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Abstract. The design of sparse quadratures for the approximation of integral operators re-
lated to symmetric positive-semidefinite kernels is addressed. Particular emphasis is placed on the
approximation of the main eigenpairs of an initial operator and on the assessment of the approxima-
tion accuracy. Special attention is drawn to the design of sparse quadratures with support included
in fixed finite sets of points (that is, quadrature-sparsification), this framework encompassing the
approximation of kernel matrices. For a given kernel, the accuracy of a quadrature approxima-
tion is assessed through the squared Hilbert–Schmidt norm (for operators acting on the underlying
reproducing kernel Hilbert space) of the difference between the integral operators related to the
initial and approximate measures; by analogy with the notion of kernel discrepancy, the underly-
ing criterion is referred to as the squared-kernel discrepancy between the two measures. In the
quadrature-sparsification framework, sparsity of the approximate quadrature is promoted through
the introduction of an `1-type penalization, and the computation of a penalized squared-kernel-
discrepancy-optimal approximation then consists in a convex quadratic minimization problem; such
quadratic programs can in particular be interpreted as the Lagrange dual formulations of distorted
one-class support-vector machines related to the squared kernel. Error bounds on the induced spec-
tral approximations are derived, and the connection between penalization, sparsity, and accuracy
of the spectral approximation is investigated. Numerical strategies for solving large-scale penalized
squared-kernel-discrepancy minimization problems are discussed, and the efficiency of the approach
is illustrated by a series of examples. In particular, the ability of the proposed methodology to lead
to accurate approximations of the main eigenpairs of kernel matrices related to large-scale datasets
is demonstrated.
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`1-type penalization, convex quadratic programming, one-class SVM
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1. Introduction. This work addresses the problem of designing sparse quadra-
tures for the approximation of integral operators related to symmetric positive-
semidefinite kernels. In parallel, we investigate the computation of accurate
approximations of the main eigenpairs of a given initial operator (i.e., the pairs related
to the largest eigenvalues) and the assessment of the accuracy of these approximations.
From a numerical perspective, we pay special attention to quadrature-sparsification
problems, which consist in designing a sparse quadrature from a fixed finite set of
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OPTIMAL QUADRATURE-SPARSIFICATION A3637

candidate support points; this framework in particular encompasses the column-
sampling problem (or landmark-selection problem) for the approximation of large-
scale kernel matrices; see, for instance, [8, 11, 1].

1.1. Motivations. The spectral decomposition of an operator defined from a
discrete measure supported by n points involves the diagonalization of an n×n matrix;
in the general case, the amount of computations required to perform this task scales
as O(n3) and becomes numerically intractable for large values of n (not to mention
storage issues). In practice, dealing with sparse quadratures, that is, discrete measures
supported by a small number of points, is therefore especially important when one
aims at computing the spectral decomposition of an approximate operator in order
to approximate the eigendecomposition of an initial operator. Due to this sparsity
constraint, the choice of the quadrature can strongly impact the quality of the induced
approximation, naturally raising questions relative to the characterization and the
construction of quadratures leading to accurate spectral approximations, and to the
assessment of the accuracy of the induced approximations.

Following, for instance, [22, 23], under a trace-class condition, integral operators
defined from a same positive-semidefinite kernel can be interpreted as Hilbert–Schmidt
operators on the reproducing kernel Hilbert space (RKHS; see, for instance, [3]) asso-
ciated with the kernel. In this framework, the squared Hilbert–Schmidt norm of the
difference between the initial and approximate operators appears as a natural criterion
to assess the approximation accuracy. Since the considered squared Hilbert–Schmidt
norm can be expressed from integrals involving the square of the kernel, and by anal-
ogy with the notion of kernel discrepancy (see, for instance, [5, 21] and Appendix A),
we refer to this criterion as the squared-kernel discrepancy between the initial and ap-
proximate measures (i.e., the measures defining, in combination with the kernel, the
initial and approximate operators). The squared-kernel discrepancy can in addition
be interpreted as a “weighted spectral sum-of-squared-errors-type criterion,” further
highlighting the interest of low squared-kernel-discrepancy configurations for spectral
approximation.

For a given initial measure and for a fixed quadrature size n, the search of an
approximate measure minimizing the squared-kernel discrepancy among all measures
supported by n points is generally a difficult nonconvex optimization problem. Nev-
ertheless, for approximate measures with support included in a fixed finite set of
points, the squared-kernel discrepancy can be expressed as a convex quadratic func-
tion, and sparsity of the approximate measure can be promoted through the intro-
duction of an `1-type penalization. In such a quadrature-sparsification framework, the
induced penalized squared-kernel-discrepancy minimization problems consist in con-
vex quadratic programs (QPs) that can be solved efficiently in the range of relatively
sparse solutions, even for large-scale problems. From a matrix-approximation per-
spective, penalized squared-kernel-discrepancy minimization defines a deterministic,
QP-based, weighted column-sampling scheme and appears as a complement to the
existing column-sampling-based methodology for kernel-matrix approximation; see,
e.g., [8, 26, 15, 25, 4, 11] for an overview.

1.2. Contribution and organization of the paper. This work aims at in-
vestigating the relevance of the penalized squared-kernel-discrepancy minimization
framework for the computation of accurate approximations of the main eigenpairs
of integral operators related to symmetric positive-semidefinite kernels. We are thus
addressing two different, but nevertheless strongly intricate, problems: the design of
sparse quadratures and the computation of accurate approximations of the main eigen-
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A3638 BERTRAND GAUTHIER AND JOHAN A. K. SUYKENS

pairs of a given initial operator. We present a careful analysis of the approach and de-
scribe numerical strategies to tackle large-scale penalized squared-kernel-discrepancy
minimization problems.

To assess the accuracy of an approximate eigendirection (that is, an eigendirection
of the approximate operator), we rely on the notion of geometric approximate eigen-
values (see Definition 3.2; we also use the orthogonality test, see Remark 3.1). For
a given approximate eigendirection, the geometric approximate eigenvalues consist
in four different approximations of the underlying eigenvalue. These approximations
verify various optimality properties and are equal if and only if the related approxi-
mate eigendirection is an eigendirection of the initial operator; furthermore, the con-
cordance between these four approximations is directly related to the accuracy of the
approximate eigendirection, as detailed in Theorem 3.1.

As an important feature, the so obtained approximate eigenpairs are invariant
under rescaling of the approximate measure, i.e., proportional approximate measures
lead to the same spectral approximation of a given initial operator (see Lemma 3.1).
Motivated by this invariance property, we introduce the notion of conic squared-
kernel discrepancy, consisting in the minimim of the squared-kernel discrepancy on
the rays of proportional approximate measures. The conic squared-kernel discrepancy
is directly related to the overall accuracy of the spectral approximation, as detailed
in Theorem 3.2.

For quadrature-sparsification problems, Theorem 5.1 gives an insight into the
impact of the penalization on the trade-off between sparsity and accuracy of the
spectral approximation. This result indeed provides a sufficient condition under which
increasing the amount of penalization tends to increase the sparsity of the approximate
measures (more precisely, this decreases an upper bound on the number of support
points of the optimal approximate measures), at the expense of reducing the overall
accuracy of the induced spectral approximations.

In the quadrature-sparsification framework, the `1-type penalization can be in-
troduced under the form of a regularization term or of a constraint and is based on
the definition of a penalization direction. A penalization direction of special interest
consists, for instance, in penalizing the trace of the approximate operators, leading
to an interesting parallel with the approximation by spectral truncation; altenative
choices for the penalization direction are nevertheless possible, and the definition of
relevant problem-dependent penalization directions is discussed. The regularized and
constrained formulations are equivalent, and the properties of the corresponding QPs
are investigated. In particular, these QPs can be interpreted as the Lagrange duals of
distorted one-class support-vector machines (SVMs; see, e.g., [24]) defined from the
squared kernel, the initial measure, and the penalization term, so that the points se-
lected through penalized squared-kernel-discrepancy minimization correspond to the
support vectors of these SVMs.

The paper is organized as follows. Section 2 introduces the theoretical framework
considered in this work, and section 3 discusses the approximate eigendecomposition
of an operator. Section 4 focuses on approximate measures with support included
in a fixed finite set of points (i.e., quadrature-sparsification) and on kernel-matrix
approximation. For quadrature-sparsification problems, the QPs related to penalized
squared-kernel-discrepancy minimization are introduced in section 5, and the under-
lying SVMs are described in section 6. Numerical strategies to handle large-scale
penalized problems are investigated in sections 7 and 8. Section 9 is devoted to a dis-
cussion relative to the selection of relevant penalization directions. Some numerical
experiments are carried out in sections 10 and 11, and section 12 concludes.
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OPTIMAL QUADRATURE-SPARSIFICATION A3639

We have tried to make the paper as self-contained as possible; for the sake of
readability, the proofs are placed in Appendix B.

2. Notation, recalls, and theoretical background. We consider a general
space X and a symmetric and positive-semidefinite kernel K : X × X → R; we
denote by H the underlying RKHS of real-valued functions on X (see, for instance,
[3]). We assume that H is a separable Hilbert space.

2.1. Integral operators. We assume that X is a measurable space and we de-
note by A the underlying σ-algebra. We suppose that the kernel K(·, ·) is measurable
on X ×X for the product σ-algebra A ⊗ A (see, for instance, [24, Chap. 4]), so
that H consists of measurable functions on X . We also assume that the diagonal of
K(·, ·), i.e., the function x 7→ K(x, x), is measurable on (X ,A). We denote by M
the set of all measures on (X ,A) and we introduce

T (K) =

{
µ ∈M

∣∣∣∣ τµ =

∫
X

K(x, x)dµ(x) < +∞
}
.

For µ ∈ T (K), we have K(·, ·) ∈ L2(µ ⊗ µ) since in particular (from the repro-
ducing property of K(·, ·) and the Cauchy–Schwarz inequality for the inner product
of H)

‖K‖2L2(µ⊗µ) =

∫
X×X

(
K(x, t)

)2
dµ(x)dµ(t) 6 τ2

µ.

In addition, for all h ∈ H, we have h ∈ L2(µ) and ‖h‖2L2(µ) 6 τµ‖h‖2H, i.e., H is

continuously included in L2(µ). We can thus define the symmetric and positive-
semidefinite integral operator Tµ on L2(µ), given by, for f ∈ L2(µ) and x ∈X ,

Tµ[f ](x) =

∫
X

K(x, t)f(t)dµ(t).

In particular, for all f ∈ L2(µ), we have Tµ[f ] ∈ H ⊂ L2(µ), and for all h ∈ H,

(h|Tµ[f ])H = (h|f)L2(µ) ,(2.1)

where (·|·)H and (·|·)L2(µ) stand for the inner products of H and L2(µ), respectively;
see, for instance, [9, 10] for more details.

We introduce the closed linear subspaces H0µ = {h ∈ H|‖h‖L2(µ) = 0} and

Hµ = H⊥H0µ (i.e., Hµ is the orthogonal of H0µ in H), leading to the orthogonal
decomposition H = Hµ ⦹H0µ.

We denote by {λk}k∈I+µ the at most countable set of all strictly positive eigenvalues

of Tµ (repeated according to their algebraic multiplicity) and let {ϕ̃k}k∈I+µ be a set

of associated eigenfunctions, chosen to be orthonormal in L2(µ), i.e., ϕ̃k ∈ L2(µ),
Tµ[ϕ̃k] = λkϕ̃k in L2(µ), and (ϕ̃k|ϕ̃k′)L2(µ) = δk,k′ (Kronecker delta). For k ∈ I+µ ,

let ϕk = 1
λk
Tµ[ϕ̃k] ∈ H be the canonical extension of ϕ̃k (the eigenfunctions ϕ̃k are

indeed only defined µ-almost everywhere, while the extensions ϕk are defined for all
x ∈ X ). From (2.1), we obtain that {

√
λkϕk}k∈I+µ is an orthonormal basis (o.n.b.)

of the subspace Hµ of H, and the reproducing kernel Kµ(·, ·) of Hµ is thus given by,
for all x and t ∈X ,

Kµ(x, t) =
∑
k∈I+µ

λkϕk(x)ϕk(t).(2.2)

We also recall that τµ =
∑
k∈I+µ λk is the trace of the integral operator Tµ on L2(µ).
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A3640 BERTRAND GAUTHIER AND JOHAN A. K. SUYKENS

Remark 2.1. Consider any measure µ ∈ T (K); for c > 0, the strictly positive
eigenvalues of the operator Tcµ (i.e., the operator defined by the kernel K(·, ·) and
the measure cµ) are cλk, with k ∈ I+µ , and the associated (canonically extended)
eigenfunctions, orthonormalized in L2(cµ), are ϕk/

√
c. In particular, we have Hµ =

Hcµ, and Kµ(·, ·) = Kcµ(·, ·).

2.2. Hilbert–Schmidt norm and squared-kernel discrepancy. In view of
section 2.1, for µ ∈ T (K), the operator Tµ can also be interpreted as an operator
on H (see, e.g., [22, 23]); with a slight abuse of notation, we keep the same notation
for “Tµ viewed as an operator on L2(µ),” and “Tµ viewed as an operator on H.” In
both cases, Tµ is a Hilbert–Schmidt operator.

We denote by HS(H) the Hilbert space of all Hilbert–Schmidt operators on H.
Let µ and ν ∈ T (K); for an o.n.b. {hj}j∈I of H (with I a general, at most countable,
index set), the Hilbert–Schmidt inner product between the operators Tµ and Tν on
H is given by (

Tµ
∣∣Tν)HS(H)

=
∑
j∈I

(
Tµ[hj ]

∣∣Tν [hj ]
)
H,

and we recall that the value of (Tµ|Tν)HS(H) does not depend on the choice of the
o.n.b. of H; see, e.g., [20]. The underlying Hilbert–Schmidt norm (for operators on H)
is given by ∥∥Tµ∥∥2

HS(H)
=
(
Tµ
∣∣Tµ)HS(H)

=
∑
j∈I

∥∥Tµ[hj ]
∥∥2

H.

Definition 2.1. The squared-kernel discrepancy DK2(µ, ν) between µ and ν ∈
T (K) is defined as

DK2(µ, ν) = ‖Tµ − Tν‖2HS(H).

Proposition 2.1. For µ and ν ∈ T (K), we have (Tµ|Tν)HS(H) = ‖K‖2L2(µ⊗ν),
so that

DK2(µ, ν) = ‖K‖2L2(µ⊗µ) + ‖K‖2L2(ν⊗ν) − 2‖K‖2L2(µ⊗ν),

where ‖K‖2L2(µ⊗ν) =
∫

X×X

(
K(x, t)

)2
dµ(x)dν(t).

In particular, notice that ‖K‖2L2(µ⊗ν) 6 τµτν and that ‖Tµ‖2HS(H) =
∑
k∈I+µ λ

2
k,

where {λk}k∈I+µ is the set of all strictly positive eigenvalues of Tµ. By definition,

we always have DK2(µ, ν) > 0, and DK2(µ, µ) = 0. We can also remark that if
µ and ν ∈ T (K) are such that Hµ and Hν are orthogonal subspaces of H, then
‖K‖2L2(µ⊗ν) = 0.

Lemma 2.1. We denote by G the RKHS associated with the squared kernel K2(·, ·)
= (K(·, ·))2, and for all µ ∈ T (K), we introduce the function gµ(x) =

∫
X K2(x, t)

dµ(t), with x ∈X . For all µ and ν ∈ T (K), we have gµ and gν ∈ G, and

(Tµ|Tν)HS(H) = (gµ|gν)G = ‖K‖2L2(µ⊗ν) =

∫
X

gµ(t)dν(t) =

∫
X

gν(t)dµ(t),

so that, in particular, DK2(µ, ν) = ‖gµ − gν‖2G.

The terminology “squared-kernel discrepancy” is motivated by the analogy with
the notion of “kernel discrepancy” discussed, for instance, in [5, 21] (see Appendix A).
Interestingly, the kernel discrepancy is related to approximate integration of functions
in the RKHS H, while the squared-kernel discrepancy is related to the approximation
of integral operators defined from the reproducing kernelK(·, ·) ofH; by definition, the
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OPTIMAL QUADRATURE-SPARSIFICATION A3641

squared-kernel discrepancy is thus also related to approximate integration of functions
in the RKHS G associated with the squared kernel K2(·, ·).

Lemma 2.2. Let µ and ν ∈ T (K) be such that Hν ⊂ Hµ (i.e., for h ∈ H, if
‖h‖L2(µ) = 0, then ‖h‖L2(ν) = 0), and denote by {

√
λkϕk}k∈I+µ an o.n.b. of Hµ

defined by the spectral decomposition of Tµ. We have

DK2(µ, ν) =
∑
k∈I+µ

λk
∥∥Tµ[ϕk]− Tν [ϕk]

∥∥2

H,(2.3)

and, in addition,
∑
k∈I+µ λk‖Tµ[ϕk]− Tν [ϕk]‖2L2(µ) 6 τµDK2(µ, ν).

In the framework of Lemma 2.2, and assuming that one aims at approximating
Tµ (the initial operator) by Tν (the approximate operator), the squared-kernel dis-
crepancy can, in view of (2.3), be interpreted as a “weighted spectral sum-of-squared-
errors-type criterion,” the eigenvalues λk playing the role of penalization weights.
When DK2(µ, ν) is small, we can thus expect the main eigendirections of Tν to be
accurate approximations of the main eigendirections of Tµ (and reciprocally); see in
particular Theorem 3.2.

Remark 2.2. In Lemma 2.2, if the condition Hν ⊂ Hµ is omitted, then the term∑
m∈J ‖Tν [hm]‖2H = (K|K0µ)L2(ν⊗ν) = (Kν |K0µ)L2(ν⊗ν) > 0 needs to be added to

the right-hand side of (2.3), where {hm}m∈J is an o.n.b. of the subspace H0µ of H,
K0µ(·, ·) is the kernel of H0µ, and Kν(·, ·) is the kernel of the subspace Hν related to
Tν . Also notice that, in Lemma 2.2, we have expressed the squared-kernel discrepancy
as a function of the eigenpairs of Tµ, but we might as well have used the eigenpairs
of Tν ; see in particular section 3.

Since DK2(µ, µ) = 0 (i.e., “the best approximation of Tµ is Tµ itself”), the uncon-
strained minimization of ν 7→ DK2(µ, ν) on T (K) is of no interest. Furthermore, in
the framework of sparse pointwise quadrature approximation, we aim at obtaining a
discrete measure ν supported by a relatively small number of points (in order to be able
to compute the eigendecomposition of Tν) and related to an as low as possible value
of DK2(µ, ν). However, for a given n ∈ N∗, the search of an optimal discrete measure
ν∗n such that DK2(µ, ν∗n) is minimal among all measures νn supported by n points is
in general a difficult (i.e., usually nonconvex) optimization problem on (X × R+)n.
To avoid this difficulty, we restrict the squared-kernel-discrepancy minimization to
measures ν with support included in a fixed finite set of points S = {xk}Nk=1 (with,
in practice, N large); see section 4.2. In addition, instead of fixing a priori the num-
ber n of support points, we promote sparsity through the introduction of an `1-type
penalization, as considered in section 5.

3. Approximate eigendecomposition. We consider two measures µ and ν ∈
T (K), corresponding to an initial operator Tµ and an approximate operator Tν .

3.1. Geometric approximate eigenvalues. Following section 2.1, we denote
by {
√
λkϕk}k∈I+µ an o.n.b. of Hµ defined by the eigendecomposition of Tµ. In the

same way, let {
√
ϑlψl}l∈I+ν be an o.n.b. of the subspace Hν of H related to Tν , i.e.,

Tν [ψl] = ϑlψl ∈ H, with ϑl > 0 and (ψl|ψl′)L2(ν) = δl,l′ ; in particular, the reproducing
kernel Kν(·, ·) of the subspace Hν of H thus verifies

Kν(x, t) =
∑
l∈I+ν

ϑlψl(x)ψl(t) for all x and t ∈X .(3.1)
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We shall refer to the functions ψl as the approximate eigendirections of Tµ induced
by Tν . We recall that, from (2.1), we have

‖ψl‖2L2(µ) =
(
ψl
∣∣Tµ[ψl]

)
H and ‖Tµ[ψl]‖2H =

(
ψl
∣∣Tµ[ψl]

)
L2(µ)

.

Definition 3.1. For all l ∈ I+ν such that ‖ψl‖L2(µ) > 0 (i.e., ψl ∈ Hµ), we intro-
duce ϕ̂l = ψl/‖ψl‖L2(µ), and we refer to ϕ̂l as a normalized approximate eigenfunction
of Tµ induced by the spectral decomposition of Tν .

We introduce Ĩ+ν = {l ∈ I+ν |ψl ∈ Hµ}, so that the functions ϕ̂l are well defined for

all l ∈ Ĩ+ν . Notice that if Hν ⊂ Hµ, then we have Ĩ+ν = I+ν . In particular, if ψl ∈ H0µ,
then Tµ[ψl] = 0 and such a direction ψl is therefore of no use in approximating the
eigendirections related to the strictly positive eigenvalues of Tµ.

Remark 3.1 (orthogonality test). The normalized approximate eigenfunctions ϕ̂l
are by definition orthogonal in L2(ν) and in H and verify ‖ϕ̂l‖L2(µ) = 1. Controlling

the orthogonality, in L2(µ), between the approximations ϕ̂l, with l ∈ Ĩ+ν , appears as
a relatively affordable way to assess their accuracy. Indeed, from (2.1) and due to
their orthogonality in H, accurate normalized approximate eigenfunctions ϕ̂l should
be almost mutually orthogonal in L2(µ). Notice that this condition is, however, only
a necessary condition. See sections 10 and 11 for illustrations; a further insight into
the relevance of the orthogonality test is given in Remark 3.2.

It is very instructive to try to estimate the eigenvalue, for the operator Tµ, related
to an approximate eigendirection ψl induced by Tν , as discussed hereafter.

Definition 3.2. For all l ∈ I+ν such that ‖ψl‖L2(µ) > 0 (i.e., l ∈ Ĩ+ν ), we define

λ̂
[1]
l = 1/‖ϕ̂l‖2H = ϑl‖ψl‖2L2(µ) =

(√
ϑlψl

∣∣Tµ[
√
ϑlψl]

)
H

=
(
Tν [ψl]

∣∣Tµ[ψl]
)
H ,

λ̂
[2]
l =

∥∥Tµ[
√
ϑlψl]

∥∥
H,

λ̂
[3]
l =

(
ϕ̂l
∣∣Tµ[ϕ̂l]

)
L2(µ)

=
∥∥Tµ[ϕ̂l]

∥∥2

H =
(
λ̂

[2]
l

)2/
λ̂

[1]
l ,

λ̂
[4]
l =

∥∥Tµ[ϕ̂l]
∥∥
L2(µ)

=
∥∥Tµ[ψl]

∥∥
L2(µ)

/∥∥ψl∥∥L2(µ)
,

and if ‖ψl‖L2(µ) = 0, we set λ̂
[1]
l = λ̂

[2]
l = λ̂

[3]
l = λ̂

[4]
l = 0.

We refer to λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l as the four geometric approximate eigenvalues

of Tµ related to the approximate eigendirection ψl induced by Tν .

The intuition behind these four approximate eigenvalues λ̂
[·]
l is further discussed

in the proof of Theorem 3.1 (Appendix B); see Remark 3.3 for comments relative

to their computation. The various expressions characterizing λ̂
[1]
l , λ̂

[3]
l , and λ̂

[4]
l fol-

low form (2.1) and Definition 3.1; in particular, notice that if ‖ψl‖L2(µ) > 0, then√
λ̂

[1]
l ϕ̂l =

√
ϑlψl.

Theorem 3.1. For all l ∈ Ĩ+ν , we have λ̂
[1]
l 6 λ̂

[2]
l 6 λ̂

[3]
l 6 λ̂

[4]
l , with equality if

and only if ψl is an eigendirection of the operator Tµ (on L2(µ) or on H). In case of

equality, the approximation λ̂
[·]
l corresponds exactly to the eigenvalue of Tµ related to

the eigendirection ψl; in particular, equality between the four geometric approximate
eigenvalues occurs as soon as two of them are equal.
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In addition, for λ ∈ R, the function

λ 7→
∥∥λ√ϑlψl − Tµ[

√
ϑlψl]

∥∥2

H = λ2 − 2λλ̂
[1]
l +

(
λ̂

[2]
l

)2
(3.2)

reaches its minimum at λ = λ̂
[1]
l . In the same way, the function

λ 7→
∥∥λϕ̂l − Tµ[ϕ̂l]

∥∥2

L2(µ)
= λ2 − 2λλ̂

[3]
l +

(
λ̂

[4]
l

)2
(3.3)

reaches its minimum at λ = λ̂
[3]
l .

In view of Theorem 3.1, for l ∈ Ĩ+ν (so that λ̂
[1]
l > 0), one may assess the accuracy

of an approximate eigendirection ψl (as eigendirection of Tµ) by checking how close

to each other are the approximations λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l . From (3.2) and (3.3),

we, for instance, have∥∥√ϑlψl − Tµ[
√
ϑlψl]/λ̂

[1]
l

∥∥2

H =
(
λ̂

[2]
l /λ̂

[1]
l

)2 − 1 and(3.4) ∥∥ϕ̂l − Tµ[ϕ̂l]/λ̂
[3]
l

∥∥2

L2(µ)
=
(
λ̂

[4]
l /λ̂

[3]
l

)2 − 1,(3.5)

so that the closer (3.4) and (3.5) are to zero, the more accurate is the approximate
eigendirection ψl; see sections 10 and 11 for illustrations. Notice that we have 0 <

λ̂
[1]
l /λ̂

[2]
l 6 1 and that this ratio corresponds to the inner product, in H, between the

normalized functions
√
ϑlψl and Tµ[

√
ϑlψl]/‖Tµ[

√
ϑlψl]‖H. In the same way, we have

0 < λ̂
[3]
l /λ̂

[4]
l 6 1, and this ratio corresponds to the inner product, in L2(µ), between

the normalized functions ϕ̂l and Tµ[ϕ̂l]/‖Tµ[ϕ̂l]‖L2(µ).

Remark 3.2. Consider the spectral approximation of the initial operator Tµ in-
duced by the approximate operator Tν ; see Definitions 3.1 and 3.2. From (3.1), we
obtain

‖K −Kν‖2L2(µ⊗µ) = ‖Kµ −Kν‖2L2(µ⊗µ) =
∑
k∈I+µ

λ2
k +

∑
l∈I+ν

(
λ̂

[1]
l

)2 − 2
∑
l∈I+ν

λ̂
[1]
l λ̂

[3]
l

+
∑

l 6=l′∈̃I+ν

λ̂
[1]
l λ̂

[1]
l′

(
ϕ̂l
∣∣ϕ̂l′)2L2(µ)

.(3.6)

Equation (3.6) further illustrates the conclusions drawn from Remark 3.1 and Theo-

rem 3.1. We can indeed, for instance, remark that if we have λ̂
[1]
l λ̂

[3]
l ≈

(
λ̂

[1]
l

)2
, for

all l ∈ Ĩ+ν , and if the normalized approximate eigenfunctions ϕ̂l are almost mutually
orthogonal in L2(µ), then the kernel Kν(·, ·) is an accurate low-rank approximation
of the kernel K(·, ·) in L2(µ ⊗ µ), i.e., the kernel Kν(·, ·) accurately approximates
a low-rank approximation of Kµ(·, ·) obtained by truncation of the expansion (2.2).
Notice that the reciprocal of this reasoning also holds and that this remark can be
extended to the approximate kernels obtained by truncation of the expansion (3.1) of
the kernel Kν(·, ·).

Remark 3.3. Once ϑl and ψl are known, we obtain the normalized approximate

eigenfunction ϕ̂l and the approximate eigenvalue λ̂
[1]
l by simply evaluating ‖ψl‖2L2(µ).

Computing the other approximate eigenvalues λ̂
[2]
l , λ̂

[3]
l , and λ̂

[4]
l requires the knowl-

edge of Tµ[ψl]. We can then obtain λ̂
[3]
l and λ̂

[4]
l by evaluating an inner product in

L2(µ), and derive λ̂
[2]
l from the relation λ̂

[2]
l =

√
λ̂

[1]
l λ̂

[3]
l .
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We have to compute Tµ[ψl] (which may prove challenging) only when we are
interested in assessing precisely the accuracy of an approximate eigendirection ψl of

Tµ. Otherwise, we might simply consider the approximate eigenpairs {λ̂[1]
l , ϕ̂l}l∈̃I+ν

(see also Remark 3.4), while eventually checking the orthogonality, in L2(µ), between
the normalized approximate eigendirections (orthogonality test; see Remark 3.1).

The computation of the geometric approximate eigenvalues when µ is a discrete
measure with finite support is further discussed in section 4.3.

Following Remark 2.1, for any ν ∈ T (K) and for any c > 0, we have Kν(·, ·) =
Kcν(·, ·) and Hν = Hcν ; also notice that, as operators on H, we have Tcν = cTν .
Lemma 3.1 points out the invariance of the spectral approximations induced by pro-
portional approximate measures; this invariance follows directly from Remark 2.1 and
Definitions 3.1 and 3.2 (so that we don’t further detail the proof).

Lemma 3.1. For any approximate measure ν ∈ T (K) and for a given initial

operator Tµ, the approximations ϕ̂l, λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l remain unchanged if we

replace ν by cν for any c > 0.

3.2. Conic squared-kernel discrepancy. In the framework of section 3.1 and
in view of Lemma 3.1, proportional (nonnull) approximate measures lead to the same
spectral approximation of Tµ. For a given measure ν ∈ T (K), we can thus search
the value of c > 0 for which DK2(µ, cν) is minimal.

Theorem 3.2. Consider µ and ν ∈ T (K), with ν such that ‖K‖2L2(ν⊗ν) > 0. We

denote by cν the argument of the minimum of the function φ : c 7→ φ(c) = DK2(µ, cν),
with c ∈ R, c > 0. We have

cν =
‖K‖2L2(µ⊗ν)

‖K‖2L2(ν⊗ν)

and φ
(
cν
)

= ‖K‖2L2(µ⊗µ) −
‖K‖4L2(µ⊗ν)

‖K‖2L2(ν⊗ν)

.

In particular, Tcνν is the orthogonal projection, in HS(H), of Tµ onto the linear sub-
space spanned by Tν ; in addition, ‖Tcνν − 1

2Tµ‖
2
HS(H) = 1

4‖Tµ‖
2
HS(H), so that, in

HS(H), the approximate operator Tcνν lies on a sphere centered at 1
2Tµ and with

radius 1
2‖Tµ‖HS(H). We also have

∑
l∈̃I+ν

λ̂
[1]
l

∥∥Tµ[ϕ̂l]− λ̂[1]
l ϕ̂l

∥∥2

H 6
∑
l∈̃I+ν

λ̂
[1]
l

∥∥Tµ[ϕ̂l]− cνϑlϕ̂l
∥∥2

H 6 DK2(µ, cνν) and

(3.7)

∑
l∈̃I+ν

λ̂
[1]
l

∥∥Tµ[ϕ̂l]− λ̂[3]
l ϕ̂l

∥∥2

L2(µ)
6
∑
l∈̃I+ν

λ̂
[1]
l

∥∥Tµ[ϕ̂l]− λ̂[1]
l ϕ̂l

∥∥2

L2(µ)
6 τµDK2(µ, cνν).

(3.8)

In Theorem 3.2, we are exploiting the positive cone structure of T (K); we thus
refer to φ

(
cν
)

= DK2(µ, cνν) as the conic squared-kernel discrepancy between µ and
ν (notice that the measure µ is fixed); to avoid confusion, we shall sometimes refer to
DK2(µ, ν) as the raw squared-kernel discrepancy between µ and ν. The operator Tcνν
is the best approximation of Tµ (in terms of squared-kernel discrepancy) among all
operators defined from measures proportional to ν, i.e., of the form cν, with c > 0. In
view of (3.7) and (3.8), the conic squared-kernel discrepancy DK2(µ, cνν) is directly
related to the overall accuracy of the spectral approximation of Tµ induced by the
operator Tν .
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Remark 3.4. In view of Theorem 3.2 and following Remark 2.1, in order to ap-
proximate the eigenvalues of the initial operator Tµ induced by the eigendecomposition
of Tν , we could also define the “globally rescaled” approximate eigenvalues {cνϑl}l∈I+ν ;

in comparison, the approximate eigenvalues {λ̂[1]
l }l∈I+ν are “individually rescaled.”

4. The discrete case. We now investigate in more detail the case of discrete
measures with finite support. We pay particular attention to the situation where the
initial measure µ is discrete and the support of ν is included in the support of µ.

4.1. Discrete measures and kernel matrices. We first recall the connection
between kernel matrices and integral operators related to discrete measures with finite
support. Let µ =

∑N
k=1 ωkδxk be a discrete measure supported by S = {xk}Nk=1, with

ω = (ω1, . . . , ωN )T ∈ RN , ωk > 0 for all k (in what follows, we use the notation
ω > 0), and where δxk is the Dirac measure (evaluation functional) at xk ∈ X ; we
have µ ∈ T (K), and for f ∈ L2(µ) and x ∈X , using matrix notation,

Tµ[f ](x) =

N∑
k=1

ωkK(x, xk)f(xk) = kT (x)Wf ,

with W = diag(ω), and k(x) = (K(x1, x), . . . ,K(xN , x))T , and f = (f(x1), . . . ,
f(xN ))T ∈ RN . We can identify the Hilbert space L2(µ) with the space RN endowed
with the inner product (·|·)W, where for x and y ∈ RN , (x|y)W = xTWy. In this
way, f ∈ L2(µ) corresponds to f ∈ RN , and the operator Tµ then corresponds to the
matrix KW, where K ∈ RN×N is the kernel matrix with i, j entry Ki,j = K(xi, xj);

in particular, we have KWf =
(
Tµ[f ](x1), . . . , Tµ[f ](xN )

)T
.

We denote by λ1 > · · · > λN > 0 the eigenvalues of KW and by v1, . . . ,vN
a set of associated orthonormalized eigenvectors, i.e., KW = PΛP−1, with Λ =
diag(λ1, . . . , λN ) and P = (v1| . . . |vN ). The vectors {v1, . . . ,vN} form an o.n.b. of
the Hilbert space

{
RN , (·|·)W

}
, i.e., PTWP = IdN , the N ×N identity matrix; since

ω > 0, we also have

PPT = W−1 and K = PΛPT .(4.1)

For λk > 0, the canonically extended eigenfunctions of Tµ are given by ϕk(x) =
1
λk

kT (x)Wvk, and we in particular have vk = (ϕk(x1), . . . , ϕk(xN ))T .
For a general ω > 0, the matrix KW is nonsymmetric; however, since KWvk =

λkvk, we have
W1/2KW1/2W1/2vk = λkW

1/2vk.

The symmetric matrix W1/2KW1/2 thus defines a symmetric and positive-semidefinite
operator on the classical Euclidean space {RN , (·|·)IdN }, with eigenvalues λk and or-
thonormalized eigenvectors W1/2vk. We can thus easily deduce the eigendecomposi-
tion of the matrix KW viewed as an operator on {RN , (·|·)W} from the eigendecom-
position of the symmetric matrix W1/2KW1/2.

Remark 4.1. Let µ =
∑N
k=1 ωkδxk , with ω > 0, and consider the kernel Kµ(·, ·) of

the subspace Hµ of H (see (2.2)); also, introduce the N ×N kernel matrix Kµ, with
i, j entry [Kµ]i,j = Kµ(xi, xj). From (4.1) and by definition of the eigenfunctions ϕk,
we have Kµ = PΛPT = K.

4.2. Restricting the support of the approximate measure. We consider
a general measure µ ∈ T (K) and a fixed set S = {xk}Nk=1 of N points in X . For a
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measure ν with support included in S, i.e., ν =
∑N
k=1 υkδxk , with υ = (υ1, . . . , υN )T >

0 (that is, υk > 0 for all k), we have

‖K‖2L2(ν⊗ν) = υTSυ and ‖K‖2L2(µ⊗ν) = gTµυ,

where S is the matrix defined by the squared kernelK2(·, ·) and the set of points S, i.e.,
with i, j entry Si,j = K2(xi, xj) > 0 (the kernel matrix S is therefore nonnegative and
symmetric positive-semidefinite), and where gµ = (gµ(x1), . . . , gµ(xN ))T ∈ RN , with
gµ(xk) =

∫
X K2(xk, t)dµ(t) > 0. Notice in particular that S = K ∗ K (Hadamard

product), where we recall that K is the kernel matrix defined by K(·, ·) and S, i.e.,
Ki,j = K(xi, xj).

For such a discrete measure ν, we obtain

DK2(µ, ν) = ‖K‖2L2(µ⊗µ) + υTSυ − 2gTµυ,(4.2)

and ν 7→ DK2(µ, ν) can in this way be interpreted as a quadratic function of υ ∈ RN
(i.e., the vector of the weights characterizing ν). We shall refer to gµ as the (dual)
distortion term.

Minimizing υ 7→ υTSυ − 2gTµυ under the constraint υ > 0 leads to the best
approximation of µ, in terms of squared-kernel discrepancy, among all discrete mea-
sures supported by S. In practice, this minimization requires the knowledge of the
vector gµ ∈ RN , which might be problematic for general measures µ (in this case, an
approximation might be considered). In this work, we nevertheless more specifically
aim at computing approximate measures supported by a number of points signifi-
cantly smaller than N , so that we do not consider such a minimization; instead, we
add an `1-type penalization term to the squared-kernel discrepancy, as detailed in
section 5.

4.3. The discrete-operator framework. Hereafter, we only consider mea-
sures with support included in a fixed set S = {xk}Nk=1. More precisely, we assume

that µ =
∑N
k=1 ωkδxk , with ω > 0, and that ν =

∑N
k=1 υkδxk , with υ > 0, so that

Hν ⊂ Hµ for all υ > 0, and gµ = Sω, and ‖K‖2L2(µ⊗µ) = ωTSω. In the framework of

section 4.1, the operator Tµ thus corresponds to the matrix KW, with W = diag(ω),
and the operator Tν corresponds to the matrix KV, with V = diag(υ).

For such measures µ and ν (related to vectors ω > 0 and υ > 0, respectively),
we have

DK2(µ, ν) = (ω − υ)TS(ω − υ),(4.3)

where we recall that S = K ∗K; see section 4.2.

Remark 4.2. Considering (4.3), we have, for instance,

ωTSυ =

N∑
i,j=1

(√
ωiKi,j

√
υj
)2

=
∥∥W1/2KV1/2

∥∥2

F
,

where ‖ · ‖F stands for the Frobenius norm.
In particular, in the {0, 1}-sampling case, i.e., assuming that ω = 1 and that the

components of υ are either 0 or 1 (so that the components of ω−υ are also either 0 or
1), and introducing the index sets I = {i|υi > 0} and Ic = {1, . . . , N}\I = {i|υi = 0},
we can remark that

(ω − υ)TS(ω − υ) =
∥∥(IdN −V)K(IdN −V)

∥∥2

F
=
∥∥KIc,Ic

∥∥2

F
,
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where KIc,Ic stands for the principal submatrix of K defined by the index set Ic. In
this framework, if we fix to n < N the number of landmarks (i.e., the number of com-
ponents of υ equal to 1), minimizing the squared-kernel discrepancy thus amounts to
searching for the (N−n)× (N−n) principal submatrix of K with the smallest Frobe-
nius norm (the principal submatrix KIc,Ic is indeed “omitted” by the approximation
process).

Following section 3, we now illustrate how to compute the approximate eigen-
decomposition of the matrix KW related to Tµ induced by the matrix KV related
to Tν .

We assume that υ 6= 0 and we introduce the index set I = {i|υi > 0}; let n =
card(I) be the number of strictly positive components of υ. We have ν =

∑
i∈I υiδxi

(i.e., we discard the points xk such that υk = 0); following section 4.1, the strictly pos-
itive eigenvalues {ϑl}l∈I+ν of Tν and the associated canonically extended eigenfunctions

ψl ∈ H, orthonormalized for L2(ν), can be obtained from the eigendecomposition of
the n×n (symmetric and positive-semidefinite) principal submatrix [V1/2KV1/2]I,I ,
i.e., the principal submatrix of V1/2KV1/2 defined by the index set I. Notice that

since V is diagonal, we have [V1/2KV1/2]I,I = V
1/2
I,I KI,IV

1/2
I,I . Let al ∈ Rn, with

l ∈ I+ν , be a set of eigenvectors, orthonormalized in {Rn, (·|·)Idn}, associated with
the strictly positive eigenvalues {ϑl}l∈I+ν of [V1/2KV1/2]I,I . Introducing the N × n
matrix K•,I defined by the n columns of K with index in I, the canonically extended
eigenvectors ul of KV are given by

ul =
(
ψl(x1), . . . , ψl(xN )

)T
= 1

ϑl
K•,IVI,I(VI,I)

−1/2al = 1
ϑl

K•,IV
1/2
I,I al;

they satisfy KVul = ϑlul and uTl Vul′ = δl,l′ . Notice that [ul]I = (VI,I)
−1/2al,

where [ul]I ∈ Rn consists in the components of ul with index in I.
For all l ∈ I+ν , we have ‖ψl‖2L2(µ) = ‖ul‖2W = uTl Wul, and the induced normalized

approximate eigenvectors of KW are given by (we have ‖ψl‖L2(µ) > 0, sinceHν ⊂ Hµ)

v̂l =
(
ϕ̂l(x1), . . . , ϕ̂l(xN )

)T
= ul/‖ul‖W.

Following Remark 3.3 and starting from a pair {ϑl, (VI,I)
−1/2al}, the amount of

computations required to obtain the extended components of the eigenvector ul scales
as O(n(N − n)). The measure µ being supported by N points, computing an inner
product in L2(µ) requires O(N) operations. The computation of the normalized ap-

proximate eigenvector v̂l and of the approximate eigenvalue λ̂
[1]
l is therefore relatively

inexpensive. To obtain λ̂
[2]
l , λ̂

[3]
l , or λ̂

[4]
l , we need to compute

KWul =
(
Tµ[ψl](x1), . . . , Tµ[ψl](xN )

)T
,

and the complexity of the underlying matrix-vector product thus scales as O(N2) and
is therefore costly; this operation can nevertheless be easily parallelized.

4.4. Kernel-matrix approximation. In the framework of section 4.3 (we use
the notation introduced in this section), the approximate operator Tν is related to the
matrix KV (and thus also to V1/2KV1/2, as discussed in section 4.1); notice that
since V is diagonal, KV can be interpreted as a weighted sample of columns of K.

Considering the reproducing kernel Kν(·, ·) of the subspace Hν of H (see (3.1)),
and following Remark 4.1, we introduce the N × N kernel matrix Kν defined by
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A3648 BERTRAND GAUTHIER AND JOHAN A. K. SUYKENS

Kν(·, ·) and S, i.e., with i, j entry [Kν ]i,j = Kν(xi, xj). From the eigendecomposition
[V1/2KV1/2]I,I = AΘAT (with A an n× n orthogonal matrix), we deduce that

Kν =
∑
l∈I+ν

ϑlulu
T
l =

∑
l∈I+ν

λ̂
[1]
l v̂lv̂

T
l = K•,IV

1/2
I,I AΘ†ATV

1/2
I,I KI,•

with KI,• = KT
•,I and where Θ† is the Moore–Penrose generalized inverse of the diag-

onal matrix Θ (see, for instance, [2]); i.e., Θ† is the diagonal matrix whose diagonal
entries are the generalized inverses of the eigenvalues of [V1/2KV1/2]I,I , that is, 1/ϑm
if ϑm > 0, and 0 if ϑm = 0. The matrix AΘ†AT is the Moore–Penrose generalized
inverse of [V1/2KV1/2]I,I ; since the matrix V is diagonal and by definition of the
index set I, we also obtain

Kν = K•,IV
1/2
I,I

(
[V1/2KV1/2]I,I

)†
V

1/2
I,I KI,• = KV1/2

(
V1/2KV1/2

)†
V1/2K,

and in particular, V1/2KνV
1/2 = V1/2KV1/2. Following, for instance, [8, 11], the

matrix Kν corresponds to the Nyström approximation of the kernel matrix K in-
duced by the approximate operator Tν (i.e., induced by the weighted column-sample
defined by υ). Low-rank approximations of Kν can classically be obtained by spectral
truncation, i.e., by considering a subset I+ν,trc of I+ν (the truncation subset usually cor-

responds to the largest eigenvalues of Tν) and by defining Kν,trc =
∑
l∈I+ν,trc

ϑlulu
T
l ;

in practice, in view of section 3, one should in this case favor a truncation subset
corresponding to accurately approximate eigendirections.

For ω = 1, the approximate eigenpairs {λ̂[1]
l , v̂l} correspond to approximations of

the eigenpairs of KW = K. In this case, the matrix Kν,trc approximates a low-row
rank approximation of K obtained by spectral truncation (i.e., obtained by truncating
the spectrum of K; see, e.g., [8, 11]); following Remark 3.2, we can also notice that
for ω = 1, we have ‖K −Kν‖2L2(µ⊗µ) = ‖K−Kν‖2F .

5. Optimal quadrature-sparsification as quadratic programming. We
consider the framework of section 4.3. From (4.3), for a fixed discrete measure µ
supported by S (i.e., ω > 0 is fixed), we define, for υ ∈ RN (and in practice υ > 0),

D(υ) = 1
2 (ω − υ)TS(ω − υ),

the scalar 1/2 being added for simplification purposes. To promote sparsity of the
approximate measure and discard the trivial minimum at υ = ω, we now introduce
squared-kernel-discrepancy minimization problems involving an `1-type penalization.

Notice that we could as well consider the framework of section 4.2; in this case,
the term Sω has to be replaced by gµ and ωTSω by ‖K‖2L2(µ⊗µ). For simplicity,
however, we do not discuss quadrature-sparsification problems involving a general
initial measure µ ∈ T (K) in the remainder of this article.

5.1. Regularized squared-kernel-discrepancy minimization. For a given
penalization direction d = (d1, . . . , dN )T ∈ RN , with d > 0 (see section 9 for a dis-
cussion on the choice of relevant penalization directions), and for α > 0, we introduce
the minimization problem, for υ ∈ RN ,

minimize
υ

Dα(υ) = 1
2 (ω − υ)TS(ω − υ) + αdTυ subject to υ > 0.(5.1)

A solution to (5.1) always exists (see, for instance, section 5.2); we also recall that,
for a given α > 0, the set of all solutions is convex. The gradient of Dα(·) at υ ∈ RN
is ∇Dα(υ) = S(υ − ω) + αd.
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Proposition 5.1. Denote by υ∗α a solution to (5.1) with α > 0. We have
(a) for α = 0, υ∗α = ω is a solution to (5.1),
(b) if α > maxk

{
[Sω]k/dk

}
, then υ∗α = 0 (with [Sω]k the kth component of Sω),

(c) for all α > 0, we have 0 6 αdTυ∗α 6 αdTω − (ω − υ∗α)TS(ω − υ∗α),
(d) ∇Dα(υ∗α) > 0 and (υ∗α)T∇Dα(υ∗α) = 0,
(e) if υ̃∗α is another solution to (5.1), then Sυ̃∗α = Sυ∗α and dT υ̃∗α = dTυ∗α,
(f) if [αd−Sω]k > 0, or if [αd−Sω]k = 0 and Sk,k > 0 (see Remark 5.1), then

[υ∗α]k = 0,
(g) the maps α 7→ D(υ∗α) and α 7→ Dα(υ∗α) are increasing,
(h) the maps α 7→ dTυ∗α, α 7→ (υ∗α)TSυ∗α, and α 7→ ωTSυ∗α are decreasing.

Remark 5.1. Assuming Sk,k = K2(xk, xk) > 0 for all k ∈ {1, . . . , N} (what we
shall denote by diag(S) > 0) is equivalent to assuming K(xk, xk) > 0 for all k; we
recall that for all x ∈X , we have K(x, x) = ‖K(x, ·)‖2H > 0. This assumption is thus
nonrestrictive: indeed, if K(xk, xk) = 0, then h(xk) = 0 for all h ∈ H; if µ and ν are
supported by S (section 4.3), then such a point xk can be removed from S without
inducing any modification of the operators Tµ and Tν .

Since υ > 0, the term dTυ can be interpreted as a weighted `1-type regularization,
and α as a regularization parameter. For appropriate d and α, we can therefore expect
a solution υ∗α to (5.1) to be sparse, and sparsity of the solutions should tend to increase
with α (see, e.g., [14]). This intuition is confirmed by Proposition 5.1(f), which shows
that the number of strictly positive components of υ∗α is bounded from above by the
number of negative components of αd − Sω (this bound is, however, generally not
tight).

5.2. Constrained squared-kernel-discrepancy minimization. Instead of
considering (5.1), for κ > 0 (and, in practice, κ 6 dTω; see Proposition 5.2), we
can equivalently introduce, for υ ∈ RN ,

minimize
υ

D(υ) = 1
2 (ω − υ)TS(ω − υ) subject to υ > 0 and dTυ = κ.(5.2)

Notice that problem (5.2) consists in minimizing a convex function on a convex com-
pact domain.

Proposition 5.2. Let υ∗α be a solution to problem (5.1) with α > 0; then υ∗α
is a solution to problem (5.2) with κ = dTυ∗α. Reciprocally, assume that υ∗κ is a
solution to problem (5.2) with 0 < κ 6 dTω; then υ∗κ is a solution to problem (5.1)
with α = (υ∗κ)TS(ω − υ∗κ)/κ. For κ = 0, we have υ∗κ = 0, which is the solution to
problem (5.1) for α > maxk

{
[Sω]k/dk

}
. For 0 6 κ 6 dTω, the maps κ 7→ D(υ∗κ)

and κ 7→ (υ∗κ)TS(ω − υ∗κ)/κ are decreasing.

We remark that, in view of Proposition 5.2, if υ∗κ is a solution to problem (5.2)
with 0 6 κ 6 dTω, then υ∗κ is also solution to

minimize
υ

D(υ) = 1
2 (ω − υ)TS(ω − υ) subject to υ > 0 and dTυ 6 κ.(5.3)

Problem (5.2) can be efficiently solved thanks to a sparse-descent-direction QP
solver (and without storing the matrix S), like, for instance, the vertex-exchange
strategy; see [18, Chap. 9] and section 8.1. A sequential strategy (based on the
notion of regularization path) for solving problems (5.1) and (5.2) is discussed in
section 7
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5.3. Penalization and conic squared-kernel discrepancy. We now inves-
tigate the properties of the solutions to penalized squared-kernel-discrepancy min-
imization problems in light of Theorem 3.2 (i.e., in terms of conic squared-kernel
discrepancy).

We consider the solutions υ∗α to (5.1) for α > 0; results related to the solutions
to (5.2) for 0 6 κ 6 dTω can be obtained readily through Proposition 5.2. Following
Theorem 3.2, we denote by cα the argument of the minimum of the function c 7→
D(cυ∗α). From Proposition 5.1(e), we can remark that, even in case of nonuniqueness
of the solution, cα and D(cαυ

∗
α) are unique.

Theorem 5.1. For 0 6 α < maxk
{

[Sω]k/dk
}

= α0, we have dTυ∗α 6 cαdTυ∗α 6
dTω; in addition, if the map α 7→ ωTSυ∗α/d

Tυ∗α is increasing on the interval [0, α0),
then the maps α 7→ D(cαυ

∗
α) and α 7→ cαdTυ∗α are respectively increasing and de-

ceasing on this interval.

Theorem 5.1 thus gives a sufficient condition for the conic squared-kernel dis-
crepancy of the solutions to the regularized problem (5.1) to increase with the regu-
larization parameter α; in combination with Proposition 5.1(f), this result therefore
shows that increasing the amount of penalization tends to increase the sparsity of the
approximate measures (more precisely, this decreases the upper bound on the number
of support points of the optimal approximate measures), at the expense of reducing
the overall accuracy of the induced spectral approximations; see sections 10 and 11
for illustrations. This sufficient condition is further discussed in section 7.1; notice
that it is, for instance, always verified when the matrix S is nonsingular.

6. Analogy with one-class SVM. Following, for instance, [19], problems (5.1)
and (5.2) can be interpreted as the dual formulations of one-class distorted SVMs
defined from the squared kernel, the initial discrete measure µ, and the penalization
direction d.

We recall that we denote by G the RKHS associated with the squared ker-
nel K2(·, ·) and that for µ ∈ T (K), the function gµ ∈ G is defined as gµ(x) =∫

X K2(t, x)dµ(t); see Lemma 2.1.

6.1. One-class SVM related to the regularized problem. We first describe
the SVM related to problem (5.1) with α > 0. For g ∈ G, we consider the convex
minimization problem

minimize
g

1
2‖g‖

2
G + (g|gµ)G

subject to g(xk) > −αdk for all k ∈ {1, . . . , N}.
(6.1)

We shall refer to gµ as the primal distortion term; we recall that, in (5.1), µ =∑N
k=1 ωkδxk . The application g 7→ ‖g‖2G being strictly convex, a solution to problem

(6.1) is necessarily unique.

Proposition 6.1. If υ∗α is a solution to (5.1) with α > 0, then g∗α(x) =
∑N
k=1[υ∗α−

ω]kK
2(x, xk) is the solution to (6.1). For all k ∈ {1, . . . , N} such that [υ∗α]k > 0, we

have g∗α(xk) = −αdk.

Notice that for all k, we have g∗α(xk) = [S(υ∗α −ω)]k. By introducing the change
of variable ǧ = g + gµ ∈ G, problem (6.1) leads to, up to an additive constant,

minimize
ǧ

1
2‖ǧ‖

2
G

subject to ǧ(xk) > gµ(xk)− αdk for all k ∈ {1, . . . , N},
(6.2)

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

34
.5

8.
25

3.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL QUADRATURE-SPARSIFICATION A3651

which is an equivalent formulation for (6.1), with solution ǧ∗α(x) =
∑N
k=1[υ∗α]k

K2(x, xk). In view of Lemma 2.1, if we denote by ν∗α the discrete measure supported
by S related to a solution υ∗α to problem (5.1), then ǧ∗α = gν∗α .

6.2. One-class SVM related to the constrained problem. We now describe
the SVM related to problem (5.2) with κ > 0. For g ∈ G and γ ∈ R, we introduce
the problem

minimize
g,γ

1
2‖g‖

2
G + (g|gµ)G − γ

subject to g(xk) > γdk/κ for all k ∈ {1, . . . , N}.
(6.3)

Again, a solution to problem (6.3) is necessarily unique.

Proposition 6.2. If υ∗κ is a solution to (5.2), then g∗κ(x) =
∑N
k=1[υ∗κ − ω]k

K2(x, xk) and γ∗κ = (υ∗κ)TS(υ∗κ − ω) is the solution to (6.3). For all k ∈ {1, . . . , N}
such that [υ∗κ ]k > 0, we have g∗κ(xk) = γ∗κdk/κ.

In view of Proposition 5.2, for 0 < κ 6 dTω, we know that υ∗κ is a solution to
(5.1) for α = −γ∗κ/κ; since α > 0, we have γ∗κ 6 0.

Remark 6.1. Following the analogy with SVM models, we could also define soft-
margin-type extensions of problems (6.1) and (6.3), i.e., we may consider models
where the inequalities appearing in the constraints can potentially be violated, the
level of violation being penalized. To be more precise, in (6.1), for instance, instead
of considering the constraints g(xk) > −αdk, we may consider the relaxed constraints
g(xk) > −αdk − ξk, with ξ = (ξ1, . . . , ξN )T ∈ RN , while penalizing the values taken
by the slack variables ξk; the considered penalization corresponds to the choice of a
loss function; see, for instance, [24]. Soft-margin extensions appear as a possible way
to further constrain or penalize the optimal approximate measures.

7. Regularization path. In this section, we further discuss the properties of
the solutions to problem (5.1); following, for instance, [17, 13], we also describe the
regularization-path method (or homotopy method) for solving the regularized prob-
lem. Results related to the constrained problem (5.2) can be obtained from Proposi-
tion 5.2.

7.1. Generalities. Let υ∗α be a solution to (5.1) for α > 0; we introduce the
index sets

Jα = {k|[∇Dα(υ∗α)]k = 0} and Jcα = {1, . . . , N}\Jα,
so that, from Proposition 5.1, [∇Dα(υ∗α)]k > 0 for all k ∈ Jcα; in addition, the index
set Jα is unique (i.e., for a given α, in case of nonuniqueness of the solution to (5.1),
Jα does not depend on the solution considered). We shall refer to Jα as the sparsity
pattern of the solutions to problem (5.1) for α > 0. From Proposition 5.1(d), if
[υ∗α]k > 0, then k necessarily belongs to Jα; in addition, the solutions to (5.1) are
characterized by the conditions

υ∗α > 0, and [υ∗α]Jcα = 0, and SJα,Jα [υ∗α]Jα = [Sω − αd]Jα ,(7.1)

where SJα,Jα stands for the nα × nα principal submatrix of S corresponding to the
index set Jα, with nα = card(Jα), and where, for instance, dJα ∈ Rnα stands for the
vector defined by the components of d with index in Jα.

Proposition 7.1. Let υ∗α1
and υ∗α2

be solutions to problem (5.1) with α1 and
α2 > 0, respectively. Assume that Jα1

= Jα2
= J ; then for all θ ∈ [0, 1], υ∗α =

θυ∗α1
+(1−θ)υ∗α2

is a solution to problem (5.1) with α = θα1 +(1−θ)α2, and Jα = J .
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Proposition 7.1 thus shows that the set of all solutions υ∗α related to a same
sparsity pattern J ⊂ {1, . . . , N} is convex and that the values of α are such that
Jα = J belongs to a convex interval. When α varies, we refer to a change in the
sparsity pattern Jα as an event ; in particular, since there cannot exist more than 2N

different subsets of {1, . . . , N}, Proposition 7.1 implies that the number Mev of events
related to problem (5.1) necessarily satisfies Mev 6 2N − 1. We also call kinks the
values of α where an event occurs; more precisely, the kinks consist in the strictly
positive infima and suprema of the intervals of α related to a same sparsity pattern
(see Remark 7.1).

Remark 7.1 (right and left sparsity patterns). Assume that α > 0 is a kink for
(5.1); for all ε > 0 such that α − ε > 0, we therefore have Jα+ε 6= Jα−ε. We refer to
the limits when ε tends to 0 of Jα+ε and Jα−ε as the right and left sparsity patterns
at α, denoted by Rα and Lα, respectively. The “true” sparsity pattern Jα at a kink
α is either its left or its right sparsity pattern (if α is not a kink, the left and right
sparsity patterns are identical). In particular, since a change in the sparsity pattern
only involves null components of υ∗α, if α is a kink for (5.1), then (7.1) holds for both
the left and right sparsity patterns at α; in other words, if α is a kink, then in (7.1),
we may replace Jα by Rα or Lα.

We assume that the events occur at the kinks α0 > α1 > · · · > αMev−1 > 0. From
Proposition 5.1, for α > maxk [Sω]k/dk, we have υ∗α = 0. We can thus deduce that
α0 = maxk [Sω]k/dk and that Jα0

= {k|[Sω]k/dk = α0}; for α > α0, the sparsity
pattern Jα is the empty set, and Jα0 is thus also the left sparsity pattern at the kink
α0. Since ∇D(ω) = 0, the kink αMev−1 is the supremum of the set of all α such
that Jα = {1, . . . , N}, and {1, . . . , N} is thus also the left sparsity pattern at the kink
αMev−1. More generally, for all α ∈ (αp+1, αp), with p ∈ {0, . . . ,Mev − 2}, we have
Jα = Lαp = Rαp+1

, where Lαp stands for the left sparsity pattern at the kink αp, and
Rαp+1 is the right sparsity pattern at the kink αp+1, as detailed in Remark 7.1.

We conclude this section with a result related to the sufficient condition appearing
in Theorem 5.1.

Proposition 7.2. For α > 0, the maps α 7→ dTυ∗α and α 7→ ωTSυ∗α are con-
tinuous and piecewise linear. In addition, if for all α ∈ [0, α0) such that α is not a
kink for (5.1) there exists a solution υ∗α such that [υ∗α]Jα = G[Sω − αd]Jα , with G
symmetric and positive-semidefinite, then the map α 7→ ωTSυ∗α/d

Tυ∗α is increasing
on the interval [0, α0).

The sufficient condition in Proposition 7.2 is in particular always verified when
the matrix S is nonsingular. Indeed, any principal submatrix of a symmetric and
positive-definite matrix is also symmetric and positive-definite; in addition, for any
α > 0, since the the solutions to (5.1) are in this case unique, we have G = (SJα,Jα)−1.

7.2. Computing the path. The regularization-path method consists in itera-
tively computing the kinks α0, α1, etc., while keeping track of the evolution of the
sparsity pattern of the solutions to (5.1).

Hereafter, we consider a kink αp, for p ∈ {0, . . . ,Mev − 2}, with related left
sparsity pattern Lαp (see Remark 7.1). We describe how to compute the next kink
αp+1 < αp and how to characterize the related left sparsity pattern Lαp+1

(we recall
that, by definition, Rαp+1

= Lαp). For simplicity, we use the notation J = Lαp , and
we assume that the submatrix SJ,J is invertible (numerical strategies to deal with
singular submatrices exist, but they are out of the scope of this study).
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From (7.1), we introduce the vector υα such that [υα]Jc = 0 and [υα]J =
(SJ,J)−1[Sω − αd]J . By definition, αp+1 corresponds to the smallest α such that
0 6 α < αp and

[υα]J > 0 and [S(υα − ω) + αd]Jc > 0.(7.2)

Lemma 7.1. Consider a kink αp with left sparsity pattern Lαp = J 6= {1, . . . , N},
and assume that the submatrix SJ,J is invertible. We introduce the (N − nαp)× nαp
matrix M = SJc,J(SJ,J)−1, with nαp = card(Lαp), and we define

α+ = max
l

{[
M[Sω]J − [Sω]Jc

]
l

/[
MdJ − dJc

]
l

∣∣[MdJ − dJc
]
l
< 0
}

and

α− = max
m

{[
(SJ,J)−1[Sω]J

]
m

/[
(SJ,J)−1dJ

]
m

∣∣[(SJ,J)−1dJ
]
m
< 0
}
.

The next event occurs at αp+1 = max{α+, α−}. If αp+1 = α+, then the indices in
Jc corresponding to the maximum defining α+ are transferred from Jc to Lαp+1

; if
αp+1 = α−, then the indices in J corresponding to the maximum defining α− are
transferred from J to Lcαp+1

.

If SLαp+1
,Lαp+1

is invertible, we can next compute αp+2 and Lαp+2
in exactly the

same way, and we may potentially iterate like this until we reach the last event, or at
least as far as we do not encounter numerical issues.

7.3. Computational complexity. The preliminary computation of the distor-
tion term Sω is relatively challenging, with a worst-case complexity scaling as O(N2);
notice that the underlying matrix-vector product can nevertheless be very easily par-
allelized. Importantly, we shall not store the kernel matrix S but rather compute
on the fly any required entry. Generally speaking, in the quadrature-sparsification
framework, obtaining the distortion term gµ appears as the main bottleneck of the
penalized squared-kernel-discrepancy minimization approach.

In view of Lemma 7.1, once a kink αp and its left sparsity pattern J = Lαp are
known, defining the next event (i.e., computing αp+1 and Lαp+1

) involves the calcu-
lation of (SJ,J)−1dJ and (SJ,J)−1[Sω]J (i.e., solving a linear system); without taking
into account the computations already performed to obtain the information relative
to the kink αp, and using a direct method (by, for instance, considering the Cholesky
decomposition of the symmetric and positive-definite matrix SJ,J), the computational
complexity of this task scales as O(n3

αp), with nαp = card(Lαp). Update formulae can
nevertheless be used to reduce this complexity by, for instance, iteratively updating the
Cholesky decomposition of SJ,J . In the favorable cases, the computational complex-
ity may thus reduce to O(n2

αp); an alternative might also consist in using an indirect
iterative approach, like, for instance, a conjugate gradient method (but numerical
errors could then quickly lead to precision issues). Finally, the complexity of the two
matrix-vector products involving the matrix SJc,J scales as O(nαp(N − nαp)). As
a result, the computation of the regularization path becomes intractable once large
values of nαp are reached. When N is large, the regularization-path method may
therefore only be used to explore the range of very sparse approximate measures. See
sections 10 and 11 for illustrations.

8. Numerical solver for the constrained problem. In this section, we dis-
cuss a strategy to compute approximate solutions to (5.2), i.e., the constrained prob-
lem, for any κ > 0. We also propose two greedy exchange-type strategies aiming at
enhancing the sparsity of a given approximate measure while keeping the squared-
kernel discrepancy as low as possible.
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8.1. Vertex-exchange QP solver. Consider problem (5.2); for κ > 0, we
can define the change of variable υ̃ = Dυ/κ, with D = diag(d), so that d = D1.
Problem (5.2) is thus turned into (up to an additive constant), for υ̃ ∈ RN ,

minimize
υ̃

C(υ̃) =
1

2
υ̃TAυ̃ − bT υ̃ subject to υ̃ > 0 and 1

T υ̃ = 1,(8.1)

with A = κ2D−1SD−1 and b = κD−1Sω. Since Ai,j = κ2K2(xi, xj)/(didj), any
entry of A can be easily obtained from κ, the squared kernel K2(·, ·), the set S, and
the penalization direction d. Importantly, we shall not store the matrix A but rather
compute on the fly any required entry of A; in this way, problems involving large N
may be considered. Once b is known (requiring the knowledge of Sω; see section 7.3),
the gradient ∇C(υ̃) = Aυ̃ − b can be easily obtained for any sparse vector υ̃.

The extreme points of the polytopes defined by the constraints in (8.1) are the
vectors {ei}Ni=1, where ei ∈ RN is the ith element of the canonical basis of RN (that
is, [ei]i = 1, all the other components being 0). For a feasible υ̃, let Iυ̃ = {k|υ̃k > 0}
be the index set defined by the strictly positive components of υ̃. An iteration of the
vertex-exchange algorithm consists in searching

i∗ = argmin
i

[∇C(υ̃)]i and j∗ = argmax
j∈Iυ̃

[∇C(υ̃)]j ,

defining the sparse descent direction δ = ei∗ −ej∗ (i.e., weight is transferred from the
j∗th to the i∗th component of υ̃); in case of nonuniqueness of the extrema, an index
is simply selected at random from among the ones satisfying the condition. The step
size is then classically obtained by line search, the optimal step size % being given
by % = min

{
υ̃j∗ ,−

(
δT∇C(υ̃)

)
/(δTAδ)}. Since the descent direction δ is sparse, the

computation of the optimal step size is numerically affordable, and the same holds
for the gradient update. Indeed, we have ∇C(υ̃ + %δ) = ∇C(υ̃) + %Aδ, so that the
gradient update only involves two columns of A. The complexity of an iteration thus
scales as O(N).

Denoting by υ̃∗ a solution to (8.1), the convergence of the vertex-exchange algo-
rithm can be easily verified (see, e.g., [12]) by simply noting that since υ̃ > 0 and

1
T υ̃ = 1, by definition of j∗, we have υ̃T∇C(υ̃) 6 eTj∗∇C(υ̃), and thus (distance

from optimality)

C(υ̃)− C(υ̃∗) 6 −(ei∗ − υ̃)T∇C(υ̃) 6 −(ei∗ − ej∗)
T∇C(υ̃).

In sections 10 and 11, the accuracy of an approximate solution υ̃ is indicated by the
Frank–Wolfe error bound ε = (υ̃ − ei∗)

T∇C(υ̃) > 0.

8.2. Enhancing sparsity through components merging. The formulation
introduced in section 8.1 offers a convenient framework to enhance the sparsity of
an approximate measure ν while trying to keep its squared-kernel discrepancy as
low as possible. Let υ̃ > 0 (with υ̃ ∈ RN ) be such that 1T υ̃ = 1. In practice, υ̃
will be an exact or approximate solution to problem (8.1), or any vector related to
an interesting low-squared-kernel-discrepancy configuration υ through the change of
variable υ̃ = Dυ/κ, with D = diag(d) and κ = dTυ; see section 8.1. We assume
that υ̃ has n = n0 strictly positive components and we introduce I = {i|υ̃i > 0}.
As illustrated in sections 10 and 11, it is generally possible, to a certain extent, to
merge together some components of υ̃ while inducing a negligible increase of the cost
C(·). In what follows, we discuss two simple greedy heuristics based on the sequential
merging of pairs of components of υ̃.
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We assume that n > 1. For an ordered pair {i, j}, with i and j ∈ I and i 6= j,
we define υ̃{i,j} = υ̃ + υ̃j(ei − ej). The vector υ̃{i,j} thus has n− 1 strictly positive
components, the ith component of υ̃ having absorbed the jth. We have

C(υ̃{i,j}) = C(υ̃) +
1

2
υ̃2
j (ei − ej)

TA(ei − ej) + υ̃j(ei − ej)
T∇C(υ̃).

Thus, knowing ∇C(υ̃), the computation C(υ̃{i,j}) only involves four entries of the
matrix A and two entries of ∇C(υ̃).

We can then search for the merging associated with the smallest value of C(υ̃{i,j}),
with i and j ∈ I, and i 6= j. Depending on n0 and the computational power at
disposal, we may use either of the following:

• strong-pairwise merging : search for the best ordered pair {i∗, j∗} = argmini6=j
C(υ̃{i,j}), the amount of computations involved scaling as O(n2); or

• weak-pairwise merging : fix j∗ = argminj∈I υ̃j , and search for i∗ = argmini6=j∗
C(υ̃{i,j∗}), the amount of computations involved scaling as O(n).

We thus obtain the “best” pairwise merging {i∗, j∗} for υ̃. We next update all the in-
volved objects, i.e., υ̃ ← υ̃{i∗,j∗}, I ← I\{j∗}, n← n−1, and∇C(υ̃)← ∇C(υ̃{i∗,j∗}),
and we may potentially iterate like this until n = 1 (i.e., after n0 − 1 iterations), or
at least until we have reached a satisfactory sparsity-discrepancy trade-off.

We thus obtain a sequence of merged vectors {υ̃[0], υ̃[1], . . .}, where υ̃0 is our
initial vector, and υ̃[1] results from the merging of two components of υ̃[0], etc.; by
construction, υ̃[m] > 0 and 1

T υ̃[m] = 1 for all m, and υ̃[m] has n0 − m strictly
positive components. Finally, instead of considering the approximation induced by
υ = κD−1υ̃[0], we may consider a sparser vector υ[m] = κD−1υ̃[m]; see sections 10
and 11 for illustrations.

9. Penalization direction. In section 5, the sparsity of the approximate mea-
sures is promoted through the introduction of an `1-type penalization played by the
term dTυ, for a given d ∈ RN with d > 0. In practice, we aim at obtaining measures
which are both as sparse as possible and with a low (conic) squared-kernel discrep-
ancy, naturally raising questions related to the choice of the penalization direction d.
The impact of the penalization direction on the trade-off between sparsity and (conic)
squared-kernel discrepancy is illustrated in sections 10.5 and 10.6.

Lemma 9.1 (penalization direction inducing no sparsity). If d = θSω, with
θ > 0, then for α 6 1/θ, υ∗α = (1− αθ)ω > 0 is a solution to (5.1); for α > 1/θ, we
have υ∗α = 0.

Thus, for d ∝ Sω, the solutions to (5.1) are nonsparse, and such a choice for d is
of no practical interest; in order to promote sparsity through penalized squared-kernel-
discrepancy minimization, one therefore has to check that the considered penalization
direction does not correspond to this pathological case. More generally (and as a
proof for Lemma 9.1), we can remark that if d = Sη > 0, with η ∈ RN , then for all
α such that ω − αη > 0, we have ∇Dα(ω − αη) = 0, and υ∗α = ω − αη is in this
case a solution to (5.1); notice that in the framework of section 7.1, this situation
corresponds to solutions with full sparsity parttern, i.e., Jα = {1, . . . , N}.

In the examples presented in sections 10 and 11, considering d = 1 leads to
satisfactory results (notice that ν(X ) = 1

Tυ); it is nevertheless possible to define
problem-dependent penalization directions, leading to models inheriting interesting
interpretations. Following Remark 5.1, we recall that we can reasonably assume that
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diag(K) > 0, so that, in particular, Sω > 0 (since ω > 0). In Remarks 9.1, 9.2,
and 9.3, we discuss specific penalization directions defined from the vectors Sω and
diag(K).

Remark 9.1 (penalizing the trace). For d = diag(K), we have dTυ = trace(Tν);
by analogy with spectral truncation, from Proposition 5.1(c) and Theorem 5.1, a
solution υ∗α to the regularized problem (5.1) then satisfies, for 0 6 α < α0,

trace(Tν∗α) 6 trace(Tcαν∗α) 6 trace(Tµ).

Also notice that the parameter κ of the constrained problem (5.2) corresponds in this
case to the trace of the approximate operator.

Following section 6, if υ∗α is a solution to the regularized problem (5.1) (with

related measure ν∗α), then gν∗α =
∑N
k=1[υ∗α]kK

2
xk

is the solution to, for g ∈ G,

minimize
g

1
2‖g‖

2
G subject to gµ(xk)− g(xk) 6 αdk for all k ∈ {1, . . . , N}(9.1)

with gµ(xk) =
∫

X K2(t, xk)dµ(t) = [Sω]k; in addition, if [υ∗α]k > 0, then gµ(xk) −
gν∗α(xk) = αdk.

Remark 9.2 (inverse-distortion-based penalization). In view of (9.1), considering
a penalization direction d such that dk = 1/[Sω]pk, with p > 0, results in an SVM
where the upper bound on gµ(xk)−g(xk) is inversely proportional to a positive power
of gµ(xk), so that the larger gµ(xk) is, the smaller the bound on gµ(xk)−g(xk). Since
the most constrained inequalities in (9.1) are more likely to be active, and since we

have (gµ|gν)G =
∑N
k=1 υkgµ(xk) for any measure ν supported by S and with related

weights υk (see Lemma 2.1), such a penalization tends to promote large values of the
inner product between gµ and gν∗α in G.

Remark 9.3 (inverse-kernel-diagonal-based penalization). For all x ∈ X , from
the reproducing property in G and the Cauchy–Schwarz inequality, we have

for all µ and ν ∈ T (K), |gµ(x)− gν(x)| 6
√
DK2(µ, ν)K(x, x).(9.2)

In view of (9.1) and (9.2), by considering a vector d such that dk = 1/(K(xk, xk))p,
with p > 0, we enforce the bound on the difference gµ(xk)−gν∗α(xk) to be small at the
points xk where this difference can potentially be large, so that we can thus expect
gµ(xk)− gν∗α(xk) to be relatively small for all the points in S.

10. Two-dimensional example. We assume that S = {xk}Nk=1 consists of the
N = 2016 first points of a uniform Halton sequence on [−1, 1]2 (see [16]), as illustrated
in Figure 10.1. We set ω = 1/N , so that the measure µ =

∑
k ωkδxk appears as a

quadrature approximation of the uniform probability measure on [−1, 1]2. We consider
the Gaussian kernel K(x, y) = exp(−`‖x− y‖2), where ‖x− y‖ is the Euclidean norm
on R2, and we set ` = 1/0.16 (a different kernel is considered in section 10.6). An
overview of the spectrum of the operator Tµ (obtained from the eigendecomposition of
the matrix K/N) is given in Figure 10.2. We first consider the penalization direction
d = 1.

10.1. First experiment. Figure 10.1 shows the (approximate) solution υ∗ to
problem (5.2) with κ = 0.81 or, equivalently, to problem (5.1) with α ≈ 8.354214 ×
10−3 (for ω = 1/N and d = 1). The vector υ∗ has 160 strictly positive components,
and the support of the related measure ν∗ inherits an interesting “four-concentric-
squares” structure. We have D(υ∗) = 7.631887 × 10−4 (for comparison, notice that

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

34
.5

8.
25

3.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL QUADRATURE-SPARSIFICATION A3657

-1.0 -0.5 0.0 0.5 1.0

-1.
0

-0.
5

0.0
0.5

1.0

solution �∗ for z = 0.81 or � ≈ 8.354215 × 10−3

Fig. 10.1. Graphical representation (two-dimensional example, Gaussian kernel, ω = 1/N and
d = 1) of the solution υ∗ to problem (5.2) with κ = 0.81 or, equivalently, to problem (5.1) with
α ≈ 8.354215× 10−3. The gray crosses represent the points in S and the filled dots are the strictly
positive components of υ∗ (surface being proportional to υ∗k).

0 10 20 30 40 50 60

0.0
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0.0
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0.1
0 eigenvalues �k

k

-1.0
-0.5

0.0
0.5

1.0-1.0

-0.5
0.0

0.5
1.0-1

0

1

eigenfunction 'k for k = 11

Fig. 10.2. For the two-dimensional example (Gaussian kernel and ω = 1/N), eigenvalues λk
of the integral operator Tµ (sorted in decreasing order; only the 62 largest eigenvalues are presented),
and graph, on [−1, 1]2 of the canonically extended eigenfunction ϕk for k = 11.

D(κe1) = 3.041066 × 10−1, with e1 the first element of the canonical basis of RN ).
In the framework of section 8.1, the presented solution is related to a Frank–Wolfe
error bound ε = 3.989864× 10−17.

The solution has been obtained using the regularization-path strategy (see sec-
tion 10.2 for more details). Considering the regularization path for problem (5.1) with
decreasing values of α, the underlying value of α ≈ 8.354215× 10−3 satisfies

αp+1 = 8.352970× 10−3 6 α 6 αp = 8.355244× 10−3 with p = 4 047;

correspondingly, for problem (5.2) (with increasing values of κ), the value κ = 0.81
satisfies

κp = 0.8099788 6 κ 6 κp+1 = 0.8100256.

The accuracy of the approximate eigendecomposition of Tµ induced by the so-
lution υ∗ presented in Figure 10.1 (i.e., κ = 0.81) is illustrated in Figure 10.3.

In view of the similarity between the geometric approximate eigenvalues λ̂
[·]
l , and
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0.0
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0.1
0 approx. eigenval. �̂[4]l

approx. eigenval. �̂[3]l
approx. eigenval. �̂[2]l
approx. eigenval. �̂[1]l

← l = 21

← l = 44

l
0 50 100 150

0.0
0.2

0.4
0.6

0.8
1.0 (

�̂[3]l ∕�̂[4]l
)2

(
�̂[1]l ∕�̂[2]l

)2

l

Fig. 10.3. Approximate eigenvalues λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l induced by the solution υ∗ presented

in Figure 10.1 (left); ratios (λ̂
[1]
l /λ̂

[2]
l )2 and (λ̂

[3]
l /λ̂

[4]
l )2 highlighting the accuracy of the approximate

eigendirections ψl of Tµ (right).

0.0

0.2

0.4

0.6

0.8
l = 21

l = 44

Fig. 10.4. Graphical representation of the matrix with l, l′ entry |(ϕ̂l|ϕ̂l′ )L2(µ)| for the 160

normalized approximate eigendirections induced by the solution υ∗ presented in Figure 10.1 (i.e.,
κ = 0.81).

more particularly of the ratios
(
λ̂

[1]
l /λ̂

[2]
l

)2
and

(
λ̂

[3]
l /λ̂

[4]
l

)2
(see section 3), we ob-

serve that the 21 main eigendirections of the operator Tν∗ (i.e., for l ∈ {1, . . . , 21})
lead to remarkably accurate approximations of the eigenpairs of Tµ related to the
21 largest eigenvalues λk. The accuracy of the approximate eigenpairs decreases for
l ∈ {22, . . . , 44} and becomes very poor for k > 44. The orthogonality, in L2(µ),
between the normalized approximate eigenfunctions ϕ̂l is in perfect agreement with
this observation, as illustrated in Figure 10.4 (see Remark 3.1).

A comparison between the true eigenvalues of Tµ and their approximations in-
duced by the solution υ∗ of Figure 10.1 is presented in Figure 10.5; we, for instance,

observe that for 1 6 l 6 8, the approximate eigenvalues λ̂
[4]
l are the most accurate.

Table 10.1 gives the errors ‖ϕ̂l − ϕl‖2L2(µ) for 1 6 l 6 20; in accordance with our
previous conclusions, these approximations are remarkably accurate. Since orthonor-
malized sets of eigenfunctions are not unique, to perform this comparison, notice that
we have when required replaced ϕ̂l by −ϕ̂l and applied a two-dimensional rotation to
pairs of eigendirections related to the approximation of an eigensubspace of dimension
two (corresponding to the case where the operator is defined with respect to a uniform
measure on [−1, 1]2).

Following Theorem 5.1, we denote by cκ and cα the argument of the minimum
of the functions c 7→ D(cυ∗κ) and c 7→ D(cυ∗α). For the solution presented in (5.2)
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1
2

3
4 most accurate approximate eigenvalue

0 50 100 150

-1e
-03

-5e
-04

0e+
00

5e-
04

1e-
03

�̂[4]l − �l �̂[3]l − �l �̂[2]l − �l �̂[1]l − �l

l

Fig. 10.5. Errors λ̂
[·]
l − λl for the geometric approximate eigenvalues induced by the solution

υ∗ presented in Figure 10.1 (bottom), and indication of the most accurate (smallest absolute error)

approximation among λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l (top).

Table 10.1
Approximation error ‖ϕ̂l − ϕl‖2L2(µ)

, with 1 6 l 6 20, for the normalized approximate eigendi-

rections induced by the solution υ∗ presented in Figure 10.1 (i.e., κ = 0.81); the values of l grouped
together correspond to pairs of eigendirections related to the approximation of an eigensubspace of
dimension two.

l 1 2 and 3 4 5 and 6 7 and 8 9 and 10

λ̂
[1]
l 0.10861 0.08747 0.08737 0.07028 0.06103 0.06089 0.04907 0.04895 0.03706 0.03692

‖ϕ̂l − ϕl‖2L2(µ)
0.00017 0.00035 0.00035 0.00056 0.00054 0.00120 0.00115 0.00117 0.00245 0.00243

l 11 12 and 13 14 and 15 16 and 17 18 and 19 20

λ̂
[1]
l 0.03418 0.02976 0.02971 0.02073 0.02070 0.01954 0.01954 0.01573 0.01571 0.01251

‖ϕ̂l − ϕl‖2L2(µ)
0.00196 0.00128 0.00448 0.00438 0.00456 0.00773 0.00685 0.00843 0.00830 0.00711

(i.e., κ = 0.81), we obtain cκ = 1.177289, and D(cκυ
∗
κ) = 1.633391 × 10−4, and

cκdTυ∗κ = 0.9536041.

10.2. Regularization path. Following section 7, we compute the 12,818 first
events of the regularization path related to problem (5.1) with decreasing values of α;
we have in particular α0 = 6.310163×10−2 and α12817 = 1.495359×10−5. Correspond-
ingly, for problem (5.2) and increasing κ, we have κ0 = 0 and κ12817 = 0.9995482 (we
recall that dTω = 1).

Figure 10.6 shows that the number of strictly positive components of the so-
lution υ∗κ to problem (5.2) tends to increase when κ increases. As expected from
Proposition 5.1(g), the function κ 7→ D(υ∗κ) is decreasing; in the same way, when
κ increases, the corresponding value of the regularization parameter α decreases (see
Propositions 5.1 and 5.2). We also represent the evolution of the conic squared-kernel
discrepancy of the various solutions υ∗κ ; in accordance with Theorem 5.1, the function
κ 7→ D(cκυ

∗
κ) is decreasing.

For 51 values of κ evenly spread between κ0 and κ12817, Figure 10.7 shows the

evolution of the ratio
(
λ̂

[1]
l /λ̂

[2]
l

)2
for the approximate eigendecompositions induced

by the various solutions υ∗κ . As expected, the number of accurately approximate
eigendirections increases with κ. Remarkably, the number of eigendirections approx-
imated with high accuracy appears to be in close relation with the decay of the
spectrum of Tµ; we recall that we have trace(Tν∗κ ) = κ, since diag(K) = 1 for the
Gaussian kernel.

10.3. Components merging. We now perform the strong-pairwise merging
(see section 8.2) of the solution υ∗ presented in Figure 10.1 (i.e., problem (5.2) with
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Fig. 10.6. For the two-dimensional example (Gaussian kernel, ω = 1/N and d = 1), graphical

representation of the 12,818 first events of the regularization path related to problem (5.2) for in-
creasing κ; number of strictly positive components of υ∗κ as function of κ (left), graph of κ 7→ D(υ∗κ)
and κ 7→ D(cκυ∗κ) (middle), and relation between κ and the parameter α of problem (5.1) (right).
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card
({
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�̂[1]l ∕�̂[2]l

)2 ⩾ t
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t = 0.9
t = 0.95
t = 0.975
t = 0.99

max
{
l||
∑l
k=1 �k ⩽ z}

z
Fig. 10.7. Evolution of the accuracy of the approximate eigendecomposition of Tµ induced by

υ∗κ for 51 values of κ between κ0 = 0 and κ12817 = 0.9995482; the accuracy of the approximate

eigendirections is measured through the ratios (λ̂
[1]
l /λ̂

[2]
l )2; for illustration purposes, the map κ 7→

max{l|
∑l
k=1 λk 6 κ} is also presented (two-dimensional example, Gaussian kernel, ω = 1/N and

d = 1).

κ = 0.81). As illustrated in Figure 10.8, for the first merging iterations, D(υ[k]) stays
very close toD(υ∗) = 7.631887×10−4. After 90 iterations, we haveD(υ[90])−D(υ∗) =
3.494809 × 10−5 (i.e., an increase of 4.58%), and υ[90] is supported by 70 points
(instead of 160 for υ∗); a graphical representation of υ[90] is given in the left-hand
part of the figure. The accuracy of the approximate eigendecomposition induced by
υ[90] is presented in the right-hand part of Figure 10.8. We observe that although
being slightly less accurate than the approximate eigendecomposition induced by υ∗,
the approximation induced by υ[90] remains very satisfactory while being related to a
vector more than two times sparser. Notice that the conic squared-kernel discrepancy
of the merged solution is D(c�υ[90]) = 2.091099×10−4, where c� stands for the optimal
rescaling parameter c related to υ[90]; see Theorem 3.2.

10.4. Comparison with random sampling. We compute the approximate
eigendecompositions induced by random uniform samples, without replacement, of
size nrand = 300, 600, 900, and 1200 (i.e., we randomly select nrand distinct points
among the N = 2016 points in S, and we consider the uniform probability measure
supported by the points selected); for each sample size, we perform 100 repetitions.
Figure 10.9 illustrates the accuracy of the obtained approximate eigendirections, mea-

sured through the ratios
(
λ̂

[1]
l /λ̂

[2]
l

)2
. As we could expect, the accuracy of the approx-

imation increases with the size of the sample. In terms of trade-off between sparsity
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Fig. 10.8. Graphical representation of the merged solution υ[90] (two-dimensional example with
ω = 1/N and d = 1) obtained after 90 iterations of the strong-pairwise-merging strategy applied to
the solution υ∗ presented in Figure 10.1; the gray diamonds indicate the support of υ∗ (left). Increase
of the cost D(·) induced by each merging iteration, for the whole 159 iterations (top middle), and

zoom around the 90th iteration (bottom middle). Representation of the ratios (λ̂
[1]
l /λ̂

[2]
l )2 obtained

from the merged vector υ[90] and comparison with the same ratios for the solution υ∗ (right).
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Fig. 10.9. For the two-dimensional example, accuracy of the approximate eigendecompositions
induced by random samples of size nrand (without replacement); for each values of nrand, Tukey’s

boxplot, over 100 repetitions, of the number of approximate eigendirections such that
(
λ̂
[1]
l /λ̂

[2]
l

)2 >
0.8 (left), 0.95 (middle), and 0.99 (right).

and number of eigendirections accurately approximated, the results are, however, far
behind the ones obtained using penalized squared-kernel-discrepancy minimization
(see Figures 10.6 and 10.7). For instance, and in comparison to Figure 10.9, penal-
ized squared-kernel-discrepancy minimization leads to the following trade-offs:

• for κ = 0.81, the solution υ∗κ is supported by 160 points, and the numbers of

approximate eigendirections such that
(
λ̂

[1]
l /λ̂

[2]
l

)2
> 0.8, 0.95, and 0.99 are

34, 25, and 15, respectively;
• for κ = 0.98, we have 276 support points, and for the same thresholds, the

numbers of accurately approximate eigendirections are 66, 53, and 42;
• for κ = 0.999, we have 407 support points, and again for the same thresholds,

the numbers of accurately approximate eigendirections are 100, 89, and 82.

10.5. Impact of the penalization direction. For the two-dimensional exam-
ple (Gaussian kernel and ω = 1/N), we compute the regularization path of problem
(5.1) for seven different vectors d > 0. We consider d = vmax(S) (i.e., the eigenvector
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Fig. 10.10. For the two-dimensional example (Gaussian kernel and ω = 1/N), number of
strictly positive components of the solution υ∗α to problem (5.1) as a function of the squared-kernel
discrepancy D(υ∗α) (top) and of the conic squared-kernel discrepancy D(cαυ∗α) (bottom) for various
penalization vectors d; all the curves have been obtained thanks to the regularization-path strategy.

related to the largest eigenvalue of the matrix S; see the Perron–Frobenius theorem),
(Sω)2 (i.e., dk = [Sω]2k),

√
Sω (i.e., dk =

√
[Sω]k), 1, 1/

√
Sω, 1/(Sω), and 1/(Sω)2.

In Figure 10.10, we compare the trade-offs between sparsity and (raw and conic)
squared-kernel discrepancy yield by these penalization directions. We recall that for
the Gaussian kernel, we have diag(K) = 1.

In terms of conic squared-kernel discrepancy and in accordance with section 9,
the results obtained for d = 1 and d = 1/(Sω)p (with in this case p = 1/2, 1, and
2) appears as the more interesting; the trade-off obtained for d =

√
Sω is also very

satisfactory; the performances for these five penalization directions are very close. For
this particular example, d = 1/(Sω)2 nevertheless appears as the best overall choice
among the penalizations considered.

10.6. Modified kernel. We further illustrate the impact of the penalization
direction by now considering an alternative kernel (the same set S as in the previous
experiments, and ω = 1/N). We introduce the function for x ∈ [−1, 1]2, s(x) =√

0.1 + ‖x− a‖2, with a = (1, 1), and we define the kernel (modified Gaussian kernel)

K(x, y) = s(x)s(y) exp(−`‖x− y‖2);(10.1)

we still consider ` = 1/0.16. We then in particular have K(x, x) = s2(x). We make
the same analysis as in section 10.5, while considering d = 1, diag(K), 1/diag(K),
1/(Sω), 1/(Sω)2, and (Sω)2. The results are presented in Figure 10.11. The over-
all trade-off between sparsity and conic squared-kernel discrepancy obtained for d =
(Sω)2 is very poor in comparison to the trade-offs obtained for the five other pe-
nalization directions, in accordance with the remarks of section 9. The best overall
trade-off is obtained for d = diag(K).

11. Application to medium/large-scale problems. This section aims at
illustrating the ability of the proposed framework to tackle relatively large-scale
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Fig. 10.11. For the two-dimensional example (modified Gaussian kernel (10.1) and ω = 1/N),
number of strictly positive components of the solution υ∗α to problem (5.1) as a function of the conic
squared-kernel discrepancy D(cαυ∗α), for various penalization vectors d; all the curves have been
obtained thanks to the regularization-path strategy.

problems. The datasets have been obtained from the UCI Machine Learning Repos-
itory; see [7]. All the computations have been performed on a 2015 desktop with an
Intel Core i7-4790 processor with 16 GB of RAM; the various methods have been
entirely implemented in C.

11.1. MiniBooNE dataset. We consider the standardized entries of the Mini-
BooNE dataset (without labels); S thus consists of N = 129,596 points in R50. We
use a Gaussian kernel (see section 10) with ` = 0.02, and we set ω = 1/N and d = 1

(notice that ` = 0.02 belongs to the range of “good parameter values” for the SVM
binary classification of this dataset).

We compute the 3000 first events of the regularization path related to prob-
lems (5.1) and (5.2). We have α0 = 0.2188961 and α2999 = 3.546703 × 10−3, and
correspondingly κ0 = 0 and κ2999 = 0.655808 (notice that dTω = 1); a graphical
representation of the properties of these solutions is proposed in Figure 11.1. We can
observe that for κ > 0.5, the number of strictly positive components of υ∗κ increases
quickly with κ; the computation of the regularization path then becomes intractable
(notice that the calculation of the 3000 first events of the regularization path took
around 3 hours on our aforementioned 2015 desktop).

From the regulation path, we build the solutions to problem (5.2) for κ = 0.3 and
κ = 0.655 (i.e., for problem (5.1), α ≈ 4.400276×10−2 and α ≈ 3.571413×10−3); these
solutions have 76 and 1902 strictly positive components, respectively. The efficiency
of the induced approximate eigendecompositions is illustrated in Figure 11.2. For
κ = 0.3, we obtain a relatively accurate approximation of the three main eigenpairs
of Tµ while considering only 76 points (we recall that N = 129,596); the approxima-
tion of the other eigendirections is relatively poor. For κ = 0.655, the eight main
eigendirections of Tµ are approximate with high accuracy (i.e., 1 6 l 6 8), and the
approximations remains relatively accurate until l = 29. Interestingly, we observe

that contrary to the ratios
(
λ̂

[3]
l /λ̂

[4]
l

)2
, the ratios

(
λ̂

[1]
l /λ̂

[2]
l

)2
remain relatively high

for all the values of l presented in the graph (this behavior could be a consequence of
the decay of the spectrum).

To explore the type of solutions obtained for larger values of κ, we consider the
vertex-exchange strategy described in section 8.1. We compute an approximate so-
lution for κ = 0.8; the vertex-exchange algorithm is initialized at υ̃ = e1 and after
300,000 iterations, we obtain a Frank–Wolfe error bound of ε = 1.692408× 10−8; the
obtained approximate solution υ̂∗ to problem (5.2) verifies D(υ̂∗) = 4.934072× 10−5
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Fig. 11.1. For the MiniBooNE dataset (Gaussian kernel, ω = 1/N and d = 1), graphical rep-
resentation of the 3,000 first events of the regularization path related to problem (5.2) for increasing
κ: number of strictly positive components of υ∗κ as a function of κ (left); graph of κ 7→ D(υ∗κ)
and κ 7→ D(cκυ∗κ) (middle); and relation between κ and the parameter α of the regularized problem
(5.1) (right).
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Fig. 11.2. For the MiniBooNE dataset (Gaussian kernel, ω = 1/N and d = 1), approximate

eigenvalues λ̂
[1]
l , λ̂

[2]
l , λ̂

[3]
l , and λ̂

[4]
l induced by the solution to problem (5.1) with κ = 0.3 (top left),

and ratios
(
λ̂
[1]
l /λ̂

[2]
l

)2
and

(
λ̂
[3]
l /λ̂

[4]
l

)2
(top right); same things for κ = 0.655 (bottom left) and

(bottom right).

and has 9544 strictly positive components (in terms of conic squared-kernel discrep-
ancy, we obtain D(c�υ̂

∗) = 4.672895× 10−5).
To enhance sparsity, we perform a weak-pairwise merging of the approximate

solution υ̂∗ for κ = 0.8 (see section 8.2). After 5044 iterations, the merged solution
υ[5044] is supported by 4500 points and D(υ[5044]) = D(υ̂∗) + 1.061787 × 10−6 (i.e.,
increase of 2.15%).

We next compute the approximate eigendecompositions induced by υ̂∗ and υ[5044];
the results are presented in Figure 11.3. In particular, in both case, the 31 main
eigendirections of Tµ are approximated with high accuracy. We also observe that for
all the values of l presented in the graph, the approximation induced by υ[5044] is
equivalent, in terms of accuracy, to the approximation induced by υ̂∗, while being
related to a solution more than two times sparser.

11.2. Test subsample of the SUSY dataset. We consider the standardized
entries of the test subsample of the SUSY dataset (without labels), so that S consists
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Fig. 11.3. For the MiniBooNE dataset, accuracy of the approximate eigendecompositions in-
duced by the solution υ̂∗ to problem (5.1) with κ = 0.8 obtained from the vertex-exchange algorithm
(left) and from the merged solution υ[5044] (right).

Table 11.1
For the test subsample of the SUSY dataset, information relative to the approximate solutions to

problem (5.2) with κ = 0.3 returned by the vertex-exchange algorithm for four consecutive batches
of 50,000 iterations, the solver being initialized at υ̃ = e1; for each batch, execution time, total
number of iterations, Frank–Wolfe error bound ε, and number n of strictly positive components of
the approximate solution.

Batch 1 Batch 2 Batch 3 Batch 4

Time (in sec.) 1148.7 1158.3 1158.5 1159.1
Total iterations 50,000 100,000 150,000 200,000

ε 3.1413× 10−7 6.5477× 10−8 2.7049× 10−8 7.0928× 10−9

n 19,721 20,619 20,693 20,674

of N = 500,000 points in R18. We still use a Gaussian kernel (see section 10) with
` = 0.4, and we set ω = 1/N and d = 1. The computation of the distortion term Sω
took 5,665.6 seconds.

We compute an approximate solution (vertex-exchange strategy) for the con-
strained problem (5.2) with κ = 0.3; we perform four consecutive batches of 50,000
iterations each, the solver being initialized at υ̃ = e1. After 200,000 iterations (i.e., at
the end of the fourth batch), the obtained approximate solution υ̂∗ verifies D(υ̂∗) =
3.931629 × 10−5 and has n = 20,664 strictly positive components. Execution times
and evolution of the Frank–Wolfe error bound ε and of the sparsity of the approxi-
mate solution are reported in Table 11.1. We observe that a batch of 50,000 iterations
of the vertex-exchange algorithm took around 19 minutes; the approximate solution
obtained at the end of the first batch is already relatively accurate.

To enhance sparsity, we perform a weak-pairwise merging of the approximate
solution υ̂∗; the computation of 20,673 merging iterations took 78.86 seconds. The
merged solution υ[13674] is supported by 7,000 points and D(υ[13674]) = D(υ̂∗) +
5.271960 × 10−7 (i.e., an increase of only 1.34%). We then study the approximate
eigendecomposition induced by υ[13674]. Computing the 300 first normalized approx-
imate eigenvectors v̂l of KW induced by υ[13674] (i.e., v̂l ∈ RN is the vector corre-
sponding to ϕ̂l; see section 4.3) took 3,278.2 seconds (time for canonical extension

and rescaling), and we thus also obtain the approximate eigenvalues λ̂
[1]
l . For l and

l′ ∈ {1, . . . , 300}, we have maxl 6=l′ |(ϕ̂l|ϕ̂l′)L2(µ)| ≈ 0.003734, so that we can expect
the approximations ϕ̂l to be relatively accurate. To access precisely their accuracy,
we compute Tµ[ϕ̂l] (i.e., KWv̂l) for these 300 first approximate eigendirections; this
operation took 191,622.3 seconds (i.e., around 53 hours). The results are presented
in Figure 11.4. As already observed, the accuracy of the approximate eigendirections
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(
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(
�̂[1]l ∕�̂[2]l

)2

l

Fig. 11.4. For the test subsample of the SUSY dataset, graphical representation of the 300 first

approximate eigenvalues λ̂
[·]
l induced by the merged solution υ[13674] obtained from the approximate

solution υ̂∗ to problem (5.2) with κ = 0.3 (top); ratios
(
λ̂
[1]
l /λ̂

[2]
l

)2
and

(
λ̂
[3]
l /λ̂

[4]
l

)2
measuring the

accuracy of the underlying approximate eigendirections (bottom).

decreases when l increases (we recall that the eigenvalues of the approximate op-
erator are stored in descending order); all the obtained approximate eigenpairs are
remarkably accurate (while considering only 7,000 points among 500,000).

12. Conclusion. We have studied a QP-based strategy to design sparse quadra-
tures for the approximation of integral operators related to symmetric positive-
semidefinite kernels in a quadrature-sparzification framework, i.e., when only quadra-
tures with support included in a fixed finite set of points are considered. The points
selected through penalized squared-kernel-discrepancy minimization can in particular
be interpreted as the support vectors of one-class distorted SVMs defined from the
squared kernel, the initial measure, and the `1-type penalization term.

Special attention has been drawn to the approximation of the main eigenpairs of
an initial operator induced by the eigendecomposition of an approximate operator.
To assess the accuracy of these approximations, the notions of geometric approximate
eigenvalue and conic squared-kernel discrepancy have been introduced, and their prop-
erties have been investigated. We have in particular demonstrated that, for a given
penalization direction, increasing the impact of the penalization generally tends to in-
crease the sparsity of the approximate measure at the expense of reducing the overall
accuracy of the induced spectral approximation.

Numerical strategies to solve large-scale penalized squared-kernel-discrepancy min-
imization problems have been discussed. The regularization-path approach can be
used to explore the range of very sparse solutions, with the interest of leading to
a set of exact solutions (up to precision errors); the vertex-exchange strategy per-
mits the exploration of a wider range of solutions and offers a numerically efficient
approach to build approximate solutions. Two greedy heuristics based on iterative
pairwise-component merging have also been described, aiming at enhancing sparsity
while keeping squared-kernel discrepancy as low as possible.
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The main numerical bottleneck of the approach is the preliminary computation
of the dual distortion term gµ (i.e., in the discrete case, of Sω); this operation can
nevertheless be easily, and potentially massively, parallelized. Once gµ is known,
sparse solutions can be obtained readily. Assessing the accuracy of an approximate
eigendirection trough the computation of the four associated geometric approximate
eigenvalues can also prove challenging (the same complexity as the distortion term);
this operation is nevertheless optional, and the more affordable orthogonality test
might be performed to detect poorly approximated eigendirections.

We have observed that the penalization direction can have a significant impact
on the trade-off between sparsity and (conic) squared-kernel discrepancy, and specific
problem-based penalization directions have been discussed; the characterization of
efficient penalization terms is, however, a widely open problem. Investigating in more
detail the relations between sparsity, (conic) squared-kernel discrepancy, and accuracy
of the induced spectral approximations also appears as an interesting perspective. In
the matrix-approximation framework, the study of the properties of the low-rank ap-
proximations obtained by penalized squared-kernel-discrepancy minimization should
also deserve further attention.

Appendix A. Kernel discrepancy and integration in RKHS. Consider
the framework of section 2 and introduce the subset I (K) of M, defined as

I (K) =

{
µ ∈M

∣∣∣∣ ∫
X

√
K(x, x)dµ(x) < +∞

}
;

notice that what follows may be extended to signed measures on X .
From the reproducing property of K(·, ·) and the Cauchy–Schwarz inequality, we

have for all h ∈ H and for all µ ∈ I (K),

∣∣∣∣∫
X

h(x)dµ(x)

∣∣∣∣ 6 ∫
X

|h(x)|dµ(x) 6 ‖h‖H
∫

X

√
K(x, x)dµ(x).

The linear functional Iµ on H, defined as Iµ[h] =
∫

X h(x)dµ(x), is therefore contin-
uous. Thus, from the Riesz representation theorem, there exists hµ ∈ H such that
Iµ[h] = (h|hµ)H, and for x ∈X , hµ(x) =

∫
X K(x, t)dµ(t).

For µ and ν ∈ I (K), we have (hµ|hν)H =
∫

X×X K(x, t)dµ(x)dν(t). The kernel
discrepancy between two measures µ and ν ∈ I (K) is defined as

DK(µ, ν) = ‖hµ − hν‖2H = ‖hµ‖2H + ‖hν‖2H − 2(hµ|hν)H,

and EK(µ) = ‖hµ‖2H is sometimes referred to as the energy of the measure µ with
respect to K(·, ·).

For µ and ν ∈ I (K), from the Cauchy–Schwarz inequality, we have, for all h ∈ H,

∣∣∣∣∫
X

h(x)dµ(x)−
∫

X

h(x)dν(x)

∣∣∣∣ =
∣∣(h|hµ − hν)H

∣∣ 6 ‖h‖H√DK(µ, ν).

Thus, when the integrands belong to the RKHSH, the error induced by approximating
integrals with respect to µ by integrals with respect to ν has a tight bound in terms
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of kernel discrepancy; to approximate integrals with respect to µ, it is therefore of
interest to deal with a measure ν such that DK(ν, µ) is small; see, for instance, [5, 6]
for a further discussion.

Appendix B. Proofs. This section groups together the proofs of the results
stated in this work.

Proof of Proposition 2.1. Consider an o.n.b. {hj}j∈I of H. From (2.1), for all
j ∈ I, we have (

Tµ[hj ]
∣∣Tν [hj ]

)
H =

(
hj
∣∣Tν [hj ]

)
L2(µ)

=
(
Tµ[hj ]

∣∣hj)L2(ν)

=

∫
X×X

K(x, t)hj(x)hj(t)dµ(x)dν(t),(B.1)

so that (Tµ|Tν)HS(H) =
∑
j∈I
∫

X×X K(x, t)hj(x)hj(t)dµ(x)dν(t). For x and t ∈ X ,
we have K(x, t) =

∑
j∈I hj(x)hj(t), and thus

‖K‖2L2(µ⊗ν) =

∫
X×X

∑
j∈I

K(x, t)hj(x)hj(t)dµ(x)dν(t).(B.2)

Equalities (B.1) and (B.2) hold for any o.n.b. of H, so that we can in particular
consider an o.n.b. which contains the o.n.b. {

√
λkϕk}k∈I+µ of Hµ defined by Tµ. From

the linearity and continuity of Tµ, we then obtain(
Tµ|Tν

)
HS(H)

=
∑
k∈I+µ

∫
X

λ2
kϕ

2
k(t)dν(t) and ‖K‖2L2(µ⊗ν) =

∫
X

∑
k∈I+µ

λ2
kϕ

2
k(t)dν(t),

and we conclude by using the Tonelli theorem.

Proof of Lemma 2.1. From the properties of K(·, ·), the squared kernel K2(·, ·) is
symmetric and positive-semidefinite (see in particular the Schur product theorem);
in addition the squared kernel is nonnegative, i.e., K2(x, t) > 0 for all x and t ∈ X .
Considering the framework of Appendix A, we can remark that T (K) = I (K2), so
that the result directly follows from Proposition 2.1 and the definition of gµ and gν .

Proof of Lemma 2.2. The proof directly follows from the properties discussed
in sections 2.1 and 2.2. In particular, (2.3) is obtained by considering the o.n.b.
{
√
λkϕk}k∈I+µ of Hµ defined by Tµ while remarking that Hν ⊂ Hµ implies Tµ[h] =

Tν [h] = 0 for all h ∈ H0µ. The inequality involving τµ is consequence of the relation
‖h‖2L2(µ) 6 τµ‖h‖2H for all h ∈ H.

Proof of Theorem 3.1. We can first remark that if ‖ψl‖L2(µ) = 0, then Tµ[ψl] =

0 = λ̂
[·]
l ψl. For all k ∈ I+µ , we have ‖

√
λkϕk‖H = 1. By analogy, for l ∈ I+ν with

‖ψl‖L2(µ) > 0 (i.e., l ∈ Ĩ+ν ), we define λ̂
[1]
l so that ‖

√
λ̂

[1]
l ϕ̂l‖H = 1. From the Cauchy–

Schwarz inequality, we have

λ̂
[1]
l =

(√
ϑlψl

∣∣∣Tµ[
√
ϑlψl]

)
H

6
∥∥√ϑlψl∥∥H∥∥Tµ[

√
ϑlψl]

∥∥
H =

∥∥Tµ[
√
ϑlψl]

∥∥
H = λ̂

[2]
l

with equality if and only if ψl and Tµ[ψl] are collinear, i.e., ψl is an eigendirection

of Tµ. In particular, since ‖
√
ϑlψl‖H = 1, if ψl is an eigendirection of Tµ, then λ̂

[2]
l

corresponds by definition to the associated eigenvalue, i.e., Tµ[ψl] = λ̂
[2]
l ψl (a similar

argument also holds for λ̂
[4]
l ).
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From λ̂
[1]
l = (

√
ϑlψl|Tµ[

√
ϑlψl])H, we obtain the definition of λ̂

[3]
l by considering

the Hilbert structure of L2(µ) instead of the one of H (we recall that ‖ϕ̂l‖L2(µ) = 1).

The inequality λ̂
[2]
l 6 λ̂

[3]
l , with equality if and only if ψl is an eigendirection of

Tµ, directly follows from the relation λ̂
[3]
l =

(
λ̂

[2]
l

)2
/λ̂

[1]
l . Finally, from the Cauchy–

Schwarz inequality, we have

λ̂
[3]
l =

(
ϕ̂l
∣∣Tµ[ϕ̂l]

)
L2(µ)

6 ‖ϕ̂l
∥∥
L2(µ)

∥∥Tµ[ϕ̂l]
∥∥
L2(µ)

=
∥∥Tµ[ϕ̂l]

∥∥
L2(µ)

= λ̂
[4]
l

with, again, equality if and only if ψl is an eigendirection of Tµ.
The expansions (3.2) and (3.3) follow from the definition of the four geometric

approximate eigenvalues related to an approximate eigendirection of Tµ induced by

Tν , and the optimality properties of λ̂
[1]
l and λ̂

[3]
l are obtained by minimizing the

underlying second degree polynomials.

Proof of Theorem 3.2. The expressions of cν and φ(cν) follow from Proposition 2.1
and from the minimization of the univariate convex quadratic function

c 7→ φ(c) = ‖Tµ − cTν‖2HS(H) = ‖Tµ‖2HS(H) + c2‖Tν‖2HS(H) − 2c(Tµ|Tν)HS(H).

The characterization of Tcνν as an orthogonal projection and the fact that all such
operators lie on a sphere in HS(H) is a direct consequence of the definition of cν ;
notice, for instance, that, in HS(H),

Tcνν = cνTν =
(

(Tµ|Tν)HS(H)/‖Tν‖2HS(H)

)
Tν .

By definition, {
√
ϑlψl}l∈I+ν is an o.n.b. of Hν = Hcνν , and we have

√
λ̂

[1]
l ϕ̂l =

√
ϑlψl

for all l ∈ Ĩ+ν . Introducing an o.n.b. {hm}m∈J of the subspace H0ν of H, we obtain

DK2(µ, cνν) =
∑
l∈̃I+ν

∥∥∥∥Tµ [√λ̂[1]
l ϕ̂l

]
− cνϑl

√
λ̂

[1]
l ϕ̂l

∥∥∥∥2

H
(B.3a)

+
∑

l∈I+ν \̃I+ν

∥∥cνϑl√ϑlψl∥∥2

H +
∑
m∈J

∥∥Tµ[hm]
∥∥2

H.(B.3b)

Since all the terms appearing in (B.3b) are positive, (B.3a) can be turned into the
required inequality. We conclude by using the optimality properties of the approx-

imate eigenvalues λ̂
[1]
l and λ̂

[3]
l described in Theorem 3.1; for (3.8), we also use the

inequality ‖h‖2L2(µ) 6 τµ‖h‖2H for all h ∈ H.

Proof of Proposition 5.1. Assertion (a) follows fromDK2(µ, µ) = 0 andDK2(µ, ν)
> 0. From the first order optimality condition, for α > 0, a feasible υ∗α is the solution
to (5.1) if and only if, for any feasible υ, we have (υ−υ∗α)T∇Dα(υ∗α) > 0. Considering
υ∗α = 0 gives αd > Sω, leading to (b), in addition, since all the entries of S are
positive, there cannot exist a vector ε > 0 such that Sε = 0 and ε 6= 0, so that the
solution is in this case unique; also, since ω is feasible for (5.1), we obtain (c) by taking
υ = ω. For assertion (d), we first remark that the first order optimality condition
for υ = 0 gives (υ∗α)T∇Dα(υ∗α) 6 0. Next, if we assume that there exists k such
that [∇Dα(υ∗α)]k < 0, then for all β > (υ∗α)T∇Dα(υ∗α)/[∇Dα(υ∗α)]k > 0, we obtain
(βek−υ∗α)T∇Dα(υ∗α) < 0, and the first order optimality condition would be violated
for the feasible vector υ = βek (we recall that ek stands for the kth element of the

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

34
.5

8.
25

3.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3670 BERTRAND GAUTHIER AND JOHAN A. K. SUYKENS

canonical basis of RN , so that eTk∇Dα(υ∗α) = [∇Dα(υ∗α)]k). We thus necessarily have
∇Dα(υ∗α) > 0 and (υ∗α)T∇Dα(υ∗α) = 0 (since υ∗α > 0). To prove (e), we first remark
that

Dα(υ̃∗α) = Dα(υ∗α) + (υ̃∗α − υ∗α)T∇Dα(υ∗α) + 1
2 (υ̃∗α − υ∗α)TS(υ̃∗α − υ∗α).

Since Dα(υ̃∗α) = Dα(υ∗α) and (υ̃∗α − υ∗α)T∇Dα(υ∗α) > 0, we necessarily have (υ̃∗α −
υ∗α)T∇Dα(υ∗α) = 0 and (υ̃∗α −υ∗α)TS(υ̃∗α −υ∗α) = 0 (since the matrix S is symmetric
and positive-semidefinite), and the result follows. Assertion (f) is a direct corollary
of (d), since Sυ∗α > 0. To obtain (g) and (h), we consider α1 < α2, and we denote
by υ∗α1

and υ∗α2
some corresponding solutions to (5.1). We have D(υ∗α1

)−D(υ∗α2
) 6

α1d
T (υ∗α2

− υ∗α1
) and D(υ∗α1

) − D(υ∗α2
) > α2d

T (υ∗α2
− υ∗α1

), so that, necessarily,
dT (υ∗α2

−υ∗α1
) 6 0, and therefore D(υ∗α2

)−D(υ∗α1
) > 0. Assuming that α2 = α1 + ε,

with ε > 0, we can remark that Dα2(υ∗α2
) = Dα1(υ∗α2

) + εdTυ∗α2
> Dα1(υ∗α1

). In
addition, from (d), we can deduce that Dα(υ∗α) = 1

2

(
ωTSω − (υ∗α)TSυ∗α

)
, so that

the map α 7→ (υ∗α)TSυ∗α is decreasing (since α 7→ Dα(υ∗α) is increasing); finally, since
α 7→ 2D(υ∗α) = ωTSω + (υ∗α)TSυ∗α − 2ωTSυ∗α is increasing and α 7→ (υ∗α)TSυ∗α is
decreasing, the function α 7→ ωTSυ∗α is necessarily decreasing.

Proof of Proposition 5.2. If υ∗α is a solution to (5.1) with α > 0, then by defini-
tion, υ∗α minimizes D(·) over the set {υ > 0|dTυ = dTυ∗α}, so that υ∗α is a solution
to (5.2) with κ = dTυ∗α.

The condition κ 6 dTω follows directly from Proposition 5.1(c): a solution υ∗α
to (5.1) indeed necessarily satisfies dTυ∗α 6 dTω. For κ = 0, we have υ∗κ = 0,
which from Proposition 5.1(b) is a solution to (5.1) for α > maxk{[Sω]k/dk}. For
0 < κ 6 dTω, from Proposition 5.1(d), if υ∗κ is a solution to (5.1), then we necessarily
have (υ∗κ)T∇Dα(υ∗κ) = 0, leading to the expected value for α. The last assertions
follow directly from Proposition 5.1(g) and (h), and the relations between the solutions
to the problems (5.1) and (5.2).

Proof of Theorem 5.1. For 0 6 α < maxk{[Sω]k/dk} = α0, we have υ∗α 6= 0;
see Proposition 5.1(b). In addition, if α is such that S(υ∗α − ω) = 0, then cα =
1. We now assume that S(υ∗α − ω) 6= 0; from Proposition 5.1(d), we have (υ∗α)T

S(υ∗α − ω) + αdTυ∗α = 0, leading to cα = 1 +
αdTυ∗α

(υ∗α)TSυ∗α
> 1. By definition of cα, we

also have cα(υ∗α)TSυ∗α = ωTSυ∗α, so that

(ω − cαυ∗α)TS(ω − cαυ∗α) = ωTSω − cαωTSυ∗α = (ω − cαυ∗α)TS(ω − υ∗α) > 0,

and thus cα(υ∗α)TS(ω − υ∗α) 6 ωTS(ω − υ∗α), i.e.,

cα 6
ωTS(ω − υ∗α)

(υ∗α)TS(ω − υ∗α)
= 1 +

(ω − υ∗α)TS(ω − υ∗α)

(υ∗α)TS(ω − υ∗α)
.

Using Proposition 5.1(d), we obtain αcαdTυ∗α 6 αdTυ∗α + (ω − υ∗α)TS(ω − υ∗α) 6
αdTω, the last inequality being a consequence of Proposition 5.1(c).

Consider 0 6 α1 < α2 < α0; from Proposition 5.1(d) and by definition of cα, we
have(
cα1υ

∗
α2
− υ∗α1

)T [
S(υ∗α1

− ω) + α1d
]

=
(
cα1υ

∗
α2

)T
S
(
υ∗α1
− ω

)
+ α1cα1d

Tυ∗α2

=
(
υ∗α2

)T
S
(
cα1
υ∗α1
− ω

)
+ α1cα1

dTυ∗α2
−
(
cα1
− 1
)
ωTSυ∗α2

=
(
υ∗α2

)T
S(cα1

υ∗α1
− ω) +

α1

(υ∗α1
)TSυ∗α1

[
(ωTSυ∗α1

)dTυ∗α2
−(ωTSυ∗α2

)dTυ∗α1

]
> 0.

(B.4)
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Since (ωTSυ∗α2
)dTυα1

> (ωTSυ∗α1
)dTυα2

(we indeed assume that α 7→ ωTSυ∗α/d
Tυ∗α

is increasing), inequality (B.4) entails that (υ∗α2
)TS(cα1

υ∗α1
−ω) > 0, so that (cα2

υ∗α2
−

cα1
υ∗α1

)TS(cα1
υ∗α1
−ω) > 0, and thus, by convexity, D(cα2

υ∗α2
) > D(cα1

υ∗α1
); we re-

call that ∇D(υ) = S(υ−ω). For all α > 0, c > 0, and υ > 0, from Proposition 5.1(d),
we also have

(υ − cυ∗α)T
[
S(υ∗α − ω) + αd

]
> 0.(B.5)

We introduce τ = ωTS(cα2
υ∗α2
− cα1

υ∗α1
) = 2

(
D(cα1

υ∗α1
) − D(cα2

υ∗α2
)
)
, and β =

dT (cα2υ
∗
α2
− cα1υ

∗
α1

). From (B.5) and by definition of cα, we deduce that(
cα1υ

∗
α1
− cα2υ

∗
α2

)T
S
(
υ∗α2
− ω

)
= τ +

(
υ∗α2

)T ∇D (cα1υ
∗
α1

)
= τ +

1

cα2

(
cα2
υ∗α2
− cα1

υ∗α1

)T ∇D (cα1
υ∗α1

)
> α2β.(B.6)

From the Taylor expansion of D(cα2υ
∗
α2

) at cα1υ
∗
α1

, we can also deduce that

−1

2
τ > (cα2

υ∗α2
− cα1

υ∗α1
)T∇D(cα1

υ∗α1
).(B.7)

Since 0 < 1/cα2 6 1 and τ 6 0, inequalities (B.6) and (B.7) imply β 6 0, as
expected.

Proof of Proposition 6.1. Define the closed linear subspace GS =
span{K2(xk, ·)}Nk=1 of G, and let G0 = G⊥S be its orthogonal; by definition, gµ ∈ GS .
For any gS ∈ GS and g0 ∈ G0, we have

1
2‖gS‖

2
G + (gS |gµ)G 6 1

2‖gS + g0‖2G + (gS + g0|gµ)G = 1
2‖gS‖

2
G + (gS |gµ)G + 1

2‖g0‖2G .

In addition, for any k ∈ {1, . . . , N}, we have g0(xk) = 0, so that, necessarily, g∗α ∈ GS
(representer theorem), i.e., there exists β∗ = (β∗1 , . . . , β

∗
N )T ∈ RN such that g∗α =∑N

k=1 β
∗
kK

2
xk

. Restricting problem (6.1) to GS then yields, for β ∈ RN ,

minimize
β

1
2β

TSβ + βTSω subject to Sβ > −αd.(B.8)

We then introduce the Lagrangian function, for υ ∈ RN with υ > 0 (dual feasibility
condition),

L(β,υ) = 1
2β

TSβ + βTSω − υT
[
Sβ + αd

]
.

The primal optimality condition gives Sβ = S(υ − ω), leading to the Lagrange dual
(5.1) (written as a minimization problem). If υ∗α is a solution to (5.2), then a solution
β∗ to (B.8) needs to satisfy Sβ∗ = S(υ∗α − ω), so that we can in particular consider
β∗ = υ∗α − ω. Notice that when S is noninvertible, other choices for β∗ exist since
for any ε ∈ RN such that Sε = 0, we have S(β∗ + ε) = Sβ∗, but the solution
g∗α ∈ GS does not depend on such a ε. The equality g∗α(xk) = −αdk for all k ∈
{1, . . . , N} such that [υ∗α]k > 0 is a consequence of the complementary slackness
condition (υ∗α)T

[
S(υ∗α − ω) + αd

]
= 0.

Proof of Proposition 6.2. We follow the same reasoning as in the proof of Propo-
sition 6.1. By restricting problem (6.3) to GS , we obtain, for β ∈ RN ,

minimize
β,γ

1
2β

TSβ + βTSω − γ subject to Sβ > γd/κ.(B.9)

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

34
.5

8.
25

3.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3672 BERTRAND GAUTHIER AND JOHAN A. K. SUYKENS

The underlying Lagrangian function is then given by, for υ ∈ RN with υ > 0,

L(β, γ,υ) = 1
2β

TSβ + βTSω − γ − υT
[
Sβ − γd/κ

]
.

The primal optimality condition gives Sβ = S(υ − ω) and dTυ = κ, leading to the
Lagrange dual (5.2). If υ∗κ is a solution to (5.2), then a solution β∗ to (B.9) needs to
satisfy Sβ∗ = S(υ∗κ − ω), so that we can in particular consider β∗ = υ∗κ − ω. The
expression of γ∗κ follows from the complementary slackness condition (υ∗κ)T

[
S(υ∗κ −

ω) − γ∗κd/κ
]

= 0, as well as the equality g∗κ(xk) = γ∗κdk/κ for all k ∈ {1, . . . , N}
such that [υ∗κ ]k > 0.

Proof of Proposition 7.1. Let υα = θυ∗α1
+ (1 − θ)υ∗α2

, and consider J = Jα1 =
Jα2 ; we have

SJ,J [υα]J = SJ,J [θυ∗α1
+ (1− θ)υ∗α2

]J = [Sω]J − αdJ ,

so that [S(υα − ω) + αd]J = 0, and in the same way,

[S(υα − ω) + αd]Jc = θ[S(υ∗α1
− ω) + α1d]Jc + (1− θ)[S(υ∗α2

− ω) + α2d]Jc > 0.

By construction, υα > 0, and if k is such that [υα]k > 0, then k ∈ J (since these
conditions are verified by both υ∗α1

and υ∗α2
). We therefore have υTα

(
S(υα−ω)+αd

)
=

0, so that for all υ > 0, the optimality condition (υ − υα)T∇Dα(υα) > 0 holds, i.e.,
υα is a solution to (5.1), and Jα = J .

Proof of Proposition 7.2. We first recall that, from Proposition 5.1(e), for a given
α > 0, the terms ωTSυ∗α and dTυ∗α are always unique. From (7.1), for any solution
υ∗α to (5.1), there exists an nα × nα matrix G such that

[υ∗α]Jα = G
(
[Sω]Jα − αdJα

)
,(B.10)

and G is a generalized inverse of SJα,Jα (i.e., SJα,JαGSJα,Jα = SJα,Jα); see, for
instance, [2]. Combined with Proposition 7.1, condition (7.1) thus implies that the
maps α 7→ ωTSυ∗α and α 7→ dTυ∗α are piecewise linear; in addition, since the indices
of the strictly positive components of υ∗α always belongs to Jα, any change in the
sparsity pattern only involves null components of υ∗α, so that these two maps are also
continuous. We then introduce ζ(α) = ωTSυ∗α/d

Tυ∗α; on the interval [0, α0), the
function ζ(·) is continuous (since, on this interval, α 7→ ωTSυ∗α and α 7→ dTυ∗α are
continuous, and dTυ∗α > 0). From (B.10), and since [υ∗α]Jcα = 0, we have

ωTSυ∗α = [Sω]TJαG[Sω]Jα − α[Sω]TJαGdJα and dTυ∗α = [Sω]TJαGdJα − αdTJαGdJα .

Thus, if α > 0 is not a kink for problem (5.1), we obtain that ζ ′(α) > 0 if and only if(
[Sω]TJαGdJα

)2
6
(
[Sω]TJαG[Sω]Jα

) (
dTJαGdJα

)
.(B.11)

If G is symmetric and positive-semidefinite, then inequality (B.11) corresponds to
the Cauchy–Schwarz inequality and is therefore verified. Since the number of kinks
is finite, we can thus conclude that ζ(·) is increasing on [0, α0).

Proof of Lemma 7.1. Let υα be such that [υα]Jc =0 and [υα]J =(SJ,J)−1([Sω]J−
αdJ). Following (7.2), from the condition [S(υα − ω) + αd]Jc > 0, we define α+ as
the smallest α satisfying the constraint α

[
MdJ − dJc

]
l
6
[
M[Sω]J − [Sω]Jc

]
l
, for

all l ∈ {1, . . . , card(Jc)}. By definition (and in view of Remark 7.1), this constraint

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

34
.5

8.
25

3.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL QUADRATURE-SPARSIFICATION A3673

is satisfied by αp; the components l such that
[
MdJ − dJc

]
l
> 0 therefore carry no

information. The problem thus consists in searching for the smallest α such that

α >
[
M[Sω]J − [Sω]Jc

]
l
/
[
MdJ − dJc

]
l
, for all l such that

[
MdJ − dJc

]
l
< 0.

In the same way, we define α− as the smallest α such that α(SJ,J)−1dJ 6 (SJ,J)−1

[Sω]J .
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