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Maximum likelihood estimation of GEVD:
Applications in Bioinformatics

Minta Thomas, Anneleen Daemen, and Bart De Moor

Abstract—We propose a method, maximum likelihood estimation of generalized eigenvalue decomposition (MLGEVD) that
employs a well known technique relying on the generalization of singular value decomposition (SVD). The main aim of the
work is to show the tight equivalence between MLGEVD and generalized ridge regression. This relationship reveals an important
mathematical property of GEVD in which the second argument act as prior information in the model. Thus we show that MLGEVD
allows the incorporation of external knowledge about the quantities of interest into the estimation problem. We illustrate the
importance of prior knowledge in clinical decision making/identifying differentially expressed genes with case studies for which
microarray data sets with corresponding clinical/literature information are available. On all these three case studies, MLGEVD
outperformed GEVD on prediction in terms of test area under the ROC curve (test AUC). MLGEVD results in significantly
improved diagnosis, prognosis and prediction of therapy response.

Index Terms—eigenvalue decomposition, generalized eigenvalue decomposition, maximum likelihood generalized eigenvalue
decomposition, generalized singular value decomposition
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1 INTRODUCTION

Microarray technology is a significant tool in gene
expression analysis and cancer diagnosis. These tech-
nologies are typically used for class discovery [1],
[2] and prediction [3], [4]. Clinical data such as age,
gender and medical history offer a proper care and
treatment of patients for most diseases. The effec-
tive management of these data always lead to better
clinical prognosis. Microarray data analysis are in
general much more difficult and expensive to collect
while clinical parameters are routinely measured by
clinicians. A vital study on the prediction of breast
cancer outcome has suggested that despite the emer-
gence of these high-throughput technologies, clinical
markers and profiles have similar power for prognosis
[5]. We previously analyzed the influence of clinical
and microarray data on prediction and observed that
proper integration of these two data sets improved
the prediction accuracy [6].

Biomarker discovery and prognosis prediction are
essential for improved personalized treatment of can-
cer. Principal component analysis (PCA) and PCA-
based approaches for example were used for the
identification of differentially expressed genes (DEG)
in pulmonary adenocarcinoma [7] and E coli [8].
Troyanskaya and colleagues developed nonparamet-
ric methods to identify DEG in microarray data [9].
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Besides well-known statistical tests such as the chi-
square test [10], Chun and Colleagues proposed a new
test, the ’half Student’s t-test’, specifically for detecting
DEG in heterogeneous diseases [11]. Singular Value
Decomposition (SVD) and generalized SVD (GSVD)
have been shown to have great potential within bioin-
formatics for extracting common information from
data sets such as genomics and proteomics data
[12], [13]. Maximum likelihood principal component
analysis (MLPCA) is an error-in-variables modeling
method in that it accounts for measurement errors
in the estimation of model parameters. Wentzell et
al. [14] generalized PCA method to MLPCA [15],
[16]. The tight equivalence between MLPCA and total
least squares (TLS) is explored in [17]. Finally, several
studies have developed methods for integrating liter-
ature and microarray data sets for identifying disease
related genes [18], [19].
In this paper we propose a method which incorpo-
rates external knowledge of interest in the analysis
of microarray and clinical data sets. The main aim of
the paper is to show the tight equivalence of maxi-
mum likelihood estimation of generalized eigenvalue
decomposition (MLGEVD) with generalized ridge
regression. This reveals an important mathematical
property of GEVD/GSVD in which the second input
acts as the prior information in the model. We in-
corporate microarray/literature information as prior
information in the model to improve the performance
in clinical decision making.
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2 DATA SETS AND METHODS

2.1 Case Study - I

Breast cancer is one of the most extensively studied
cancer types for which many microarray data sets are
publicly available. Among them, we selected three
cases for which also clinical information was available
[20], [21], [22].

2.1.1 Microarray Data

The microarray data were obtained with the
Affymetrix technology and preprocessed with
MAS5.0, the GeneChip Microarray Analysis Suite 5.0
software (Affymetrix). However, as probe selection
for the Affymetrix gene chips relied on earlier genome
and transcriptome annotation that are significantly
different from current knowledge, an updated array
annotation was used for the conversion of probes
to Entrez Gene IDs, lowering the number of false
positives [23]. Finally, the low signal-to-noise [24]
ratio of microarray data was taken into account by
unsupervised exclusion of genes with low variation
(variance less than the 20th percentile), retaining
4997, 5997 and 12633 most varying genes for the first,
second and third microarray data respectively.

2.1.2 Clinical Data

The first case study of 129 patients contained informa-
tion on 17 available clinical variables. Five variables
were excluded [20]: two redundant variables that
were least informative based on univariate analysis
in those variable pairs with a correlation coefficient
exceeding 0.7, and three variables with too many
missing values. After exclusion of patients with miss-
ing clinical information, this data set (represented in
Table 1) consisted of 110 patients, 85 in whom disease
did not recur whilst in 25 patients disease recurred
[25].

The second case study, in which response to treat-
ment was studied, entailed 12 variables for 133 pa-
tients [21]. Patient and variable exclusion as described
above resulted in 129 patients and 8 variables, shown
in Table 2. Of the 129 remaining patients, 33 showed
complete response to treatment while 96 patients were
characterized by residual disease.

In the last case study, relapse was studied in 187
patients [22]. After preprocessing, this data set re-
tained information on 5 variables for 177 patients with
detailed information shown in Table 3. In 112 patients,
no relapse occurred while 65 patients had a relapse.

Clinical data contains three different types of vari-
ables: continuous (C), ordinal (O) and nominal (N).
Normalization is required to make these variables
comparable to each other. Rank order, min-max and
square root transformations were applied to the ordi-
nal, continuous and nominal variables, respectively.

TABLE 1
Clinical variables data set I (breast cancer -

recurrence)

Variable Type Range

1. Age(years) C 31-88

2. Ethnicity N 0, 1, 2

3. ER status N 0, 1

4. PR status N 0, 1

5. Radiation treatment N 0, 1

6. Chemotherapy N 0, 1

7. Hormonal therapy N 0, 1

8. Nodal status (N) O 0-2

9. Metastasis (M) N 0, 1

10. Tumor stage O 1-4

11. Tumor size C 0.3-7.5

12. Tumor grade O 1-3

ER, estrogen receptor; PR, progesterone receptor.

TABLE 2
Clinical variables data set II (breast cancer - treatment

response)

Variable Type Range

1. Age(years) C 28-79

2. Ethnicity O 0, 1, 2, 3, 4

3. Pretreatment tumor stage O 1-4

4. Nodal status (N) O 0-3

5. Nuclear grade O 1-3

6. ER status N 0, 1

7. PR status N 0, 1

8. HER2 status N 0, 1

ER, estrogen receptor; PR, progesterone receptor;
HER2, human epidermal growth factor receptor 2.

TABLE 3
Clinical variables data set III (breast cancer - relapse)

Variable Type Range

1. Age(years) C 32-86

2. Tumor size(cm) C 0.2-8.2

3. Nodal status (N) N 0, 1

4. ER status N 0, 1

5. Tamoxifen treatment N 0, 1

ER, estrogen receptor.



1557-9964 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2014.2304292, IEEE/ACM Transactions on Computational Biology and Bioinformatics

3

2.2 Case Study - II
2.2.1 Microarray Data
The colon cancer data set investigated in this
manuscript was taken from the Bioinformatics Re-
search Group Repository [26]. It contains 62 samples,
among them 40 colon tumor samples and 22 normal
colon samples, with 1,988 genes and 12 controls.
Data were standardized to a mean of 0 and standard
deviation of 1.

2.2.2 Literature Information
We used a well defined cancer vocabulary with 2406
terms from NCI Dictionary of Cancer Terms[27].
Pubmed abstracts with the terms in the vocabulary
were extracted using Perl, version 5.10.1 for windows.
We defined literature information as a matrix with
rows corresponding to genes and columns to cancer
related terms. Each entry in the matrix corresponds
to the number of Pubmed abstracts in which the
gene and term co-occur. We chose to retrieve entries
containing the official gene name, abbreviations or
aliases in the corresponding field, following the same
strategy as used by Gevaert et al [19]. Finally, the
cosine similarity measure was used to obtain gene-
to-gene distances between 0 and 1, derived from the
literature information.

2.3 Methods
2.3.1 Principal Component Analysis:
Principal component analysis (PCA) [28] of m × n
matrix A equals

A = TP,

where score T is m × n matrix and coefficients P is
orthogonal n× n matrix.

2.3.2 Maximum Likelihood Estimation of PCA:
In PCA, if rank(A) = r, then the best approximation
of A is

Â = LF

where L (score matrix) is m×r matrix, F ≈ N (0, Ir),
and Ir is the identity matrix with r-dimension.

The maximum likelihood estimation of PCA [17] is
as follows:

min
F

vecT (A− LF )Q−1vec(A− LF ),

with Q the error covariance matrix of vec(A − LF ),
where vec(A − LF ) stands for the vectorized form
(A − LF ), i.e., a vector constructed by stacking the
consecutive columns of (A − LF ) in one vector. Let
the error covariance matrix Q = blkdiag(Q1, . . . , Qn),
where Qi ∈ Rm×m. The solution of the problem can
be computed efficiently in this case as follows:
Fi = (LTQ−1

i L)−1LTQ−1
i Ai where Fi is the ith

column of F .

2.3.3 Maximum Likelihood Estimation of Generalized
Eigenvalue Decomposition:
The Generalized Singular Value Decomposition
(GSVD)[29] of m × n matrix A and p × n matrix B
is

A = UΣAX
T (1)

B = V ΣBX
T (2)

where U , V are orthogonal matrices, the columns
of X are generalized singular vectors and ΣA, ΣB
are diagonal matrices with entries corresponding to
the generalized singular values of matrices A and B
respectively.

If BTB is invertible, the GEVD of ATA and BTB
can be obtained from equations (1) and (2) as follows:

ATA(XT )−1 = BTB(XT )−1Λ. (3)

where Λ is a diagonal matrix with entries
Λii = (

ΣAii

ΣBii
)2 , i = 1 . . . , n and the columns of

(XT )−1 are generalized eigenvectors (GEVs).

The equation (3) can now be rewritten as a standard
eigenvalue problem:

(BTB)−1/2ATA(BTB)−1/2U = UΛ. (4)

where U = (BTB)1/2(XT )−1, which is in the form of
EVD of the matrix (BTB)−1/2ATA(BTB)−1/2.

SVD of A(BTB)−1/2 is given by

A(BTB)−1/2 = V ΛUT (5)

The matrix (BTB)−1/2 is defined [30] as follows: Let
eigenvalue decomposition (EVD) of (BTB) = TΣTT ,
where columns of T are eigenvectors and Σ is
a diagonal matrix. (BTB)1/2 = TΣ1/2TT and
(BTB)−1/2 = TQTT , where Q is a diagonal matrix
with diagonal entries Qii = (Σii)

−1/2, i = 1, . . . , N .

Let D be the projections of A(BTB)−1/2 on
eigenvectors U , which is equivalent to the projections
of A on GEVs (XT )−1 (See Equation 4). Thus we have,

D = A(BTB)−1/2U = A(XT )−1, (6)

with UTU = I and (X)−1(BTB)(XT )−1 = I , where I
is the identity matrix.

In MLGEVD, we have to estimate GEVs
(XT )−1 which maximize the variance of projected
variables A(XT )−1 under the constraint that
(X)−1BTB(XT )−1 = I.

Maximum Likelihood Estimation of GEVD can be
formulated as follows:
r̃MLGEVD = minr̃Σni=1(Di − ẽi)

TQ−1
εx (Di − ẽi) +

Σni=1r̃
T
i (BTB)r̃i s. t. ẽi = Ar̃i, where Qεx is the error

covariance matrix and ri is ith column of (XT )−1. In
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the maximum likelihood interpretation of GEVD, we
have to minimize the reconstruction error which can
be formulated as follows:
Solution: Define the Lagrangian
L = Σni=1(ei − ẽi)

TQ−1
εx (ei − ẽi) + Σni=1r

T
i B

TBri +
Σni=1αi(ẽi −Ari) .

with the optimality conditions,
∂L
∂ẽi

= −2Q−1
εx (ei − ẽi) + αTi = 0.

∂L
∂ri

= −ATαT + 2(BTB)ri = 0.

∂L
∂λi

= ẽi −Ari = 0, i = 1 . . . , n.

Eliminations of ẽi, r̃i, and αi yields an equation in
the form of

r̃i = (ATQ−1
εx A+BTB)−1ATQ−1

εx Di, i = 1 . . . , n. (7)

Thus, the Maximum Likelihood estimation of GEVD
is

r̃iMLGEVD = (ATQ−1
εx A+BTB)−1ATQ−1

εx Di, i = 1 . . . , n.
(8)

which is in the form of generalized ridge regression.
An algorithm for MLGEVD is given below:

Algorithm: MLGEVD
1) Input data matrices A ∈ Rm×n, B ∈ Rq×n.
2) Initial approximation: we have D =

Ã(BTB)−1U (see Equation 6). Compute
a rank p truncated SVD approximation
D(0) = Ã(BTB)−1Uap of D. And error
covariance matrix Wi ∈ Rm×m (i=1,. . ., n).

3) k=0;
4) repeat
5) Compute the solution of (8) ri = (ATW−1

i A +
BTB)−1ATW−1

i Di, i = 1 . . . ,n, are the GEVs
(columns of R(k)).

6) Compute D(k+1) using Equation (6).
7) k=k+1
8) Until||D(k) −D(k−1)||F /||D(k)||F ≤ ε, where ε is

the convergence parameter.
9) Output: D̃ = D(k), R̃ = R(k)

The Matlab implementation of the algorithm is
given in Appendix A. For numerical reasons [31]
however, the explicit formation of matrix product of
the form ATA,BTB should be avoided. Hence we
will work with SVD and GSVD, instead of EVD and
GEVD, for which explicit commands are provided in
Matlab.

3 CLASSIFICATION MODELS

The constrained optimization problem for an Least
Squares-Support Vector Machine (LS-SVM) [32], [33]
for classification has the following form:

min
w,b,e

(
1

2
wTw + γ

1

2
ΣNk=1e

2
k)

subject to:

yk[wTϕ(xk) + b] = 1− ek, k = 1, . . . , N

where ϕ(.): Rd → Rdh is a nonlinear function which
maps the d-dimensional input vector x from the input
space to the dh-dimensional feature space, possibly
infinite. In the dual space the solution is given by[

0 yT

y Ω + I
γ

] [
b
β

]
=

[
0
1v

]
with y = [y1, . . . , yN ]T , 1N = [1, . . . , 1]T , e =
[e1, . . . , eN ]T , β = [β1, . . . , βN ]T and Ωi,j =
yiyjK(xi, xj) where K(xi, xj) is the kernel function.
The functions that are most frequently employed in
classification problems are the linear kernel xiTxj ,
the polynomial kernel (xi

Txj + t)
d with the intercept

constant t ∈ R+ and degree d ∈ N, and the radial basis
function (RBF) exp (−||xi − xj ||22)/σ2.

The classifier in the dual space takes the form

y(x) = sign[

N∑
k=1

βkykK(x, xk) + b]

where βk are Lagrange multipliers.

4 RESULTS

For all case studies, 2/3rd of the samples were ran-
domly assigned to the training set and 1/3rd to the
test set. The split was performed stratified to outcome,
to ensure that the relative proportion of outcomes
sampled in both training and test set was similar to
the original proportion in the full data set. To allow
proper comparison of all methods, the randomiza-
tions are the same for all numerical experiments per
case study.

4.1 Classification of Breast Cancer Patients
MLGEVD approximates GEVs by incorporating mi-
croarray data as prior information into the model.

In the first step, GEVs are obtained from train-
ing - both clinical and microarray - data sets by
MLGEVD and GEVD, separately. Projected variables
corresponding to training and test clinical data sets are
obtained by projecting these data onto the direction
of GEVs. Next, the LS-SVM classifier is trained using
the projected-training data, followed by classification
of the projected-test data. Classification accuracy is
given in terms of test set Area Under the ROC Curve
(AUC) and F-score [34]. In this section all the steps are
implemented using Matlab R2012b and LS-SVMlab
v1.8 toolbox [35] with the default parameter settings.

Table 4 summarizes the average test results over
30 iterations of the MLGEVD and GEVD methods
for all three breast cancer data sets. For the sake of
comparison, LS-SVM classifiers with the linear, RBF
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TABLE 4
Comparison of LS-SVM classification performance on
MLGEVD and GEVD for three breast cancer studies:

average test AUC (std) and average F-score (std) over
30 iterations

kernel function linear RBF polynomial

Case I

test AUC MLGEVD 0.80(0.09) 0.79(0.01) 0.77(0.07)

GEVD 0.77(0.08) 0.74(0.09) 0.63(0.02)

p-value 0.03 0.01 2.72E-10

test F-score MLGEVD 0.64(0.01) 0.57(0.02) 0.51 (0.13)

GEVD 0.55(0.01) 0.49 (0.01) 0.26(0.03 )

p-value 0.17 0.23 0.03

Case II

test AUC MLGEVD 0.80(0.05) 0.75(0.09) 0.70(0.10)

GEVD 0.79(0.06) 0.78(0.08) 0.61(0.06)

p-value 0.01 0.04 0.01

test F-score MLGEVD 0.60(0.03) 0.46 (0.06) 0.47(0.01)

GEVD 0.56(0.02) 0.51(0.07) 0.50(0.05)

p-value 0.02 0.06 0.11

Case III

test AUC MLGEVD 0.67(0.07) 0.60(0.08) 0.60(0.04)

GEVD 0.66(0.08) 0.57(0.05) 0.54(0.06)

p-value 0.02 0.26 0.86

test F-score MLGEVD 0.44(0.04) 0.29(0.46 ) 0.28(0.03)

GEVD 0.32(0.08) 0.23 (0.12) 0.24 (0.08)

p-value 0.06 0.18 0.04

p-value: two-sided sign test ; RBF: radial basis function

and polynomial kernel function were applied to the
MLGEVD and GEVD models. The LS-SVM classifier
with the linear kernel function resulted in the best test
AUC for both GEVD and MLGEVD. With this kernel
function, MLGEVD significantly outperformed GEVD
for all three breast cancer case studies. The F-scores
for these classifiers shown in Table 4 are indicative of
precision and recall, with scores ranging from 0 to 1.

High-throughput data, such as microarray data are
in general much more difficult and expensive to
collect while clinical parameters are routinely mea-
sured by clinicians. The main advantage of ML-
GEVD/GEVD for prediction is that high-throughput
data are only used as prior information during model
development, while the final clinical decision only

depends on clinical variables.

4.2 Identification of differentially expressed
genes in colon cancer
In the colon cancer case study, GEVs are obtained
from training data using MLGEVD and GEVD. Then
the training data is divided into two groups: normal
and cancerous samples. Each of these sets of data are
projected onto the direction of GEVs, resulting into
two sets of scores Z1 and Z2. Let gi = Z1

i − Z2
i be

the difference in score for gene i between normal and
cancerous samples.

Each gene can graphically be represented as a point
in the k-dimensional space (with k the number of
GEVs selected for projection). Each gene i with similar
expression levels in both sets of scores has approxi-
mately the same scores Z1

i ≈ Z2
i and form a cloud

of points around the origin. Differentially expressed
genes have significantly different scores and are lo-
cated away from the origin. To identify the outliers in
this k-dimensional space, the Mahalanobis distance is
calculated for each gene MD2

i = (gi − c)Σ−1(gi − c)T ,
with c the multivariate arithmetic mean and Σ−1 the
inverse of the covariance matrix of the differences in
scores [8]. Genes with the largest Mahalanobis dis-
tances are defined as the most differentially expressed
genes.

Table 5 shows the top 50 differentially expressed
genes obtained with MLGEVD and GEVD. Among
these genes, relevance for colon cancer has been
shown for 44 and 38 genes with MLGEVD and GEVD,
respectively. An LS-SVM model with an RBF kernel
for the prediction of tumour vs. non-tumour samples
was built. In Table 6, we compared the prediction per-
formances of full data sets and GEVD with MLGEVD.
We show that these 50 genes obtained from MLGEVD
can be used to form an colon cancer signature, to
distinguish normal from colon cancer subjects and can
be used to classify good and poor prognostic tumors
(see Table 6).

Several genes selected by this approach are known
to be involved in, and important for, colon can-
cer. The ribosome, the essential cellular organelle for
protein synthesis in all cells, consists of ribosomal
RNAs (rRNAs) and ribosomal proteins (RPs). Riboso-
mal protein L41 (RPL41) is a microtubule-associated
protein essential for functional spindles and for the
integrity of centrosome. Abnormal mitosis and a
disrupted centrosome associated with RPL41 down-
regulation may be related to malignant transformation
[45]. In our analysis, RPL41 ranked as one of the
differentially expressed gene. Studies in [37] and [46]
already reported on the importance of RPL41 in colon
cancer.

Ectopic expression of tumor rejection antigen 1
(Tra1) was detected in the ulcerative colitis (UC) af-
fected colonic mucosa [47]. Tra1 is reported as a differ-
entially expressed gene in colon cancer [37]. Calcyclin
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TABLE 5
The 50 top ranked genes for relevance in colon cancer

diagnosis identified by MLGEVD and GEVD.

MLGEVD GEVD
Gene Symbol Ref Gene Symbol Ref
IGLC1 [36] EIF4A1 [37]
RPLP1 [37] N2b5HR [37]
TMSB4X [37] ITIH1 [37]
FTL [37] IGHG3 [38]
IGKC [39] IGLC1 [36]
TCTP [37] RPLP2 [37]
EIF4A1 [37] MYL6 [37]
S100A6 [37] TCTP [37]
RPS [37] RPL41 [37]
SELENBP1 – ACTB [37]
RPS29 [37] RPS9 [37]
RPSA [37] HSP90B1 [37]
RPL30 [37] RPL37A [37]
RPL37A [37] BBC1 [37]
RPL32 [37] RPLP1 [37]
IGHG3 [38] YBX1 [37]
YBX1 [37] UBB [37]
CPSF1 – RPSA [37]
RPL37A – GAPDH [37]
LGALS3 – SRF [37]
RPS18 [37] IGF2 –
UBB [37] RPL37A –
PFN1 [37] RPL1 –
RPS6 [37] HSPB1 –
GAPDH [37] RPS29 [37]
HSP90B1 [37] RPS18 [37]
RPS24 [37] FTL [37]
BBC1 [37] IGKC [39]
RPS28 [37] RPL30 [37]
RPL38 [40] RPS [37]
MUC2 [36] RPS28 [37]
IGHG3 [41] HLA-B [37]
ITIH1 [37] S100A6 [37]
RPLP2 [37] EEF1A2 [37]
RPL41 [37] IFI27 –
ALDOA [37] EEF1B2 –
ACTB [37] JUND –
RPS9 [37] MT1G –
OAZ [37] SELENBP1 –
HSP90AB1 [42] RPS8 –
RPS24 [40] ARNT –
B2M [37] TSPAN8 –
MAMDC2 [37] OAZ [37]
SRF [37] RPS11 [37]
DESMIN [43] RPS24 [37]
LYZ [44] MUC2 [36]
N2b5HR [37] TPM2 [43]
MYL6 [37] RPS19 [40]
FCGRT – RPL32 [37]
RPL37 – LYZ [44]

binding protein (CacyBP) was a promising candidate
biomarker for colorectal cancer (CRC) metastasis and
also sheds light on the underlying molecular mecha-
nism by which CacyBP promotes CRC metastasis [48].
60S acidic ribosomal protein P1 was reported as a top-
ranked gene in colon cancer [37], [49].

Translationally controlled tumor protein (TCTP) is a
highly conserved and ubiquitously expressed protein
in all eukaryotes highlighting its important functions
in the cell. Previous studies revealed that TCTP is im-
plicated in many biological processes, including cell
growth, tumor reversion, and induction of pluripotent

TABLE 6
LS-SVM model for prediction of tumour and

non-tumour samples of colon cancer. Average
classification performance (std) on test sets for all

genes and the subsets of 50 genes selected by GEVD
and MLGEVD.

Genes selected by kernel function LS-SVM p-valuea

full data set RBF 0.821(0.147) 0.019

GEVD RBF 0.841(0.087) 0.072

MLGEVD RBF 0.895(0.060)

a two-sided sign test for the comparison of full data sets
and GEVD with MLGEVD.

stem cells. In human colon cancer, the level of TCTP
mRNA was detected in three human colon carci-
noma cell lines (SNU-C2A, SNU-C4, and SNU-C5)
[50]. Ornithine decarboxylase (OAZ1) catalyzes the
conversion of ornithine to putrescine in the first and
apparently rate-limiting step in polyamine biosynthe-
sis. The ornithine decarboxylase antizymes play a role
in the regulation of polyamine synthesis by binding
to and inhibiting ornithine decarboxylase. OAZ was
reported as a top ranked gene in colon cancer [37],
[40].

Alterations in the distribution and/or adhesiveness
of laminin receptors in colon cancer cell lines were
suggested to be associated with increased tumori-
genicity [51]. A study of cultured colon cancer cells
suggests that laminin may play an important role
in hematogeneous metastasis by mediating tethering
and spreading of colon cancer cells under blood
flow [52]. In general, the markers are involved in
cell signaling, adhesion and communication, immune
response, heat shock, and DNA repair [37].

In short, out of 50 genes identified as differentially
expressed in colon cancer, the majority of these genes
are reported as top ranked genes in various studies.
In addition, the improved prediction performance
obtained with the selected genes clearly indicate that
these genes distinguish cancerous from non-cancerous
samples.

The experiments show that the convergence time
will depend on the dimensionality of the problem.
These times were generally reasonable, less than a
minute for the breast cancer cases and a few minutes
for colon cancer on Windows XP operating system
with 2.40 GHz processor.

5 DISCUSSION

Generalized Eigenvalue Decomposition (GEVD) is a
method for comparing two data sets, in which gen-
eralized eigenvectors capture common information
between these two data sets. In this study, MLGEVD
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shows that GEVD is strongly related to generalized
regression, if the second matrix is of full rank.

MLGEVD approach has been applied to four case
studies for which gene expression with correspond-
ing clinical/literature information were available. Mi-
croarray and clinical parameters were gathered from
patients with breast cancer. Literature information
from Pubmed were collected for colon cancer. The
main aim of the work is to interpret GEVD in the
framework of maximum likelihood estimation. To
validate the merit of MLGEVD over GEVD/GSVD,
models were built for classifying patients. In this
study we performed MLGEVD, on clinical data sets
with microarray as prior information and on mi-
croarray data with literature as prior information. In
both cases, the model parameters (generalized eigen-
vectors) are obtained with MLGEVD. Subsequently
clinical parameters/microarray were projected onto
the generalized eigenvectors, referred to as the pro-
jected clinical space/gene space. Similarly generalized
eigenvectors are obtained for GEVD. The advantages
of MLGEVD over GEVD were that MLGEVD reduce
the projection error. Finally LS-SVM was built on
these clinical projected spaces or the sub sets of genes
identified by MLGEVD, and validated on test samples
for prediction.

For all the data sets on breast cancer, binary out-
comes (cancerous vs non-cancerous) could more accu-
rately be predicted with MLGEVD than with GEVD.
In addition, incorporation of external knowledge into
the analysis of microarray improves the identification
of disease related genes. In general, MLGEVD can
be applied to any two data sets that satisfy the data
properties of GEVD, that is, one of the data sets is
invertible, and the number of rows or columns of both
data sets are the same.

The proposed model is very cost effective. The
high throughput technologies which are difficult and
expensive to collect are used only for the model devel-
opment. The clinical parameters which are routinely
measured by clinicians are used for prediction. In
real data examples, we have shown how to incorpo-
rate external knowledge, extracted from microarray
data/literature information into medical diagnosis.
The proposed method provides a general way to
incorporate such ever-increasing amounts of prior
knowledge into the analysis and to further improve
the predictive performance.

6 CONCLUSION

In this paper, we developed an algorithm for ML-
GEVD and compared its performance with GEVD.
We show that prediction performances improve with
the incorporation of prior data. Both GEVD and ML-
GEVD can use the high-throughput data, which are
difficult and expensive to collect, as prior information.
The MLGEVD obtained the best approximation of

model parameters, GEVs, which minimize the pro-
jection error. In our analysis, we have shown that
MLGEVD can be used as an alternative to GEVD
with more accurate classification/prediction. Overall,
the proposed model can be used as a noise reduction
technique in medical prognosis. In the near future, we
will investigate the applicability of MLGEVD to more
than two matrices and interpret these matrix results
in a Bayesian context.
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