
Linear Algebra and its Applications 460 (2014) 259–289
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the null spaces of the Macaulay matrix

Kim Batselier ∗,1, Philippe Dreesen 2, Bart De Moor 3

Department of Electrical Engineering ESAT-STADIUS Center for Dynamical 
Systems, Signal Processing and Data Analytics, KU Leuven/IBBT Future Health 
Department, 3001 Leuven, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2013
Accepted 24 July 2014
Available online 14 August 2014
Submitted by E. Zerz

MSC:
54B05
12E05
65F99

Keywords:
Macaulay matrix
Multivariate polynomials
Row space
Null space
Syzygies
Roots

In this article both the left and right null space of the 
Macaulay matrix are described. The left null space is shown 
to be linked with the occurrence of syzygies in its row space. 
It is also demonstrated how the dimension of the left null 
space is described by a piecewise function of polynomials. 
We present two algorithms that determine these polynomials. 
Furthermore we show how the finiteness of the number of 
basis syzygies results in the notion of the degree of regularity. 
This concept plays a crucial role in describing a basis for the 
right null space of the Macaulay matrix in terms of differential 
functionals. We define a canonical null space for the Macaulay 
matrix in terms of the projective roots of a polynomial system 
and extend the multiplication property of this canonical 
basis to the projective case. This results in an algorithm 
to determine the upper triangular commuting multiplication 
matrices. Finally, we discuss how Stetter’s eigenvalue problem 
to determine the roots of a multivariate polynomial system 
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can be extended to the case where a multivariate polynomial 
system has both affine roots and roots at infinity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in computer science, physics and engineering require a mathematical 
modelling step and multivariate polynomials are a natural modelling tool [1]. This re-
sults in problems in which one needs to compute the roots of a multivariate polynomial 
system, divide multivariate polynomials, eliminate variables, compute greatest common 
divisors, etc. The area of mathematics in which multivariate polynomials are studied 
is algebraic geometry and has a rich history spanning many centuries [2]. Most meth-
ods to solve these problems are symbolical and involve the computation of a Gröbner 
basis in arbitrary high precision [3,4]. Estimating the model parameters of polynomial 
black box models from measured data leads to polynomial systems where the coefficients 
are directly related to the measurements [5–7]. Hence, these coefficients are subject to 
noise and known only with a limited accuracy. In this case, reporting high precision 
results obtained from a computer algebra system is not meaningful and might even be 
misleading. This motivates the development of a framework of numerical methods to 
solve problems such as polynomial root-finding, elimination, etc. Although some numer-
ical methods are available, there was no unifying framework. For example, the most 
important and known numerical method for solving multivariate polynomial systems is 
numerical polynomial homotopy continuation (NPHC) [8–11]. Homotopy methods can 
also be used for elimination [12], but it is not possible to compute greatest common 
divisors or do polynomial divisions in this framework. It is possible to solve many of 
these problems with multivariate polynomials in a numerical linear algebra framework. 
An important milestone in this respect was the discovery of Stetter that finding the 
affine roots of a multivariate polynomial system is equivalent with solving an eigen-
value problem [13,14]. In his approach however, it is still necessary to first compute a 
Gröbner basis before the eigenvalue problem can be written down. We have developed 
a numerical linear algebra framework where no symbolical computations are required. 
Problems such as elimination of variables [15], computing an approximate greatest com-
mon divisor [16], computing a Gröbner and border basis [17], finding the affine roots 
of a polynomial system are all solved numerically in this Polynomial Numerical Lin-
ear Algebra (PNLA) framework. The Macaulay matrix plays a central role in all these 
problems [18,19].

The Macaulay matrix is defined for a certain degree d and it is important to under-
stand how its size and dimensions of its fundamental subspaces change as a function of d. 
These are in fact described by different polynomials in d. We will explain how this comes 
about in this article through the analysis of the left null space of M(d). This analysis will 
lead us to the definition of the degree of regularity of a multivariate polynomial system 
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f1, . . . , fs. In addition, two algorithms that determine the polynomial expression l(d) for 
the dimension of the left null space of M(d) are presented. Once the polynomials that 
describe the dimensions of the fundamental subspaces are understood, we move on to 
describe the right null space of the Macaulay matrix. The affine roots of a multivariate 
polynomial system f1, . . . , fs are usually described by the dual vector space of the quo-
tient space Cn/〈f1, . . . , fs〉. In this article we will describe the right null space of M(d)
as the annihilator of its row space and express this by means of a functional basis. An 
important observation here is that also roots at infinity are described by this functional 
basis and that multiplicities of roots result in a certain multiplicity structure. Stetter’s 
method to find the affine roots of a multivariate polynomial system is by means of an 
eigenvalue problem that describes a monomial multiplication within the quotient space 
Cn/〈f1, . . . , fs〉. We will extend this monomial multiplication property to the projective 
case and present an algorithm that derives the corresponding projective multiplication 
matrices.

Before defining the Macaulay matrix, we first discuss the numerical linear algebra 
framework in which we will describe multivariate polynomials and introduce the mono-
mial ordering that will be used. Most of the algorithms described in this article are im-
plemented in MATLAB [20]/Octave [21] and are freely available at https://github.com/
kbatseli/PNLA_MATLAB_OCTAVE.

2. Macaulay matrix

Before defining the Macaulay matrix, we first discuss some basic definitions and no-
tation. The ring of multivariate polynomials in n variables with complex coefficients 
is denoted by Cn. It is easy to show that the subset of Cn, containing all multivariate 
polynomials of total degrees from 0 up to d forms a vector space. We will denote this 
vector space by Cn

d . We consider multivariate polynomials that occur in computer science 
and engineering applications and limit ourselves therefore, without loss of generality, to 
multivariate polynomials with only real coefficients. Throughout this article we will use 
a monomial basis as a basis for Cn

d . Since the total number of monomials in n variables 
from degree 0 up to degree d is given by

q(d) =
(
d + n

n

)

it follows that dim Cn
d = q(d). The total degree of a monomial xa = xa1

1 . . . xan
n is de-

fined as |a| =
∑n

i=1 ai. The degree of a polynomial p, deg(p), then corresponds with 
the degree of the monomial of p with highest degree. It is possible to order the terms 
of multivariate polynomials in different ways and results such as a computed Gröbner 
basis will depend on which ordering is used. For example, it is well-known that a Gröb-
ner basis with respect to the lexicographic monomial ordering is typically more complex 
(more terms and of higher degree) then with respect to the reverse lexicographic order-
ing [4, p. 114]. It is therefore important to specify which ordering is used. For a formal 
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definition of monomial orderings together with a detailed description of some relevant 
orderings in computational algebraic geometry see [3,4]. The monomial ordering used 
in this article is the graded xel ordering [15, p. 3], which is sometimes also called the 
degree negative lexicographic monomial ordering. This ordering is graded because it 
first compares the degrees of the two monomials a, b and applies the xel ordering when 
there is a tie. By convention a coefficient vector will always be a row vector. Depending 
on the context we will use the label f for both a polynomial and its coefficient vec-
tor. (.)T will denote the transpose of a matrix or vector. Points at infinity will play an 
important role in this article and these are naturally connected to homogeneous poly-
nomials. A polynomial of degree d is homogeneous when every term is of degree d. 
A non-homogeneous polynomial can easily be made homogeneous by introducing an 
extra variable x0.

Definition 2.1. Let f ∈ Cn
d of degree d, then its homogenization fh ∈ Cn+1

d is the poly-
nomial obtained by multiplying each term of f with a power of x0 such that its degree 
becomes d.

The vector space of all homogeneous polynomials in n + 1 variables and of degree d
is denoted by Pn

d . This vector space is spanned by all monomials in n + 1 variables of 
degree d and hence

dimPn
d =

(
d + n

n

)
.

In order to describe solution sets of systems of homogeneous polynomials, the pro-
jective space needs to be introduced. First, an equivalence relation ∼ on the non-zero 
points of Cn+1 is defined by setting

(
x′

0, . . . , x
′
n

)
∼ (x0, . . . , xn)

if there is a non-zero λ ∈ C such that (x′
0, . . . , x

′
n) = λ(x0, . . . , xn).

Definition 2.2. (See [4, p. 368].) The n-dimensional projective space Pn is the set of 
equivalence classes of ∼ on Cn+1 −{0}. Each non-zero (n + 1)-tuple (x0, . . . , xn) defines 
a point p in Pn, and we say that (x0, . . . , xn) are homogeneous coordinates of p.

The origin (0, . . . , 0) ∈ C
n+1 is not a point in the projective space. Because of the 

equivalence relation ∼, an infinite number of projective points (x0, . . . , xn) can be asso-
ciated with 1 affine point (x1, . . . , xn). The affine space Cn can be retrieved as a ‘slice’ 
of the projective space:

C
n =

{
(1, x1, . . . , xn) ∈ P

n
}
.
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This means that given a projective point p = (x0, . . . , xn) with x0 �= 0, its affine coun-
terpart is (1, x1

x0
, . . . , xn

x0
). The projective points for which x0 = 0 are called points at 

infinity.

2.1. Definition

We now introduce the main object of this article, the Macaulay matrix, and discuss 
how its dimensions grow as a function of the degree d.

Definition 2.3. Given a set of polynomials f1, . . . , fs ∈ Cn, each of degree di (i = 1, . . . , s), 
then the Macaulay matrix of degree d is the matrix containing the coefficients of

M(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
x1f1

...
xd−d1
n f1
f2

x1f2
...

xd−ds
n fs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where each polynomial fi is multiplied with all monomials from degree 0 up to d − di
for all i = 1, . . . , s.

When constructing the Macaulay matrix, it is more practical to start with the co-
efficient vectors of the original polynomial system f1, . . . , fs, after which all the rows 
corresponding to multiplied polynomials xafi up to a degree max(d1, . . . , ds) are added. 
Then one can add the coefficient vectors of all polynomials xafi of one degree higher 
and so forth until the desired degree d is obtained. This is illustrated in the following 
example.

Example 2.1. For the following polynomial system in C2
2{

f1 : x1x2 − 2x2 = 0,
f2 : x2 − 3 = 0,

we have that max(d1, d2) = 2 and we want to construct M(3). The first 2 rows then 
correspond with the coefficient vectors of f1, f2. Since max(d1, d2) = 2 and d2 = 1, the 
next 2 rows correspond to the coefficient vectors of x1f2 and x2f2 of degree 2. Notice 
that these first 4 rows make up M(2) when the columns are limited to all monomials of 
degree 0 up to 2. The next rows that are added are the coefficient vectors of x1f1, x2f1
and x2

1f2, x1x2f2, x2
2f2 which are all polynomials of degree 3. This way of constructing 

the Macaulay matrix M(3) then results in
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M(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

f1 0 0 −2 0 1 0 0 0 0 0
f2 −3 0 1 0 0 0 0 0 0 0
x1f2 0 −3 0 0 1 0 0 0 0 0
x2f2 0 0 −3 0 0 1 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
x2

1f2 0 0 0 −3 0 0 0 1 0 0
x1x2f2 0 0 0 0 −3 0 0 0 1 0
x2

2f2 0 0 0 0 0 −3 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Each row of the Macaulay matrix contains the coefficients of one of the fi’s. The 
multiplication of the fi’s with the monomials xa results in the Macaulay matrix having a 
quasi-Toeplitz structure, in the sense of being almost or nearly Toeplitz. The Macaulay 
matrix depends explicitly on the degree d for which it is defined, hence the notation 
M(d). The reason (1) is called the Macaulay matrix is because it was Macaulay who 
introduced this matrix, drawing from earlier work by Sylvester [22], in his work on 
elimination theory, resultants and solving multivariate polynomial systems [23,24]. It is 
in fact a generalization of the Sylvester matrix to n variables and an arbitrary degree d. 
The MATLAB/Octave routine in the PNLA framework that returns M(d) for a given 
polynomial system and degree d is getM.m.

For a given degree d, the number of rows p(d) of M(d) is given by the polynomial

p(d) =
s∑

i=1

(
d− di + n

n

)
= s

n!d
n + O

(
dn−1) (2)

and the number of columns q(d) by

q(d) =
(
d + n

n

)
= 1

n!d
n + O

(
dn−1). (3)

From these two expressions it is clear that the number of rows will grow faster than 
the number of columns as soon as s > 1. We denote the rank of M(d) by r(d) and the 
dimension of its left and right null space by l(d) and c(d) respectively. The rank-nullity 
theorems for M(d)T and M(d) are then expressed as

q(d) = r(d) + c(d),

p(d) = r(d) + l(d).

This shows that r(d), l(d), c(d) are also polynomials over all positive integers d >
max(d1, . . . , ds). This polynomial increase of the dimensions of M(d) is due to the combi-
natorial explosion of the number of monomials and is the main bottleneck when solving 



K. Batselier et al. / Linear Algebra and its Applications 460 (2014) 259–289 265
problems in practice. The following example illustrates this polynomial nature of r(d), 
l(d), c(d), together with the interesting observation that the degree of c(d) is linked to 
the dimension of the affine solution set of f1, . . . , fs.

Example 2.2. Consider the Macaulay matrix M(d) of one multivariate polynomial 
f ∈ Cn

d1
. The structure of the matrix ensures that it is always of full row rank (l(d) = 0). 

Hence

r(d) = p(d) =
(
d− d1 + n

n

)
= dn

n! + n(n− 2d1 + 1)
2n! dn−1 + O

(
dn−2),

and

c(d) = q(d) − r(d)

= dn

n! + n(n + 1)
2n! dn−1 + O

(
dn−2)− dn

n! − n(n− 2d1 + 1)
2n! dn−1 −O

(
dn−2)

= d1

(n− 1)!d
n−1 + O

(
dn−2).

An interesting observation from Example 2.2 is that the dimension of the right null 
space is a polynomial of degree n −1. This corresponds intuitively with the dimension of 
the affine solution set. For example, the surface of a ball is 2-dimensional and is described 
by one polynomial in 3 variables (n = 3) of degree 2. The connection between the degree 
of c(d) and the dimension of the solution set will be made more explicit in Section 4.

2.2. Row space

We will now present two interpretations of the row space of the Macaulay matrix. 
Both interpretations will be important later on when we discuss the null space of M(d)
and M(d)T . First we discuss the affine interpretation of the row space of M(d). The row 
space of M(d), denoted by Md, contains all n-variate polynomials

Md =
{

s∑
i=1

hi fi : hi ∈ Cn
d−di

(i = 1, . . . , s)
}
. (4)

A polynomial ideal 〈f1, . . . , fs〉 is defined as the set

〈f1, . . . , fs〉 =
{

s∑
i=1

hifi : h1, . . . , hs ∈ Cn

}
.

It is now tempting to have the following interpretation

Md = 〈f1, . . . , fs〉 ∩ Cn
d � 〈f1, . . . , fs〉d,
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or in words: the row space of M(d) contains all polynomials of the ideal 〈f1, . . . , fs〉
from degree 0 up to d. This is not necessarily valid. Md does not in general contain all 
polynomials of degree d that can be written as a polynomial combination (4).

Example 2.3. Consider the following polynomial system in C2
1

{
f1 : x2

1 + 2x1 + 1 = 0,
f2 : x2

1 + x1 + 1 = 0.

From

(−1 − x1)f1 + (2 + x1)f2 = 1 (5)

it follows that 1 ∈ 〈f1, f2〉. However, 1 /∈ M2. In fact, (5) tells us that 1 ∈ M3. Deciding 
whether a given multivariate polynomial p lies in the polynomial ideal generated by 
f1, . . . , fs is called the ideal membership problem. A numerical algorithm that solves 
this problem is also presented in [17].

As Example 2.3 shows, the reason that not all polynomials of degree d lie in Md is 
that it is possible that a polynomial combination of a degree higher than d is required. 
There is a different interpretation of the row space of M(d) such that all polynomials of 
degree d are contained in it. This requires the notion of homogeneous polynomials and 
will be crucial in Section 4 to understand the null space of the Macaulay matrix. It will 
turn out that the dimension of the null space of M(d) is related to the total number of 
projective roots of the polynomial system. This includes roots at infinity and in this way 
homogeneous polynomials are relevant. Given a set of non-homogeneous polynomials 
f1, . . . , fs we can also interpret Md as the vector space

Md =
{

s∑
i=1

hif
h
i : hi ∈ Pn

d−di
(i = 1, . . . , s)

}
, (6)

where the fh
i ’s are homogeneous versions of f1, . . . , fs and the hi’s are also homogeneous. 

The corresponding homogeneous ideal is denoted by 〈fh
1 , . . . , f

h
s 〉. The homogeneity guar-

antees that all homogeneous polynomials of degree d are contained in Md. Or in other 
words,

Md =
〈
fh
1 , . . . , f

h
s

〉
d
,

where 〈fh
1 , . . . , f

h
s 〉d are all homogeneous polynomials of degree d contained in the ho-

mogeneous ideal 〈fh
1 , . . . , f

h
s 〉. An important consequence is then that

dim
〈
fh
1 , . . . , f

h
s

〉
= r(d).
d
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The homogenization of f1, . . . , fs typically introduces extra roots that satisfy x0 = 0
and at least one xi �= 0 (i = 1, . . . , s). These points are roots at infinity. We revisit 
Example 2.1 to illustrate this point.

Example 2.4. The homogenization of the polynomial system in Example 2.1 is fh
1 =

x1x2−2x2x0 = 0, fh
2 = x2−3x0 = 0. All homogeneous polynomials 

∑2
i=1 hif

h
i of degree 

3 belong to the row space of

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3
0 x1x

2
0 x2x

2
0 x2

1x0 x1x2x0 x2
2x0 x3

1 x2
1x2 x1x

2
2 x3

2

x0f1 0 0 −2 0 1 0 0 0 0 0
x2

0f2 −3 0 1 0 0 0 0 0 0 0
x0x1f2 0 −3 0 0 1 0 0 0 0 0
x0x2f2 0 0 −3 0 0 1 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
x2

1f2 0 0 0 −3 0 0 0 1 0 0
x1x2f2 0 0 0 0 −3 0 0 0 1 0
x2

2f2 0 0 0 0 0 −3 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which equals M(3) from Example 2.1. Note that the non-homogeneous polynomial sys-
tem had only 1 root = {(2, 3)}. After homogenization, the resulting polynomial system 
fh
1 , fh

2 has 2 nontrivial roots = {(1, 2, 3), (0, 1, 0)}.

The homogeneous interpretation is in effect nothing but a relabelling of the columns 
and rows of M(d). Both of these interpretations are used in this article. When discussing 
the left null space of M(d) we will employ the affine interpretation, while for the right 
null space the homogeneous interpretation is important.

3. Left null space

In this section we present a detailed analysis of the left null space of M(d). The main 
focus will be to derive the polynomial expression l(d) for a given polynomial system 
f1, . . . , fs. This will naturally lead to the notion of the degree of regularity, which will be 
important for describing the right null space. The left null space of M(d), null(M(d)T ), 
is the vector space

null
(
M(d)T

)
=

{
h ∈ R

p(d) ∣∣ hM(d) = 0
}
.
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The vectors h are not to be interpreted as polynomials but rather as s-tuples of mul-
tivariate polynomials. Indeed, from the affine row space interpretation we see that the 
expression hM(d) = 0 is equivalent with

s∑
i=1

hifi = 0. (7)

The vector h therefore contains the coefficients of all polynomials hi. A polynomial 
combination such as (7) is called a syzygy [25], from the Greek word συζυγια, which 
refers to an alignment of three celestial bodies. In our case, the polynomials hi are 
thought to be in syzygy with the polynomials fi, hence their polynomial combination is 
zero. This brings us to the interpretation of the dimension of the left null space, l(d). It 
simply counts the total number of syzygies that occur in Md. It is therefore possible to 
identify with each syzygy a linearly dependent row of M(d). The linear dependence of 
this particular row is then with respect to the remaining rows of M(d).

3.1. Expressing l(d) in terms of basis syzygies

Each element of the left null space corresponds with a syzygy of multivariate polyno-
mials and with a linearly dependent row of the Macaulay matrix M(d). Algorithm 3.1
finds a maximal set of such linearly dependent rows l for a given Macaulay matrix M(d), 
starting from the top row r1 where ri stands for the ith row of the Macaulay matrix.

Algorithm 3.1. Find a maximal set of linearly dependent rows
Input: Macaulay matrix M(d)
Output: a maximal set of linearly dependent rows l

l ← ∅
if r1 = 0 then
l ← [l, r1]

end if
for i = 2 : 1 : p(d) do

if ri linearly dependent with respect to {r1, . . . , ri−1} then
l ← [l, ri]

end if
end for

Once the linearly dependent rows of M(d) are identified with Algorithm 3.1, it then 
becomes possible to write down a polynomial expression for l(d). Indeed, suppose the 
first element l1 of l is found using Algorithm 3.1. This row is then linearly dependent with 
respect to all rows above it. In fact, this linear dependence expresses a certain syzygy ∑s

i=1 hifi = 0. The row l1 then also corresponds with a certain monomial multiple xα
i fk

since it is a row of the Macaulay matrix. Observe now that
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xβ
j

s∑
i=1

hifi = 0,

which means that all rows corresponding with xβ
j x

α
i fk will also be linearly dependent. We 

will call l1 in this case a basis syzygy and its monomial multiples xβ
j l1, derived syzygies. 

The degree of a basis syzygy is taken to be the maximal degree over its terms. The above 
observation can now be summarized in the following lemma.

Lemma 3.1. If a basis syzygy l has a degree dl, then it introduces a term

(
d− dl + n

n

)
(8)

to the polynomial l(d).

Proof. This follows from xβ
j

∑s
i=1 hifi = 0 and the fact that the total number of mono-

mials xβ
j at a degree d ≥ dl is given by (8). �

It can be shown that the number of basis syzygies is finite. This is in fact linked with 
the finiteness of the Gröbner basis for a polynomial ideal [3, p. 223]. We will now assume 
that all basis syzygies were found, using for example Algorithm 3.1 for a sufficiently large 
degree d, and explain how all basis syzygies can be used to derive an expression for the 
polynomial l(d). As mentioned above, each linearly dependent row can be labelled as 
a monomial multiple of one of the polynomials f1, . . . , fs. The first step of the syzygy 
analysis is to divide the basis syzygies into groups according to the polynomial that is 
multiplied. The following example will be used throughout the whole subsection in order 
to derive the algorithm to determine l(d) by means of basis syzygies.

Example 3.1. Consider the following polynomial system in C3

⎧⎪⎨
⎪⎩

f1 : x2y2 + z = 0,
f2 : xy − 1 = 0,
f3 : x2 + z = 0,

where x1 = x, x2 = y, x3 = z. The first basis syzygy is found, using Algorithm 3.1, in 
M(4) and corresponds with the row

xyf3.

The remaining basis syzygies are all found in M(6) and correspond with the rows

x3yf2, x
2y2f2, xy

2zf2.
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We can now divide these basis syzygies into the following two groups

{xyf3} and
{
x3yf2, x

2y2f2, xy
2zf2

}
,

which is one group for f3 and one group for f2.

The key observation here is that each of these groups can be analysed separately since 
no interference between rows of different groups is possible (indeed, they involve different 
polynomials). We will now continue Example 3.1 and show how all contributions of basis 
syzygies to l(d) are described by binomial coefficients.

Example 3.2. The first group {xyf3} has only one element and describes a syzygy of 
degree 4. Lemma 3.1 tells us then that this will introduce a term

(
d− 4 + 3

3

)

to l(d). We can therefore write

l(d) =
(
d− 4 + 3

3

)
= 1

6d
3 − d2 + 11

6 d− 1 (d ≥ 4). (9)

The second group has three basis syzygies, {x3yf2, x2y2f2, xy2zf2}, of degree 6 and 
therefore introduces 3 terms

(
d− 6 + 3

3

)
.

We can therefore update l(d) to

l(d) =
(
d− 4 + 3

3

)
+ 3

(
d− 6 + 3

3

)

= 2
3d

3 − 7d2 + 76
3 d− 31 (d ≥ 4). (10)

Expression (10) for l(d) is still valid for degrees d ≥ 4, since the 3 extra binomial 
coefficient terms correspond with polynomials that have roots at d ∈ {3, 4, 5}. The 
difference between (9) and (10) is only visible therefore for d ≥ 6. We have not yet found 
the final expression for l(d) however. The 3 binomial coefficient terms at degree 6 will 
count too many contributions. Take for example the basis syzygies corresponding with 
the rows x3yf2 and x2y2f2. Their least common multiple is x3y2f2, which means that 
the linearly dependent row x3y2f2 will be counted twice by (10). It should however be 
counted only once.
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Example 3.2 shows that the analysis of all syzygies is reduced to a combinatorial 
problem: within a group of basis syzygies, one needs to count the total number of linearly 
dependent rows these basis syzygies ‘generate’. This combinatorial problem is solved by 
the Inclusion–Exclusion principle.

Theorem 3.1 (Inclusion–Exclusion Principle). (See [4, p. 454].) Let A1, . . . , An be a 
collection of finite sets with |Ai| the cardinality of Ai. Then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
( ∑

1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩Aik |
)
. (11)

The Inclusion–Exclusion Principle is the final component that allows us to conclude 
the analysis of all syzygies. We now apply Theorem 3.1 and derive the final expression 
for l(d) in Example 3.2.

Example 3.3. If we denote the set of all monomial multiples of x3yf2 by A1 and likewise 
A2, A3 for x2y2f2, xy2zf2 respectively, then applying Theorem 3.1 on these sets results 
in the final expression for l(d). Note that all terms of (11) for k = 1 are the binomial 
coefficients of Lemma 3.1, which already have been added to l(d) in (10). The remaining 
analysis is hence on all terms of (11) for k ≥ 2. The cardinality of the intersections 
A1 ∩A2, A1 ∩A3, A2 ∩A3 are described by the binomial coefficients(

d− 7 + 3
3

)
,

(
d− 7 + 3

3

)
,

(
d− 8 + 3

3

)
,

which will each contribute to l(d) with a minus sign since k = 2. The degrees for which 
these terms are introduced are the degrees of the least common multiples between x3yf2
and x2y2f2, between x3yf2 and xy2zf2 and between x2y2f2 and xy2zf2. These degrees 
are 7, 8 and 7 respectively. The next intersection, A1 ∩ A2 ∩ A3, corresponds with a 
binomial term introduced at the degree of the least common multiple of all 3 basis 
syzygies in f2. This least common multiple is x3y2zf2 with a degree of 8. This concludes 
the analysis of all linearly dependent rows of M(d) and we can therefore write

l(d) =
(
d− 4 + 3

3

)
+ 3

(
d− 6 + 3

3

)
− 2

(
d− 7 + 3

3

)
−

(
d− 8 + 3

3

)
+

(
d− 8 + 3

3

)

=
(
d− 4 + 3

3

)
+ 3

(
d− 6 + 3

3

)
− 2

(
d− 7 + 3

3

)

= 1
3d

3 − 2d2 + 2
3d + 9 (d ≥ 4).

Note that the terms at degree 8 have cancelled one another. Since the term 
(
d−7+3

3
)

has 
roots at d ∈ {4, 5, 6}, this expression for l(d) is valid for all d ≥ 4.

An important observation is that once the polynomial expression l(d) is known, then 
the rank of M(d) and the dimension of its null space are also fully determined for all 
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d ≥ 4 by:

r(d) = p(d) − l(d) = 1
6d

3 + d2 + 5
6d− 10,

c(d) = q(d) − r(d) = d + 11.

Algorithm 3.2 summarizes the iterative syzygy analysis outlined above to determine 
the polynomial expression for l(d).

Algorithm 3.2. Find l(d)
Input: polynomial system f1, . . . , fn ∈ Cn

Output: l(d)
d ← max(deg(f1), deg(f2), . . . , deg(fs))
l ← ∅

l(d) ← ∅

while not all basis syzygies found do
find new basis syzygies l using Algorithm 3.1 on M(d)
update l(d) using Lemma 3.1 and the Inclusion–Exclusion principle
d ← d + 1

end while

A stop criterion is needed to be able to decide whether all basis syzygies have been 
found. This is intimately linked with the occurrence of a Gröbner basis in Md. Indeed, 
it is a well-known result that all basis syzygies of 〈f1, . . . , fs〉 can be determined from 
a Gröbner basis [3, p. 223]. The reduction to zero of every S-polynomial of a pair of 
polynomials in a Gröbner basis provides a basis syzygy. This implies that it is required 
to construct M(d) for a degree which contains all these S-polynomials. The link between 
a Gröbner basis and Md is described in detail in [17]. In Section 4, we will exclusively 
discuss the right null space of M(d) for polynomial systems with a finite set of projective 
roots. Lazard showed that in this case the maximal degree of a reduced Gröbner basis is 
at most d1 + . . .+dn+1 −n +1 with dn+1 = 1 if s = n. This provides an upper bound on 
the degree at which all basis syzygies can be found. The finiteness of the amount of basis 
syzygies has a very important consequence. It ensures that Algorithm 3.2 stops and that 
the polynomial expressions for l(d), r(d) and c(d) do not change anymore after a finite 
amount of steps. As a consequence, the domain of the final polynomial expressions for 
l(d), r(d) and c(d) has a particular lower bound d�. In Example 3.3, the domain of these 
polynomials was lower bounded by 4. We will call this lower bound on the domain of the 
final polynomial expressions for l(d), r(d) and c(d) the degree of regularity.

Definition 3.1. The minimal degree d� ∈ N for which the output of Algorithm 3.2 de-
scribes the dimension of the left null space of M(d) is called the degree of regularity.

This degree of regularity is of vital importance in the next section where we discuss 
the right null space of M(d). From the analysis above we see that in order to find the 
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degree of regularity d�, it is required to construct the Macaulay matrix for a degree 
larger than d�. For example, the degree of regularity d� = 4 of the polynomial system 
in Example 3.1 was found from M(6). The following example illustrates that the degree 
for which all basis syzygies are found can be quite high and consequently that the total 
number of binomial terms of l(d) can be very large.

Example 3.4. Consider the following polynomial system in C4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 : x2
2x3 + 2x1x2x4 − 2x1 − x3 = 0,

f2 : −x3
1x3 + 4x1x

2
2x3 + 4x2

1x2x4 + 2x3
2x4 + 4x2

1 − 10x2
2

+ 4x1x3 − 10x2x4 + 2 = 0,
f3 : 2x2x3x4 + x1x

2
4 − x1 − 2x3 = 0,

f4 : −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3

+ 4x2
3 − 10x2x4 − 10x2

4 + 2 = 0,

with degrees d1 = d3 = 3, d2 = d4 = 4. The first basis syzygy group is found in M(7)
and corresponds with the row x2

2x3f2. The next basis syzygies group are the rows

{
x2

2x3f3, x
3
2x4f3, x1x

2
2x

2
4f3, x

3
1x2x

2
3f3, x

2
1x2x

3
4f3, x

4
1x3x

4
4f3, x

2
1x2x

4
3x

2
4f3,

x2
2x

7
4f3, x

2
1x2x

6
3x4f3, x1x2x

8
4f3, x

2
1x2x

8
3f3, x

3
1x3x

8
4f3

}
and are found for the degrees

{6, 7, 8, 9, 9, 12, 12, 12, 13, 13, 14, 15}.

The last basis syzygy group are the rows

{
x2

2x3f4, x2x3x4f4, x1x2x
2
4f4, x

3
2x4f4, x

3
1x

2
4f4, x

2
1x

3
4f4, x

4
1x3x4f4,

x3
1x2x

2
3f4, x

3
1x

2
3x4f4, x

2
1x

3
3x4f4, x1x

5
2f4, x

5
1x

2
3f4, x

4
1x

3
3f4, x

3
1x

4
3f4

}
and are found for the degrees

{7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11}.

Application of the Inclusion–Exclusion Principle for each of these groups results in the 
final expression

l(d) =
(
d− 6 + 4

4

)
+ 4

(
d− 7 + 4

4

)
+

(
d− 8 + 4

4

)
− 6

(
d− 11 + 4

4

)

+ 4
(
d− 13 + 4

4

)
−

(
d− 14 + 4

4

)

= 1
d4 − 13

d3 − 5
d2 + 19

d + 105 (d ≥ 10).
8 12 8 12
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Observe that l(d) consists in fact of 10 241 binomial terms, of which 10 225 cancel out 
until only 16 terms are left.

3.2. Recursive algorithm to determine l(d)

As Example 3.4 shows, using Algorithm 3.2 to find the expression for l(d) results in 
a large number of binomial terms. A large number of computations are actually wasted 
since most of these binomial terms cancel out and therefore do not contribute to l(d). 
This approach has the disadvantage that the total number of binomial terms that needed 
to be computed grows combinatorially, while in fact the majority of them cancel one 
another. Algorithm 3.3 remedies this disadvantage. This iterative algorithm does not 
need to check each row of the Macaulay matrix, nor has to use the Inclusion–Exclusion 
Principle to find the final expression of l(d) and corresponding degree of regularity d�. 
Instead of finding basis syzygies and calculating how these will propagate to higher 
degrees, we will simply update l(d) iteratively. The algorithm is presented in pseudo-code 
in Algorithm 3.3. The main idea is to compute the numerical value p(d) − r(d) and 
compare it with the evaluation of l(d) for each degree d. Here p(d) does not represent 
the polynomial expression in d but rather the evaluation of this polynomial for the 
value of d in the algorithm. The polynomial expression for r(d) is not known and hence 
cannot be evaluated but this evaluation is found by the determination of the numerical 
rank of M(d). If p(d) − r(d) > l(d), then the polynomial l(d) needs to count p(d) −
r(d) − l(d) additional linearly dependent rows. Furthermore, each of these additional 
rows will propagate to higher degrees and give rise to extra binomial terms. Similarly, if 
p(d) −r(d) < l(d), then too many linearly dependent rows were counted and l(d) needs to 
be adjusted with l(d) −p(d) +r(d) negative binomial contributions. The p(d) −r(d) < l(d)
degrees for which positive contributions to l(d) are made are stored in the vector d+
and likewise for the l(d) − p(d) + r(d) negative contributions in d−. All information 
on how to express l(d) in terms of binomial coefficients is hence stored in d+ and d−. 
Iterations need to start from a degree d = min(deg(f1), deg(f2), . . . , deg(fs)) to make 
sure that the updating of l(d) reflects the correct occurrence of new basis and derived 
syzygies. Obviously, when there are polynomials fi of f1, . . . , fs with a degree higher than 
min(deg(f1), deg(f2), . . . , deg(fs)), then they are not included in M(d) for that particular 
degree. Since the algorithm iterates over the degrees, a Singular Value Decomposition 
(SVD)-based recursive orthogonalization algorithm [26] can be used to determine the 
numerical value r(d) for each iteration without the need to construct the whole Macaulay 
matrix. The binomial term in l(d) that appears at the highest degree dmax = max(d+, d−)
determines the degree of regularity d�. Indeed, the polynomial(

d− dmax + n

n

)

has zeros for d = {dmax−n, dmax−n +1, . . . , dmax−1} and therefore the final expression 
for l(d) is valid for all d ≥ d� = dmax − n. An upper bound for dmax comes from the 
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theory of resultants. Macaulay showed in [23] that it is possible to determine whether a 
homogeneous polynomial system fh

1 , . . . , f
h
n of degrees d1, . . . , dn has a nontrivial com-

mon root by computing the determinant of a submatrix of M(d) for d =
∑n

i=1 di−n +1. 
This essentially means that d� ≤

∑n
i=1 di − n + 1, which results in a maximal degree of 

1 +
∑n

i=1 di in Algorithm 3.3.

Algorithm 3.3. Find l(d) and degree of regularity d�

Input: polynomial system f1, . . . , fn ∈ Cn

Output: l(d) and degree of regularity d�

d ← min(deg(f1), deg(f2), . . . , deg(fs))
d+ ← ∅

d− ← ∅

l(d) ← 0
r(d) ← rank M(d)
while d ≤ 1 +

∑s
i deg(fi) do

if p(d) − r(d) > l(d) then
add d p(d) − r(d) − l(d) times to d+

else if p(d) − r(d) < l(d) then
add d l(d) − p(d) + r(d) times to d−

end if
l(d) ←

∑|d+|
i=1

(
d−d+(i)+n

n

)
−
∑|d−|

i=1
(
d−d−(i)+n

n

)
d ← d + 1
r(d) ← rank M(d)

end while
d� ← max(d+, d−) − n

Symbolical methods compute a Gröbner basis G of f1, . . . , fs in order to describe 
all basis syzygies and find the degree of regularity. Algorithm 3.3 does not require the 
computation of a Gröbner basis. Instead, one needs to determine the numerical rank of 
M(d) for increasing degrees d. Algorithm 3.3 is implemented in the MATLAB/Octave 
routine aln.m.

Example 3.5. We illustrate Algorithm 3.3 with the polynomial system from Example 3.4:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1 : x2
2x3 + 2x1x2x4 − 2x1 − x3 = 0,

f2 : −x3
1x3 + 4x1x

2
2x3 + 4x2

1x2x4 + 2x3
2x4 + 4x2

1 − 10x2
2

+ 4x1x3 − 10x2x4 + 2 = 0,
f3 : 2x2x3x4 + x1x

2
4 − x1 − 2x3 = 0,

f4 : −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3

+ 4x2
3 − 10x2x4 − 10x2

4 + 2 = 0.

The expression for l(d) is initialized to 0. The Macaulay matrix is of full row rank for 
degrees 3, 4 and 5. For d = 6, we have that p(6) − r(6) = 100 − 99 = 1 > l(6) = 0. We 
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therefore set d+ = 6 and

l(d) =
(
d− 6 + 4

4

)
.

After incrementing the degree we find that p(7) − r(7) = 210 − 201 = 9 > l(7) = 5 and 
we therefore update d+ and l(d) to d+ = {6, 7, 7, 7, 7} and

l(d) =
(
d− 6 + 4

4

)
+ 4

(
d− 7 + 4

4

)

respectively. The algorithm finishes at d = 14 with

d+ = {6, 7, 7, 7, 7, 8, 13, 13, 13, 13},

and

d− = {11, 11, 11, 11, 11, 11, 14},

which indeed corresponds with the final expression for l(d)

l(d) =
(
d− 6 + 4

4

)
+ 4

(
d− 7 + 4

4

)
+
(
d− 8 + 4

4

)
+ 4

(
d− 13 + 4

4

)

− 6
(
d− 11 + 4

4

)
−
(
d− 14 + 4

4

)

= 1
8d

4 − 13
12d

3 − 5
8d

2 + 19
12d + 105 (d ≥ 10).

Observe that Algorithm 3.3 finds the desired expression for l(d) at d = 14. In contrast, 
the basis syzygies analysis using Algorithm 3.2 required the construction of M(15) and 
the computation of 10 241 binomial terms. From Algorithm 3.3 we can derive that the 
dimension of the left null space of M(d) is described by the following piecewise-defined 
function

l(d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 3 ≤ d ≤ 5
d4

24 − 7d3

12 + 71d2

24 − 77d
12 + 5, if d = 6

d4

4 − 9d3

2 + 121d2

4 − 90d + 100, if 7 ≤ d ≤ 10
1
8d

4 − 13
12d

3 − 5
8d

2 + 19
12d + 105, if d ≥ 10.

The minimal degree for which the final polynomial expression for l(d) is valid is 10. 
Hence the degree of regularity is d� = 10.
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4. Right null space

The knowledge that c(d) is a polynomial in d together with the homogeneous inter-
pretation of Md allows us to link the null space of the Macaulay matrix with the number 
of projective roots of f1, . . . , fs. The notion of the dual of the row space will play an 
important role in describing these roots. After having described this dual vector space we 
will extend the monomial multiplication property of Stetter’s eigenvalue problem [13,14]
to the projective case.

4.1. Link with projective roots

It is a classic result that for a polynomial system fh
1 , . . . , f

h
s with a finite number of 

projective roots, the quotient ring Pn
d /〈fh

1 , . . . , f
h
s 〉d is a finite-dimensional vector space 

[3,4]. The dimension of this vector space equals the total number of projective roots of 
fh
1 , . . . , f

h
s , counting multiplicities for a large enough degree d. From the rank-nullity 

theorem of M(d) it then follows that

c(d) = q(d) − r(d)
= dimPn

d − dim
〈
fh
1 , . . . , f

h
s

〉
d

= dimPn
d /

〈
fh
1 , . . . , f

h
s

〉
d

(12)

This leads to the following theorem.

Theorem 4.1. For a zero-dimensional homogeneous ideal 〈fh
1 , . . . , f

h
s 〉 with m projective 

roots (counting multiplicities) and degree of regularity d� we have that

c(d) = m ∀d ≥ d�.

Proof. This follows from (12) and Definition 3.1. �
Furthermore, when s = n, then c(d) = m = d1 · · · ds according to Bézout’s Theorem 

[3, p. 97]. This effectively links the degrees of the polynomials f1, . . . , fs to the nullity 
of the Macaulay matrix. The affine roots can be retrieved from a generalized eigenvalue 
problem as discussed in [14,27]. In this article we will extend this generalized eigenvalue 
approach to the projective case. Another interesting result is that the degree of the 
polynomial c(d) is the dimension of projective variety of fh

1 , . . . , f
h
s .

Definition 4.1. The polynomial

c(d) = dimPn
d /

〈
fh
1 , . . . , f

h
s

〉
d

(
∀d ≥ d�

)
is called the projective Hilbert Polynomial [4, p. 462]. The degree of this polynomial c(d)
equals the dimension of the projective variety [4, p. 463].
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Example 4.1. For the polynomial system from Example 3.1 we had that c(d) = d + 11. 
Since this is a polynomial of degree 1, it follows that the projective solution set of 
fh
1 , . . . , f

h
s is one-dimensional. The number of affine solutions of fh

1 , . . . , f
h
s is finite: 

{(1, 1, 1, −1), (1, −1, −1, −1)}, which implies that the non-zero-dimensional part of the 
solution set lies ‘at infinity’.

From here on, we will only consider polynomial systems with a finite number of 
projective roots.

4.2. Dual vector space

As soon as d ≥ d� and the number of projective roots is finite, then a basis of the 
null space can be explicitly written down in terms of the roots. This requires the notion 
of the dual vector space. We denote the dual vector space of Cn

d by Cn′

d , the dual of Md

by M′
d and the annihilator of Md by Mo

d. By definition, the elements of Mo
d map each 

element of Md to zero. Therefore, dimMo
d = c(d), which implies Mo

d
∼= null(M(d)). 

A basis for Mo
d is described by differential functionals.

Definition 4.2. (See [14, p. 8].) Let j ∈ N
n
0 and z ∈ C

n, then the differential functional 
∂j |z ∈ Cn′

d is defined by

∂j |z ≡ 1
j1! . . . jn!

∂j1+...+jn

∂xj1
1 . . . ∂xjn

n

∣∣∣∣
z

where |z stands for evaluation in z = (x1, . . . , xn).

Being elements of the dual vector space, these differential functionals ∂j |z can be 
represented as vectors. This is illustrated in the following simple example.

Example 4.2. In C2′
3 the functionals ∂00|z, ∂10|z, ∂01|z, ∂20|z, ∂11|z and ∂02|z have the 

following coefficient vectors

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂00|z ∂10|z ∂01|z ∂20|z ∂11|z ∂02|z
1 0 0 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0
x2

1 2x1 0 1 0 0
x1x2 x2 x1 0 1 0
x2

2 0 2x2 0 0 1
x3

1 3x2
1 0 3x1 0 0

x2
1x2 2x1x2 x2

1 x2 2x1 0
x1x

2
2 x2

2 2x1x2 0 0 x1

x3 0 3x2 0 0 3x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)
2 2 2
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with z = (x1, x2) ∈ C
2. The homogeneous interpretation of Md implies that the differ-

ential functionals also have a homogeneous interpretation. For the example above, the 
coefficient vectors of the corresponding differential functionals in P2′

3 are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂000|z ∂010|z ∂001|z ∂020|z ∂011|z ∂002|z
x3

0 0 0 0 0 0
x2

0x1 x2
0 0 0 0 0

x2
0x2 0 x2

0 0 0 0
x0x

2
1 2x0x1 0 x0 0 0

x0x1x2 x0x2 x0x1 0 x0 0
x0x

2
2 0 2x0x2 0 0 x0

x3
1 3x2

1 0 3x1 0 0
x2

1x2 2x1x2 x2
1 x2 2x1 0

x1x
2
2 x2

2 2x1x2 0 0 x1

x3
2 0 3x2

2 0 0 3x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

with z = (x0, x1, x2) ∈ P
2. The matrix in (13) can be retrieved from (14) by setting 

x0 = 1.

We will make no further distinction between the linear functionals ∂j |z and their 
coefficient vectors. Notice that these coefficient vectors are column vectors, since they 
are the dual elements of the row space of M(d). The vectors ∂0|z in the affine case can be 
seen as a generalization of the Vandermonde structure to the multivariate case. Applying 
the differential functional ∂j|z to the elements of Md is then simply the matrix vector 
multiplication M(d)∂j |z.

We know that when a polynomial system fh
1 , . . . , f

h
s has a finite number of m projec-

tive roots, then dimMo
d = c(d) = m for all d ≥ d�. Hence, a basis for Mo

d will consist of 
differential functionals, evaluated in each projective root and taking multiplicities into 
account. This brings us to the definition of the canonical null space of M(d).

Definition 4.3. Let f1, . . . , fs ∈ Cn with a zero-dimensional projective solution set and 
let m1, . . . , mt be the multiplicities of the t projective roots zi (1 ≤ i ≤ t) such that ∑t

i=1 mi = m. Then for all d ≥ d� there exists a matrix K of m linearly independent 
columns such that

M(d)K = 0.

Furthermore, K can be partitioned into

K = (K1 K2 . . . Kt ),
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such that each Ki consists of mi linear combinations of differential functionals ∂j|zi ∈ Pn′

d

(1 ≤ i ≤ t). We will call this matrix K the canonical null space of M(d).

Definition 4.3 explicitly depends on the homogeneous interpretation of Md. Indeed, 
it is only for the homogeneous case that the projective roots come into the picture. 
Defining the multiplicity of a zero using the dual space goes back to Macaulay [24]. It 
is also reminiscent of the univariate case. Remember that for a univariate polynomial 
f(x) ∈ C1

d , a zero z with multiplicity m means that

⎛
⎜⎜⎜⎜⎝

f

fD1
...

fDm−1

⎞
⎟⎟⎟⎟⎠ ∂0|z = 0, (15)

where Di is the ith order differential operator. Or in other words, f(z) = f ′(z) = f ′′ =
. . . = f (m−1)(z) = 0. Alternatively, (15) can be written as

f(∂0|z ∂1|z ∂2|z . . . ∂m−1|z) = 0. (16)

As already mentioned in Definition 4.3, the multivariate case generalizes this principle 
by requiring linear combinations of differential functionals.

Example 4.3. Consider the following polynomial system in C2
2 with the affine root z =

(1, 2, 3) ∈ P
2 of multiplicity 4 and no roots at infinity

{
(x2 − 3)2 = 0,
(x1 + 1 − x2)2 = 0.

The degree of regularity d� is 2 and the canonical null space is

K = ( ∂000|(1,2,3) ∂100|(1,2,3) ∂010|(1,2,3) ∂110|(1,2,3) − 2∂020|(1,2,3) ). (17)

The different linear combinations of functionals needed to construct Ki are called the 
multiplicity structure of the root zi. Observe that the multiplicity structure of a root 
is not unique. Indeed, for any nonsingular mi ×mi matrix T we have that the column 
space of Ki equals the column space of KiT . Finding the multiplicity structure for a given 
root of a polynomial system is an active area of research [28,29]. Iterative algorithms to 
compute the multiplicity structure of a root z such as in [29,30] exploit the closedness 
property of the differential functionals ∂j|z [14, p. 330] to reduce the size of the matrices 
in every iteration. We will not further discuss these algorithms here.
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4.3. Extending Stetter’s eigenvalue problem to the projective case

Stetter’s approach to find the affine roots of multivariate polynomial systems is to 
phrase it as an eigenvalue problem [13,14]. This eigenvalue problem expresses the multi-
plication of monomials within the quotient space Cn/〈f1, . . . , fs〉. The standard procedure 
to find all affine roots is

1. to compute a Gröbner basis G for 〈f1, . . . , fs〉,
2. derive a monomial basis for Cn/〈f1, . . . , fs〉 from G,
3. solve the eigenvalue problem that expresses the monomial multiplication within the 

quotient space Cn/〈f1, . . . , fs〉,
4. read off the affine solutions from the eigenvectors.

We now show how one can write down Stetter’s eigenvalue problem without the com-
putation of a Gröbner basis. Instead, one needs to write down the multiplication of the 
differential functional ∂j |z with a monomial. Suppose that the polynomial system has 
only affine roots with no multiplicities. No homogeneous interpretation of the canon-
ical null space K is required then. For a functional ∂0|z the following relationship 
holds:

⎛
⎜⎜⎜⎜⎜⎝

1
x1
x2
...

xd−1
n

⎞
⎟⎟⎟⎟⎟⎠x1 =

⎛
⎜⎜⎜⎜⎜⎝

x1
x2

1
x1x2

...
x1x

d−1
n

⎞
⎟⎟⎟⎟⎟⎠ . (18)

Or in other words, the operation of multiplying ∂0|z with x1 corresponds with a particular 
row selection of the same functional. In this case, the first row becomes the second, the 
second is mapped to row n + 2, and so forth. If we want to express the multiplication 
of functionals in Cn′

d with monomials of degree 1, then only the rows corresponding 
with monomials up to degree d − 1 are allowed to be multiplied. Indeed, monomials of 
degree d would be ‘shifted’ out of the coefficient vector. Hence (18) can be rewritten 
as

S10∂0|zx1 = S01∂0|z, (19)

where S10 selects at most all 
(
d−1+n

n

)
rows corresponding with monomials from de-

gree 0 up to d − 1 and S01 selects the corresponding rows after multiplication with 
x1.
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Example 4.4. Writing down (19) for functionals in C2′
2 results in

⎛
⎝ 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
x2

1
x1x2
x2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

x1 =

⎛
⎝ 0 1 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
x2

1
x1x2
x2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The selection matrix S10 selects in this case all rows corresponding with all monomials 
of degree 0 up to 1.

If S10 in Example 4.4 would have selected any of the rows corresponding with mono-
mials of degree 2, then no corresponding S01 could have been constructed since the 
functionals do not contain any monomials of degree 3. Observe that relations similar 
to (19) can be written down for multiplication with any variable xi. Indeed, for every 
variable xi a corresponding row selection matrix can be derived. Under the assumption 
that none of the m affine roots has multiplicities, (18) can be extended to all functionals 
of affine roots K = (∂0|z1 . . . ∂0|zm) and any multiplication variable xi so that we can 
write

Si0KDi = S0iK, (20)

where Di is a square diagonal matrix containing xi’s. The meaning of the 0 index in the 
row selection matrices will become clear when we discuss the homogeneous case. Now, it 
will be shown how (20) can be written as a standard or generalized eigenvalue problem. 
The q(d) ×m matrix K cannot be directly computed from M(d). It is possible however, 
to compute a numerical basis N for the null space of M(d), using for example the SVD. 
Since both N and K are bases for the null space, they are related by a nonsingular 
matrix V , or in other words, K = NV . We can therefore replace K by NV in (20) and 
obtain

Si0NVDi = S0iNV,

BV Di = AV, (21)

where we have set B = Si0N and A = S0iN . Since A and B are overdetermined matri-
ces, (21) is not an eigenvalue problem yet. One way to transform it into a generalized 
eigenvalue problem would be to choose Si0 and S0i such that A and B become square. 
In addition, B has to be regular since we know that the diagonal of Di contains the xi

components of the affine roots. The second way is to transform (21) into an ordinary 
eigenvalue problem by writing it as

V Di = B†AV,
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where B† is the Moore–Penrose pseudoinverse of B. Once the eigenvectors V are com-
puted, the canonical null space K can be reconstructed as NV . The affine roots are 
then simply read off from K. The procedure to numerically compute the affine roots of 
f1, . . . , fs without a Gröbner basis is hence:

1. compute a numerical basis for the null space of M(d) for d ≥ d�,
2. choose Sij , Sji and form B, A,
3. solve the eigenvalue problem BVDi = AV ,
4. reconstruct K and read off the affine solutions.

More details on numerical affine root-finding using these two approaches, even when 
there are roots at infinity, can be found in [19].

In order to extend the monomial multiplication property (18) to the homogeneous 
case, one adjustment needs to be made: a monomial multiplication needs to be inserted 
to its right-hand side. Indeed, since each component of the differential functional ∂j|z
has the same total degree, ∂j|zxi will not correspond with a particular row selection of 
∂j |z. The following example illustrates the extension of (18) to the homogeneous case.

Example 4.5. The homogeneous extension of the monomial multiplication property in 
Example 4.4 is

⎛
⎝ 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
0

x0x1

x0x2

x2
1

x1x2

x2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1 =

⎛
⎝ 0 1 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
0

x0x1

x0x2

x2
1

x1x2

x2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x0.

The selection matrix on the left-hand side is again denoted S10. Here the leftmost index 
means that in this side of the equation we multiply with x1 and with x0 on the other 
side. Likewise for the row selection matrix S01 on the right-hand side, here we multiply 
with x0 and with x1 on the other side. Observe that these selection matrices are identical 
to those of Example 4.4.

Consequently, the homogeneous monomial multiplication property can be written as

SijKDi = SjiKDj . (22)

Choosing the two monomials xi, xj with which both sides of the equation will be mul-
tiplied respectively completely determines the selection matrices Sij, Sji. Since (22) is 
valid for the homogeneous case, this relation also holds for roots at infinity.
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4.4. Deriving projective multiplication matrices

Stetter’s Central Theorem of multivariate polynomial root finding says that the Di

matrices in the eigenvalue problems derived from (21) will in general not be a Jordan 
normal form when the affine roots have multiplicities [14, p. 52]. They are however still 
upper triangular. The same is true for the homogeneous case. We will now derive our 
algorithm to compute these upper triangular multiplication matrices Di in the homoge-
neous case by means of an example.

Example 4.6. Suppose we have the following polynomial system in C2
4

{
(x1 − 2)x2

2 = 0,
(x2 − 3)2 = 0.

It can be easily shown that there is an affine root z1 = (1, 2, 3) with multiplicity 2 and 
a root at infinity z2 = (0, 1, 0) with multiplicity 4. The degree of regularity is 4 and the 
canonical null space K is

(K1 K2 ) = ( ∂000|z1 ∂100|z1 + 2∂010|z1 ∂000|z2 ∂100|z2 ∂010|z2 2∂200|z2 + 3∂101|z2 ).

We start with the affine root z1 and determine its entries of the multiplication matrices 
D0, D1. The first step is to write down the homogeneous multiplication property for 
∂000|z1

S01∂000|z1x0 = S10∂000|z1x1. (23)

Both ∂100|z1 and ∂010|z1 are needed to describe the second column of the canonical null 
space. By taking the partial derivative of (23) with respect to x0 we obtain

S01(∂000|z1 + ∂100|z1x0) = S10∂100|z1x1. (24)

Likewise, taking the partial derivative of (23) with respect to x1 and multiplying both 
sides with 2 results in

S012∂010|z1x0 = S10(2∂000|z1 + 2∂010|z1x1). (25)

Combining (23), (24) and (25) and evaluating x0, x1 results in

S01 ( ∂000|z1 ∂100|z1 + 2∂010|z1 )
(

1 1
0 1

)

= S10 ( ∂000|z1 ∂100|z1 + 2∂010|z1 )
(

2 2
)
. (26)
0 2
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Observer how there is a 2 on the superdiagonal on the right-hand side. This already in-
dicates that the multiplication matrix will not be in Jordan normal form. The procedure 
to determine the part of the multiplication matrices for the root at infinity is completely 
analogous to the analysis above. Starting off with writing down the multiplication prop-
erty for ∂000|z2

S01∂000|z2x0 = S10∂000|z2x1,

and taking partial derivatives with respect to x0,

S01(∂000|z2 + ∂100|z2x0) = S10∂100|z2x1, (27)

and with respect to x1

S01∂010|z2x0 = S10(∂000|z2 + ∂010|z2x1).

Differential functionals of second degree are also needed. Taking the partial derivative of 
∂100|z2 with respect to x0 to compute ∂200|z2 results in

∂

∂x0
(∂100|z2) = 2 ∂200|z2

due to Definition 4.2. An additional partial derivative of (27) with respect to x0 results 
in the desired equation

S01(∂100|z2 + ∂100|z2 + 2∂200|z2x0) = S102∂200|z2x1,

S01(2 ∂100|z2 + 2 ∂200|z2x0) = S102∂200|z2x1,

and likewise for the ∂101|z2 functional

S01(3∂001|z2 + 3∂101|z2x0) = S103∂101|z2x1.

Combining the results and evaluating the components, we can write

S01 ( ∂000|z2 ∂100|z2 ∂010|z2 )

⎛
⎜⎜⎝

0 1 0 0
0 0 0 2
0 0 0 3
0 0 0 0

⎞
⎟⎟⎠

= S10 ( ∂000|z2 ∂100|z2 ∂010|z2 )

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ . (28)
0 0 0 1
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Finally, combining (26) and (28) results in the homogeneous multiplication property for 
the whole canonical null space K

S01K

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 0 0 3
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= S10K

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0 0 0 0
0 2 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By abuse of notation, we will also denote the upper triangular multiplication matrices 
by Di, Dj . Doing so, (22) also holds for the case of roots with multiplicities. Algorithm 4.1
summarizes the whole procedure to derive the multiplication matrices for the projective 
case.

Algorithm 4.1.
Input: canonical null space K, multiplication monomials xi, xj

Output: projective multiplication matrices Di, Dj

determine row selection matrices from xi, xj

for each projective root zi do
write homogeneous multiplication property for zi
apply partial derivatives to obtain higher order functionals
make linear combinations to reconstruct the multiplicity structure
write out the obtained multiplication relation in matrix form

end for
combine multiplication matrices for each root into Di, Dj

Since the multiplication of monomials is commutative, this implies that the multipli-
cation matrices Di, Dj will also commute. The occurrence of multiple roots, whether 
they are affine or at infinity, poses a problem to determine them via an eigenvalue com-
putation. Indeed, in order to be able to write

SijKDi = SjiKDj

as an eigenvalue problem, either Di or Dj has to be invertible. For affine roots this will 
always be the case for D0. Roots at infinity will need a more careful choice of xi, xj . Let 
us suppose that Dj is invertible, we can then write

SijKDiD
−1
j = SjiK.

Again, substituting K by NV and setting SijN = B, SjiN = A we get

BVDiD
−1
j = AV. (29)
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Let

Jij = T−1DiD
−1
j T

be the Jordan normal form of DiD
−1
j . This allows us to rewrite (29) as

BV TJij = AV T. (30)

This can again be converted into a generalized eigenvalue problem by making A, B square 
and B regular or into an ordinary eigenvalue problem by computing the pseudoinverse 
of B. The retrieved eigenvectors are in this case V T , from which we cannot reconstruct 
the canonical null space K = NV since T is unknown. An additional difficulty lies in 
the numerically stable computation of the Jordan normal form J . Alternatively, one can 
compute the numerically stable Schur decomposition

B†A = QUQ−1,

where Q is unitary and U upper triangular. The eigenvalues xi/xj can then be read off 
from the diagonal of U . In the projective case there is always at least one Dj invertible. 
This means that the n different xi/xj components of the projective roots can be com-
puted from n Schur factorizations. Afterwards these components need to be matched to 
form the projective roots

(
x0

xj
,
x1

xj
, . . . , 1, . . . , xn

xj

)
,

where the 1 appears in the jth position.

5. Conclusions

In this article we provided a detailed analysis of the left and right null spaces of 
the Macaulay matrix. The left null space was shown to be linked with the occurrence 
of syzygies in the row space. It was also demonstrated how the dimension of the left 
null space is described by a piecewise function of polynomials. Two algorithms were 
presented that determine these polynomial expressions for l(d). The finiteness of the 
number of basis syzygies resulted in the notion of the degree of regularity, which played 
a crucial role in describing a basis for the right null space of M(d) in terms of differential 
functionals. The canonical null space K of M(d) was defined and the multiplication 
property of this canonical basis was extended to the projective case. This resulted in 
upper triangular commuting multiplication matrices. Finally, we discussed how Stetter’s 
eigenvalue problem can be extended to the case where both affine roots and roots at 
infinity are present.
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