
Citation Van Herpe T, De Moor B, (2014), 

Modeling of Effect of Glucose Sensor Errors on Insulin Dosage and 
Glucose Bolus Computed by LOGIC-Insulin 

Clin Chem. 2014 Dec;60(12):1510-8 

Archived version Final publisher’s version / pdf 

Published version http://dx.doi.org/10.1373/clinchem.2014.227017 

Journal homepage http://www.clinchem.org 

Author contact email greet.vandenberghe@med.kuleuven.be 

phone number + 32 (0)16 344021 

IR https://lirias.kuleuven.be/handle/123456789/459255 

(article begins on next page) 

http://dx.doi.org/10.1373/clinchem.2014.227017
http://www.clinchem.org/
https://lirias.kuleuven.be/handle/123456789/459255


Modeling of Effect of Glucose Sensor Errors on Insulin
Dosage and Glucose Bolus Computed by LOGIC-Insulin

Tom Van Herpe,1,2* Bart De Moor,2 Greet Van den Berghe,1 and Dieter Mesotten1

BACKGROUND: Effective and safe glycemic control in
critically ill patients requires accurate glucose sensors
and adequate insulin dosage calculators. The LOGIC-
Insulin calculator for glycemic control has recently
been validated in the LOGIC-1 randomized controlled
trial. In this study, we aimed to determine the allowable
error for intermittent and continuous glucose sensors,
on the basis of the LOGIC-Insulin calculator.

METHODS: A gaussian simulation model with a varying
bias (0%–20%) and CV (�20% to �20%) simulated
blood glucose values from the LOGIC-1 study (n � 149
patients) in 10 Monte Carlo steps. A clinical error grid
system was developed to compare the simulated LOGIC-
Insulin– directed intervention with the nominal inter-
vention (0% bias, 0% CV). The severity of error
measuring the clinical effect of the simulated LOGIC-
Insulin intervention was graded as type B, C, and D
errors. Type D errors were classified as acutely life-
threatening (0% probability preferred).

RESULTS: The probability of all types of errors was lower
for continuous sensors compared with intermittent
sensors. The maximum total error (TE), defined as the
first TE introducing a type B/C/D error, was similar for
both sensor types. To avoid type D errors, TEs �15.7%
for intermittent sensors and �17.8% for continuous
sensors were required. Mean absolute relative differ-
ence thresholds for type C errors were 7.1% for inter-
mittent and 11.0% for continuous sensors.

CONCLUSIONS: Continuous sensors had a lower proba-
bility for clinical errors than intermittent sensors at the
same accuracy level. These simulations demonstrated
the suitability of the LOGIC-Insulin control system for
use with continuous, as well as intermittent, sensors.
© 2014 American Association for Clinical Chemistry

Most critically ill patients have high blood glucose con-
centrations, independent of any history of diabetes.
This hyperglycemia is associated with adverse out-
comes in both adults and children treated in the inten-
sive care unit (ICU),3 and the observed relationship
with adverse outcomes follows a J-shaped curve (1, 2 ).
Randomized controlled trials (RCTs) that evaluated
the effects of normalizing blood glucose concentra-
tions have shown mixed results. Although tight glyce-
mic control (TGC) reduced morbidity and mortality in
a single center (3–5 ) and in early implementation stud-
ies (6, 7 ), TGC had either no effect or increased mor-
tality in multicenter trials (8 –10 ). Unlike in the multi-
center trials, the bedside execution of TGC in the
Leuven single-center studies was highly standardized
(11 ). The frequent blood glucose measurements were
done only on arterial blood by on-site blood gas ana-
lyzers. An intuitive paper-based protocol guided the
well-trained nurses on insulin dosing. Insulin was only
continuously infused by accurate syringe pumps
through a central line.

The ICU community is now convinced that more
attention should be paid to the accuracy of blood glu-
cose meters and the adequacy of insulin dosage calcu-
lators (12–14 ). The impact of sensor inaccuracy on in-
sulin dosing errors may also be algorithm dependent.
Consensus meetings (13 ) have been trying to define
critical care–specific accuracy criteria, as the common
accuracy norms (International Organization for Stan-
dardization 15197, CLIA, CLSI POCT12-A3) for time-
intermittent blood glucose meters were not designed
for the ICU setting (15, 16 ). Continuous glucose mon-
itoring (CGM) devices (and near-continuous devices)
will play a role in blood glucose control in the ICU in
the near future. However, norms on accuracy and clin-
ical validation protocols for CGM devices are lacking.
Clinical intervention trials to test the effect of sensor
inaccuracy on blood glucose control may not be desir-
able. Computer modeling of sensor accuracy and bias
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for intermittent blood glucose meters and CGM de-
vices has been proposed as an alternative (17–19 ).
Notably, the incidence of dangerous hypoglycemia ep-
isodes by overestimation of blood glucose concentra-
tions, and consequently overdosing of insulin, need to
be evaluated for intermittent and CGM sensors. Be-
cause more measurements are available, it can be ex-
pected that the accuracy requirements are lower for
continuous glucose sensors compared with intermit-
tent sensors. Boyd and Bruns recently performed a first
simulation study that provided data to support this ex-
pectation in a virtual ICU setting, by use of the Yale and
University of Washington algorithms in a virtual glu-
cose regulation model (20 ).

Recently, we clinically validated the LOGIC-
Insulin blood glucose algorithm in an RCT (21 ). This
software system, incorporating an advanced algorithm
(22 ), advises the bedside nurse on insulin dosage (or
glucose bolus in the event of hypoglycemia) and the
timing of the next blood sampling. A group of 300 crit-
ically ill patients were randomized according to blood
glucose control performed by the nurse or guided by
the LOGIC-Insulin software system. Blood glucose
control by LOGIC-Insulin was tighter than that of
nurses (lower glycemic penalty index (23 )) and safer
(lower number of hypoglycemic events). During the
study, blood glucose concentrations were measured in
undiluted blood, drawn from the arterial line, by accu-
rate on-site blood gas analyzers and at a frequency de-
termined by LOGIC-Insulin for the patients of the
LOGIC arm [mean sampling interval of 2.2 (0.4) h]. In
the patients allocated to the LOGIC-Insulin treatment
group, insulin dosing and timing of blood glucose
measurements were hence standardized. Both inter-
mittent and CGM sensors were analyzed on the basis of
the patient data from the LOGIC-1 RCT (21 ). Bias and
imprecision were added to these real-life glucose tra-
jectories, and the treatment effect (due to these inaccu-
rate glucose readings) was compared with the clinical
treatment that was effectively given to the patient dur-
ing the RCT (i.e., by use of the raw glucose readings
without added bias or imprecision). The aim of this
simulation study was to determine allowable accuracy
levels for intermittent and CGM sensors in real-life pa-
tient data.

Materials and Methods

SIMULATIONS BY USE OF REAL-LIFE CLINICAL PATIENT DATA

The LOGIC-Insulin control system is a computerized
algorithm that computes the most optimal insulin dose
(or glucose bolus in case of hypoglycemia) to achieve
normoglycemia in critically ill patients. Real-life pa-
tient data of 149 critically ill patients, originating from
the LOGIC arm of the LOGIC-1 RCT and studied for a

median time period of 1.9 days [interquartile range
(IQR) 1.2– 4.7 days] (21 ), provided the foundation of
this simulation study. Instead of simulating the glucose
dynamics by use of a mathematical model (20, 24 –26 ),
we recomputed insulin dosages and glucose boluses by
the LOGIC-Insulin algorithm assuming less accurate
glucose sensor values. The intermittent version of the
algorithm was adapted for continuous glucose mea-
surements so that trend information of the glucose tra-
jectories could be computed more accurately. With
CGM, the glucose values at the time points that the
LOGIC-Insulin intervention was computed during the
LOGIC-1 RCT, were averaged over the last 10 min of
CGM glucose data instead of adopting just the actual
blood glucose at that time point (which is the case for
intermittent values). In this simulation study, we grad-
ually modified the accuracy level of the glucose values.
For both the intermittent and the continuous scenario,
we kept the time points of the protocol-directed inter-
ventions the same as with the LOGIC-1 RCT, allowing
us to compare the new (simulated) LOGIC-Insulin in-
terventions with the original (nominal) LOGIC-
Insulin interventions. We initially set up a clinical error
grid system to clinically assess the differences between
the original and new LOGIC-Insulin– directed inter-
ventions. The methodology has the advantage that
real-life glucose dynamics, often missed by mathemat-
ical models, are included to better approach reality by
use of simulations.

CLINICAL ERROR GRID SYSTEM

We clinically assessed the new LOGIC-Insulin inter-
ventions by use of a 3-dimensional error grid system.
The first and second dimensions evaluate the absolute
difference of insulin dose and glucose bolus. The third
dimension compares the relative insulin change with
respect to the previous (effectively administered) insu-
lin dose. This third category gives information on the
computed insulin dose that may be masked for the first
category (absolute insulin dose). For example, an insu-
lin dose difference of 2 U/h is called large if the previ-
ously delivered dosage was only 1.5 U/h, but is called
small if the previous dose was 10 U/h. The third dimen-
sion indicates that the insulin dose error for the first
case is potentially more dangerous than for the second
case, as the difference of relative change is 133% for the
first case and only 20% for the second case.

Next, the level of deviation for each category was
compared to “acceptable” and “unacceptable” bound-
aries, varying as a function of glycemia. These bound-
aries were determined before the start of the study on
the basis of normal data distributions observed in the
LOGIC-RCT (21 ) and by consulting medical experts.
Supplemental Appendix 1, which accompanies the on-
line version of this article at http://www.clinchem.org/
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content/vol60/issue12, describes in detail the origin of
these boundaries, which are visualized in Fig. 1. Devi-
ations that fell between the acceptable and unaccept-
able boundaries were categorized as errors that should
be avoided but without being a direct life-threatening
situation. Deviations falling outside the unacceptable
boundaries were regarded as potentially severe life-
threatening (hypoglycemia) errors. All deviations were
numerically transformed to an error code per category
(E1, E2, and E3; see Table 1). The sum of these 3 error
codes, called the severity of error (SE) and obtained for
each simulated LOGIC-Insulin intervention, was re-
lated to a type of error:

• Type A errors: none or inconsequential, 0 � SE � 3;
• Type B errors: severe but not life-threatening, SE � 3;
• Type C errors: potentially life-threatening, SE � 6;
• Type D errors: acutely life-threatening, SE � 10.

The type D class of errors is present only in case of
highly inappropriate treatment of hypoglycemia (e.g.,
administration of a substantial amount of insulin when
absolutely not indicated during a true hypoglycemic
episode and/or no delivery of glucose bolus when
appropriate).

ACCURACY MODEL

We performed simulations for both intermittent and
CGM sensors. The glucose measurements in the
LOGIC-RCT (21 ) (use of on-site blood gas analyzer

ABL 700, Radiometer Medical) were interpolated as a
piecewise cubic hermite polynomial with time interval set
at 5 min to obtain a continuous glucose signal. Sensor
inaccuracies were modeled by adding relative assay bias,
expressed as a positive or negative fraction, and impreci-
sion, expressed as CV multiplied by a random number
drawn from a gaussian distribution with mean of zero and
standard deviation equal to 1, to the observed glucose sig-
nal (17). Bias was varied from �20% to �20% in incre-
ments of 5% and from �10% to �10% in increments of
1%, whereas CV was varied from 0% to 10% in incre-
ments of 1% and from 10% to 20% in increments of 5%.
We ignored other analytical errors (such as nonlinear bias
and drift) and user errors in this model.

By use of 10 Monte Carlo simulations with a
uniform distribution, a total of 15720960 LOGIC-
Insulin– directed interventions were generated for the
intermittent sensor study and the same number of data
points for the CGM sensor study. All of these interven-
tions were compared to the original LOGIC-Insulin
interventions and evaluated as explained above, result-
ing in a type A, B, C, or D error for each intervention.
The probability that an error type occurred, combining
all 10 Monte Carlo simulations, was computed for each
(virtual) sensor type [characterized by a bias and CV
value and expressed as a total error (TE) value: TE �
absolute(bias) � 1.96 * CV].

The objective was to find the maximum allowable
total error (TEmax) of a glucose sensor that would still

Fig. 1. Clinical error grid system from three different perspectives.

(A), � absolute insulin dose (I). (B), � absolute glucose bolus (GB). (C), � relative insulin change (RI). The acceptable and
unacceptable boundaries are presented by the dashed and solid lines, respectively.
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allow safe use of a less accurate glucose signal by the
LOGIC-Insulin control system. Therefore, the proba-
bility of type D errors was set at 0% and of type C errors
as �0.01%. In a final step, the TEmax found at the in-
dividual intervention level was related to the mean ab-
solute relative difference (MARD), averaged over the
10 Monte Carlo simulations. MARD is often reported
by glucose sensor manufacturers and summarizes the
sensor performance at the patient group level.

Results

Fig. 2 presents the relationship between the probability
of type B, C, and D errors and the TE (expressed as a
combination of bias and CV) of the glucose measure-

ments for both intermittent and CGM devices. The
probability of all types of errors is generally lower for
continuous sensors compared with intermittent sen-
sors. Indeed, the probability that a specific error type
occurs for the same total error is higher with intermit-
tent glucose sensors than with continuous sensors.

The severity of error is augmented from type B
errors to type C errors to type D errors, as clarified in
the definitions above. Therefore, type B errors are ex-
pected to occur more often than type C and D errors,
independent of the measurement frequency of the glu-
cose sensor (intermittent/continuous).

The analyses with bias and imprecision as inde-
pendent parameters are presented in the online Sup-
plemental Data. Contour plots for type A, B, C, and D
errors are characterized by a constant probability of
appearance as a function of CV (%) and bias (%). As
can be expected, the probability of all types of errors
increases with higher bias and CV values for both in-
termittent and continuous glucose sensors (see online
Supplemental Figs. 1 and 2). Contour plots of type D
errors are rather flat and positive for CGM devices
compared with intermittent sensors. This indicates
that mainly positive bias errors (i.e., consistent overes-
timation of the glucose measurements) cause the most
dangerous errors in case of continuous measurements.
Thus, the effect of imprecision is rather limited for type
D errors. Consistently underestimated glucose obser-
vations lead to more defensive blood glucose control
and hyperglycemia, accordingly. Although the effect of
positive bias mainly causes type D errors in case of con-
tinuous measurements, imprecision and even negative
bias cannot be neglected (for example in case of type C
errors).

Assuming zero bias, the probability of type C er-
rors is 0.03% under a fixed TE condition (TE 10%, CV
5.1%) for intermittent glucose measurements (see on-
line Supplemental Fig. 3). Increasing the measurement
frequency (continuous glucose measurements, see on-
line Supplemental Fig. 4) returns a �6-fold reduction
of this type C error probability to �0.005%.

Fig. 3 shows the probability of type C and D errors
as a function of the TE for intermittent (Fig. 3A) and
continuous (Fig. 3B) glucose measurements in more
detail. Assuming a 10% total error, representing a mix-
ture of bias and/or imprecision returns a mean proba-
bility of type C errors of 0.015% for intermittent and
0.0049% for continuous measurements. Compared
with the previous TE 10% probabilities (where zero
bias was assumed), these probabilities are halved for
intermittent measurements and similar for CGM de-
vices. The probability of appearance of type C errors
depends merely on the imprecision and less on the bias
for intermittent sensors. This is also confirmed by the

Table 1. Error code to be determined per LOGIC-
Insulin intervention at time point t by comparing
the simulated interventions (with added error) to

the nominal interventions (0% bias, 0% CV).a

Intervention Error code

Category 1

�I � LBU1 E1 � 3

LBU1 � �I � LBA1 E1 � 1

LBA1 � �I � UBA1 E1 � 0

UBA1 � �I � UBU1 E1 � 1

UBU1 � �I

BG �70 mg/dL E1 � 3

BG �70 mg/dL E1 � 10

Category 2

�GB � LBU2

BG �50 mg/dL E2 � 3

BG �50 mg/dL E2 � 10

LBU2 � �GB � LBA2 E2 � 1

LBA2 � �GB � UBA2 E2 � 0

UBA2 � �GB � UBU2 E2 � 1

UBU2 � �GB E2 � 3

Category 3

�RI � LBU3 E3 � 3

LBU3 � �RI � LBA3 E3 � 1

LBA3 � �RI � UBA3 E3 � 0

UBA3 � �RI � UBU3 E3 � 1

UBU3 � �RI E3 � 3

Category 1, � absolute insulin dose: �It � Isim;t � I0.0;t; [�I] � IU/h.
Category 2, � absolute glucose bolus: �GBt � GBsim;t � GB0.0;t;
[�GB] � mL glucose 50%. Category 3, � relative insulin change:

�RIt�1 � �1 	 � Isim;t�1�I0.0;t�1

Ireal;t
� 	 100%; [�RI] � %. BG, blood

glucose; LB, lower boundary; UB, upper boundary; A, acceptable; U,
unacceptable.
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rather vertical contour plots presented in online Sup-
plemental Fig. 3.

The maximum allowable total error (TEmax, indi-
cating the zero probability of type D errors) was 15.7%
for intermittent glucose sensors and 17.8% for CGM
devices (Fig. 3, A and B). Transforming these (individ-
ual) TEmax values toward the MARD summary param-
eter equals an IQR range of 5.7%–12.2% (median
7.9%) for intermittent glucose sensors and 6.5%–
13.8% (median 8.9%) for CGM devices (Fig. 4). The
condition of an allowable probability of �0.01% type
C errors returns TEmax values on average of 9.1% and
14.1% for intermittent and continuous glucose sen-
sors, respectively. Transforming these values to MARD
ranges gives 3.3%–7.1% (median 4.6%) for intermit-
tent sensors and 5.2%–11.0% (median 7.1%) for CGM
devices.

Discussion

This simulation study, which used true clinical data
from critically ill patients in whom TGC was done by
the LOGIC-Insulin control system (21 ), showed that

less stringent allowable error criteria may be needed
for continuous than for intermittent glucose sen-
sors. It also confirms the conclusion by Boyd and
Bruns that quality specifications of intermittent glu-
cose sensors may be different for CGM devices (20 ).
As the likelihood for all insulin-dosing errors rises
with increasing glucose sensor inaccuracy (bias and
imprecision) for both intermittent and CGM sen-
sors, more attention should be paid to the perfor-
mance of blood glucose meters and the origins of
potential inaccuracy in daily clinical practice in the
ICU. In this simulation study, we found that severe
errors (type C) are often caused by imprecision for
intermittent sensors. In contrast, a consistent posi-
tive bias, in particular for CGM devices, is the main
reason for most severe, acutely life-threatening insu-
lin dosing errors (type D).

Defining the required accuracy level for a glucose
sensor depends on the number of errors that are al-
lowed for adequate and safe clinical use. For reasons of
safety, we initially limited the allowable count of type D
errors to zero. On the basis of this criterion, the maxi-
mum allowable total error for CGM devices was found

Fig. 2. Probability [mean (SD)] of type B (panel A), C (panel B), and D (panel C) errors as a function of the total error
of the sensor.

The probability that an error type occurred, combining all 10 Monte Carlo simulations, was computed for each sensor type under
study. In a following phase, and for reasons of clarity, all different sensor types were grouped (5% TE intervals), and the mean
probability (SD) per subgroup is presented as a function of the mean TE per subgroup. Means (and SDs) for intermittent glucose
sensors are represented by the black line (light gray shaded area) and, for continuous glucose sensors, by the white line (dark
gray shaded area).

1514 Clinical Chemistry 60:12 (2014)



Fig. 3. Detail of Fig. 2.

(A), Probability [mean (SD)] of type C (black line and light gray shaded area) and D (white line and dark gray shaded area) errors
as a function of the total error of time-intermittent glucose sensors. (B), Probability [mean (SD)] of type C (black line and light gray
shaded area) and D (white line and dark gray shaded area) errors as a function of the total error of continuous glucose sensors. The
squares and the stars represent, respectively, the probabilities that a type C or type D error occurred for a specific sensor type under
study (characterized by a bias and CV value and expressed as TE value) combining all 10 Monte Carlo simulations.
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to be larger than for intermittent glucose sensors, but
the difference (2.1%) between intermittent and contin-
uous sensors was relatively small. The benefit of CGM
devices was more pronounced (difference 5.0%) for
maintaining the rate of type C errors at �0.01%. This
indicates that glucose control with LOGIC-Insulin al-
gorithm permits the use of less accurate CGM devices,
compared with intermittent glucose sensors. Accord-
ingly, accuracy requirements for CGM devices could be
lower than for intermittent glucose sensors, as already
suggested by Boyd and Bruns (20 ). However, probabil-
ities for errors are hard for clinicians to interpret.

The MARD values of the simulated glucose sen-
sors, expressed in ranges, give a more practical inter-
pretation of the above results. Intermittent glucose
sensors with a fixed TEmax criterion of 15.7% returned
a range of MARDs. In general, p75 of these MARDS
(the 75th percentage of the IQR for MARD) was 12.2%
(which may be used as a MARD threshold). The gen-
erated MARDs for continuous devices that met the
TEmax criterion (17.8%) gave a p75 of 13.8%. Taking

into account the condition for type C errors, the re-
quirements are even stricter: 75% of the MARDs (with
TE 9.1% and 14.1% for intermittent and CGM devices,
respectively) are smaller than 7.1% for intermittent
and 11.0% for CGM devices. It can be debated whether
the type C criterion (error rate �0.01%) is too strict or
too loose, but a zero probability of type D errors should
be attained. From this simulation study, the maximum
MARD that corresponds to the TEmax is the absolute
minimum requirement a glucose sensor must meet:
15.7% for intermittent glucose sensors and 17.8% for
CGM devices. For comparison, the gold standard for
glycemic measurements in the ICU, blood gas analyz-
ers, returned an MARD of 3.8% in a recent study (27 ).

This study has several strengths. First, real-life clinical
patient data were used. This allowed the acquisition of
realistic glucose trajectories including complex dynamics,
which are rarely incorporated in mathematical models.
Second, the exact knowledge of the insulin dosing algo-
rithm used during the clinical study made it possible to
recompute the insulin doses (and glucose boluses) for dif-

Fig. 4. Median MARD (white line), with shaded area representing the IQR range, as a function of TE of a glucose
sensor and averaged over each previous 2% TE interval.

The dashed lines represent the minimum/maximum MARD per TE interval. max, Maximum.
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ferent (simulated) glucose measurements and to compare
to the original doses. Third, these insulin dosages (and
glucose boluses) were assessed by use of a clinical error
grid system to transform dosage errors into a clinically
interpretable severity of error.

There are also some limitations. Foremost, the ac-
curacy requirements found are only justified for the
LOGIC-Insulin glucose control system. Use of other
control systems may require different accuracy criteria,
depending on the robustness of the algorithm. Robust
algorithms may deal with inaccurate glucose measure-
ments more easily than loose protocols (28). Accordingly,
accuracy requirements of glucose sensors are control-
algorithm specific. Hence, simulation studies per algo-
rithm are needed to determine how accurate glucose sen-
sors should be for use with a specific algorithm.

Second, to be in line with previous simulation
studies (17, 29, 30 ), we simulated the glucose signal us-
ing 2 parameters: bias and imprecision. Hence, the pre-
and postanalytical errors (such as calibration errors,
user errors, and CGM drift errors), which may be im-
portant, were not covered. Accordingly, it is advisable
to adopt a stricter maximum MARD for a blood glu-
cose meter to deal with use in clinical practice.

Third, although the MARD is a quick method to
assess glucose sensor accuracy, there is no consensus on
the gold standard glucose metric. The value of MARD
as a quality measure for glucose sensors further de-
pends on the study design: number of patients, refer-
ence glucose sensor with which the test sensor is com-
pared, and number of paired glucose samples per
glycemic range. MARD should always be used in com-
bination with more qualitative evaluation techniques
such as Bland–Altman (31, 32 ) and Glycensit (33 ).
Such methodologies allow an analysis as a function of
the blood glucose concentration and make a distinc-
tion between over- and underestimated glucose read-
ings. Alternatively, the MARD can also be computed
per glycemic range, aiming to detect any possible dif-

ferences between the hypo-, normo-, and hyperglyce-
mic range.

In conclusion, less stringent accuracy require-
ments appear to be needed for CGM devices. Our data
suggest that the MARD should preferably be smaller
than 7.1% for intermittent glucose sensors and
11.0% for CGM devices and never be higher than
15.7% for intermittent glucose sensors and 17.8%
for CGM devices. However, the findings from simu-
lation studies need to be confirmed in clinical trials
with the combination of an accurate glucose sensor
(time-intermittent/continuous) with a clinically val-
idated glucose control system, looking at patient-
centered outcome measures (12, 34 ).
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