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Abstract

This paper presents the calibration of a steady state Rate Based Model

(RBM) for distillation based on multiple experiments. A packed column is

considered, using non-equilibrium stages to represent the packing segments.

For an efficient and accurate calibration, the number of model equations and

parameters is first reduced via analytical manipulations and a sensitivity

analysis. Second, the model is formulated such that a sparse and banded

Jacobian can be exploited. Finally, novel constraints on the physical pa-

rameters are derived such that the parameter estimation yields consistent

results. The model prediction capabilities are successfully validated with

experimental data.
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1. Introduction

Distillation is not only the most common but also one of the most energy

intensive unit operations in chemical industry. An excellent way to reduce

the operating costs and energy consumption is by an appropriate (model-

based) control of, e.g., applied heat, temperatures, product compositions

and flows. However, this requires models which describe accurately the plant

behavior. Developing accurate first-principle models is a challenge due to the

nonlinear and complex nature of the equations. Moreover, this complexity

is even increased when model calibration is aimed at, which simultaneously

accounts for experiments under different operating conditions. Although dis-

tillation is in industry often performed using tray columns, packed columns

are in general more efficient since the vapor and liquid are continuously in

contact through the packing surface, enhancing the mass and energy trans-

fer. Packed columns can be modeled using concepts from tray columns such

as stage efficiency and height equivalent of a theoretical plate (Seader and

Henley, 2006). However, these concepts do not account for deviations from

equilibrium properly, in contrast to Rate Based Models, which divide the

packing in segments and model them as a mass and energy transfer unit

(Khrishnamurthy and Taylor, 1985; Taylor and Krishna, 1993). The aim is

to propose a simultaneous method for calibrating a steady-state Rate Based

Model using multiple experiments and to validate it on a binary pilot-scale

distillation column. A similar plant was recently studied in Barroso et al.

(2009); Chambel et al. (2011). To ensure an accurate and computationally

efficient result, (i) model and parameter reduction, (ii) problem structure
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exploitation and (iii) additional constraints have been used.

2. Experimental context

The experimental setup involves a computer controlled packed distillation

column (Figure 1). The column has an internal diameter of 7 cm containing

three sections of 960 mm Sulzer CY packing. The feed stream containing

methanol and isopropanol can be introduced into the column between the

packed sections S1 and S2 or S2 and S3. The feed temperature can be ad-

justed by an electric heater of maximum 250 W. In the reboiler located at

the bottom, two electric heaters of maximum 3000 W vaporize part of the

liquid. The rest is extracted as bottom stream. A total condenser at the top

allows condensing the entire overhead vapor stream, which is collected in a

reflux drum. Part of the condensed liquid is fed back to the column as reflux,

while the remainder leaves the column as distillate. Four variables can be

manipulated: the reboiler duty QR (W), the feed rate F (g/min), the duty

of the feed heater QF (W) and the reflux flow rate LN (g/min). The dis-

tillate flow D (g/min) is adjusted to maintain a constant reflux drum level.

Measurements are available for the reflux flow rate LN , the distillate flow

rate D, the feed flow rate F and twelve temperatures. These temperatures

are the reflux temperature Ts12 , the temperature at the top of the condenser

Ts11 , the temperatures in the center and extremes of each packing section

(Ts2 to Ts10), the temperature of the feed point TF , and the temperature in

the reboiler Ts1 . The concentrations in the distillate and bottom streams are

measured offline by sampling.

3
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3. Simultaneous formulation for model calibration

The steady-state model can be described by a set of nonlinear equations

in the form F (x, p) = 0 with x the model states and p the model parameters

to be calibrated. Typically, the parameter values have to be optimised such

that model predictions are as close as possible to the measured outputs y.

In a sequential approach only the parameters are degrees of freedom in the

optimization problem while the model equations are solved each time as an

inner simulation problem. Alternatively, in a simultaneous approach, both

the parameter and state variables are degrees of freedom in the optimization

problem, while the model equations are introduced as additional equality

constraints. This is a more efficient approach that preserves sparsity in the

optimization, at the cost of increasing the number of optimization variables.

Hence, the optimization problem is cast as:

min
x,p

‖ȳ − Cx‖2Qx
subject to



















F (x, p) = 0

xmin ≤ x ≤ xmax

pmin ≤ p ≤ pmax

(1)

where the vector ȳ represents the measurement data, C is a positive semidef-

inite diagonal matrix with zero entries in the diagonal corresponding to the

states that are not measured and Qx is a weight matrix. Note that this

formulation accounts only for one experiment. In order to use multiple ex-

periments, the optimization vector, the residual vector and the constraints

are augmented such that:

ỹT = [ȳT1 , . . . , ȳ
T
M ], wT = [xT1 , . . . , x

T
M , p],

F(w)T = [F (x1, p)
T , . . . , F (xM , p)

T ] (2)
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and the problem is formulated as:

min
w

‖ỹ − C̃w‖2Qw
subject to







F(w) = 0

wmin ≤ w ≤ wmax

(3)

with appropriate matrices Qw, C̃, and appropriate bounds wmin, wmax. As

the size of the optimization problems grows with the number of experiments,

model reduction and structure exploitation are of major importance.

4. Numerical approach

This section details the steps taken to accurately and efficiently solve the

calibration problem.

4.1. Model reduction

Starting from a general Rate Based Model (Khrishnamurthy and Taylor,

1985), a reduced order model is derived based on the following assumptions.

• A binary mixture is considered.

• Bulk phases are perfectly mixed.

• Vapor-liquid equilibrium is only valid at the vapor-liquid interface.

• The reboiler and condenser are in thermodynamical equilibrium.

• The liquid volumes of reboiler and reflux drum, v̄R and v̄D, are perfectly

controlled.

• Each stage is in mechanical equilibrium.

5
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• Equilibrium holds in the condenser. Subcooling in the condenser is

attributed to the heat loss in the reflux drum.

The reduction is performed by inclusion of these assumptions as well as differ-

entiation of enthalpy correlations and algebraic manipulation of energy and

mass balance equations. As a result the number of variables and equations

in the Reduced Order Rate Based Model (RORBM) is now 14N−12 instead

of 20N − 17 in the Full Rate Based Model (FRBM), with N the number of

stages (Bonilla, 2011; Bonilla et al., 2012). This means a reduction of 6N−5

equations, or approximately 30%.

4.2. Parameter reduction

To reduce the number of parameters to be estimated, a parameter sensi-

tivity analysis is performed, i.e., an analysis of the effect of the parameters on

the model states. This analysis indicates which parameters can be estimated

from the steady state measurements.

4.3. Structure exploitation

The steady state constraints give rise to a root finding problem where a

nonlinear system of equations of the form F (x, p) = 0 has to be solved. Al-

though its structure is obtained directly from the formulation of balances and

equilibrium relations separately, the variables and equations can be grouped

per stage in order to exploit sparsity. This leads to a sparse and reduced

band pattern in the model Jacobian (see Bonilla et al. (2012) for the actual

re-arranged banded structure). This banded structure is known in distilla-

tion models and equation-tearing methods have been proposed to solve the

nonlinear system of equations (Seader and Henley, 2006; Taylor and Krishna,

6
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1993). However, a Newton based approach yields a more general procedure

and provides more flexibility in the problem specification (Seader and Hen-

ley, 2006). Hence, the sparsity pattern is exploited (Dongarra et al., 1988)

at each Newton iteration of the preconditioned conjugate gradient algorithm

used. Proper scaling of the equations accelerates the convergence (Nocedal

and Wright, 2006).

4.4. Physically inspired constraints

Although the parameters have a physical meaning, some combinations of

their positive values have been observed to yield state profiles that are phys-

ically impossible (Bonilla, 2011). This issue can be solved by adding proper

constraints. As the current RBM does not incorporate any constraint by itself

that restrict pairs (yV , T V ) or (xL, TL)1 to superheated vapor or subcooled

liquid regions, respectively. This translates into additional inequality con-

straints, which require the computation of the dew and bubble point curves

and, hence, pose an embedded root finding problem. However, as a simulta-

neous approach is exploited the relations for dew and bubble points can be

solved as a part of the model equations.

5. Results and discussion

This section presents and discusses the obtained results.

1yV represents the composition in the bulk vapor phase, xL the composition in the

bulk liquid phase, T V the temperature of the bulk vapor phase and TL the temperature

of the bulk liquid phase.

7



Postprint version of paper published in Chemical Engineering Science 2013, vol. 104, 228–232. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.sciencedirect.com/science/journal/00092509   
Original file available at: http://dx.doi.org/10.1016/j.ces.2013.08.058  
 

 

5.1. Computational speedup

To illustrate the necessity of the model reduction and sparsity exploita-

tion, a column with N equal to 20 is simulated as a test case. The compu-

tational statistics can be found in Table 2. Clearly, when going from the full

to the reduced order rate based model, the number of function evaluations

and computation time is roughly halved. However, when exploiting sparsity,

it is seen that a 90% reduction is possible. Hence, the combined effect yields

a 20 times speedup. Moreover, this effect will only grow when the size is

increases, e.g., by simultaneously considering multiple experiments.

5.2. Experimental data

Five experiments are used for identification and two for validation. The

values for the manipulated variables are presented in Table 3 while the mea-

sured steady state profiles for eleven temperature sensors are illustrated in

Figure 7. Note that the measurement coming from the sensor in the con-

denser Ts11 corresponds to a temperature below the boiling point of pure

methanol at atmospheric pressure, i.e., Ts11 < 338 K. Hence, assuming that

the methanol composition at the top is close to one, it would be difficult

for an equilibrium condenser or for the condenser proposed here, without

subcooled product, to fit this temperature. Consequently, in the parameter

estimation, the measurement coming from the condenser is weighted in a

smaller proportion with respect to the rest of measurements. On the other

hand, the parameter estimation is formulated such that the temperature of

the liquid bulk phase of the model fits the measurement data. The vapor

phase is not used here since measured profiles seems to adjust better to a

subcooled liquid phase than to a vapor phase. The physical explanation is

8
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related to the fact that condensed liquid does not directly detaches from the

spiral condenser after condensation, but runs down the spiral before falling

down and wetting the temperature sensor.

5.3. Model calibration and validation

Figure 3 depicts the normalized sensitivity of the vapor and liquid tem-

peratures with respect to model parameters along with sensitivities for the

liquid composition at top and bottom stages. On the one hand, the heat loss

coefficients (ψL, ψV , ψR and ψC) and feed composition (xF ) exhibit a consid-

erable effect over the steady state profiles while the mass transfer coefficients

(CkL and CkV ) have less influence in the steady state temperature profiles.

On the other hand, it is clear that volumes in the reboiler and condenser (v̄R

and v̄C) along with pressure drop (C∆p) and liquid holdup coefficients (Ch)

cannot be estimated from the steady state temperature measurements. As

this study only considers a pilot-scale column that is made out of glass and is

not insulated for educational reasons, sensitivity results can be different for

industrial columns. Nevertheless a sensitivity analysis will in general always

reveal the most informative parameters.

Hence, only parameters φL, φV , φR, φD, CkL, CkV and xF have to be tuned.

To this end the deviations between the predicted temperatures for the liq-

uid bulk phase and the measured temperatures is minimised. Initial values,

bounds and obtained estimates are presented in Table 1. The experiments

are performed under different conditions, allowing for different feed com-

positions, xF . Consequently, a different value of xF is estimated for each

experiment. This increases the number of parameters again to Np = 6 +M

9
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where M is the number of experiments used for identification. Due to the

structure of the setup, N is selected equal to 20. Five experiments are used

for the estimation task (M = 5), leading to Np = 11 and an optimization

problem of size 1351 (M(14N − 12) +Np).

Figure 4 (top) illustrates the fit results for the identification set, while

Figure 4 (bottom) displays the results for the validation set. Although the

estimation problem is nonlinear, a simultaneous approach estimating both

the states and parameters at the same time allows to initialise also the states

based on the available measurements and, hence, reduces the chances of get-

ting stuck in a local minimum. Note that there is a group of points that

lies outside de ±3 K band around 335 K. These are measurements obtained

from the condenser which cannot be totally explained by the model due to

the inability to model subcooled liquid at this place. In the real setup, the

liquid stream leaving the condenser is subcooled when falling along the spiral

condenser. This liquids falls into the reflux drum decreasing its temperature.

Since the model assumes that the liquid coming out from the condenser is at

equilibrium, it cannot reach temperatures that the modified Rault’s law does

not predict. Hence, the only form of obtaining a subcooled liquid in the drum

is increasing the heat loss coefficient in the reflux drum φC . Consequently,

the heat that is removed by the subcooling of the liquid falling in the real

condenser is compensated by the reflux drum losses in the model. A better

representation of what is happening in the condenser can be achieved by using

a non-equilibrium stage. This implies, however, increasing the complexity of

the condenser model, since holdups for the non-equilibrium condenser have

10
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to be estimated from its geometry. This estimation is in general not trivial

and the current model already provides an acceptable prediction.

Figure 5 displays the boiling point diagrams for the validation set with

experiments 6 and 7 from Table 3. This figure illustrates the consistency of

the results, i.e., pairs composition-temperature for vapor (yV , T V ) and liquid

(xL, TL) bulk phases lie either in the superheated region or the subcooled

region, respectively.

6. Conclusions

In this paper a rigorous rate based model for separation in packed columns

has been calibrated based on multiple experiments. As a simultaneous ap-

proach has been used, an efficient computational procedure to deal with the

large number of degrees of freedom is required. Model reduction and struc-

ture exploitation have been employed, yielding a speedup by a factor 20. In

addition, the number of parameters has been reduced via a sensitivity anal-

ysis. Also additional constraints to ensure feasibility of the solution have

been included in the simultaneous approach in a natural way. As a result,

the calibrated model obtained with the presented procedure based on five

experiments, has been successfully validated on two additional experiments.
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Figure captions

Figure 1: General layout of the distillation setup.

Figure 2: Experimental data from the 11 temperature sensors along

the column. Temperature of the reflux, around 315 K, has not been

included in the plot but is used in the estimation.

Figure 3: Norm on the normalized sensitivity of the states with respect

to the parameters.

Figure 4: Results for five calibration experiments (top) and two vali-

dation experiments (bottom).

Figure 5: Boiling point diagram for the mixture of Methanol-Isopropanol

with states given by the steady state solution of the RBM for experi-

ment 6 (left) and 7 (right).
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Table 1: Parameter vector: initial (p0) and optimised (p∗)

Parameter Initial value Bounds Optimuma Units

v̄R 5 [3 6] - l

v̄C 2 [1 3] - l

φL 1 [0 10] 2.3 W/K

φV 0.5 [0 10] 0.0 W/K

φR 8 [0 100] 0.0 W/K

φC 5 [0 100] 8.3 W/K

Ch 1 [0 2] -

Cp 1 [0 2] -

CkL 1 [0 5] 0.22

CkV 1 [0 5] 2.12

xF 0.67 [0.4 0.7] 0.4670 mol/mol

aOnly identifiable parameters are optimized.
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Table 2: Performance comparison between the full rate based model (FRBM) and the

reduced rate based model (RORBM) when sparsity is exploited (SP) or not (NSP).

FRBM-NSP FRBM-SP RORBM-NSP RORBM-SP

Number of variables 383 383 272 272

Function evaluations 2688 161 1638 108

Execution time (s) 17.6 1.89 11.96 0.883

Memory useda (kB) 1146 4.36 578 2.73

aOnly the number of kilobytes to store the Jacobian in double precision format are

considered as indication of the memory usage.

Table 3: Steady state experiments used for identification and validation.

Exp QR LN Fin TF Tamb D B

1 4.0 60.0 150 313.15 292.90 70 80

2 4.5 86.0 110 313.15 292.95 70 40

3 4.5 80.0 150 318.15 292.45 70 80

4 4.0 59.0 150 313.15 295.20 70 80

5 4.5 76.5 150 313.15 298.85 70 80

6 4.0 65.0 150 313.15 294.95 70 80

7 4.5 77.2 150 313.15 287.45 70 80
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