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a b s t r a c t

It is shown how Model Predictive Control can be used for flood control of river systems modelled with
real data. A linear model for the Demer, a river in Belgium, is derived, which is used inside the
optimisation problem solved by the controller. This optimisation problem is formulated such that the
controller can be used for set-point and flood control. A Kalman filter is used as a state estimator. Closed
loop simulations performed with a full hydrodynamic model of the Demer in combination with historical
rainfall data show that the proposed control scheme outperforms the current control strategy.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

River floods are worldwide a serious problem. One example of
a river in Belgiumwith a long history of severe floods is the Demer.
In order to reduce these floods, the local government has installed
water reservoirs to store the excess of water during periods of
heavy rainfall. Also hydraulic structures were built to control the
discharges in the river and the water going to and coming from
these reservoirs. Although these adaptations significantly reduced
the risk of flooding along the Demer, extreme rainfalls in 1998 and
2002 still resulted in severe floods. Simulations performed by the
government have shown that these floods could have been
reduced or even avoided if a more advanced control strategy had
been used. Previous works exist where Model Predictive Control
(MPC) is successfully used for flood control and set-point control
of the Demer based on a simple model. The goal of this research is
to further improve these MPC schemes by working with an
approximate model of a full hydrodynamic model of the Demer
and test the controller on this white box model.

MPC (Mayne, Rawlings, Rao, & Scokaert, 2000; Rossiter, 2003)
originates from the chemical process industry but it has shown
great value in many different applications going from food
processing to automotive and aerospace applications (Qin &

Badgwell, 2003). Because MPC formulates the control problem as
an optimisation problem, it can be used to control rivers during
different operating conditions. By minimising the deviations of
water levels from their targets, MPC will focus on set-point control
during periods of no or little rainfall. By incorporating the flood
levels as constraints on the water levels in the optimisation
problem, the same MPC will focus on flood control during periods
of heavy rainfall. However only a high control performance can be
achieved if an accurate model is used in the optimisation problem.

The dynamics of a reach of a river can be modelled with the full
hydrodynamic equations of de Saint-Venant, or the so-called
Saint-Venant equations (Chow, Maidment, & Mays, 1988). Based
on these equations together with the dynamics of hydraulic
structures, junctions and reservoirs, a mathematical model can
be derived for a river system. Because of the complexity of these
models, MPC cannot work directly with these equations but use
approximate models. Models derived by means of identification
techniques or simple integrator delay models provide a good
approximation and have been used in combination with MPC in
many studies for set-point control (Puig et al., 2009; van Overloop,
2006; van Overloop, Clemmens, Strand, Wagemaker, & Bautista,
2010; Wahlin & Clemmens, 2006). However these models are not
accurate enough for the purpose of flood control because they
model the water levels at only one location. Therefore it is hard to
guarantee that the water level profile along the entire reach is
below the flood level. In previous works done by our research
group a conceptual model was used to model the Demer (Barjas
Blanco et al., 2010; Breckpot, Barjas Blanco, & De Moor, 2010;
Barjas Blanco, 2010). However this model approximates the
dynamics of every reach at only a very limited number of points.
Because the flood levels are very irregular, it is never certain that
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no floods are present along the entire river if the limited number
of water levels are below their flood levels. Therefore a model
based on the linear approximation of the Saint-Venant equations
along the entire river is used in this study. This model has
already been used by the authors in combination with MPC in
Breckpot, Agudelo, and De Moor (2013). However that study only
focused on a small artificial academic test example, while in this
paper the controller is applied to a white box model of a real river
whose parameters are derived from real field data. MPC is used in
combination with a Kalman filter (Kalman, 1960) which is used to
estimate the entire state of the system at every time instant based
on a limited number of measured water levels. Also a comparison
is made with the performance of the current control strategy for
the historical rainfall data of the Demer of 2002.

Contribution: In this work it is shown that MPC in combination
with a Kalman filter can successfully be used for set-point control
and flood control of river systems. The authors are not aware of
any other publication where these techniques are successfully
applied to a full hydrodynamical model whose parameters are
derived from real river data to optimally use the buffer capacity of
reservoirs for flood control. The main contributions lie in

� the derivation of the linear model used by the controller inside
the optimisation problem,

� the formulation of the optimisation problem,
� the formulation of a fast nonlinear prediction step to estimate

limits on the gate discharges and a simple procedure to update
the linear models used inside the optimisation problem,

� the adaptation of the classical Kalman filter for getting accurate
state estimates,

� and in showing that the controller outperforms the current
control scheme by testing the controller on a real river case
with historical rainfall data.

As it was already mentioned, there exist previous works where
MPC is applied to a conceptual model (Barjas Blanco, 2010; Barjas
Blanco et al., 2010; Breckpot et al., 2010). There are four major
distinctions with these works:

� Process model: The previous works use a conceptual model with
a limited number of nodes for simulating the Demer. In this
paper a fully hydrodynamic model of the Demer is used for
testing the control performance of the developed predictive
controller resulting in more realistic simulations.

� Control strategy: Regarding the predictive controller, the main
difference lies in the choice of the control variables used inside
the optimisation problem. In the previous works the authors
worked with the gate positions as optimisation variables
resulting in the requirement to use nonlinear model based
predictive control schemes in order to achieve a good control
performance. At every time step a new sequence of time-
varying linear state space models need to be derived over the
prediction window based on the sequence of optimal control
actions calculated at the previous time step. Because of the
limited accuracy of the linear approximation of the gate
equations, a trust region is used inside the optimisation pro-
blem in order to limit the difference between the new optimal
sequence of control actions and the previous one. Furthermore
a line search is used as post-processing step to increase the
effectiveness of the computed control actions. As we will show
these operations are not needed by working with the gate
discharges as optimisation variables. Eliminating the gate equa-
tions out of the optimisation problem has as effect that the
dynamics of the river systems can be accurately approximated
with a linear state space model that needs to be derived only
once: a linear predictive control scheme can be used.

Another difference lies in how the upper limits on the water
levels are imposed. The previous works impose these inequality
constraints as hard constraints, which can lead to infeasibilities
during periods of excessive rainfall. Therefore a constraint
relaxation strategy is implemented that iteratively drops
inequality constraints until the optimisation problem becomes
feasible. This approach can result in solving multiple optimisa-
tion problems. This situation is avoided in this paper by working
with slack variables and imposing the inequality constraints as
soft constraints. Following this approach results in an optimisa-
tion problem that is always feasible.

� State estimator: Because the previous works use the gate posi-
tions as control variables, Moving Horizon Estimation (MHE)
was used as estimation technique. This technique results in
solving an optimisation problem at every time step taking the
measurements of the last sampling times into account as well.
In this study, by working with the gate discharges as control
variables, MHE is not longer required to obtain accurate
estimates of the unknown states. It is shown that a Kalman
filter is accurate enough requiring only a limited number of
operations at every time step.

Paper outline: Section 2 introduces the part of the Demer that is
modelled and controlled in this work together with the control
objectives. Section 3 explains how river systems can be modelled
and also describes the model developed for the upstream part
of the Demer. Section 4 briefly discusses the current control
strategy while Section 5 explains in detail how MPC can be used
for flood control. Section 6 presents the Kalman filter used for
estimating the states. Section 7 compares the performance of the
current control strategy with MPC for historical rainfall data of the
Demer. This paper ends with Section 8 with some conclusions and
future work.

Notation: Matrices are denoted with bold capital letters,
e.g. X , while bold lowercase letters are used for vectors, e.g. x.
Scalars or entries of vectors are not bold. The ith component
of x is denoted by xi. ‖x‖2W denotes xTWx. Superscript (i)
indicates the channel, gate or reservoir the variable or parameter
belongs to. 1n represents a vector of ones of dimension n. The
following symbols and abbreviations are used throughout the
paper:

g the gravitational acceleration constant ðm s�2Þ
t the time variable (s)
z the spatial variable (m)
A, B, D the state space matrices of the discrete time model:

xðkþ1Þ ¼ AxðkÞþBuðkÞþDdðkÞ
x the state vector
u the vector of control actions
d the vector of disturbances
A the cross-sectional flow area (m2)
B the bottom width of a trapezoidal channel (m)
h the water level (m)
L the channel length (m)
nmann the Manning coefficient ðs m�1=3Þ
neqmann the equivalent Manning coefficient ðs m�1=3Þ
P the wetted perimeter of a cross section (m)
Q the water discharge ðm3 s�1Þ
R the hydraulic radius of a cross section (m)
S0 the bed slope (–)
S1, S2 the side slopes of a trapezoidal channel (–)
Sf the friction slope (–)
MPC Model Predictive Control
PDE Partial Differential Equation
QP Quadratic Programming problem
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TAW reference height for altimetry in Belgium
VMM Flemish Environment Agency

2. The study area and control objectives

Fig. 1 gives a schematic overview of a large part of the Demer
together with its tributaries, water reservoirs and hydraulic
structures. Because this is the first time the proposed control
scheme is tested on white box modelled based on real river data,
this paper focusses only on the upstream part of the Demer in the
red rectangle area of Fig. 1 with the assumption that the reservoir
Schulensmeer is directly connected to the Demer through gate D
(similarly as the models used in Barjas Blanco, 2010; Barjas Blanco,
Willems, Po-Kuan Chiang, Cauwenberghs, & De Moor, 2009;
Breckpot et al., 2010). Fig. 2 shows the part of the Demer that will
be modelled and controlled in this work. Section 3 explains how a
mathematical model is constructed for this part of the Demer. This
upstream part contains the Demer and its tributary Mangelbeek,
gates A, K7 and D and the reservoir Schulensmeer. Gates A and D
can be used to control the water flowing between the Demer and
the reservoir. Gate K7 can be used to control the water levels in the
Demer and the Mangelbeek. Historical data will be used to model
the incoming discharges upstream of the Demer and the Mangel-
beek, resp. QDem and QMan. The Demer itself consists of four
reaches (Dem1 until Dem4) while the Mangelbeek contains one
reach (Man5). During normal operation the controller should focus
on set-point control by keeping hup as close as possible to 21.5 m
TAW (where TAW is the reference height for altimetry in Belgium)
without increasing the water level hs of the reservoir. During a
period of heavy rainfall, the buffer capacity of the reservoir cannot
be used as long as any of the water levels stay below their given
safety limits. Once the model predicts a future violation of these
safety limits, the buffer capacity of the reservoir can be used until

its own safety limit is reached. In this situation the water levels of
the reaches are allowed to further increase until the moment that
they violate their flood levels. At that moment the last remaining
buffer capacity can be used. After a period of heavy rainfall the
water level of the reservoir should be decreased as fast as possible
to its original height of 20.4 m TAW in order to have sufficient
buffer capacity for possible future rainfall. After recovering the
buffer capacity the controller should focus again on set-point
control. Every hydraulic structure has an upper and lower limit on
the gate position together with a rate of change constraint.

3. Modelling

3.1. Single reach

The standard approach in the literature to model the dynamics
of a single reach without lateral inflow is by using the full hydro-
dynamic equations of de Saint-Venant (Chaudry, 2008; Cunge,
Holly, & Verwey, 1980; Litrico & Fromion, 2009; Sturm, 2001):

∂Aðz; tÞ
∂hðz; tÞ

∂hðz; tÞ
∂t

þ∂Q ðz; tÞ
∂z

¼ 0; ð1Þ

∂Q ðz; tÞ
∂t

þ ∂
∂z

Q ðz; tÞ2
Aðz; tÞ þgAðz; tÞ ∂hðz; tÞ

∂z
þSf ðz; tÞ�S0

� �
¼ 0; ð2Þ

where t is the time variable (s), z is the space variable (m), Q ðz; tÞ
the water discharge ðm3 s�1Þ, hðz; tÞ the water depth [m], Aðz; tÞ the
cross-sectional flow area (m2), g the gravity acceleration ðm s�2Þ, S0
the river bed slope and Sf ðz; tÞ the friction slope. Eq. (1) describes
the conservation of mass and Eq. (2) the conservation of momen-
tum. The friction slope Sf ðz; tÞ is modelled in this study with the
resistance law of Manning (Chow, 1959):

Sf ðz; tÞ ¼
n2
mannQ ðz; tÞjQ ðz; tÞj
Aðz; tÞ2Rðz; tÞ1=3

ð3Þ

where nmann is the Manning coefficient ðsm�1=3Þ, Rðz; tÞ ¼
Aðz; tÞ=Pðz; tÞ the hydraulic radius (m) and Pðz; tÞ is the wetted
perimeter of the cross section (m). The reaches of the Demer have
an irregular bed slope and an irregular cross section as shown in
Fig. 3, where L is the length of the channel (m). As will be
explained in Section 5.1, these cross sections will be approximated
using an optimisation procedure with a trapezoidal shape with
side slopes S1 and S2 and bottom width B (m) when we derive the
approximate model used by the controller. The parameters of a
trapezoidal channel can be seen in Fig. 4. However, the irregular

Fig. 1. Schematic overview of the Demer.

Fig. 2. Upstream part of the Demer that is modelled and controlled in this study.

Fig. 3. The bed level of the Mangelbeek (left) and an example of a cross sectional
profile (right).

Fig. 4. Parameters of a trapezoidal channel.
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cross sections will be used at the moment of performing the
closed-loop simulations.

Every irregular cross section consists of a piecewise linear
profile where one specific Manning coefficient is defined for every
linear segment. The coefficients for the segments in the lower part
of the river bed are typically smaller than the coefficients for the
segments in the higher part or close to the flood levels because of
their difference in roughness. One needs to calculate an equivalent
Manning coefficient based on the current water level for every
section every time Eq. (3) is evaluated. By assuming that the mean
flow velocity over every subdivision i is equal to the mean flow
velocity over the entire section (Horton, 1933), the equivalent
Manning coefficient can be calculated with

nmann ¼
∑m

i ¼ 1Pin
3=2
mann;i

∑m
i ¼ 1Pi

 !2=3

ð4Þ

where nmann;i is the Manning coefficient for the ith linear segment
with a wetted perimeter Pi and m the number of segments
(partially) under water.

The Partial Differential Equations (PDEs) (1) and (2) will be
used to model the dynamics of the five reaches Dem1, Dem2,
Dem3, Dem4 and Man5. Together with these PDEs, upstream and
downstream boundary conditions are needed for each channel.
The most simple boundary condition is a given upstream or
downstream discharge. Applied to Fig. 2 this corresponds with
the disturbance signals QDem and QMan for resp. the most upstream
reach of the Demer (Dem1) and the Mangelbeek (Man5). Other
possibilities are gates and junctions.

3.2. Hydraulic structures

The hydraulic structures used in this paper are gated weirs as
visualised in Fig. 5. h1 and h2 are the up- and downstream water
levels of the gate respectively and c is the gate position. The
hydraulic structure equations used in this work are based on the
equations used in an existing full hydrodynamic model imple-
mented in the InfoWorks-RS software (Innovyze, 2011) built for
the Flemish Environment Agency (Willems et al., 2008). The
algebraic equation of the gate presented in Fig. 5 is as follows:

Q ðgateÞðtÞ ¼ ~f ðcðtÞ;h1ðtÞ;h2ðtÞÞ; ð5Þ
where ~f is a nonlinear scalar function (Innovyze, 2011) and Q(gate)

is the discharge over the gate. The specific form of this equation
depends on the flow condition of the gate. If the gate position c is
too small in comparison with h1 and h2, the gate position itself has
no influence on the discharge over the gate, and the gate is said to
be in the throat control mode. If the gate position has an influence
on the discharge over the gate, then the gate is said to be in gate
control mode. This gate equation can be used to model the
connection between Dem2 and Dem3 through gate K7:

Q ð2ÞðLð2Þ; tÞ ¼ Q ð3Þð0; tÞ; ð6Þ

Q ð3Þð0; tÞ ¼ ~f ðcðK7ÞðtÞ;hð2ÞðLð2ÞtÞ;hð3Þð0; tÞÞ: ð7Þ

This simply means that the discharge leaving Dem2 is equal to
the discharge entering Dem3 and they are equal to the gate
discharge. A similar reasoning holds for gates A and D.

3.3. Junctions

Junctions are places where three or more reaches coincide or
where a reach or reservoir is connected via an hydraulic structure
to two other reaches. Examples for the Demer are

� gate A connecting the reservoir with Dem1 and Dem2,� gate D connecting the reservoir with Dem3 and Dem4� and gate K7 connecting Dem3 with Dem2 and Man5.

The water levels of the reaches at these junctions should be equal
and the sum of the discharges entering the junction should be
equal to the sum of the discharges leaving the junction. Applying
this to the first junction results in the following equations:

hð1ÞðLð1Þ; tÞ ¼ hð2Þð0; tÞ; ð8Þ

Q ð1ÞðLð1Þ; tÞ ¼Q ð2Þð0; tÞþQ ðAÞðtÞ: ð9Þ
Similar equations can be derived for the other two junctions.

3.4. Reservoirs

The reservoir Schulensmeer is modelled as one large tank. The
change in volume is related to the water entering and leaving
through gates A and D:

dV s=dt ¼Q ðAÞðtÞ�Q ðDÞðtÞ ð10Þ
with Vs the volume of the reservoir (m3). This volume depends in a
nonlinear way on the water level hs of the reservoir. The nonlinear
relation used in this work is based on the conceptual model
developed for this reservoir, based on detailed topographical data,
by Willems et al. (2008) and Chiang and Willems (2010). It has the
following form:

if hso20:38
V s ¼ ðhs�20:38Þ=0:000771 ð11Þ

else

V s ¼ ððhs�20:38Þ=0:000771Þð1=0:838549Þ: ð12Þ
More information on how these equations are derived can be
found in Chiang and Willems (2010).

3.5. Downstream boundary condition

The downstream boundary condition for Dem4 will be mod-
elled with the following rating curve (Willems et al., 2008):

hð4ÞðLð4Þ; tÞ ¼ 0:9722 � Q ðLð4Þ; tÞ2: ð13Þ

3.6. Discretisation and numerical implementation

Since there is no analytical solution for the Saint-Venant
equations, the infinite dimensional variables are approximated
on a finite grid (Strelkoff & Falvey, 1993). The partial derivatives
are approximated with finite differences while the θ-method,
e.g. f ðtkþθΔtÞ ¼ θf ðtkþΔtÞþð1�θÞf ðtkÞ with θA ½0;1� and Δt the

Fig. 5. Gated weir. Fig. 6. Staggered grid structure used to discretise the Saint-Venant equations.
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integration step, is used for the time integration. A staggered grid
(see Fig. 6) with NðiÞ water levels and NðiÞ þ1 discharges for a given
channel i is used for the spatial discretisation. The derivatives in
Eq. (1) are approximated by (note Q ðiÞðzj; tkÞ ¼Q ðiÞ

j;k and Q ðiÞ
j;kþθ ¼

θQ ðiÞ
j;kþ1þð1�θÞQ ðiÞ

j;k)

∂hðiÞj;k
∂t

C
hðiÞj;kþ1�hðiÞj;k

Δt
; ð14Þ

∂Q ðiÞ
j;k

∂z
C

Q ðiÞ
j;kþθ�Q ðiÞ

j�1;kþθ

Δz
; ð15Þ

∂AðiÞ
j;k

∂h
C

∂AðiÞ

∂h

 !
j;kþθ

: ð16Þ

A similar approach is used for the terms ∂Q ðz; tÞ=∂t, Aðz; tÞ, ∂hðz; tÞ=∂z
and Sf ðz; tÞ in Eq. (2). The advection term ∂ðQ2ðz; tÞ=Aðz; tÞÞ=∂z is
approximated with an upwinding approach:

∂
∂z

Q ðiÞ2

AðiÞ

 !
j;k

C

1
Δz

Q ðiÞ2

AðiÞ

 !
jþ1;kþθ

� Q ðiÞ2

AðiÞ

 !
j;kþθ

0
@

1
A Q ðiÞ

j;ko0;

1
Δz

Q ðiÞ2

AðiÞ

 !
j;kþθ

� Q ðiÞ2

AðiÞ

 !
j�1;kþθ

0
@

1
A Q ðiÞ

j;kZ0:

8>>>>>>><
>>>>>>>:

ð17Þ

In this way the two PDEs describing the dynamics of a single channel
i are transformed into a system of nonlinear equations:

f ðhðiÞðtkþ1Þ;hðiÞðtkÞ;qðiÞðtkþ1Þ;qðiÞðtkÞÞ ¼ 0; ð18Þ

with hðiÞðtkÞ ¼ ðhðiÞ
1 ðtkÞ;…;hðiÞ

N ðtkÞT , qðiÞðtkÞ ¼ ðQ ðiÞ
1 ðtkÞ;…;Q ðiÞ

Nþ1ðtkÞT

and f : R4NðiÞ þ2-R2NðiÞ þ1. For all the channels Eq. (18) together with

all the boundary conditions needs to be solved for hðiÞðtkþ1Þ and
qðiÞðtkþ1Þ given the values of these variables at time tk. This can be
done with Newton's method. A discussion about the choice ofΔt and
θ can be found in Clemmens, Bautista, Wahlin, and Strand (2005). A
typical value for θ is 0.6 and this is the value used in this paper.

The spatial discretisation parameter Δz is determined by the
locations for which the VMM has the actual cross sectional profiles.
The value of the spatial discretisation parameter is not equidistant
and ranges from 20 m to 70 m. On average it is about 50 m.

4. Three-position controller

A standard three-position controller is used in practice for set-
point control and its control actions are based on some very
simple rules:

� if the water level is between an upper and lower limit on the
set-point, the gate remains unchanged,

� if the water level exceeds the upper limit, then the gate is
lowered with a fixed step to lower the water level,

� and if the water level is below the lower limit, then the gate
position is increased to increase the water level.

These standard rules are used by the advanced three-position
controller installed by the VMM (Flemish Environment Agency) for
set-point control during normal operation. During periods of
heavy rainfall the working mode of the controllers shifts toward
flood control. These standard rules are replaced by new if-then-
else rules and were formulated by the local water administration.
Based on their many years of experience in controlling the Demer
these rules can be considered as expert knowledge. An advantage
of this controller is that the gate movement is limited which

restricts the wear of the gates. Another advantage is that this type
of controller is easily implementable in practice and requires only
a very limited number of measurements at every time step.
However, the performance of this controller is limited because
rain predictions are not taken into account. Furthermore the
control actions are only based on local information which has as
a consequence that the control actions are not globally optimal.

5. Model Predictive Control

MPC is an optimisation based control strategy which does not
suffer from the drawbacks of the three-position controller. At
every time step the controller solves an optimisation problem
where a process model is used to predict the future outputs within
a specified prediction horizon. The effect of rain predictions on
future water levels and discharges can be incorporated within the
process model. Since the process model is an approximation of the
entire river system, the controller will find an optimal solution for
the gate positions for the entire river system. MPC is suitable for
flood control because safety levels and flood levels can be
incorporated as constraints and it can be used at the same time
for set-point control because set-points can be used inside the
objective function. Only the first element of the entire optimal
sequence of control actions is applied to the process, the new
current state of the system is measured or estimated and the
entire procedure is repeated.

5.1. Choice of control variables and approximate model

The model of the river system derived in Section 3 is too complex
to be directly used inside the optimisation problem. To keep the
optimisation problem as simple as possible, it is advisable to work
with a linear state space model. Because the gate dynamics are too
complex to be accurately approximated with a linear model, these
gate equations will first be pulled out of the mathematical model of
the Demer before deriving the linear model (Breckpot, Agudelo, & De
Moor, 2012, 2013). This means that the optimisation problem will
work with the gate discharges Q(A), Q(K7) and Q(D) as optimisation
variables instead of the gate positions c(A), c(K7) and c(D). After finding
the optimal gate discharges, an extra conversion step is needed to
find the corresponding gate positions before they can be applied to
the process.

The resulting model has the following form:

xðkþ1Þ�xlin ¼ AðxðkÞ�xlinÞþBðuðkÞ�ulinÞþDðdðkÞ�dlinÞ ð19Þ

withxðkÞ ¼ ðhð1ÞT ðtkÞ;…;hð5ÞT ðtkÞ;hsðtkÞ;qð1ÞT ðtkÞ;…;qð5ÞT ðtkÞÞT ,uðkÞ ¼
ðQ ðAÞðtkÞ;Q ðK7ÞðtkÞ;Q ðDÞðtkÞÞT , dðkÞ ¼ ðQDemðtkÞ;QManðtkÞÞT , AARnx�nx ,
BARnx�nu and DARnx�nd with nx the number of states, nu the
number of inputs and nd the number of disturbances. The state
space matrices are derived for the linearisation points xlin, ulin and
dlin which correspond to the desired steady state values for the water
levels and discharges, the steady state gate discharges and the
nominal incoming discharges. Eq. (19) can be rewritten as

xðkþ1Þ ¼ AxðkÞþBuðkÞþDdðkÞþβ ð20Þ
with

β¼ xlin�Axlin�Bulin�Ddlin: ð21Þ
The irregular cross sectional data will not be used in the linear-

isation procedure. The resulting linear model would only be a good
approximation of the nonlinear dynamics locally around the linear-
isation point. To have a linear model that provides a good approx-
imation for a wide range of water levels and discharges, every
irregular profile is first approximated with a trapezoidal profile.
The parameters B, S1 and S2 of every trapezoidal cross section can be
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found by solving the following constrained least squares problem:

min
B;S

‖ ~a�ð ~hBþ ~h
2
SÞ‖2 ð22Þ

s:t:BZ0; SZ0 ð23Þ
with ~aARm a vector of m cross sectional areas corresponding with
the m water levels ~hARm and S1¼S2¼S. If one is interested in
finding different values for the side slopes, a possible approach is to
include the wetted perimeter inside the optimisation problem.
However this will turn the least squares problem into a nonlinear
optimisation problem. It has been noticed by the authors that solving
this more complex optimisation problem has only a minor influence
on the resulting value of the parameters and it suffers from local
minima. On the right of Fig. 7, the fitting result for an irregular cross
section of Dem3, which is visualised on the left of Fig. 7, can be
observed. It is clear that the area of the irregular profile can be
approximated accurately with a trapezoidal shape. Another approach
could be to fit a trapezoidal shape on the irregular profile itself.
However this shape fitting is much more complex to solve and leads
to similar results.

As mentioned in Section 3.1, every irregular cross section can
have different Manning coefficients for every linear segment. The
Manning coefficient for the trapezoidal approximation is taken
equal to the equivalent Manning coefficient of the irregular cross
section for a given steady state water level.

5.2. The optimisation problem

The optimisation problem that the controller has to solve at
every time step is the following Quadratic Programming problem
(QP):

min
u;x;
ξ;ζ

∑
NP

k ¼ 1
‖xðkÞ�rx‖2W þ ∑

NP�1

k ¼ 0
‖uðkÞ�uðk�1Þ‖2Rþ

 

þ ∑
NP�1

k ¼ 0
‖uðkÞ�ru‖2U þ‖ξ‖2SþsTξþ‖ζ‖2V þvTζ

!
ð24Þ

s:t: xð0Þ ¼ x̂; ð25Þ

xðkþ1Þ ¼ AxðkÞþBuðkÞþDdðkÞþ ~βðkÞ; k¼ 0;…;NP�1 ð26Þ

uðkÞruðkÞruðkÞ; k¼ 0;…;NP�1 ð27Þ

MðiÞhðiÞðkÞrMðiÞhðiÞ
max;1þ1nðiÞcon

� ηðkÞξi; k¼ 1;…;NP; i¼ 1;…;5 ð28Þ

MðiÞhðiÞðkÞrMðiÞhðiÞ
max;2þ1nðiÞcon

� ηðkÞζi; k¼ 1;…;NP; i¼ 1;…;5 ð29Þ

hsðkÞrhschulen
max;1 þηðkÞξ6; k¼ 1;…;NP ð30Þ

hsðkÞrhschulenmax;2 þηðkÞζ6; k¼ 1;…;NP ð31Þ

ξZ0; ð32Þ

ζZ0; ð33Þ
with NP the prediction horizon, WARnx�nx Z0, RARnu�nu 40,
UARnu�nu Z0, SAR6�640 and VAR6�640 five diagonal weight-
ing matrices, sAR6 and vAR6 two weighting vectors, rx the set-
points for the states, ru the set-points for the inputs, x̂ the current
state estimate of the process, ~βðkÞARnx (defined later on by Eq.
(37)), hmax;1 the safety levels, hmax;2 the flood levels, MðiÞARnðiÞcon�NðiÞ

a matrix selecting nðiÞ
con safety levels and flood levels for the ith

reach, u and u the operational limits on the inputs, ξAR6, ζAR6

two vectors of slack variables (one slack variable for each reach or
reservoir) and ηðkÞ ¼ 1=rk�1

c a time-dependent weight (with
rc41). It can be shown that this QP has only one (global) solution
(Nocedal & Wright, 2000). This QP is solved with cplexqp of IBM
(IBM, 1998). The different aspects of the optimisation problem will
now be discussed in the next sections.

5.2.1. The use of slack variables
During periods of heavy rainfall, the safety limits and flood

limits can become too restrictive and make the QP infeasible. This
is avoided by implementing the flood limits and safety limits as
soft constraints (Eqs. (28) and (29)) by using the slack variables ξ
and ζ . To keep the violations of these limits as small as possible,
the slack variables are penalised in the objective function by the
terms ‖ξ‖2SþsTξ and ‖ζ‖2V þvTζ . A sufficiently large s and v will
ensure that the constraints will only be violated when no feasible
solution exists for the hard constrained optimisation problem
(Hovd & Braatz, 2001). This means that the upper limits on the
water levels are enforced as exact soft constraints. If the con-
straints cannot be prevented from being violated, the controller
will minimise these violations and hence reduce the flood risk. The
quadratic terms ‖ξ‖2S and ‖ζ‖2V are included to have a well-posed
QP and are extra tuning parameters (Scokaert & Rawlings, 1999). A
time-dependent weight ηðkÞ is used to penalise future constraint
violations in the prediction horizon increasingly to avoid long-
lasting constraint violations (Hovd & Braatz, 2001).

Remark. It should be noted that the use of the time-dependent
weight ηðkÞ can have a negative impact on the control perfor-
mance. If it is not possible to prevent the river from flooding at the
end of the prediction horizon, then the value of the corresponding
entry of ζ will be very large due to the small value of ηðNPÞ. This
large value for the slack variable can give the controller the
freedom to allow large flooding at the beginning of the prediction
horizon. This phenomenon did never occur for any of the tests
performed in this work. However, if this would occur, the solution
is to work with a time-varying vector of slack variables at the cost
of an increase in the number of optimisation variables.

5.2.2. Translating the control objectives to the weighting
matrices and vectors

The weighting matrices W , R, U , S and V define the relative
importance of the difference between the states and their set-
points, the changes of the control actions, the difference between
the inputs and their set-points and the two vectors of slack
variables ξ and ζ respectively. The buffer capacity of the reservoir
above its safety limit cannot be used for keeping the water levels
of the channels below their safety limits. Therefore the diagonal
element of S and the element of s corresponding to the reservoir
will be set higher than the elements associated to the channels. To
allow the controller to use the buffer capacity above the safety
limit of the reservoir, hence to avoid the river from being flooded,
the diagonal elements of V and the elements of v are set higher

Fig. 7. An irregular cross sectional profile (left) together with its cross sectional
area as a function of the water level and its optimal approximation in the least
squares sense via a trapezoidal shape.
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than all the elements of S and s. If there is no flood risk, the
controller needs to focus on set-point control. In this situation the
controller should avoid using the reservoir. This is achieved by
setting the set-point for the reservoir in rx equal to 20.4 m TAW in
combination with a large weight in the matrix W (but sufficiently
smaller than the weights of the slack variables). At the same time
ru for the discharges controlled by gates A and D are set equal to
zero together with a large weight on the corresponding diagonal
elements of U . To keep the downstream water level hup of Dem1

close to its set-point, the corresponding element in rx is set equal
to 21.5 m TAW in combination with a high element in W . All the
other elements in rx are set equal to their steady state values but in
combination with a small weighting value. This allows the con-
troller to let these water levels and discharges deviate from their
set-points to react on (future) disturbances and keep the effects on
hup as small as possible. For the same reason the reference for gate
K7 is set equal to its steady state value in combination with a small
weighting element in U . R influences the control effort of the
different input variables. The higher the values in R the smaller the
changes in the control actions will be. This means that the
controller will react slower and less aggressive than a controller
with smaller elements in R. However a less aggressive controller
will typically lead to less wear on the gates. A trade-off between
the reaction speed of the controller and the lifetime of the
equipment has to be made.

5.2.3. Nonlinear prediction step
Because the QP works with the gate discharges as optimisation

variables, the upper and lower limit of the gates and the rate of
change constraint needs to be converted to an upper and lower
limit on the gate discharges. Given the current gate position for
e.g. gate A at time step k�1, the upper and lower limit on the gate
discharge for time step k can easily be calculated with

uðAÞðkÞ ¼ ~f ðcðAÞðtk�1Þ�ΔðAÞ
max;hupðtkÞ;hsðtkÞÞ; ð34Þ

uðAÞðkÞ ¼ ~f ðcðAÞðtk�1ÞþΔðAÞ
max;hupðtkÞ;hsðtkÞÞ ð35Þ

with ΔðAÞ
max the maximal rate of change for gate A. The same

equations hold for gates K7 and D. For calculating the upper
and lower limit for the time step kþ1, an estimation is needed
for the states at this time step. In Breckpot et al. (2013), the linear
approximate model was used to perform this prediction. However
simulations have shown that the prediction with the linear model
are not accurate enough when one is working with highly
irregular river data for both the bed slopes and the cross sectional
profiles. Therefore in this work a nonlinear prediction step is
performed with the model of the Demer defined in Section 3. To
keep the computation time limited, this prediction step performs
only one Newton iteration and the internal time step Δt of the
simulator is taken equal to the sampling time of the controller.
Before performing this prediction step, the gate positions corre-
sponding with the optimal gate discharges for time step k found
by the optimizer in the previous iteration need to be calculated.
Since there is a one to one relationship between the gate position
and the gate discharge for a given upstream and downstream
water level, the corresponding gate position can be easily found by
means of a bisection search method. These gate positions are then
used in combination with the current state of the system to
estimate the water levels and discharges at kþ1 (denoted with
xnonlinðkþ1Þ). Based on xnonlinðkþ1Þ and cðAÞðkÞ, cðDÞðkÞ and cðK7ÞðkÞ,
Eqs. (34) and (35) can now be used to determine uðkþ1Þ and
uðkþ1Þ. The same procedure can be used to estimate the time
varying upper and lower limits of the gate discharges for the entire
prediction window.

The result of this nonlinear prediction step is that the gate
discharges are decoupled from the water levels next to the
hydraulic structures. However in reality the possible attainable
gate discharges does depend on the water levels and these water
levels depend on their turn on the gate discharges. Therefore it is
possible that the optimizer returns a sequence of gate discharges
for which some of these discharges cannot be reached. This can be
prevented by iterating over this prediction step and solving the
optimisation problem. However the results in Section 7 show that
already a good result can be achieved by performing this iteration
only once.

5.2.4. Linear model updating
Simulation results show that the accuracy of the linear state

space model is good enough for the controller to handle dis-
turbance signals 3.5 times larger than their nominal value. How-
ever during periods of heavy rainfall, these disturbance signals can
become 8 times larger and the accuracy of the linear state space
model is not good enough. This problem can be overcome by
performing an update of the linear state space model along the
prediction horizon based on the nonlinear predictions. At every
time step along the prediction horizon, the estimate of the next
state based on the nonlinear model xnonlinðkþ1Þ is compared with
the next state xlinðkþ1Þ calculated with the linear model:

xlinðkþ1Þ ¼ AxnonlinðkÞþBuðkÞþDdðkÞþβ: ð36Þ
The simplest way to match the prediction of the linear model with
the prediction of the nonlinear model, is to replace β with

~βðkÞ ¼ βþðxnonlinðkþ1Þ�xlinðkþ1ÞÞ ð37Þ
which will be used inside the optimisation problem (Eq. (26)).
Recall that β corresponds with the local information contained in
the linearisation point (Eq. (21)). By performing this update on β,
this local information is corrected to match the nonlinear state
estimates along the prediction horizon.

Another approach would be to use nonlinear MPC and work
with time varying state space matrices AðkÞ, BðkÞ and DðkÞ derived
from linearising the nonlinear model along the nonlinear pre-
dicted state estimates. However deriving these linear models at
every iteration along the prediction horizon takes a considerable
amount of time. This also means that the matrix implementing the
equality constraints has to be reconstructed for every iteration.
Furthermore the results shown in Section 7 indicate that MPC in
combination with the proposed model updating yields already a
high performance.

5.2.5. Buffer capacity recovery
After a period of heavy rainfall the controller should recover

the buffer capacity as fast as possible to be able to deal with
possible future rainfall. This recovery is achieved by changing
some of the values in the weighing matrices W and U and the
reference signals rx. Once a part of the buffer capacity of the
reservoir is used, the water levels of Dem3 and Dem4 get a set-
point lower than the set-point of the reservoir and their weights in
the matrix W are increased. At the same time the weight for hup is
decreased. Also the weights of U corresponding with the dis-
charges over gates A and D are decreased. This means that the
controller would not keep these discharges close to zero and the
controller would have the freedom to use the buffer capacity if
there is still a risk of flooding, or to get rid of the excess of water in
the reservoir via these gates. This change in W , U and rx is
performed when the water level in the reservoir is 20 cm above its
set-point. When the water level of the reservoir is at the most
20 cm above its set-point for eight consecutive hours, W , U and rx
are set back to their original values.
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5.2.6. Controllability of the gates
As mentioned in Section 3.2, the actual gate position has no

influence on the gate discharge if the gated weir is in throat
control mode. When a gate is in this mode, it can arise that even
changing the gate position over a distance Δmax results in no
change in the gate discharge. This means that the upper limit and
lower limit calculated with resp. Eqs. (34) and (35) will have the
same value and the controller is not allowed to change the
discharge over the gate at that time step. This can happen along
the entire prediction window and the controller will stop using
this gate: the controller loses one control freedom. This problem
can be overcome by keeping the gate in gate control mode or at
least on the borderline between both modes. Every time a
conversion is made from a gate discharge to a gate position, the
bisection search method will return the maximal possible gate
position corresponding with the gate discharge. This ensures that
Eqs. (34) and (35) will result in different values.

5.2.7. Constraint selection
Not all the flood and safety levels are included inside the

optimisation problem as an upper constraint on the water levels. A
matrix MðiÞARnðiÞcon�NðiÞ

is used to select nðiÞ
con safety and flood levels

for the ith reach. As it will be shown in Section 7, the safety and
flood levels are very irregular along every reach. Therefore only
the safety and flood levels which are the most critical ones are
used inside the optimisation problem. This has the advantage that
the complexity of the QP is reduced and the computation time for
solving the QP is decreased. The smaller the distance between the
flood level and the water level in steady state at a grid point, the
more critical this flood level is. The authors conducted a sensitivity
analysis on the number of safety and flood levels; it was concluded
that this sensitivity is small.

6. State estimator

The current state of the river system needs to be known before
the optimisation problem defined in the previous section can
be solved. Because only the water levels hs, hup and hdown are
measured in practice and none of the discharges, a state estimator
is needed. Getting an accurate estimate of the states, especially
the water levels, is of a high importance in this application.
An estimation error of 5 cm on the water levels can make the
difference between flooding and no flooding. Therefore the esti-
mator used in this study will be a combination of a nonlinear
prediction step together with a correction step of the classical
Kalman filter (Kalman, 1960).

The estimation of the state vector xðkÞ will be written as x̂ðkÞ.
The Kalman filter corrects the state estimation based on the linear
state space model with the error between the estimated and
measured water levels via a feedback gain matrix L:

Δx̂ðkþ1Þ ¼ LðΔyðkÞ�ΔŷðkÞÞþAΔx̂ðkÞþBΔuðkÞþDΔdðkÞ; ð38Þ

ΔŷðkÞ ¼ CΔx̂ðkÞ ð39Þ
with ΔxðkÞ ¼ xðkÞ�xlin, Δx̂ðkÞ ¼ x̂ðkÞ�xlin, ΔuðkÞ ¼ uðkÞ�ulin,
ΔyðkÞ ¼ yðkÞ�ylin, ΔŷðkÞ ¼ ŷðkÞ�ylin, yðkÞ the measured water
levels, ŷðkÞ the estimated water levels and C a matrix which
selects the measured water levels from the states. The Kalman gain
L is found by minimising the covariance of the estimation error
xðkÞ�x̂ðkÞ taking process and measurement noise into account.
Both types of noise are assumed to be independent and white
noise based on a normal distribution. The exact derivation for
finding L can be found in Franklin, Powell, and Workman (1997)
and Kwakernaak and Sivan (1972).

The accuracy of this state estimator is good enough for
disturbance signals 3.5 times larger than their nominal value.
However during periods of heavy rainfall, the accuracy of the
Kalman filter decreases. This problem can be overcome by repla-
cing the linear prediction step in Eq. (38) with a state estimate
based on the nonlinear model xnonlinðkþ1Þ:
x̂ðkþ1Þ ¼ LðΔyðkÞ�ΔŷðkÞÞþxnonlinðkþ1Þ: ð40Þ

xnonlinðkþ1Þ is found in a similar way as the approach mentioned
in Section 5.2.4.

7. Simulation results

In this section the control performance of the proposed MPC
are compared with the performance of the currently used three-
position controller. The sampling time of both controllers is equal
to 15 min, the length of the prediction window NP is taken equal to
24 h. The disturbance signals are based on the historical rainfall
data of the flood event of 2002 and are visualised in Fig. 8. It is
assumed that there is no uncertainty on these disturbance signals.
Table 1 presents the limits on the three gates. The only variables
that are measured at every time step are hup, hs and hdown. For the
MPC the other state variables are estimated with the proposed
Kalman filter. Unlike the MPC, the three-position controller only
requires the measured three water levels for determining the
control actions. For Dem1, Dem3, Dem4 and Man5 only the ten
most critical flood levels and safety levels are selected, while for
Dem2 all the six flood and safety levels are taken into account.
The control actions of both controllers will be applied to the full
hydrodynamic model of the Demer using the irregular bed
profiles, the piecewise-linear cross sectional profiles and the
Manning roughness coefficients corresponding with every linear
segment of these profiles.

Table 2 contains the diagonal elements for the weight matrices
W , R, U , S and V , and the elements of the weight vectors s and v.
The chosen values are in line with the reasoning given in Sections
5.2.2 and 5.2.5. During normal operation the controller focuses on
keeping the most downstream water level of Dem1 close to its
set-point without using the buffer capacity of the reservoir.
This is achieved with the matrices W and U . When there is a
risk of violating the safety or flood levels, the controller will

Fig. 8. The inflowing discharges of the Demer and the Mangelbeek based on the
historical rainfall data of 2002.

Table 1
Upper and lower limits and maximum rate of change for the gates A, K7 and D.

Gate constraints Gate A Gate K7 Gate D

Lower limit (m TAW) 20 20.03 18.9
Upper limit (m TAW) 22.5 23 22.9
Δmax (m) each 15 min 0.1 0.1 0.1
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automatically try to minimise these violations because of the high
values in S, s, V and v. The fast recovery of the buffer capacity after
a period of heavy rainfall is achieved by replacing the elements in
the matrices W and U with the values marked with a star as
indicated in Table 2. The low values in R ensure that the controller

has sufficient freedom to achieve its objectives. rc is taken equal to
1.2 (which was found by trial-and-error).

Fig. 9 shows the results for MPC in combination with the
Kalman filter (on the left) and the results for the three-position
controller (on the right denoted with three pos. controller). The

Table 2
Diagonal elements for the weight matrices W , S, V , R and U , and the elements for the weight vectors s and v.

Weight element Dem1 Dem2 Dem3 Dem4 Man5 Schulensmeer

WAR534�534

water levels ð10�3 �194
10 Þ 10�3 � 16 10�3 � 166 10�3 � 111 10�3 � 186 50

ð10�3 �194
0:01 Þa 0:01 � 166

a 0:01 � 111
a

discharges 10�3 � 196 10�3 � 17 10�3 � 167 10�3 � 112 10�3 � 187

SAR6�6

safety levels 103 103 103 103 103 104

sAR6�1

safety levels 103 103 103 103 103 104

VAR6�6

flood levels 105 105 105 105 105 105

vAR6�1

flood levels 105 105 105 105 105 105

Q(A) Q(K7) Q(D)

RAR3�3

control actions 0.01 0.01 0.01
UAR3�3

control actions 1000 0.001 1000
0.001a 0.001a

a Values used to recover the buffer capacity of the reservoir.

Fig. 9. The evolution of the water levels hup, hs and hdown (top) and the gate positions c(A), c(K7) and c(D) (bottom) for MPC in combination with the Kalman filter (left) and the
three-position controller (right). The set-points for hup and hs are 21.5 m and 20.4 respectively.
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top figures show the evolution of the three measured water levels
while the bottom figures show the applied control actions for the
three gates. MPC succeeds in keeping hup closer to its set-point of
21.5 m TAW by using gate K7 than the three-position controller.
One reason is because MPC can react on future disturbances.
Another reason is that MPC keeps gate K7 always inside or at the
boundary of its controllable region which has the advantage that
MPC can change the discharge over gate K7 at any time step,
which is not the case with the three-position controller. This
controller keeps e.g. decreasing the gate position of this gate when
the water level is increasing but without any effect on the resulting
gate discharge. Overall MPC attenuates the effect of the bumps in
the disturbance signals on hup much better than the three-position
controller. Some of these bumps are completely absorbed with
MPC. At the beginning of the simulation MPC brings gates A and D,
which are initially uncontrollable, immediately at the boundary of
their controllable region, without letting water enter the reservoir.
These gates remain more or less 10 cm above hup, resp. max(hs,
hdown). The three-position controller however keeps gate A con-
stant during the first part of the simulation while it increases the
position of gate D without any effect.

Before the period of heavy rainfall starts, MPC lowers the
position of the three gates in order to decrease the water levels
upstream of the Demer as much as possible. During the period of
heavy rainfall it uses the three gates to minimise the floodings
along the five reaches. The three-position controller lowers gates A
and D to start using the buffer capacity. However because the
positions of these gates are too high at the beginning of the heavy

rainfall period, the controller reacts too late which results in much
higher water levels. Fig. 10 shows the maximal water level for both
controllers for each reach together with their flood levels. The area
between the flood levels and water levels has a gray colour when
flooding takes place with MPC and the area is hatched when
flooding takes place with the three-position controller. The max-
imal water levels obtained after using MPC are always lower than
the maximal water levels after the use of the three-position
controller. Both controllers prevent Dem2 and Dem4 from flooding.
MPC prevents Dem1 from flooding at almost every grid point while
the three-position controller results in more and larger floods
along this reach. Dem3 shows flooding for both controllers at only
one point, while for Man5 the flood level overtoppings with MPC
are much smaller and at less locations than with the three-
position controller. Table 3 shows the maximal flooding, the total
flooding (i.e. the sum of the difference between the water level
and the flood level, if positive, at each grid point for every reach at
every minute) and the flood duration for both controllers for every
reach. A negative value for the maximal flooding corresponds with
the minimal margin before a flood level is violated. MPC clearly
outperforms the three-position controller. The water levels for
reaches Dem2 and Dem4 and the reservoir are decreased as well as
the maximal violation of the flood levels for the other reaches.
Also the total flooding and the flood duration improves when MPC
is used to control the hydraulic structures.

After the period of heavy rainfall both controllers start empty-
ing the reservoir, hence recovering the buffer capacity of this
reservoir. In order to recover this buffer capacity as fast as possible,

Fig. 10. The maximal water levels for the five reaches for both controllers together with their flood levels.
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MPC allows the water levels upstream of the Demer to approach
their safety limit reducing the amount of water flowing to the
reservoir and the downstream part of the Demer. Once the buffer
capacity is recovered, MPC starts focussing again on set-point
control of hup and it steers this water level back to its set-point.
Further bumps in the disturbance signals are completely absorbed
by the controller: almost no variations can be seen on hup. The
three-position controller recovers the buffer capacity much slower.
It also allows hup to increase, however this increase is much
smaller than with MPC (keep in mind that the three-position
controller does not make use of the flood and safety levels). The
decrease of the water level of the reservoir is stalled for 80 h
before the last part of the buffer capacity is recovered: the
controller needs to wait before gate D becomes lower than the
water level of the reservoir. Afterwards the controller steers hup
back to its set-point of 21.5 m TAW. However some variation in the
water level is visible due to variation in the disturbance signals.
MPC succeeds in recovering the buffer capacity in 38 h earlier than

the three-position controller and it steers hup back to its set-point
13 h earlier than the three-position controller.

Fig. 11 shows the time needed by the controller to perform
the prediction step and the time needed to solve the optimisa-
tion problem at every sampling time. The time needed to make
the conversion step for the gates after solving the optimisation
problem and the time needed for the Kalman filter are negligible
(less than 0.015 s, respectively 0.46 s). One can see that the time
needed to solve the QP during the period of heavy rainfall stays
well below the sampling time. However during this simulation test
the state of the Demer is somehow “frozen”: while the optimisa-
tion problem is being solved, the states of the system are not
changing in time while in reality they do. The effect on the control
performance needs to be checked. The larger the river system, the
bigger this effect will be because of the longer computation time
needed to solve the QP. The time for performing the prediction
step is more or less the same at every iteration because the
nonlinear model is solved with a fixed time step and with only one
Newton iteration.

Table 4 shows the quantification of the total amount of control
actions for the three controllers. For each gate m the total gate
movement is calculated with the formula

γðmÞ ¼ ∑
NT�1

k ¼ 0
juðmÞðkþ1Þ�uðmÞðkÞj ð41Þ

where NT is the total number of time instants during the simulation.
The higher these numbers, the more demanding the controller is for
the hydraulic structures. One can see that the three-position controller
moves the three gates significantly less thanMPC. This is the price that
MPC has to pay to keep the gates at all times close to their controllable
region. One could reduce these values for MPC by increasing the value
of the diagonal elements in the weight matrix R. However this will
only effect the control actions when the gates are in their controllable
regions. If the gate is near to its controllable region (e.g. gates A and D
before and after the heavy rainfall period) then this gate will not be
kept constant. Therefore the gate will follow the evolution of the
surrounding water levels independently of the value used in R. One
approach to solve this “unnecessary” gate movements would be to
first look at the predicted future disturbance signals. If no heavy
rainfall would be predicted for the future period, then one could keep
the gates connecting the river with the reservoir constant. Once a
heavy rainfall event is predicted, the controller can also use these gates
for flood prevention. This has the advantage that the amount of gate
movement will drastically decrease for these gates.

8. Conclusions and Future work

In this work it is shown how a nonlinear mathematical model
of a river system consisting of multiple reaches, gates, junctions
and a reservoir can be derived. It is shown that a linear

Fig. 11. Computation time needed by the MPC controller to solve the optimisation
problem and the nonlinear prediction step at every sampling time (performed on a
PC with a 3.1 GHz Intel Core i5 CPU and a RAM of 4 GB using a fast solver).

Table 4
Total gate movement (m) for the three gates for both controllers.

Controller c(A) c(K7) c(D)

Three-pos. controller 5 14.75 9.63
MPCþKalman 17.16 21.46 16.87

Table 3
Maximal flooding, total flooding and flood duration for the five reaches and the reservoir for both controllers. The maximal flooding is defined as the maximal difference
between the flood level and the water level and the total flooding as the sum of the water level – flood level difference (if positive) at every grid point every minute. A
negative value for the maximal flooding corresponds with the minimal margin before a flood level is violated.

Flooding results Dem1 Dem2 Dem3 Dem4 Man5 Schulensmeer

Maximal flooding (m)
Three-pos. controller 0.275 �0.573 0.432 �0.119 0.216 �0.006
MPCþKalman 0.036 �0.875 0.409 �0.142 0.168 �0.509

Total flooding (m)
Three-pos. controller 2877 0 1243 0 4096 0
MPCþKalman 69 0 1138 0 2032 0

Flood duration (h)
Three-pos. controller 49.1 0 63.1 0 60.5 0
MPCþKalman 27.3 0 62.9 0 46.6 0
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approximation of this nonlinear model is suitable to be used by
the MPC control strategy if one works with gate discharges instead
of gate positions as optimisation variables. To get an accurate
estimate of the upper and lower limit of the gate discharges at
every time step of the prediction window, a fast nonlinear
prediction scheme is proposed in this work. The MPC is used in
combination with a Kalman filter. The prediction step based on the
linear model in the classical Kalman filter has been replaced by a
nonlinear prediction step to get accurate enough state estimates.
The proposed MPC control strategy is tested on a mathematical
model of the Demer, which was constructed using real river data
in combination with historical rainfall information of the flooding
of 2002. The simulation results showed that MPC outperforms the
current control scheme: the number and the magnitude of the
floodings were significantly reduced with MPC and the used buffer
capacity was recovered in a fast way.

In this work it is assumed that the rain predictions are known
at every time step. However in reality there is uncertainty on the
weather predictions, especially for predictions further ahead in
time. In future work the robustness of the proposed controller
against uncertainty on these weather predictions will be exam-
ined. In future work the proposed control scheme will also be
applied to a larger part of the Demer. In future work other
approaches will be checked that can be used to select the most
relevant upper limits on the water levels.
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