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ABSTRACT

Motivation: Gene prioritization aims at identifying the most promising

candidate genes among a large pool of candidates—so as to

maximize the yield and biological relevance of further downstream

validation experiments and functional studies. During the past few

years, several gene prioritization tools have been defined, and

some of them have been implemented and made available through

freely available web tools. In this study, we aim at comparing

the predictive performance of eight publicly available prioritization

tools on novel data. We have performed an analysis in which 42

recently reported disease-gene associations from literature are used

to benchmark these tools before the underlying databases are

updated.

Results: Cross-validation on retrospective data provides performance

estimate likely to be overoptimistic because some of the data sources

are contaminated with knowledge from disease-gene association. Our

approach mimics a novel discovery more closely and thus provides

more realistic performance estimates. There are, however, marked

differences, and tools that rely on more advanced data integration

schemes appear more powerful.
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1 INTRODUCTION

Amajor challenge in human genetics is to discover novel disease-

causing genes, both for Mendelian and complex disorders. Iden-

tifying disease genes is a crucial first step in unraveling molecular

networks underlying diseases, and thus understanding disease

mechanisms, also toward the development of effective therapies.

The discovery of a novel disease gene often starts with a cyto-

genetic study, a linkage analysis, a high-throughput omics experi-

ment or a genome-wide association study (GWAS). However,

these studies do not always pinpoint the disease gene uniquely,

but often result in large lists of candidate genes that are poten-

tially relevant (Hardy and Singleton, 2009). Moreover, recent

advances in next-generation sequencing offer promising

opportunities to explore the genomic alterations of patients

(Schuster, 2008). However, thousands of mutations in hundreds

of genes are often detected, among which only a few are in fact

linked to the genetic condition of interest (Lupski et al., 2010).

The experimental validation of these candidate genes, for in-

stance, through resequencing, pathway or expression analysis,

is still expensive and time consuming. An efficient way to

reduce the validation cost is to narrow down the large list of

candidate genes to a small and manageable set of highly promis-

ing genes, a process called gene prioritization. Prioritization in

the past was achieved manually by geneticists and biologists and

was mainly based on their own expertise. Nowadays, biologists

and geneticists can use computational approaches that can

handle and analyze the large amount of genomic data currently

available.
In the past few years, many gene prioritization methods have

been proposed, some of which have been implemented into pub-

licly available tools that users can freely access and use

(Doncheva et al., 2012; Moreau et al., 2012; Oti, 2011; Piro

et al., 2012; Tiffin, 2011, Tranchevent et al., 2010). Information

about these tools is summarized in our Gene Prioritization Portal

(http://www.esat.kuleuven.be/gpp) that currently describes 33

prioritization tools. This web site has been designed to help re-

searchers to carefully select the tools that best correspond to their

needs. For instance, only few tools can prioritize the whole

genome, which can be necessary when no positive regions can

be identified beforehand, or when selecting candidates for a

medium-throughput screen (instead of low-throughput valid-

ation). Another example is the study of a poorly characterized

disorder for which a prioritization tool not relying on a set of

known disease genes might be more suited. Recently, several

studies have demonstrated that gene prioritization tools can

help geneticists to discover novel disease genes (Calvo et al.,

2006; Thienpont et al., 2010). For instance, a KIF1A mutation

was discovered in hereditary spastic paraparesis patients after

KIF1A was predicted to be the best candidate gene from the

locus using multiple prioritization tools (Erlich et al., 2011).

Another study discovered homozygous mutations in the

PTRF-CAVIN gene in patients with congenital generalized

lipodystrophy with muscle rippling after PTRF-CAVIN was pre-

dicted as the most probable candidate gene for high expression in

muscle and adipose tissue (Rajab et al., 2010). A third

study identified the HHEX gene to be associated with Type
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2 diabetes (T2D) in a Dutch cohort after investigating the T2D-

susceptibility loci using candidate gene prioritization

(Vliet-Ostaptchouk et al., 2008).

However, beyond these conceptual differences, one essential

parameter to consider when selecting gene prioritization tools is

their respective performance—that is, their ability to identify the

true positive genes as promising candidate genes to maximize the

yield of the follow-up experimental validation.A common standard

in bioinformatics is to estimate the performance with a bench-

mark analysis. Several publications that introduce a novel pri-

oritization approach also describe a comparative benchmark

with several existing methods (Hutz et al., 2008; Köhler et al.,

2008; Thornblad et al., 2007). However, these benchmarks are

most of the time cross-validations of gold-standard disease data-

sets (e.g. known data). Therefore, the estimation of the

performance is likely an overestimate of the real performance

(i.e. on novel data). Because different types of data are depend-

ent on each other (e.g. Gene Ontology (GO) annotation, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway mem-

bership and MEDLINE� abstracts), it becomes impossible to

remove all cross-talk effects between data sources (e.g. removing

MEDLINE data does not remove all information from the bio-

medical literature since much of it is present in GO and KEGG)

to prevent contamination of the prediction of the disease gene by

actual retrospective knowledge of this association. This makes it

challenging to create benchmarks on retrospective data that are

indicative of the performance of themethod in an actual research

setting. Next to benchmarking, some studies use several

prioritization methods to analyze disease-associated loci,

mostly for Type 2 diabetes and obesity (Elbers et al., 2007;

Teber et al., 2009; Tiffin et al., 2006). However, the results

have not been experimentally validated, which means that it is

not possible to identify which methods made better predictions.

Also, a few studies combine computational and experimental

analysis: in silico-generated hypothesis are then validated

in vivo. We have, for instance, performed a computationally sup-

ported genetic screen in Drosophila that led to the identification

of 12 novel atonal genetic interactors (Aerts et al., 2009).

Although useful, such studies often rely on the use of a single

tool and therefore cannot be used to compare different

approaches. They also give no indication of the performance

of the method in general, but only illustrate it on a single

well-validated case.
In this study, we aim at comparing the performance of several

freely accessible web-based gene prioritization tools on novel

data, which, to our knowledge, has never been performed

before. To this aim, we selected recently reported disease-gene

associations from literature and use several gene prioritization

tools to make predictions immediately after publication (typically

within 2 days). Our approach relies on the fact that, when the

prioritization tools are used, the novel disease-gene association of

interest is not yet included in the databases that underlie these

tools. As a consequence, our approach mimics a novel discovery,

and therefore, the estimation of the performance is more

accurate. It has to be mentioned that we compare tools and

not the underlying algorithms (we see a tool as an algorithm

plus some data sources), because this is what is most relevant

to geneticists.

2 METHODS

2.1 Gene prioritization tools

We aim at comparing the gene prioritization tools that can easily be used,

and therefore, only select the tools for which a free web-based implemen-

tation is available. The main objective is to assess the ability of the gene

prioritization tools to predict potential novel disease genes that can then

be experimentally validated. We have therefore not selected the tools

whose ranking strategies exclusively depend on text as they would most

likely work only when the novel disease gene was already considered a

good candidate gene before discovery. One exception is Candid, which

also uses other data sources beside MEDLINE (e.g. protein domains,

interactions and expression data). In total, we have selected eight tools:

Suspects (Adie et al., 2006), ToppGene (Chen et al., 2007), GeneDistiller

(Seelow et al., 2008), GeneWanderer (Köhler et al., 2008), Posmed

(Yoshida et al., 2009), Candid (Hutz et al., 2008), Endeavour (Aerts

et al., 2006) and Pinta (Nitsch et al., 2010). The tools are run with the

settings recommended by the developers. When applicable, multiple con-

figurations are defined to explore several possibilities (for instance, several

ranking algorithms within one tool). Originally, Pinta was developed to

use expression data as input data, but here, we replace the continuous

data (coming from expression data) with binary data using training genes:

a 1 is inputted for each training gene, and a 0 is associated to the other

genes. For an overview of the tools, please see Supplementary Table S1.

All tools except Candid are used to prioritize a set of candidate genes

(from a chromosomal region), and Candid is used to prioritize the whole

genome. Pinta and Endeavour support both genome-wide and candidate

set based prioritizations, and are used for both in this study

(Endeavour-GW and Pinta-GW for genome-wide prioritization and

Endeavour-CS and Pinta-CS for candidate set prioritization). In addition,

GeneWanderer can be run with up to four different ranking strategies

(random walk, diffusion kernel, shortest path and direct interaction). We

present the results for the first two strategies (GeneWanderer-RW for

random walk, GeneWanderer-DK for diffusion kernel) because they

have been showed to outperform the other two, simpler, approaches

(Köhler et al., 2008) and since they can be efficiently used with many

training genes. The performance of Posmed shows a strong dependency

on the set of keywords used as an input, and we ran it twice with different

inputs. In the first run, we use the complete keyword set (Posmed-KS),

and in the second, we only use the name of the disease (Posmed-DN).

GeneDistiller is trained with both genes and keywords. These keywords

are then used to find additional genes through the mining of Online

Mendelian Inheritance in Man (OMIM), which, in our case, has less

influence since OMIM is already used to derive the training genes. We

therefore consider that GeneDistiller is trained with genes only. Candid is

the only tool that can also be trained with disease-specific tissues, and

when available, tissues relevant to the disease under study are used.

Notice that suspects went offline during our study after the 27th associ-

ation and is not supported anymore (E.Adie, personal communication);

therefore, Suspects results are based on 27 associations over 42.

2.2 Validation dataset

The validation dataset is built by mining the scientific literature to iden-

tify the recently discovered disease-gene associations. This is achieved

manually to avoid false-positive associations. We select six journals

that frequently publish papers that describe such associations: Nature

Genetics, American Journal of Medical Genetics (Part A/Part B),

Human Genetics, Human Molecular Genetics, and Human Mutation. We

select all novel disease-gene associations regardless of the disease under

study, of the methodology used, and of whether the findings are con-

firmed or not. Novelty is assessed by using OMIM (McKusick, 1998), the

Genetic Association Database (Becker et al., 2004), GoPubmed (Doms

and Schroeder, 2005) and GeneCards (Safran et al., 2010). More pre-

cisely, we assess novelty at the gene level, and therefore, novel mutations
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within already known genes are not considered. This process was kept

active for 6 months (May 15–November 15, 2010) and led to a collection

of 42 associations (see Table 1 and Supplementary Table S2). For each

association, the tools are run as soon as the association is identified fol-

lowing the defined workflow (see later). By doing this, we simulate as

much as possible the prediction of a novel disease gene, since the under-

lying databases are still unaware of the association. Once an association is

identified, the exact inputs for the different tools have to be defined. For

instance, ToppGene, GeneDistiller, GeneWanderer, Pinta and Endeavour

require training genes (genes already known to be associated to the disease

under study), whereas Suspects, Posmed, GeneDistiller and Candid re-

quire keywords that describe the disease. Training genes and keywords

are collected from the corresponding OMIM pages, Genetic Association

Database (GAD) pages and from recently published reviews when pos-

sible. BioMart (Haider et al., 2009) is used to map between gene symbols

and tool-specific gene identifiers (e.g. EntrezGene or Ensembl identifiers).

As mentioned earlier, most of the tools in addition require a set of candi-

date genes (from the whole genome). Several tools accept chromosomal

coordinates, whereas some prefer cytogenetics bands. For each associ-

ation, we select the cytogenetics bands that cover �10Mb around the

novel disease gene and derive the chromosomal coordinates. We choose

10Mb to obtain on average at least 100 candidate genes. Once again,

BioMart is used to retrieve specific gene identifiers. For an overview of

the inputs for the 42 associations, please see Supplementary Table S3.

The resulting 42 novel disease-gene associations do not represent a

homogeneous set. Therefore, we have divided them into confirmed

(for monogenic diseases, the mutation is found in at least two unrelated

patients; for multifactorial diseases, a GWAS is replicated in a separate

cohort), intermediate (a single study, but additional functional evidence is

provided) and unconfirmed (a single study) associations.

Table 1. The validation dataset consisting of 42 recently discovered disease-gene associations

Gene Disease/phenotype Reference(s)

HCCS Congenital diaphragmatic hernia Qidwai et al. (2010)

BRCA2 Bipolar disorder Tesli et al. (2010)

TNFRSF19 Nasopharyngeal carcinoma Bei et al. (2010)

MECOM Nasopharyngeal carcinoma Bei et al. (2010)

ATF7IP Testicular germ cell tumor Turnbull et al. (2010)

DMRT1 Testicular germ cell tumor Turnbull et al. (2010)

FUT2 Crohn’s disease McGovern et al. (2010)

CSF1R Asthma Shin et al. (2010)

GLI3 Metopic craniosynostosis McDonald-McGinn et al. (2010)

STOM Nonsyndromic cleft lip/palate Letra et al. (2010)

UTRN Arthrogryposis Tabet et al. (2010)

GABRR1 Bipolar schizoaffective disorder Green et al. (2010)

UBE2L3 Crohn’s disease Fransen et al. (2010)

BCL3 Crohn’s disease Fransen et al. (2010)

EZH2 Myelodysplastic syndromes Nikoloski et al. (2010)

TRAF6 Parkinson’s disease Zucchelli et al. (2010)

IL10 Behcet’s disease Mizuki et al. (2010); Remmers et al. (2010)

DAB2IP Abdominal aortic aneurysm Gretarsdottir et al. (2010)

SPIB Primary biliary cirrhosis Liu et al. (2010)

MMEL1 Primary biliary cirrhosis Hirschfield et al. (2010)

TBX2 Complex heart defect Radio et al. (2010)

RUNX2 Single-suture craniosynostosis Mefford et al. (2010)

CRHR1 Multiple sclerosis Briggs et al. (2010)

IFNG Leprosy Cardoso et al. (2010)

SH2B1 Congenital anomalies of the kidney and urinary tract Sampson et al. (2010)

DISP1 Congenital diaphragmatic hernia Kantarci et al. (2010)

G6PC3 Dursun syndrome Banka et al. (2010)

PQBP1 Periventricular heterotopia Sheen et al. (2010)

CD320 Methylmalonic aciduria Quadros et al. (2010)

CHST14 Ehlers-Danlos syndrome Miyake et al. (2010)

PLCE1 Esophageal squamous cell carcinoma Abnet et al. (2010); Wang et al. (2010)

C20orf54 Esophageal squamous cell carcinoma Wang et al. (2010)

SDCCAG8 Retinal–renal ciliopathy Otto et al. (2010)

TP63 Lung adenocarcinoma Miki et al. (2010)

UBE2E2 Type 2 diabetes Yamauchi et al. (2010)

LPP Tetralogy of fallot Arrington et al. (2010)

RANBP1 Smooth pursuit eye movement abnormality Cheong et al. (2011)

HTR7 Alcohol dependence Zlojutro et al. (2010)

SOX17 Congenital anomalies of the kidney and the urinary tract Gimelli et al. (2010)

ACAD9 Mitochondrial complex I deficiency Haack et al. (2010)

TRAF3IP2 Psoriasis Ellinghaus et al. (2010); Hüffmeier et al. (2010)

WDR62 Autosomal recessive primary microcephaly Nicholas et al. (2010); Yu et al. (2010)
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2.3 Performance measures

For each tool, we then assess its ability to identify the novel disease genes

as promising genes using several statistical measures. We first compute

the median of the rank ratio over all associations. We preferably use rank

ratio over rank because tools do not necessarily return the same number

of candidate genes even when fed with the same inputs. In addition, we

also draw the boxplots of these rank ratios to give a more comprehensive

view of tool performance. Another method to compare the tools is to

build the receiver-operating characteristic (ROC) curves and to compute

the area under the curve (AUC) as an estimate of the global performance.

To compare the tools even further, we computed the true-positive rates

when setting the threshold for validation at the top 5% (True Positive

Rate (TPR) in top 5% of candidates), 10% (TPR in top 10%) and 30%

(TPR in top 30%). This is motivated by the fact that, in a real situation,

the number of candidate genes to assay often needs to be limited because

of financial and time constraints. We have selected three thresholds that

represent reasonable biological hypotheses, as we previously illustrated in

a genetic screen (Aerts et al., 2009). The corresponding TPR measures are

used to estimate how efficient the tools are if only the top 5, 10 or 30%

candidate genes would be assayed. Notice that these values correspond to

the shape of the lower end of the ROC curve (the sharper the curve, the

higher the TPR). There are cases for which some tools are unable to

identify the novel disease gene at all; therefore, we include a response

rate. It is defined as the percentage of associations for which each tool

does return a prioritization result for the novel disease gene (in some cases,

a tool will not return any result, for example, because it could not correctly

map the gene identifier or some candidates are otherwise filtered out). For

example, if one of the 42 disease genes could not be ranked (i.e. gene is

missing), the response rate drops down to �98% (41/42).

Lastly, we also derive a heat map to detect any correlation

between tools by computing the pairwise cosine similarity of the rankings

pre-sented in Table 2 (see Supplementary Fig. S1).

2.4 Integration of predictions

To get an estimate of the usefulness of a meta-predictor, the results of the

different tools are combined using the order statistics as within

Endeavour. Integration happens separately for the genome-wide tools

and candidate set based tools, and tools that return only few rankings

(Suspects and Posmed) were not included. For each experiment, the gene

identifiers of the different tools are mapped using Biomart. To avoid

getting artificially favorable rankings, the size of the merged ranking is

set to the maximum size of the underlying rankings.

3 RESULTS

The overall ranking results of all gene prioritization tools are
summarized in Table 2, the complete results are presented in

Supplementary Tables S9 and S10. These results have also

been added to the Gene Prioritization Portal (http://www.esat.

kuleuven.be/gpp).

3.1 Performance measures

When considering the median of the rank ratios, GeneDistiller,

Endeavour-CS and Suspects are the tools that perform the best

on this benchmark (11.11, 11.16 and 12.77, respectively). They
are followed by Endeavour-GW (15.49), ToppGene (16.8),

Candid (18.1), Pinta-CS (18.87), Pinta-GW (19.03), GeneWan-

derer-RW (22.11), GeneWanderer-DK (22.97), Posmed-KS
(31.44) and Posmed-DN (45.45). The boxplots presented in

Figure 1 illustrate that both GeneDistiller and Endeavour-CS

perform better than the other candidate set based prioritization

tools (Fig. 1, right). Among the genome-wide tools, Endeavour-

GW performs slightly better than Pinta-GW and Candid

(Fig. 1, left).
When considering the response rate, Endeavour (both modes),

Candid and Pinta (both modes) performed the best study with

100% closely followed by ToppGene, GeneDistiller and

GeneWanderer-RW with more than 95% (meaning that only

one or two associations are missing). At the other hand of the

spectrum, Posmed-KS and Posmed-DN only work for about half

of the experiments in our benchmark (47.6% and 50%,

respectively).
When we compare the tools based on the global AUC (see

Fig. 2), we observe that GeneDistiller appears as the best

performing tool overall with an AUC of 86%. It is followed

by Endeavour-CS (82%), Endeavour-GW (79%), Pinta-GW

(77%), Suspects (76%), Pinta-CS (75%), Candid (73%),

GeneWanderer-RW (71%), GeneWanderer-DK (67%),

ToppGene (66%), Posmed-KS (58%) and Posmed-DN (56%).

However, the ROC curves are in general intertwined, meaning

that none of the approaches is clearly performing better than the

other. However, we postulate that, in our case, the most import-

ant section of the ROC curve is the beginning and therefore use

Table 2. Results for the genome-wide and candidate set based prioritiza-

tion tools

Median Response

rate (%)

TPR in top

5% (%)

TPR in top

10% (%)

TPR in top

30% (%)

Genome-wide prioritization tools

Candid 18.10 100 21.4 33.3 64.3

Endeavour-GW 15.49 100 28.6 38.1 71.4

Pinta-GW 19.03 100 26.2 31.0 71.4

Integration 12.45 100 19.1 38.1 78.6

Candidate set based prioritization tools

Suspects 12.77a 88.9a 33.3a 33.3a 63.0a

ToppGene 16.80 97.6 35.7 42.9 52.4

GeneWanderer-RW 22.10 95.2 16.7 26.2 61.9

GeneWanderer-DK 22.97 88.1 11.9 21.4 52.4

Posmed-DN 45.45 50.0 4.7 11.9 23.8

Posmed-KS 31.44 47.6 4.7 7.1 23.8

GeneDistiller 11.11 97.6 26.2 47.6 78.6

Endeavour-CS 11.16 100 26.2 42.9 90.5

Pinta-CS 18.87 100 28.6 31.0 71.4

Integration 6.99 100 40.5 57.1 83.3

aValues computed only on the first 27 associations.

Fig. 1. Boxplots of the 42 novel disease genes from the validation dataset

illustrated for the genome-wide (left) and candidate gene set based (right)

prioritization tools
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three other measures, the true-positive rates at 5, 10 and 30%,

respectively. These measures indicate how efficient the tools
would be if only the top candidate genes would be assayed.
Considering the TPR in top 10 and 30%, we can observe a

similar trend. Indeed, at 10%, GeneDistiller is first with a rate of
47.6% (20 associations found over 42), followed by both

ToppGene and Endeavour-CS with 42.9% (18 associations).
However, at 30%, the best tool is Endeavour-CS (90.5%, 38
associations), followed by GeneDistiller (78.6%, 33 associ-

ations). The other tools show smaller TPR at both levels:
Pinta-CS (31%, 71.4%), Suspects (33.3%, 63%),

GeneWanderer-RW (26.2%, 61.9%), GeneWanderer-DK
(21.4%, 52.4%), Posmed-KS (7.1%, 23.8%) and Posmed-DN
(11.9%, 23.8%). Among the genome-wide prioritization tools,

Endeavour-GW shows the highest TPR in top 10 and 30%
(38.1%, 71.4%), followed by Candid (33.3%, 64.3%) and

Pinta-GW (31%, 71.4%).

3.2 Correlations

Supplementary Figure S1 shows the heat map of the novel

disease-gene ranking positions for all tools in this study. For
the tools that have two modes (i.e. Posmed, GeneWanderer,
Endeavour and Pinta), the two modes are highly correlated

(40.89). There is also a significant correlation between Candid
and GeneWanderer-DK (0.82). The other values are within 0.4

and 0.7, indicating that all tools are moderately correlated.

3.3 Integration of predictions

Our meta-analysis reveals that the best results are obtained when

predictions are combined over the different tools (see Table 2 and
Supplementary Table S11). For genome-wide tools, all perform-

ance measures are improved by the integrative method (e.g.
median of 12.45 for the meta-predictor versus 15.49 for
Endeavour-GW). Similar results are obtained for the candidate

set based tools (e.g. median of 6.99 for the meta-predictor versus
11.11 for GeneDistiller), although the TPR in the top 30% of the

integrative method is still lower than for Endeavour-CS (83.3%
versus 90.5%).

4 DISCUSSION

We aim at assessing the usefulness of eight gene prioritization
tools that are freely available via web applications. We have built

a validation based on 42 recently discovered disease-gene

associations from literature containing novel genes for both
monogenic conditions and complex disorders. We have selected
novel disease-gene associations regardless of their strength and of

the underlying methodology. To mimic a real discovery, we have
run the tools as soon as the article appeared online so that all
databases used for gene prioritization are still not contaminated

by the knowledge of the novel disease-gene association. This also
means that we had to exclude tools that query MEDLINE online
because their results would be biased.

We want to compare the performance of the tools even if the
inputs are different (genes versus keywords, genome-wide versus
candidate set). Among the eight gene prioritization tools that we

have analyzed in this study, only Endeavour, Candid and Pinta
have been used for genome-wide prioritization. The input
data for Endeavour and Pinta are training genes, whereas

Candid requires keywords. The gene prioritization tools that
we have used to prioritize candidate genes within a region of
interest are Suspects, ToppGene, GeneWanderer, Posmed,

GeneDistiller, and again Endeavour and Pinta. Suspects and
Posmed are trained with keywords, and the other tools require
training genes. We have extensively searched through literature

and dedicated databases to identify as many reliable training
genes as possible for the disease of interest as well as a set of
appropriate keywords to derive fair and meaningful compari-

sons. However, different, and possibly better, results might be
obtained by refining the inputs.
Our validation is too small to claim that the differences among

tools are significant. However, a trend can still be observed,
GeneDistiller and Endeavour-CS consistently appear as the
best tools when looking at all performance measures. It is inter-

esting to notice that the best results are, in general, obtained with
tools that use many data types in conjunction (up to eight for
Endeavour, when compared with the three data sources used by

Posmed), but there is no perfect correlation. This is in agreement
with the conclusion of the recent review by Tiffin et al. (2009),
who indicate that successful computational applications will be

facilitated by improved data integration.
All tools except Posmed have a high response rate ranging

from 88 to 100%, meaning that at least 37 of the 42 novel disease

genes are prioritized (or 24 of 27 for Suspects). However, the
response rates for Posmed-KS and Posmed-DN are 47.6% and
50%, respectively, which can be explained by the fact that

Posmed also acts as a filter on the candidate genes to obtain a
reduced list of genes in the end. There are therefore cases for
which the novel disease gene has been removed by the filter. This

is different from the other tools for which missing genes basically
correspond to genes that are not recognized by the tool (it hap-
pens most of the time with poorly characterized genes, such as

C20orf54). Another special case is Suspects that went offline
during the validation and therefore could only be validated
with the first 27 associations. We therefore calculated the re-

sponse rate only on the first 27 associations.
Two types of tools can be distinguished, the ones that are

trained with already-known genes and the ones that are trained

with descriptive keywords. It appears that gene-based tools seem
to work better than keyword-based tools (the average of medians
is 17.2 for gene-based tools and 27 for keyword based tools;

similar results are obtained with the other measures, see
Supplementary Table S8). This could be because we use, in

Fig. 2. ROC curves of the genome-wide (A) and candidate gene set based

(B) prioritization tools
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general, more genes than keywords for training (18.8 genes on an
average for six keywords). This also indicates that more key-
words might be needed to model a disease and that a small

text (such as an OMIM entry) might even be necessary (van
Driel et al., 2006).
There is in general an agreement between the five performance

measures we use throughout our study. One notable exception
exists for ToppGene, whose AUC is 66%, and corresponds to
rank 10th (out of the 12 prioritization tools). In contrast, its

associated TPR in top 10% is 42.9%, which corresponds to
rank second. This apparent contradiction can be explained by
observing Figure 2, in which the ROC curve exhibits a

non-convex shape. This is because ToppGene either ranks the
novel disease gene on top or at the bottom (i.e. the disease genes
are rarely ranked in the middle). Therefore, the TPR in top 10%

will be high because it only takes into account the top of the list,
while the AUC will be lower because it basically behaves like an
average over all cases. Another important point is that our ob-

servations are in line with the ‘no free lunch’ theorem. Indeed,
each tool can perform better than all the others for some cases,
or, in other words, none of the tools outperforms another on the

complete dataset (if we do not consider the special case of
Posmed that also acts as a filter).
Posmed-KS has been trained with the complete keyword set,

whereas Posmed-DN has been trained only with the disease
name. The median rank ratio is 31.44 when the complete key-
word set is used and drops to 45.45 when only the disease name is

inputted. If we only compare the results over the 19 associations
for which both tools are able to prioritize the novel disease gene,
the difference becomes even larger (29.6 and 50, respectively, for

Posmed-KS and Posmed-DN). Altogether, these results indicate
that Posmed does not rely on the use of the single disease name
and that the extra keywords are indeed important. It can be

observed that the performance measures for Posmed are worse
than for the other tools in our benchmark study. However, when
looking at the individual ranks, it can be observed that Posmed

returns far fewer genes than the other tools because it also acts as
a filter. As a result, the rank ratios are in general larger and the
performance measures are therefore worse. As such, it becomes

difficult to fairly compare Posmed with the other tools because
our measures of performance naturally penalize the fact that
Posmed returns prioritizations for a limited set of candidates.

Changing our performance measures to counterbalance this
effect would then give an unfair advantage to Posmed because
it returns prioritizations only for the ‘safer bets’.

GeneWanderer has also been run twice with different network
algorithms: random walk and diffusion kernel. The respective
performances are very similar although the random walk ap-

proach is performing a little bit better than the diffusion kernel
albeit non-significant (22.11–22.97 for median rank ratio – simi-
lar differences are observed with the other measures). The heat

map indicates a strong correlation (40.9, see Supplementary
Fig. S1) between the two modes, which was expected since apply-
ing diffusion to a kernel can be interpreted as equivalent to

applying a random walk on the underlying network.
Altogether, this indicates that these two algorithms are similar.
Endeavour and Pinta are used to prioritize both the whole

genome (Endeavour-GW and Pinta-GW) and the defined
chromosomal region (Endeavour-CS and Pinta-CS), allowing

us to identify the influence of the size of the gene list to prioritize.
The median rank ratio is better for Endeavour-CS (11.16) than
for Endeavour-GW (15.49) in our benchmark. The difference

remains, albeit smaller, when considering the AUC and the
TPR in top 10 and 30%.
The same training genes are used, and therefore the observed

difference is only caused by extending the small candidate gene
set to the whole genome. This confirms previous findings that
prioritizing the whole genome is more difficult than prioritizing a

rather small positive locus. The heat map indicates that the two
Endeavour modes are strongly correlated as expected since the
core algorithm is the same in both modes (40.9, see

Supplementary Fig. S1). In contrary, the results for both Pinta
modes are similar (correlation of 0.99) and seem to indicate that
the size of the candidate set does not influence this algorithm.

In this study, we consider the tools as off-the-shelf solutions
and use them as recommended by the developers without
fine-tuning of the parameters. However, an important feature

that might influence the results is the date of the last data
update. The latest genomic data (still prior to discoveries con-
sidered in this study) is likely to give the best results because it

will model more accurately what is currently known, when com-
pared with data that are 2 years old. In our setup, we have no
control over the genomic data used and cannot identify whether

variation in performance among tools can be explained by this.
In addition, the quality of both the data sources and the inte-

gration methodologies are also influencing the outcome of the

prioritization process. However, we aim at estimating the useful-
ness of some prioritization tools for geneticists. Therefore an
in-depth comparison of the implementation of the tools is

beyond the scope of this study.
It is important to notice that the 42 novel disease-gene asso-

ciations do not represent a homogeneous set. Indeed, the median
of the rank ratios over the tools show that some associations

seem to be easier to predict than others. This also explains why
all tools are moderately correlated on the heat map (40.4). A
plausible explanation is the disparity in the available data be-

tween the novel disease genes. Since only little data can be gath-
ered for poorly characterized genes, such as C20orf54, they are
more difficult to prioritize. However, we also hypothesize that

the nature of the underlying genetic disorder as well as the qual-
ity of the reported association might influence the ability of the

tools to correctly predict that association. We have therefore
divided the associations between confirmed, intermediate and
unconfirmed. Among the 42 associations, 23 are confirmed, 8

are intermediate and 11 are unconfirmed (see Supplementary
Table S2). We hypothesize that this might influence our valid-
ation since some unconfirmed associations might in fact be spuri-

ous. We observe that Suspects and ToppGene perform better for
the 23 confirmed associations than for the 19 unconfirmed ones
(see Supplementary Tables S4 and S5). However, this trend is not

always shared as the situation is opposite for GeneDistiller and
GeneWanderer. Although informative, these comparisons are
not significant due to the small number of associations.
In our validation dataset, there are 17 monogenic diseases and

25 multifactorial disorders (see Supplementary Tables S6 and
S7). It has been shown that it is more difficult to make predic-
tions for multifactorial diseases than for monogenic diseases

(Linghu et al., 2009). Our results however seem to indicate
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that not all tools are influenced by the intrinsic complexity of

multifactorial diseases. For instance, Endeavour and ToppGene

seem to perform better for monogenic conditions while

GeneWanderer and Suspects perform better for complex dis-

orders. However, the size of our validation dataset does not

allow for a complete statistical analysis. Larger validation data-

sets and real predictive studies will be pursued to complement

our preliminary study.
We are aware of the limited coverage of available literature in

human genetics in our study that report novel disease-gene asso-

ciations. However, we aimed at estimating the real performance

of gene prioritization tools and therefore have decided to keep

under strict control all the factors that could potentially bias the

benchmark. We were further interested in finding novel

disease-gene associations for defining a proper benchmark, and

there is no guarantee that these associations are uniformly dis-

tributed over the whole literature. We have used journals about

genetic disorders, in general, and favor journals that report novel

associations and have avoided specialized journals that focus on

few diseases to avoid introducing bias toward one disease class.

Our choice of the six selected journals may not be perfect, but

they allowed us to cover most disease types and most situations.
Several studies have shown that combining predictions of sev-

eral tools lead to even better predictions (Elbers et al., 2007;

Tiffin et al., 2006). However, no performance criteria were

used to select the tools to be combined. With this comparison

of tools, we ease the selection of the most efficient tools, whose

combination may lead to more accurate predictions. In addition,

we report that the meta-predictors that integrate the predictions

made by several tools perform better than the best individual

tools as already reported (Thornblad et al., 2007).
Our results indicate that cross-validation based benchmarks

tend to overestimate the real predictive performance. Indeed,

all the tools for which such a benchmark exists have lower

AUC than anticipated using our dataset (see Supplementary

Table S12). We therefore believe that developers should take

extra care when benchmarking their tools as to avoid these pit-

falls. Also, some hard constraints have made this study small

enough not to reach significance (e.g. only few tools have a pro-

grammatically queryable interface).
As already discussed in Moreau et al. (2012), this field needs to

consolidate through improved benchmarking efforts due to the

lack of a ground truth for evaluating the performance of priori-

tization methods. Therefore, we see a need for a large-scale com-

munity effort to compare multiple tools across common

prospective benchmarks. We hope our work represents the first

step toward a collaborative effort to tackle this problem at a

larger scale.
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