR-OI-MLSVD and MC-FR-OI-HOOI) leverages
the effect of each single-view data in an appropriate way while the
tensor based multi-view clustering of matrix integration strategy
(MC-FR-MI-HOOI) is able to utilize the linear relationshipof
multi-view data for joint analysis.

VII. C ONCLUSION AND OUTLOOK

We proposed a multi-view clustering framework based on high-
order analogues of the matrix Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA). Our framework
can be regarded as a multi-view extension of spectral clustering.
With our tensor formulation, both heterogeneous and homoge-
neous information can be integrated to facilitate the clustering
task.

We presented two new multi-view clustering strategies: multi-
view clustering by the integration of the Frobenius-norm objective
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function (MC-FR-OI) as well as the matrix integration in the
Frobenius-norm objective function (MC-FR-MI). The relevant
tensor based solutions are proposed, which are either iterative
optimization or efficient approximation. All of them are capable
of utilizing the global information of multi-view data while taking
the effect of single-view data into consideration. Furthermore,
these different methods can be applied to various practicalsce-
narios.

We employed our algorithms to both synthetic data and two real
applications. The clustering performance demonstrated that our
algorithms are not only superior to single-view spectral clustering
methods, but also superior to other baseline multi-view clustering
methods.

In later research, we will carry out our work in the follow-
ing directions: (1) We will investigate other alternative tensor
solutions, such as INDSCAL [4], as well as efficient tensor
decomposition for scalable application; (2) We will extendour
multi-view clustering algorithm to higher-order data (we only use
three-order data in this research), such as, adding anothertemporal
order that allows data to vary at different time points; (3) Our
framework is not limited to the clustering analysis. Since its core
is to seek a joint optimal latent subspace, it can be extended
to other multi-view learning tasks: for instance, classification,
spectral embedding, collaborative filtering and even information
retrieval.

APPENDIX

Theorem 1:Consider positive (semi)definite matricesS(1),
S(2), . . . , S(K) ∈ R

N×N . Let W ∈ R
K have unit-norm and

considerf(W ) = ‖
∑K

k=1 wkS
(k)‖F . Then the entries of the

vectorW that maximizesf , have equal sign.
Proof:

Define S̃ =
(

vec(S(1)) vec(S(2)) . . . vec(S(K))
)

∈ R
N2

×K .
The vectorW that maximizesf is the dominant right singular
vector of S̃. This is the dominant eigenvector ofS̃T S̃.

Consider the eigenvalue decompositionS(k) =

Q(k)D(k)Q(k)T , in which Q(k) is orthogonal andD(k) is
diagonal and positive (semi)definite,1 6 k 6 K. We have

(S̃T
S̃)kl = vec(S(k))T vec(S(l))

= vec(D(k))T vec(Q(k)T
S
(l)

Q
(k))

= vec(diag(D(k)))T vec(diag(Q(k)T
S
(l)

Q
(k))),

1 6 k, l 6 K. Since D(k) is positive (semi)definite,
vec(diag(D(k))) has only nonnegative entries. SinceS(l) is
positive (semi)definite, vec(diag(Q(k)T S(l)Q(k))) has only non-
negative entries as well. We conclude that the entries ofS̃T S̃

are nonnegative. According to the Perron-Frobenius theorem, the
entries of the dominant eigenvectorW of S̃T S̃ have equal sign.
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