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A Time Series Distance Measure for Efficient
Clustering of Input/Output Signals by Their

Underlying Dynamics
Oliver Lauwers and Bart De Moor

Abstract—Starting from a dataset with input/output time
series generated by multiple deterministic linear dynami-
cal systems, this letter tackles the problem of automatically
clustering these time series. We propose an extension to
the so-called Martin cepstral distance, that allows to effi-
ciently cluster these time series, and apply it to simulated
electrical circuits data. Traditionally, two ways of handling
the problem are used. The first class of methods employs a
distance measure on time series (e.g., Euclidean, dynamic
time warping) and a clustering technique (e.g., k -means,
k -medoids, and hierarchical clustering) to find natural
groups in the dataset. It is, however, often not clear whether
these distance measures effectively take into account the
specific temporal correlations in these time series. The
second class of methods uses the input/output data to
identify a dynamic system using an identification scheme,
and then applies a model norm-based distance (e.g., H2
and H∞) to find out which systems are similar. This, how-
ever, can be very time consuming for large amounts of long
time series data. We show that the new distance measure
presented in this letter performs as good as when every
input/output pair is modeled explicitly, but remains compu-
tationally much less complex. The complexity of calculat-
ing this distance between two time series of length N is
O(N log N).

Index Terms—Pattern recognition and classification,
machine learning, linear systems.
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I. INTRODUCTION

T IME series clustering is an important topic in modern
research. State-of-the-art clustering methods of other data

types are often not suited for this high-dimensional, tempo-
rally correlated data structure. Clustering is the task of finding
groups with similar elements in a dataset and consists of three
components: a similarity measure based on relevant data fea-
tures, a clustering algorithm and an evaluation criterion. While
the latter two components might carry over, defining a good
distance measure is a difficult problem, especially if one is
interested in the dynamics of the generating dynamical system
of the time series.

Representing the time series as convolutional single-input
single-output (SISO) linear time invariant (LTI) deterministic
dynamical systems further generates problems of its own, as
the contributions of the input signal and the impulse response
of the system are convolved in the time domain. It is thus not
intuitively clear how these two contributions can be separated,
for example when one is interested only in the dynamics of
the system and not in the specific input signal.

This problem grows ever more relevant as large scale
big data time series problems grow more prevalent in areas
like finance, medicine, or the industrial Internet of Things,
where clustering is important in tasks like anomaly detec-
tion [7], [13]. A typical industrial problem contains several
hundred sensors per machine, tens of machines per plant, and
several plants per industrial player, collecting data every few
seconds, for months or even years of operation time. This
results in datasets of several million time points for thousands
of series. Clustering techniques should thus scale well.

In Section II we look at state-of-the-art clustering methods
for time series from two perspectives, starting from a dataset
containing input/output time series pairs, generated by differ-
ent SISO LTI dynamical systems. From a machine learning
point of view, we use an automated clustering method with
an off-the-shelf time series distance such as the Euclidean
distance or Dynamic Time Warping (DTW). From a sys-
tem identification point of view, we apply norms such as
the H2 or H∞ norm to compare systems estimated from the
data. We find that these techniques either are very fast, but
give poor results, or perform well, but are computationally
expensive.
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Next, in Section III, we look at the Martin cepstral dis-
tance [3], [8], which combines insights from systems theory
into a distance measure that can be computed on the raw data.
This metric was defined for SISO ARMA models (i.e., LTI
models that use white noise as an input signal).

The main contribution of this letter is an extension of the
cepstral distance measure, that incorporates deterministic input
signals, and allows to calculate distances between a broader
class of SISO LTI dynamical systems. It thus allows to cluster
time series by dynamics, but remains computationally much
simpler than explicitly estimating models.

Subsequently, we apply this new distance measure in
Section IV to a simulation of electrical circuits, where we
generate a dataset consisting of input/output signal pairs, and
the problem is to identify which data belong to which generat-
ing system. Finally, we conclude this letter and provide some
paths for future research in Section V.

II. EXISTING METHODS

Existing methods to cluster time series employ a cluster-
ing technique, together with some distance measure. Liao [6]
discerns three types of distance measures: measures based on
raw data, measures based on features of the time series and
measures based on models. For the scope of this letter, we will
focus on the first and the latter (as the distance measure we
propose combines elements of these two broad classes). We
present two raw data distance measures, the Euclidean metric
and the Dynamic Time Warping metric [5], and two model-
based distance measures, connected to the H2-norm and the
H∞-norm. In the next section, we will introduce and extend
the cepstral distance [3], [8], which combines the efficiency of
the raw data distance measures with the insight in generative
dynamics of the model norms, and thus has representations
both as a raw data distance and as a model-based one.

A. Raw Data Distance Measures

In what follows we will define um to be the input signal
of the m-th element of a dataset, ym is the corresponding out-
put signal and um(k) or ym(k) is the value at timepoint k of
respectively the input and output of the m-th element of the
input/output dataset. Time series from element m start at k = 0
and end at k = Nm. The system that generated an output from
a given input will be called the generating (dynamical) system.

1) Euclidean Distance:
Definition 1: The Euclidean distance, dE(·, ·) treats the time

series as a vector, and applies the element-wise Euclidean
vector distance between two time series of same length Nm,
defined as

dE(ym, yn) =
√
√
√
√

Nm∑

k=0

(ym(k)− yn(k))2. (1)

Advantages
• The Euclidean distance is easy to calculate, allowing for

very efficient computation and clustering.
• No system identification step is needed.

Disadvantages
• There is no clear link between this distance measure and

the generating system.

• This measure treats the time series as a vector, and ignores
the temporal correlations in the data.

• This measure does not allow to compute distances
between time series of different lengths.

• This measure does not take the input into account.
2) Dynamic Time Warping: Dynamic Time Warping

(DTW) [5], [12] is an algorithm that tries to locally align
time series, by warping them such that the Euclidean distance
between the warped time series is minimal. Mathematically,
this warping, and the measure that is found in this way, can
be described as follows.

Given two output signals, y1 and y2, of length N1 and N2
respectively, a matrix M is constructed, where the (l, m)-th
element of M is defined as M(l,m) = (y1(l) − y2(m))2. A
warping path, W = w1, w2, . . . , wk, . . . , wK is then defined,
with each wk = (M(l,m))k an element of matrix M and
max(N1, N2) ≤ K < N1 + N2 − 1.

The path is subject to the boundary conditions w1 = M1,1
and wK = MN1,N2 (i.e., the path starts in one corner of the
matrix and ends in the opposite one), has to be continuous,
in such a way that two consecutive elements wk and wk+1
are maximally one column and one row apart, and has to be
monotonously increasing in its indices, i.e., that in going from
wk to wk+1, column nor row number can decrease.

Definition 2: We are now interested in the warping path
WDTW that minimizes the cost function

dDTW(y1, y2) = min

⎧

⎨

⎩

√
√
√
√

K
∑

k=1

wk

⎫

⎬

⎭
. (2)

The sum over this path is then the DTW distance between the
time series.

Though this algorithm is computationally expensive due to
the combinatorial nature of the problem, several lower bounds
have been devised that can be implemented efficiently. In what
follows, we use the lower bound from [5].
Advantages
• The DTW distance takes into account (part of) the local

temporal correlations.
• No system identification step is needed.
• Lower bounds on the distance are reasonably efficient.
• This measure allows to calculate distances between time

series of different lengths.
Disadvantages
• There is no clear link between this distance measure and

the generating system.
• The DTW distance as such is expensive to calculate.
• This measure does not take the input into account.

B. Model-Based Distance Measures

We use the same notation as in Section II-A. The generating
system of the input/output pair (um, ym) will be denoted by
Mm, and its corresponding transfer function will be written
Hm. Based on a model norm ‖ · ‖, the distance between two
models Mi and Mj is defined as ‖Hi −Hj‖.

1) H2-Norm:
Definition 3: The H2-norm, ‖H‖2, of a discrete-time sys-

tem M with transfer function H is defined as

‖H‖2 =
√

1

2π

∫ π

−π

Tr
{HH(eiω)H(eiω)

}

dω, (3)
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where Tr{} denotes the trace, the superscript ·H denotes the
Hermitian conjugate and i denotes the imaginary unit.

The H2-norm can be seen as the root-mean-square of the
system response to a normalized white noise input. It is thus a
measure of the power, or steady-state variance of this response.
The H2-norm will be infinite for unstable systems.
Advantages
• The H2-norm provides a physically interpretable way to

characterize underlying dynamics of time series.
• This norm allows to calculate distances between time

series of different lengths.
• This norm takes the input data into account.

Disadvantages
• A system identification procedure is needed, which is

both difficult to automate and often computationally
expensive (at least more expensive than the raw data
measures).

2) H∞-Norm:
Definition 4: The H∞-norm, ‖H‖∞, of a discrete-time

system M with transfer function H is calculated as

‖H‖∞ = max
ω∈[0,π [

|H(eiω)|. (4)

This norm thus measures the maximal gain of the frequency
response and is called the gain of the system. It becomes
infinite for systems with poles on the unit circle.
Advantages
• The H∞-norm provides a physically interpretable way to

characterize underlying dynamics of time series.
• This norm allows to calculate distances between time

series of different lengths.
• This norm takes the input data into account.

Disadvantages
• A system identification procedure is needed, which is

both difficult to automate and often computationally
expensive (at least more expensive than the raw data
measures).

III. CEPSTRAL DISTANCE

In this section we take a closer look at an insightful distance
measure on ARMA models, which can be interpreted both as
a raw data distance measure and as a model norm: the Martin
cepstral norm [3], [8]. We first give a very concise review of
the cepstral norm in the stochastic case, then proceed with an
extension that allows us to incorporate information about the
deterministic input signal.

A. Original Cepstral Norm

Based on the power spectral density, �y, of a signal y, we
can define its power cepstrum, cy as

cy = F−1(log(�y)), (5)

where F−1 denotes the inverse Fourier transform. This pro-
duces a series of coefficients, cy(k), with integer k ∈ [0, N],
where N denotes the length of time series y.

Definition 5: The cepstral norm, ‖H‖C, of model M with
transfer function H, and output y is defined as

‖H‖C =
N

∑

k=0

k
(

cy(k)
)2

. (6)

For ARMA models it was proven that there are multiple
methods to calculate this norm: it can be derived from the
subspace angles of the output Hankel matrices of the generat-
ing system [3] or from the mutual information of the output
space of a system, and from a combination of poles and zeros
of the transfer function of the model [8] (equivalent to the
one we will derive in Section III-B). Moreover, equation (6)
allows us to calculate the norm straight from raw data (see
also [9, Ch. 10]), without the need to identify the underlying
systems. We can thus connect the cepstral norm to a raw data
distance measure in the following sense.

Definition 6: The cepstral distance, dC(yi, yj), between two
time series, yi and yj, is defined as

dC(yi, yj) =
max{Ni,Nj}

∑

k=0

k
(

cyi(k)− cyj(k)
)2

, (7)

where max{Ni, Nj} − min{Ni, Nj} zeros are added at the end
of the cepstrum of length min{Ni, Nj}.
Advantages
• The cepstral distance has an interpretation in terms of the

generating models of the time series.
• The cepstral distance is easy to calculate, allowing for

very efficient computation and clustering.
• No system identification step is needed.
• This measure allows to calculate distances between time

series of different lengths.
Disadvantages
• This distance measure can only take information coming

from a stochastic input into account.

B. Extended Cepstral Distance

The cepstrum, defined in the previous section, finds its
roots in homomorphic signal processing [9, Ch. 10]. In this
type of processing, the original time series data, which often
involves complex multiplicative operations like convolutions,
is mapped, through a non-linear mapping, to a different
domain, that allows for linear filtering. The cepstrum, as in
equation (5), is a good example. The convolution in the time
domain changes into a multiplication by calculating the power
spectral density:

�y = |H|2�u. (8)

Applying a logarithmic transformation then turns the multipli-
cation in frequency domain into an addition, and we get

log(�y) = log(|H|2)+ log(�u). (9)

Finally, the inverse Fourier transform takes the problem back
to (a transformed version of) the time domain. Equation (5) is
thus effectively a method to transform the convolution into an
addition. Defining the cepstrum coefficients of the input signal
u as cu(k), and the contribution to the cepstrum coefficients
of the transfer function H as ch(k), we can write

cy(k) = cu(k)+ ch(k). (10)

This allows us to take the output, and separate the contribu-
tions from the input signal (which was the main disadvantage
left in the cepstral distance, see Section III-A) and the impulse
responses of the system. Based on input/output signal pairs,
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we now have a measure of the underlying generating system
dynamics by looking at ch(k) = cy(k)− cu(k).

Definition 7: The extended cepstral distance, dCe((yi, ui),
(yj, uj)), between two input/output pairs of time series, (yi, ui)

and (yj, uj), with respective transfer functions Hi and Hj, is
defined as

dCe((yi, ui), (yj, uj)) =
min{Ni,Nj}

∑

k=0

k
(

chi(k)− chj(k)
)2

. (11)

By interpreting the transfer function as a quotient of two
polynomials, with zeros and poles as their respective roots,
we can find an interpretation of these cepstrum coefficients.
Following the reasoning in [9, Ch. 10], we find (for stable,
minimum-phase systems):

ch(k) =
p

∑

j=1

α
|k|
j

|k| −
q

∑

j=1

β
|k|
j

|k| ∀k �= 0, (12)

where the α’s denote the p poles, and the β’s denote the q
zeros. This expression (which is analogous to the one in the
stochastic case) sets us on the path to rederive the frame-
work presented in [3] for the deterministic case. This, however,
requires an extension of the notion of subspace angles, which
is out of the scope of this letter.

We propose this extended cepstral distance as a way to
efficiently cluster input/output data by generating dynamics.
Advantages
• The extended cepstral distance is linked to the generating

model of the time series.
• The extended cepstral distance is easy to calculate,

allowing for very efficient computation and clustering.
• No system identification step is needed.
• This measure allows to calculate distances between time

series of different length.
• This measure takes the input into account.

Disadvantages
• The interpretation of the measure in terms of system

parameters and properties is not immediately clear, thus
the theoretical framework of the original cepstral distance
does not carry over trivially.

C. Computational Overview

A pseudo-code overview of the algorithm is shown in
Algorithm 1. Calculating the extended cepstral distance
amounts to estimating the power spectral density of both
input and output by Welch’s method [14] (employing the
FFT,1 which is of O(n log n), with n the length of the
windows considered in Welch’s method), taking the loga-
rithm of the resulting vector, and then applying an inverse
Fourier transform (employing the IFFT, running in O(N log N)

time, with N the length of the time series) on them. In the
end, we then apply a weighted Euclidean distance on the
results.

Note that, for very short time series (less than 27 time
points), we use the multitaper method [10] to achieve better
results. This method is a bit slower than Welch’s method, but

1Note that, for longer time series (i.e., 210 and beyond), the Fast Fourier
Transform [1] provides a clean enough output to work on. We could thus
speed up the algorithm even further for longer series.

Algorithm 1: Algorithm for the Extended Cepstral Distance

input : Two input/output signal pairs, (y1, u1) of length N1, and
(y2, u2) of length N2

output: The extended cepstral distance dCe ((y1, u1), (y2, u2)) between
these two pairs, as defined in Subsection III-B

1 for i← 1 to 2 do

2 �ui
Welch’s Method3←−−−−−−−−−− ui

3 cui ← ifft
(

log
(

�ui

))

4 �yi
Welch’s Method←−−−−−−−−−− yi

5 cyi ← ifft
(

log
(

�yi

))

6 // cui and cyi are vectors of length Ni
7 end
8 w = [

0, 1, . . . , max{N1, N2} − 1
]

9 add (max{N1, N2} −min{N1, N2}) 0’s to the cepstra of the signal pair
of length min{N1, N2}

10 dCe ((y1, u1), (y2, u2))← w ∗ ((

cy1 − cu1

)ᵀ − (

cy2 − cu2

)ᵀ)2

because we only apply it in the case of short time series, this
does not matter too much for the analysis here. The complex-
ity of calculating the extended cepstral distance between two
time series is then O(N log N), with N the length of the time
series. That of the Euclidean distance is O(N), standard DTW
is O(N2), while the lower bound in [5] is also O(N log N).
The complexity of explicitly identifying a system and calcu-
lating model norms depends very much on the identification
method used and the model size. Many of these techniques
employ, at their core, a SVD decomposition, of order O(M2N),
with M here being the model order. Often this core is then
repeated in non-convex optimization problems, solved itera-
tively. Furthermore, hyperparameters (e.g., model order) need
to be estimated, further increasing the computational cost. For
example, a simple grid search repeats this whole process for
every point in the grid.

IV. APPLICATION ON ELECTRICAL CIRCUITS

A minimal working example of the simulations performed
in this Section is available on GitHub.4

A. Simulation Set-Up

To test the proposed techniques, we simulate data coming
from electrical circuits. We start out by modelling two circuits
with the same topology, but different values for the R, L, and C
components. The topology was taken from a course on linear
physical systems analysis [2]. The network topology and the
values of the components are shown in Figure 1. The input of
the system is the current iu, the output is the voltage over L2,
ey. State-space models of order 3 are then written down for
these networks.

We provide both systems with 200 different input sig-
nals (100 outputs of LTI models of order 15, 50 multisine
waves corrupted by Gaussian white noise with standard devi-
ation of 0.1 and 50 white noise signals), and measure the
outputs. This generates a dataset of 400 input/output signal
pairs (200 inputs times 2 models). The question at hand is
whether we can use only this input/output data, to deter-
mine which pairs were generated by the same system, i.e.,

3For very short time series (i.e., fewer than 27 points), we use the multitaper
method [10] to achieve better results.

4https://github.com/Olauwers/Extended-Cepstral-Distance
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Fig. 1. Electric circuit that was used for the experiments. Two sets, S1
and S2, of values were chosen for the components, namely S1 = {R =
100�, L1 = 60H, L2 = 20H, C = 50F} and S2 = {R = 100�, L1 =
160H, L2 = 200H, C = 75F}. These two electrical circuits were used to
perform the simulations in Section IV.

Fig. 2. Performance of the different clustering algorithms, as mea-
sured by the ARI. For each time series length, shown on the x-axis,
the average ARI over 100 experiments of finding 2 clusters in 400 time
series is depicted as the height of the bar. The error bars show the stan-
dard deviation for the performance on these 100 experiments. Note that
the Euclidean, DTW LB and cepstral distance have an ARI of 0, i.e.,
they amount to random guessing. The extended cepstral distance per-
forms best for all series lengths. The model based distances were given
a wrong model order, but still give good performance for longer time
series.

cluster the dataset in two groups, defined by the generative
dynamics.

We will do this using the distance measures from
Sections II and III-A, keeping in mind that we use the
lower bound (DTW LB) from [5] as an efficient lower
bound to DTW. We compare to the technique developed in
Sections III-B and III-C, where we respectively gave a theo-
retical and computational overview of the distance measure.

The performance of these simulations will be measured by
the Adjusted Rand Index (ARI) [4], [11], which is a sim-
ilarity measure between partitions. The ARI compares two
partitions, S1 and S2, by calculating the ratio of pairs that
have the same partitioning status (i.e., belonging to the same
partition or not) in both S1 and S2 to the total amount of
data pairs, then adjusting the resulting ratio by subtracting
the expected value, to account for guessing (i.e., a parti-
tioning that is the result of random guessing is assigned an
ARI of 0). An ARI of 1 corresponds to perfectly similar
partitions.

We compare the partitions generated by a hierarchical
clustering method, cut-off at two clusters, using distance
matrices generated by the different distance measures of
Sections II and III versus the ground truth (i.e., the time
series was generated by the system with parameters S1 or with
parameters S2, as in Figure 1).

Fig. 3. Execution time of the different clustering algorithms, measured
in seconds. For each time series length, shown on the x-axis, the aver-
age time over 100 experiments of finding 2 clusters in 400 time series
is depicted as the height of the bar. The error bars show the standard
deviation for the execution time on these 100 experiments. Note that the
y-axis has logarithmic scale. The extended cepstral distance remains
several orders of magnitudes faster than the model-based distances.
Note that DTW LB quickly becomes the computationally most expensive
technique. The Euclidean distance is always fastest.

B. Results

The results for the set-up in the previous subsection are
shown in Figure 2, which shows the average and standard devi-
ation for the ARI of the simulation results, and Figure 3, which
shows the average and standard deviation for the execution
time of the simulations.

The extended cepstral distance gives the best results, manag-
ing to cluster the simulated signal pairs almost perfectly every
time. This is to be expected, as it was tailored specifically
to take into account the dynamics of the underlying model,5

and nothing but those dynamics. The reasons why it performs
better than the other measures will be explained in what fol-
lows, and we again use the distinction between raw data and
model-based distances measures from Section II.

1) Raw Data Distance Measures: The reason the other raw
data distance measures do not perform well on the problem
at hand, is because they are not able to separate the input
signal from the output signal. The dynamics of the output
are dominated by the input (the models generating the inputs
are of higher order than the models describing the electrical
circuits). If we only use white noise inputs the original cepstral
distance performs better (see the left hand side in Figure 4).6

Euclidean and DTW distances still do not deliver good results
when detecting the difference in dynamics. Explicitly adding
in the distance between the inputs did not improve results,
which were omitted.7

There is no hope to achieve better results by taking the input
signal into account in the Euclidean distance or the DTW dis-
tance, as these distances look at the shape of the signal –
which does not solve the problem at hand –, but at its gen-
erative dynamics. DTW is better at this job [5], but has a
big disadvantage: it takes a lot of time to compute, especially

5We redid the experiments for generating systems of higher order, and the
extended cepstral distance still performed best. Results were omitted.

6The original and extended cepstral distance are equivalent in this case, as
the cepstrum of white noise is only non-zero in its zeroth component, which
is omitted in the sum in equations (7) and (11), which then coincide.

7The code is still available on GitHub. The reader is encouraged to try out
any adaptation to the distance measures presented.
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Fig. 4. On the left, the performance is shown of the different raw data
distance measures, as measured by the Adjusted Rand Index (ARI), in
the case of white noise as an input, and time series of length 210. Here,
the average over 100 experiments with 400 output signals is shown.
Note that the original cepstral distance now shows the same perfor-
mance as the extended one. On the right, results of an experiment
where we provided the system identification step with the correct orders
of the models are shown. Here, we calculated an average over 100
experiments with 40 output signals, to reduce computation time. Again,
we simulated time series of length 210. The model-based distances now
show better performance.

for long time series, where it even surpasses the model-based
distance measures in computation time (see Figure 3).

The extended cepstral distance is thus preferred to cluster
input/output signals by dynamics of their generating models.

2) Model-Based Distance Measures: The model-based dis-
tance measures show better results than the raw data distance
measures, and this again is to be expected. The model-based
measures manage to peel out the information on the system
that generated the input/output pair. However, a priori we have
no information on the order of the underlying system, so we
arbitrarily have to set a model order. In this case, we estimated
transfer functions of order 5. If we share the correct model
order (3) with the identification algorithm, performance of the
model norms increases (Figure 4).

Schemes exist to estimate model orders, and more effort can
be put in correctly identifying the underlying model. However,
the model norm techniques are already several orders of mag-
nitude slower than the extended cepstrum distance measure
(Figure 3). For problems concerning large numbers of long
input/output-pairs, as can be found in realistic problems in
process industry (see, for example, [7], where more than 250
sensors make a measurement every 5 minutes for 6 months),
this becomes highly impractical.

The extended cepstral distance is thus preferred over explic-
itly identifying systems, because of both being easier to
automate, and taking less time to compute.

C. Non-Linear Loads

We performed additional tests on robustness against non-
liner loads in the circuits, replacing constant inductors with
saturating ones. Results depend heavily on saturation levels
and signal length, but the extended cepstral distance still out-
performs the others. We therefore do not show results here, but
provide an interactive tutorial on the accompanying GitHub,
where the reader is encouraged to experiment with different
values for the parameters of the non-linearity.

V. CONCLUSION

We present a distance measure that is as insightful as
a model norm-based distance, yet remains computationally
much simpler than explicitly estimating models. It allows to
meaningfully cluster large input/output signal pair datasets
based exclusively on the dynamics of the generating systems.
We have tested it on a simulation of electrical circuits, where
we started from two circuits with a current as input and a volt-
age difference over an inductor as output. We provided both
circuits with 200 different inputs, resulting in 400 input/output
pairs. The proposed measure performs as well as model-based
distances on estimates of the generative systems, but is much
easier to calculate. Other distance measures (Euclidean, DTW)
perform much worse.

We furthermore show that, in the stochastic input case, the
extended distance proposed in this letter reduces to the original
cepstrum distance, which was proven [3], [8] to be equivalent
to a model norm. This gives hope that the extended distance
could also be linked to a model norm.

The results indicate the extended cepstral distance measure
does a good job of capturing the dynamics of input/output
pairs. An application to a real-life dataset is needed to validate
the effectiveness in practice, but for the simulated prob-
lem at hand, the distance measure succeeded in perfectly
distinguishing different dynamics based on raw data alone.

Further research should look at further extensions of the
distance measure to more general classes of systems, such
as nD systems and MIMO systems. It is not intuitively clear
how the cepstrum should be defined in these cases, which
necessitates further effort.
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