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Preface

Here I am, finally writing what feels like the final chapter of a very long story,
and I am not only referring to the length of this manuscript, but to the journey
that had led to it. It all started in a small town in the italian Alps, where a
young boy with a passion for music started to take his first steps into the real
world. Having realized that the career of the rock star was too arduous, he
started to get interested in technologies related to sound and acoustics. “If you
are not good enough at creating good music, at least you can help at making
good music sound better”, he told himself.

Fourteen years passed since then, and I couldn’t have reached this point without
the people that had a fundamental role in this story. Erasmus of Rotterdam,
who pushed me to crawl out of my shell, to really leave my beloved mountains
for the first time and fly to flatland Finland. Marie Skłodowska Curie, who
supported me (financially) for years, made me experience new things, and
introduced me to many interesting people.

My main supervisor Prof. Toon van Waterschoot (feels good to come right after
Erasmus and Marie Curie, uhu?), who has been the best supervisor I could
have hoped for. Apart from the excellent mentorship and his constant support,
his enthusiasm and knowledge pushed me over the unavoidable difficulties and
setbacks. I can’t help but thinking of him not only as a supervisor, but also
as a friend, and I will cherish many moments from these years, especially the
unforgettable concert of our one-time band “the Reverberators” (featuring Nico
and Mina).

My co-supervisor Prof. Marc Moonen for the excellent supervision he has
provided throughout the years, for improving my scientific writing skills, for
his ideas and suggestions that always turned out to be extremely valuable, and
for his ability of showing me things from a different angle. I feel I could have
taken more advantage of his expertise also in the second part of the Ph.D., but
the cue for Friday meetings was often quite long.

i



ii PREFACE

My external co-supervisor, Prof. Søren Holdt Jensen, especially for hosting me
in Aalborg and for his cheerful attitude. I wrote my first journal paper during
my Danish winter, so I would call it a very fruitful visit.

A separate mention goes to Dr. Enzo De Sena. Working with him has been a
pleasure and his help has been always very valuable. I wish him all the best
for his academic career. Also to Prof. Vesa Välimäki from Aalto University
(Finland), to whom I will always be grateful for giving me the opportunity to
work on my Master’s thesis in his department. I am quite sure this story would
have taken a very different direction without his help.

Besides my supervisors, I would like to thank the chair and members of the
examination committee for their time and their helpful feedback on my thesis.
The preliminary defense was tough, but I enjoyed discussing with them about
my research. Additionally, I would like to separately thank my assessors, Prof.
Johan Suykens and Prof. Jan Swevers, for taking the time of following my
progress throughout the Ph.D.

Next come my colleagues at ESAT. Five years is a long time, and long is the list
of the people with whom I shared most of it. I hope I don’t forget anyone. First
the ‘senators’ of the DSP group: thanks Joe, Rodrigo, Bruno, Pepe, Paschalis,
Gert C., Alex, and Johnny, for making me feel part of the group from the
real beginning. Thanks to Marijn, Wouter B., Martijn, David, Jorge, Hassan,
Hanne, and Rodolfo, who are now keeping up the name of the DSP group in
Belgium and around Europe, and finally my current colleagues: Amin, Giuliano,
Niccolò, Randy, Mina, Thomas, Jeroen, Filippos, Fernando, Wouter L., Robbe,
Neetha, Duowei, Gert D., Maja and Mohit. Among these names are some of
who I consider my best friends during my years in Leuven.

The DREAMS team, including both supervisors and researchers. If all our
seasonal schools and other events have been so enjoyable and formative is
mostly because of them. It has been a great experience from which I learned a
lot, not only from a scientific perspective, but on many different levels. I would
like to explicitly thank the fellows that survived the long Danish winter with me
(Clément, Adam, Neo, and Adel), those who visited us in Leuven (Pablo and
Ante), and Aldona for being so good at her job and such a positive presence at
work. My thoughts also goes to Nejem, who will not be forgotten.

I had a great time in Leuven and made many friends. Leo, Oreste, Carlo,
Daniele, Sophie, Alice, Ana, Dan, Daryna, Francesco, Marta, Baharak,
Alessandra, Silvia, Maria, Ivana, Ewa, Gabriele, Federico, Enrico, Nina, Juan,
Serkan, Matthew, Felipe, Iman, Lisa, Attilio, Marcello, and all the others I
forgot to mention. Thank you all for the good times we spent together, all the
fun, the drinking (maybe too much sometimes), the eating, the talking, the
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chilling. I will never forget it, and I hope we will manage to stay in contact
somehow. A special thank goes to Giuliano and Deniz, who I consider more
than friends (cfr. Giuliano’s Ph.D. thesis), and with whom I shared many
things and moments. Thanks for your help during my ’writing days’. I am
happy we will live only 130 km apart, even though in different countries.

And no, I didn’t forget my friends in Italy, in particular those you really realize
are special only when you are far away. I am thinking of you, Teo, Lomba, Lela,
Bona and Silvia. But also Robi, Chicca, Aldo, Valerio, Claudio, my classmates
from high-school, and all the other friends from Valsassina. And sorry Arpi,
Cesare and Diego for breaking up the band, but thanks for all the fun we had
playing together.

And then comes the family. Nothing would have been possible without my
parents, Umberto and Margherita, who supported me on this journey. I am
very thankful for that and I am sure you are proud of me, which makes me
proud as well. I am especially grateful to my mom. She was not happy to see
me leave at first, but she knew it was my wish and that it was for my best. Her
constant presence on a distance has been a certainty all these years. Not less
important are my siblings, for their encouragement and friendship. My brother
Alessio, for passing me the passion for music, and my sister Cecilia, for being
so kind and for raising two amazing young men, Davide and Stefano. And the
rest of the family, of course, Paolo, Vichi, Giovanna and Ste, Vito and Corinne,
Marina and Orazio, among the others.

And at last, because she is at the same time family and friend, comes Ece. I
cannot thank her enough for her love and support in the difficult moments,
especially in this last year, for all her patience and the time spent on the IC
Brussels train to come and stay with me for the weekend. I hope I will be
as supportive when her turn to finalize her Ph.D. comes. Thanks sevgilim for
the amazing moments we already spent together, and the many more that are
yet to come. After 4 years, with definitely too much commuting, our time has
finally come to live and build something beautiful together.

I began by saying that this felt like the end of a long story, but I now realize it
is just the beginning of a new chapter, full of new challenges, new experiences,
new things, that will change my life for the better. I will bring with me what
I learned and the great people I met in Belgium, and I hope the Netherlands
will be as kind and generous to me as the countries that hosted me until now.

Giacomo Vairetti
July 2018





Abstract

Room acoustic signal enhancement (RASE) applications, such as digital
equalization, acoustic echo and feedback cancellation, which are commonly
found in communication devices and audio equipment, aim at processing the
acoustic signals with the final goal of improving the perceived sound quality
in rooms. In order to do so, signal processing algorithms require the acoustic
response of the room to be represented by means of parametric models and to
be identified from the input and output signals of the room acoustic system.
In particular, a good model should be both accurate, thus capturing those
features of room acoustics that are physically and perceptually most relevant,
and efficient, so that it can be implemented as a digital filter and used in
practical signal processing tasks.

This thesis addresses the fundamental question in room acoustic signal
processing concerning the appropriateness of different parametric models for
room acoustics. Most room acoustic signal processing algorithms rely on the
simplicity and versatility of all-zero (AZ) models, which however may require
a large number of parameters to approximate a room impulse response (RIR)
with high accuracy. The main goal of this thesis is then to develop parametric
models with the same modeling accuracy as AZ models, but with lower model
complexity. Pole-zero (PZ) models and especially models based on orthonormal
basis functions (OBFs) are investigated. The properties of OBF models, such
as orthogonality and scalability, are exploited in the development of iterative
scalable algorithms, which provide numerically well-conditioned estimates of the
model parameters. The nonlinear problem of estimating the pole parameters
from measured RIRs is approached with a grid-search method, which not only
provides stable and accurate estimates, but also enables an arbitrary allocation
of the spectral resolution. A reduction in the number of parameters of 50%
compared to AZ models is achieved in full-band, and up to 75% in the low and
mid frequencies. A further reduction is obtained by estimating a set of poles
common to multiple RIRs, based on the physically-motivated assumption of
the poles being independent of the loudspeaker and microphone positions.
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In many algorithms for RASE applications, the RIR has to be identified from
speech or audio input-output signals, typically using adaptive digital filters.
Fixed-poles infinite impulse response (IIR) adaptive filters based on OBF
models, or simply OBF filters, present interesting properties in terms of error
performance and convergence of the filter coefficients, which are dependent on
the number and position of the fixed poles. A grid-search approach has been
adopted for the pole estimation also in the multi-channel identification case,
thus avoiding the use of recursive nonlinear algorithms. The resulting iterative
algorithm adapts the linear coefficients of the multi-channel OBF filter using
a modified version of the normalized least mean squares (NLMS) algorithm,
meant to deal with issues at very low model orders, whereas the standard NLMS
is used to track correlation parameters, based on which a new pair of complex-
conjugate poles is fixed in the filter. A significant improvement in terms of
identification accuracy and convergence compared to finite impulse response
(FIR) filters, as well as robustness with respect to changes in the microphone
positions, is observed at low frequencies, especially in small or damped rooms.
The reduction in the filter order and the use of a common set of poles also helps
in addressing some of the issues encountered in RASE applications, such as
echo path undermodeling in acoustic echo cancellation, or frequency allocation
in inverse filtering for digital equalization.

Particular attention is addressed to the low-frequency region of modal
resonances, where the acoustics of small rooms is typically more problematic.
In this regard, a series of acoustic measurements have been performed in a
rectangular room using a subwoofer as sound source. The issues of measuring
RIRs at low frequencies, mostly related to high ambient noise and to the
nonlinear distortions produced by the subwoofer, are addressed and partially
solved by means of the exponential sine-sweep method, a careful calibration
of the measuring equipment and postprocessing operations. Moreover, a
novel procedure for estimating the frequency-dependent reverberation time
is suggested.

Finally, two applications in the context of digital equalization are presented. The
first introduces a design procedure for a low-order equalizer using parametric
IIR filters with improved mathematical tractability of the equalization problem
and other desirable properties, which is used for minimum-phase equalization
of loudspeaker and room responses. The second application describes the
implementation of an existing solution for nonminimum-phase multi-channel
equalization of car cabin acoustics, which involves the modeling of different
aspects of the acoustic transfer functions. The common-poles version of a
modeling algorithm for PZ models is derived, and adapted for estimating
excess-phase zeros, which are then used to compensate for nonminimum-phase
distortions.



Korte Inhoud

Ruimteakoestische signaalverbetering (RASE), met toepassingen als digitale
egalisatie, akoestische-echo- en feedback-onderdrukking die we terugvinden in
heel wat communicatietoestellen en audio-apparatuur, beoogt de verwerking
van akoestische signalen met als einddoel de verbetering van de geluidskwaliteit
waargenomen in een ruimte. Daartoe maken signaalverwerkingsalgoritmes
gebruik van parametrische modellen die de akoestische respons van de
ruimte voorstellen en die geïdentificeerd worden op basis van input- en
outputsignalen van het ruimteakoestische systeem. Een goed model moet
enerzijds nauwkeurig zijn, om de fysisch en perceptueel meest relevante
kenmerken van de ruimteakoestiek te kunnen weergeven, en anderzijds efficiënt
zijn, zodat het kan worden geïmplementeerd als een digitaal filter voor gebruik
in praktische signaalverwerkingstaken.

Dit proefschrift behandelt de fundamentele vraag in welke mate verschillende pa-
rametrische modellen voor ruimteakoestiek geschikt zijn voor ruimteakoestische
signaalverwerking. De meeste ruimteakoestische signaalverwerkingsalgoritmes
steunen op de eenvoud en veelzijdigheid van all-zero (AZ) modellen, hoewel die
doorgaans een groot aantal parameters vereisen om een ruimte-impulsrespons
(RIR) met hoge nauwkeurigheid voor te stellen. Het voornaamste doel van dit
proefschrift bestaat bijgevolg in de ontwikkeling van parametrische modellen
met dezelfde modelleringsnauwkeurigheid als AZ modellen maar met een lagere
modelcomplexiteit. Pole-zero (PZ) modellen en in het bijzonder modellen
gebaseerd op orthonormale basisfuncties (OBFs) worden hier onderzocht. De
eigenschappen van OBF modellen, zoals orthogonaliteit en schaalbaarheid,
worden aangewend in de ontwikkeling van iteratieve, schaalbare algoritmes die
numeriek goed geconditioneerde schattingen van de modelparameters afleveren.
Het niet-lineaire probleem om de poolparameters uit opgemeten RIRs te
schatten, wordt benaderd via een grid-search methode die niet enkel stabiele
en nauwkeurige schattingen oplevert maar ook een willekeurige allocatie van de
spectrale resolutie toelaat. Ten opzichte van AZ modellen wordt een reductie
van 50% in het aantal parameters behaald over de volledige bandbreedte, en tot
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75% in de lage en middenfrequenties. Een verdere reductie wordt bekomen door
een set van gemeenschappelijke polen voor meerdere RIRs te schatten, gebaseerd
op de fysisch gemotiveerde veronderstelling dat de polen onafhankelijk zijn van
de luidspreker- en microfoonposities.

In heel wat algoritmes voor RASE toepassingen dient de RIR geïdentificeerd te
worden op basis van spraak- of audio-input-outputsignalen, typisch met behulp
van adaptieve digitale filters. Adaptieve filters met een oneindige impulsrespons
(IIR) en vaste polen gebaseerd op OBF modellen, kortweg OBF filters, bezitten
interessante eigenschappen in termen van foutperformantie en convergentie
van de filtercoëfficiënten, afhankelijk van het aantal en de positie van de
vaste polen. Een grid-search methode wordt ook toegepast voor de schatting
van de polen in het meerkanaals identificatiescenario, waardoor het gebruik
van recursieve niet-lineaire algoritmes wordt vermeden. Het resulterende
iteratieve algoritme past de lineaire coëfficiënten van het meerkanaals OBF
filter aan door middel van een aangepaste versie van het normalized least
mean squares (NLMS) algoritme, waardoor problemen bij erg lage modelordes
kunnen worden vermeden, terwijl het standaard NLMS algoritme gebruikt wordt
om correlatieparameters te volgen, op basis waarvan een nieuw paar complex
toegevoegde polen wordt vastgezet in het filter. Een significante verbetering in
termen van identificatienauwkeurigheid en convergentie vergeleken met eindige-
impulsrespons (FIR) filters, alsook robuustheid ten opzichte van veranderingen
in de microfoonposities, worden vastgesteld bij lage frequenties, in het bijzonder
in kleine of gedempte ruimtes. De reductie in de filterorde en het gebruik van
een gemeenschappelijke set polen draagt ook bij tot de oplossing van een aantal
problemen die zich voordoen in RASE toepassingen, zoals ondermodellering van
echopaden in akoestische-echo-onderdrukking of frequentieallocatie in inverse
filtering voor digitale egalisatie.

Bijzondere aandacht wordt besteed aan het laagfrequente gebied van modale
resonanties, een gebied waarin de akoestiek van kleine ruimtes vaak meer
problematisch is. In deze context werd een reeks akoestische metingen
uitgevoerd in een rechthoekige ruimte met een subwoofer als geluidsbron. De
problemen inherent aan het meten van RIRs bij lage frequenties, die hoofdza-
kelijk samenhangen met sterke achtergrondruis en niet-lineaire vervormingen
geproduceerd door de subwoofer, worden aangepakt en deels opgelost door
middel van de exponentiële sine sweep methode, de zorgvuldige calibratie van
de meetapparatuur en de nabewerking van de metingen. Daarnaast wordt een
nieuwe procedure voorgesteld voor het schatten van de frequentieafhankelijke
nagalmtijd.

Tot slot worden twee toepassingen in de context van digitale egalisatie
voorgesteld. De eerste toepassing leidt een ontwerpprocedure in voor lage-orde
egalisatie op basis van parametrische IIR filters. Deze procedure wordt gebruikt
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voor minimumfase-egalisatie van luidspreker- en ruimteresponsen en vertoont
wenselijke eigenschappen waaronder een elegante wiskundige beschrijving van
het egalisatieprobleem. De tweede toepassing beschrijft de implementatie van
een bestaande oplossing voor niet-minimumfase meerkanaalsegalisatie van de
akoestiek in een wagen, waarin verschillende aspecten van de akoestische
transferfuncties gemodelleerd worden. Een modelleringsalgoritme voor PZ
modellen met gemeenschappelijke polen wordt afgeleid en aangepast om excess-
phase zeros te schatten, die vervolgens gebruikt worden om niet-minimumfase
vervormingen te compenseren.





Glossary

Acronyms

AD analog-to-digital

AEC acoustic echo cancellation

AFC acoustic feedback cancellation

AIR acoustic impulse response

ANC active noise control

AP all-pass

APA affine projection algorithm

AR auto-regressive

ARMA auto-regressive moving-average

ATF acoustic transfer function

AVR acoustic virtual reality

AZ all-zero

BB block-based

BFGS Broyden-Fletcher-Goldfarb-Shanno

BU Brandenstein-Unbehauen

CAPR common-acoustical-poles and their residues
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CAPZ common-acoustical-poles and zeros

CR convergence rate

DA digital-to-analog

DCT discrete cosine transform

DFT discrete Fourier transform

DRC digital room correction

DTFT discrete-time Fourier transform

EDC energy decay curve

ERB equivalent rectangular bandwidth

ERLE echo return loss enhancement

ESS exponential sine-sweep

FIR finite impulse response

FPAF fixed-poles adaptive filter

FT Fourier transform

GF Green’s function

GMP group matching pursuit

GN Gauss-Newton

HF high frequency

HP high-pass

IDFT inverse DFT

IF instantaneous frequency

IIR infinite impulse response

LASSO least absolute shrinkage and selection operator

LF low frequency

LIG linear-in-the-gain

LMS least mean squares

LP low-pass
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LS least squares

LSDM log-spectral difference measure

LTI linear and time-invariant

MA moving-average

MFD matrix fraction description

MIMO multiple-input/multiple-output

MLS maximum-length sequence

MP matching pursuit

MSE mean square error

NF noise floor

NLIG nonlinear-in-the-gain

NLMS normalized least mean squares

NM normalized misalignment

NMSE normalized mean square error

NSSE normalized SSE

OBF orthonormal basis function

OMP orthogonal matching pursuit

PF parallel filter

PFE partial fraction expansion

PLDM perceptual linear distortion measure

PSD power spectral density

PZ pole-zero

RASE room acoustic signal enhancement

RHS right-hand side

RIM randomized image-source method

RIR room impulse response

RLS recursive least squares

RMS root mean square
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RPE recursive prediction error

RRE room response equalization

RT reverberation time

RTF room transfer function

SAEC stereophonic acoustic echo cancellation

SB stage-based

SD steepest descent

SDM spectral distance measure

SFM spectral flatness measure

SIMO single-input/multiple-output

SISO single-input/single-output

SNR signal-to-noise ratio

SPL sound pressure level

SSE sum of squared errors

STMCB Steiglitz-McBride

TD transform-domain

TF transfer function

VAD voice activity detection

VSS variable step size

wBU warped BU

WFIR warped FIR

WIIR warped IIR

WN white noise
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Chapter 1

Introduction

Sound is all around us, and it surely is an important aspect of our lives. Through
sound we communicate, with our voice and with music we express emotions,
and from sound we extrapolate information about the environment we are in,
becoming aware even of events out of our sight. Since, in modern life, we spend
most of our time within four walls (actually six, considering floor and ceiling),
what we most often hear is the combination of the sound emitted by a source
and the result of the same sound interacting with the surfaces of the room.
Indeed, the acoustic properties of the space, mostly its dimensions and the
characteristics of the walls and objects within, determine how sound is modified
before reaching our ears. Whenever a sound wave hits a surface, its energy is
partially reflected in one or multiple directions and, after a number of reflections,
it finally arrives at the listener. The buildup of all these reflected sounds, delayed
in time and attenuated due to wall absorption, is called reverberation, and its
importance to us is related to the features that it adds to the sound we hear.

Reverberation is sometimes a desirable property of rooms. We are so used to
hearing sound in enclosed spaces that a complete lack of reverberation, as it
can be experienced in an anechoic room, makes us uncomfortable. A moderate
amount of reverberation is then favorable for the human voice to be perceived
as more natural and pleasant. Moreover, reverberation is essential for music.
Concert halls are specifically designed for reverberation to support the sound
coming from the stage and give the listener the impression of being immersed
in it [2]. On the other hand, ‘poor’ acoustics or excessive reverberation can be
deleterious. Speech communication is adversely affected by strong reverberation,
resulting in a reduction of intelligibility [3], whereas the perceived sound quality
of music or speech is degraded if strong reflections are present and the acoustics
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of the room is somewhat unbalanced. It is then often necessary to correct
for the room acoustics and to compensate for its undesirable effects. And
if optimization of the room dimensions and shape [4] or acoustic treatment
using passive devices, such as absorbers and diffusers [5], are options for newly
designed spaces and dedicated rooms, other solutions are needed in general.

In many practical room acoustic signal enhancement (RASE) applications,
sound is reproduced in the acoustic environment through loudspeakers and
captured by microphones. Digital signal processing tasks dealing with the
enhancement of sound signals in rooms thus aim at processing the loudspeaker
and microphone signals in the attempt to correct for the detrimental effects of
reverberation, so as to improve the quality of the perceived sound signal.

Digital equalization of room acoustics [6, 7, 8, 9] aims at processing either the
loudspeaker or the microphone signals in order to achieve a desired response
at certain positions in the room. Two main scenarios are usually found in this
context. In the pre-equalization scenario, commonly referred to as digital room
correction (DRC), the signals are processed before being sent to the loudspeakers
so as to pre-compensate for the undesired effects added to the sound by the
room acoustics. Alternatively, post-equalization, also known as dereverberation,
can be performed by processing the microphone signals in order to reduce the
amount of reverberation and to partially restore the original source signal.

The purpose of artificial reverberation [10, 11] is not to reduce reverberation
but rather to enhance it. For instance, the acoustic features of a room can
be augmented by capturing sound and playing it back in the room after some
manipulation [12, 13], or reverberation can be applied to a sound signal giving
the impression that such signal was generated in a different acoustic environment,
a very common practice in music and film post-production. This idea has been
extended in recent years toward the development of acoustic virtual reality
(AVR) systems [14, 15], where a simulated acoustic environment is reproduced
through headphones or multiple loudspeakers to recreate a realistic listening
experience, with applications in entertainment [16], acoustic design [17], and
other fields [18, 19, 20, 21].

Another common room acoustic signal processing task is the elimination of
artifacts such as echo and feedback from the microphone signals, which are
familiar problems in hands-free communication and public address systems.
Even though the purpose of acoustic echo cancellation (AEC) [22, 23] and
acoustic feedback cancellation (AFC) [24] is not directly the correction of the
room acoustics or the control of reverberation, the sound signal is modified by
the acoustics of the room, so that the acoustic path between the loudspeaker
and the microphone has to be simulated and applied to the loudspeaker signal
to be able to remove the echo or feedback effect from the microphone signal.
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In order to correct, enhance or synthesize the room acoustics, most of these
applications require the acoustic response to be either measured or identified
from the microphone and loudspeaker signals. The room impulse response (RIR)
for given positions of the source and the receiver can be measured in various
ways [25], from the recording of the room response to an impulsive source,
produced e.g. by a handclap, a starting pistol or a popping balloon, to more
sophisticated procedures involving the use of particular kinds of stimuli.

Once a RIR has been measured, it has to be represented in a form that can
be used to process the sound signals in practice. Parametric modeling of room
acoustics [26] aims at representing the input-output behavior of the system,
i. e. its room transfer function (RTF), using a rational expression in the z-
transform domain, which can be implemented as a digital filter. Models using
finite impulse response (FIR) filters, whose parameters are the coefficients of the
sampled and truncated RIR, are simple to use, but may require a large number
of parameters in order to capture the true dynamics of the room response.
Alternatively, a more compact representation can be achieved by employing
models implemented as infinite impulse response (IIR) filters, which however
present difficulties in the estimation of the filter parameters.

In recent years, parametric models based on orthonormal basis functions
(OBFs) [27] received growing attention in the field of acoustic signal processing,
since they allow to efficiently represent the resonant behavior of a room response
by means of an IIR filter, without some of the difficulties of conventional models.
Examples of their use are found in loudspeaker response equalization [28] and
modeling of room, loudspeaker, and musical instrument responses [29, 30, 31, 32],
speech synthesis [33], AEC [34] and AFC [35], and also in active noise control [36].
One partially unsolved issue, however, is the estimation of the nonlinear
parameters of the model, which would normally require nonlinear optimization
techniques.

Regardless of the model used, it is often impossible to first obtain a measurement
of the room response. It is then necessary, in this case, to identify the
parametric room model directly from the loudspeaker and microphone signals.
Adaptive filters are normally used for this purpose, where the filter parameters
are updated in steps at every new sample of the input signal based on some
performance criterion, which may vary based on the specific task. Adaptive
filters are also useful to track variations of the RTF in time, due to changes in
the acoustics of the room or in the position of the source or the receiver. The
added difficulty in the identification context is the fact that the input signal
is often non-stationary and presents a non-white spectrum, as is the case for
speech signals, so that the parameters of the adaptive filter may converge slowly
toward an optimal solution.
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The properties of OBF models provide some advantages compared to other IIR
filters also in the identification context. Moreover, the adaptation of the linear
filter coefficients follows the same rules under the same conditions as for FIR
adaptive filters, such that most algorithms developed for FIR filters can be
easily employed for the OBF counterpart with minor modifications. It follows
that OBF models and the corresponding adaptive filters are good candidates
to address some of the issues frequently encountered in RASE applications.

The rest of the chapter is organized as follows. Section 1.1 provides some basics
and definitions of room acoustics useful for the understanding of the subsequent
topics. A brief overview of methods for measuring RIRs is given in Section 1.2,
whereas Sections 1.3 and 1.4 give some insight into modeling and identification
of room acoustics systems with conventional and OBF parametric models. In
Section 1.5, some of the RASE applications cited above are described. Finally,
an overview and a chapter-by-chapter outline of the thesis is given in Section 1.6,
in which the objectives and the contributions of this thesis are highlighted.

1.1 Room acoustics

The acoustics of an enclosed space is the result of the complex interaction
of a number of different factors. The characteristics of the room, such as
its dimensions, shape, and the acoustic properties of the walls and objects,
determine in which ways a sound wave propagating in space is absorbed,
reflected, or scattered in multiple directions.

In acoustic signal processing, the room is usually considered with good
approximation as a linear system, where the output (the microphone signal)
is the result of a linear transformation of the input (the loudspeaker signal),
known as convolution. A room acoustic system can be then described by means
of its RIR, i.e. the output response for an impulsive input signal, or its RTF,
i. e. the mathematical function relating each value of the output of the room
acoustics system to each value of the input signal.

Room modes

The RTF is defined in terms of the resonant vibrating modes of the room.
Resonances are a characteristic of every enclosed space and are caused by
standing waves resulting from the interaction of a sound wave traveling forward
and backward between opposing walls. At points between the walls where
the two waves interfere constructively (antinodes), the sound pressure of the
standing wave is at its maximum level. Conversely, the destructive interference
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of the two waves produces points in space with low sound pressure (nodes).
Standing waves in rooms normally involve more than one pair of walls, with
the result that points of high and low sound pressure are distributed unevenly
in space, with patterns getting particularly complicated in rooms having an
irregular shape.

The sound produced by the source is reinforced by a room mode only around
the antinodes of its corresponding standing wave and only if the source driving
frequency fd is close to its resonant frequency fi. Indeed, the frequencies at
which standing waves are generated depend on the dimensions and shape of
the room, so that the room modes are also unevenly distributed in frequency.
Apart from the so-called cavity mode [37], i.e. the modal resonance centered
at 0 Hz due to the air volume vibrations1, the lowest resonant frequency of a
mode in a given room is proportional to its largest dimension [1]. It follows that
larger rooms have their first mode at a lower frequency compared to smaller
rooms. Furthermore, room modes increase in number with increasing frequency,
where the number of modes below frequency f in a room with volume V is
approximated as [1]

Nf ≈
4π
3 V

f3

c3
(1.1)

with c the sound velocity (c ≈ 343m/s at 20 ◦C). As a consequence, smaller
rooms have a lower number of modes at low frequencies compared to larger
rooms.

As already mentioned, every time the sound wave with driving frequency fd
strikes a wall, part of its energy is reflected in the specular direction, giving
rise to a standing wave if fd is close to a modal frequency fi. Another part
is scattered or diffracted in different directions, if the size of the rough details
and edges of the surface and the wavelength λ = c/fd are comparable, whereas
some of the energy is transmitted outside the room directly through the walls or
indirectly through other structures of the building. The remaining sound energy
is dissipated into heat in the absorptive material covering the wall surface. The
amount of energy that is absorbed depends on the properties of the material,
such as its density, on the frequency and on the incident angle of the sound
wave. Regarding its effect on room modes, sound absorption at the walls causes
the energy of the standing wave to be reduced each time the backward and
forward waves hit the surface. As a result, absorption defines the maximum
amplitude that can be reached by the sound pressure of the standing wave, but
also how its sound pressure decays in time.

1the effect of the cavity mode is a boost at low frequencies, which is heard in small rooms
when a subwoofer is used.
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Room impulse response

Following the description above, the RIR at a given position of the source rs
and of the receiver r is defined as the linear combination of the time decays of
the energy of the room modes. Indeed, the sound pressure associated with each
mode with resonance frequency fi decreases exponentially with time according
to the damping constant ζi, which is defined as the ratio between the sound
energy absorbed by the wall and the total energy in the mode [37]. Under the
reasonable assumption that ζi � fi, the RIR for a particular source-receiver
position pair r̈ = (rs, r) is then given by an infinite sum of exponentially
decaying sinusoids as

h(r̈, t) =
∞∑

i=1
ci(r̈)e−ζit cos

(
2πfit+ φi(r̈)

)
, (1.2)

with the mode amplitude ci and the phase φi depending on r̈. Thus, changes in
the positions of the source and the receiver result in variations of the amplitude
and phase of the different modes, and consequently of the RIR [38]. As
mentioned, the resonance frequency and the damping constant are determined
by the properties of the room, and thus do not depend on the source-receiver
positions. They do depend, however, on other factors, such as temperature,
humidity, or changes in the position of objects (including people) in the room.

Reverberation time

The reverberation time (RT) of a room is defined as the time required for the
sound pressure level to drop below 60 dB, and can be computed based on an
average damping constant ζ̄ as

T60 = 3 ln(10)
ζ̄

. (1.3)

However, absorption being frequency-dependent and non-uniformly distributed
on the surfaces, different modes usually have different damping constants. Thus,
some modes decay faster than others, possibly resulting in a non-uniform decay
of the overall sound pressure. Typically, modes at low frequencies decay more
slowly than modes at higher frequencies, where absorption of the walls (and
in smaller part of the air) is more effective. It follows that the RT as defined
above does not provide detailed information on how sound decays in a room
at different frequencies. Larger rooms generally have longer RT, one reason
being that the room dimensions are larger, so that a sound wave travels through
space for a longer time before it strikes a wall. Another reason is that a larger



ROOM ACOUSTICS 7

volume implies more surface area, usually having a limited amount of absorbing
material, leading to a slower sound decay.

Modal overlap

The damping constant ζi also determines the bandwidth of a modal resonance,
where the bandwidth is defined as the width of the resonance curve at -3 dB
below the peak value (Bi = ζi/π), with stronger absorption leading to larger
bandwidths. The bandwidth of a resonance is commonly quantified by the
dimensionless Q-factor, defined as Qi = fi/Bi, with larger resonances having
smaller Q. A mode being characterized by a resonance curve with a certain
bandwidth, it can be partially excited even when the driving frequency fd does
not coincide exactly with its modal frequency fi. Furthermore, the resonant
curves of multiple modes usually overlap, such that more than one mode can
be partially excited at the same time. The amount of overlap of the modal
resonances not only depends on the number of modes present at a certain
frequency, according to the expression in (1.1), but on their bandwidth as well.

It follows that the overlap is relatively small at low frequencies, where absorption
is usually lower, whereas modes tend to overlap more at higher frequency,
where the mode bandwidth becomes larger. An indication about the separation
between the two regions of weak and strong modal overlap is given by the
so-called Schroeder frequency [39]

fSch ≈ 2000
√
T60
V

(1.4)

where the information about the bandwidth of the modes is implicitly included
in the RT. This expression is only indicative, and the distinction of the two
regions not as clear, so that a transition region of moderately overlapping modes
is typically considered in-between. In general, it suggests that a consistent modal
overlap is found in large rooms already at very low frequencies, whereas small
rooms tend to have a higher Schroeder frequency, below which room resonances
are rather sharp and well separated. For this reason, small spaces are generally
more problematic in the low frequency region, where the uneven frequency
and space distribution of the room resonances produces large fluctuations of
sound pressure, which introduce unpleasant spectral coloration in the perceived
sound [40, 41, 42, 43, 44].
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Room Transfer Function

As already mentioned, a room can be considered as a linear, causal, stable
system with infinite degrees of freedom, whose input-output behavior can
be characterized by its RTF, of which a graphical representation is given in
Figure 1.1. Since our interest is in the processing of audio signals by means of
digital filters, discrete-time signals are considered [45]. A digital audio signal
is obtained either as a result of a discrete-time process or from a continuous
signal by analog-to-digital conversion, i. e. by quantizing its amplitude and by
sampling the signal at discrete time indexes n = t/Ts, where the sampling period
Ts is the reciprocal of the sampling frequency fs.

In a linear and time-invariant (LTI) system, the relation between the discrete-
time input signal u(n) and output signal y(n) can be defined in terms of a
difference equation, in which the value of the output signal at index n depends
on a linear combination of its previous values and of the current and previous
values of the input signal

y(n) = b0 u(n)+b1 u(n− 1) + b2 u(n− 2) + . . .

− a1 y(n− 1)− a2 y(n− 2)− . . .
(1.5)

By introducing the backward shift operator q−1, for which u(n− 1) = q−1u(n),
the above expression can be written as

(1 + a1q
−1 + a2q

−2 + . . . ) y(n) = (b0 + b1q
−1 + b2q

−2 + . . . )u(n) . (1.6)

A similar relation is obtained by computing the z-transform of both sides of
the difference equation in (1.6)

A(z)Y (z) = B(z)U(z) (1.7)

where Y (z) and U(z) are the z-transforms of y(n) and u(n), respectively, and
A(z) = 1 + a1z

−1 + a2z
−2 + . . . and B(z) = b0 + b1z

−1 + b2z
−2 + . . . are

polynomials in the complex variable z. The RTF is then the rational complex
function relating the output to the input of the system, defined as

H(z) , Y (z)
U(z) = B(z)

A(z) = b0 + b1z
−1 + b2z

−2 + . . .

1 + a1z−1 + a2z−2 + . . .
=

∞∑
n=0

bn z
−n

1 +
∞∑
n=1

an z−n
, (1.8)

which corresponds to the z-transform of the sampled RIR sequence h(n)

H(z) =
∞∑

n=0
h(n) z−n . (1.9)
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H(z)u(n) y(n)

Figure 1.1: A representation of a LTI room acoustic system.

Notice that, if the RTF is evaluated on the unit circle in the complex z-plane,
i. e. at z = ejωTs with ω = 2πf the angular frequency, its frequency response,
or spectrum, is obtained

H(ejωTs) =
∞∑

n=0
h(n) e−jωTsn , (1.10)

which is a continuous function of ω with period 2π, and corresponds to the
discrete-time Fourier transform (DTFT) of h(n). The spectrum H(ejωTs) is
usually complex, such that it can be decomposed into its magnitude and phase
spectra, as2

H(ejω) = |H(ejω)|ej∠H(ejω). (1.11)

Poles and Zeros

The RTF can also be defined in terms of its zeros and poles. The numerator
and denominator polynomials are factorized into first-order polynomials, giving

H(z) = b0
(1− q1z

−1)(1− q2z
−1) . . .

(1− p1z−1)(1− p2z−1) . . . = b0

∞∏
i=1

(1− qiz−1)
∞∏
i=1

(1− piz−1)
, (1.12)

The numbers qi and pi are the roots of the numerator and denominator
polynomials, respectively, and are called the zeros and the poles of the RTF.

2after normalizing, as commonly done, with respect to the sampling period Ts.
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Another useful factorization of the RTF is obtained by performing a partial
fraction expansion, thus obtaining an infinite summation of first-order terms as

H(z) =
∞∑

i=1

Ri
1− piz−1

, (1.13)

where Ri is a (possibly complex) value called residue of the pole pi. Since the
coefficients of the polynomials A(z) and B(z) need to be real to have real-valued
RIR, both the poles and their residues (as well as the zeros in (1.12)) must
appear in the RTF either as real values or as pairs of complex-conjugate values.
Poles and zeros are normally represented on the complex z-plane either in terms
of their real and imaginary components or in polar form. A complex pole has
the polar form pi = ρie

jσi , with ρi = |pi| its radius and σi its angle, and with
p∗i = ρie

−jσi its complex-conjugate (cfr. Figure 1.2).

First-order terms of the summation in (1.13) with pairs of complex-conjugate
poles can be summed together to obtain second-order terms with real-valued
coefficients

{
Ri

1− piz−1
+ R∗i

1− p∗i z−1

}
= di,0 + di,1z

−1

1− 2ρi cos(σi)z−1 + ρ2
i z
−2

di,0 = 2 Re{Ri} = 2|Ri| cos(∠Ri),

di,1 = 2 Re{Rip∗i } = 2|Ri| ρi cos(σi − ∠Ri)

(1.14)

By taking the inverse z-transform of the expression in (1.13), combining second-
order terms together, the following expression is obtained,

h(n) =
∞∑

i=1
2|Ri|ρni cos(σin+ ∠Ri), (1.15)

which is an infinite summation of sampled exponentially decaying sinusoids and
it is recognized as the discrete-time version of the RIR defined in (1.2). By
comparing the two expressions, it is noticed that the amplitude ci and phase
φi of the mode responses in (1.2) are represented by the radius and angle of
the complex-valued residues Ri, whereas, by substituting t = nTs, the radius
and angle of the poles represent the damping constants and modal frequencies,
respectively, as

ρi = e−ζiTs and σi = 2πfi/fs . (1.16)

It follows that the position of the poles determines the frequency of oscillation
and the time decay of the mode responses, whereas the residues (and thus the
zeros) their amplitude and phase, which are a function of the source and the
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Figure 1.2: Modal responses in time associated to a real pole and two pairs of
complex-conjugate poles.

receiver positions.

The fact that the mode responses decay with time implies that poles are
distributed inside the unit circle (ρi < 1). Poles closer to the unit circle of the
z-plane correspond to small damping constants ζi, and thus to room resonances
with a narrower bandwidth Bi. Conversely, moving a pole towards the origin
of the unit disc produces a wider resonance. A graphical representation of
two pairs of complex-conjugate poles with different angle and radius, and their
corresponding mode responses in time, are given in Figure 1.2. Finally, real poles
correspond to non-oscillating exponentially-decaying functions with time decay
determined by the pole radius and a low-pass characteristic in the frequency
domain, so that a real pole corresponds to the ‘cavity’ mode at 0Hz discussed
in Section 1.1.

Regarding the zeros of the RTF, they generally appear both inside and outside
the unit circle, such that the RTF can be factorized as

H(z) = Bin(z)Bout(z)
A(z) (1.17)

with Bin(z) and Bout(z) the polynomials built from zeros inside and outside the
unit circle, respectively. If Bout(z) = 1, the system is said to be minimum-phase.
Minimum-phase systems, however, are rarely found in room acoustics. It was
reported in [6] that the nonminimum-phase (or excess-phase) component of a
RIR is mostly contained in the reverberation tail, and that rooms with very
short RT can be approximately minimum-phase [46], especially if the direct
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component has larger amplitude than the early reflections. Moreover, it has
been noticed in [47] that the low-frequency response of a RIR is close to be
minimum-phase. In all other cases, the RIR shows a significant nonminimum-
phase component [48, 49], a fact that carries important implications in the
equalization of the room response, as it will be discussed in Section 1.5.

Reflectogram

In the opening section of this chapter, reverberation has been described as the
sound coming directly from the source and the collection of sound reflected
from the surfaces arriving at the receiver with a certain delay after the direct
sound. Even though the RIR is defined as in (1.2), its interpretation in terms
of reflections can be useful in the analysis of reverberation. From the graphical
representation of a RIR, sometimes called reflectogram [1], of which an example
taken from the SMARD database [50] is given in Figure 1.3, it is possible to
identify strong reflections and to evaluate the overall time decay. Apart from
the direct component, i. e. the sound arriving directly to the receiver after a
certain traveling time (propagation delay), reflections in a reflectogram are
divided into early and late reflections. Early reflections are normally stronger,
as they reach the receiver after the sound was reflected only a limited number of
times. Strong early reflections arriving at the receiver within 50-100ms after the
direct sound are desirable to a certain extent, as they support the energy of the
direct sound and improve intelligibility in noisy environments [51, 52]. However,
a strong reflection with a delay exceeding 100ms is likely to be perceived as
echo and thus have a negative effect on speech intelligibility and sound quality.

Reflections, which are initially quite sparse, increase in number as a cubic
function of time (analogously to the increase with frequency of the number
of modes), with the average temporal density of reflections arriving at time t
approximately given as [1]

dNt
dt
≈ 4π c

3t2

V
. (1.18)

It follows that after a certain time instant, called the mixing time [53, 54], late
reflections start to be so dense and coming randomly from all different directions,
that the sound field can be considered to be diffuse, set aside the low-frequency
region where the effects of modal behavior prevail. Due to absorption, the
energy of the late reflections decays exponentially with time, until it eventually
fades out. The diffuse reverberation tail is the main source of the effect for
which sound is perceived as prolonged in time and ‘distant’ in space [44], such
that sometimes the term ‘reverberation’ is used to refer to the late reflections
only.
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Figure 1.3: The reflectogram of a RIR.

1.2 Measuring room acoustics

Aside for rectangular rooms with very idealized conditions of their acoustic
properties, for which analytical expression for the RIR and RTF can be obtained,
information about the true poles and zeros of the RTF is generally not available.
As a consequence, the RTF of a real space has to be obtained by other means.
As the name suggests, a RIR can be obtained by recording the response of
the room excited by an impulsive signal. However, exciting a room through a
loudspeaker using an impulse with enough sound energy, such that the recorded
response has a good signal-to-noise ratio (SNR) with respect to the ambient
disturbances, is impossible in practice. Other ways of reproducing an impulsive
signal, such as an exploding balloon or a starting pistol, present problems as
well, such as lack of reproducibility and a non-flat response at all frequencies.

Nowadays, the availability of high-quality dedicated microphones and loudspea-
kers, together with advanced signal processing techniques, enabled the
development of sophisticated methods3, which can provide precise and reliable
RIR measurements. A method for measuring RIR usually involves the
generation of a particular kind of digital signal, which is amplified, converted
to an analog signal and then reproduced inside the room through an
omnidirectional loudspeaker with response as flat and linear as possible. The
signal is then picked up by an omnidirectional microphone, also with response
as flat and linear as possible, and then amplified and converted to the digital
domain. Finally, postprocessing operations, depending on the method used,
have to be performed in order to retrieve the RIR. Measuring RIRs in this
way implies some assumptions to be made. The most important is that the
acoustic system, comprising of the loudspeaker, the room, the microphone and
other components, is considered to be a LTI system. However, as already
mentioned, the RTF may vary in time and some components in the system may

3a review and some historical background can be found, for instance, in [25]
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have a nonlinear behavior. This is the case, for instance, for the loudspeaker,
which produces harmonic components and possibly other distortions [55] in the
response, especially when it is driven at low frequency and at high levels.

When some of these assumptions are violated during the recording process,
errors may appear in the retrieved RIR [56]. It follows that a reliable RIR
measurement method should have the following properties:

1. controllability and reproducibility of the excitation signal,

2. robustness to RTF variations in time,

3. immunity to background and impulsive noise,

4. rejection of nonlinearities.

Many different methods have been suggested in the literature, each of
which presents different characteristics with respect to the aspects just listed.
Comparisons between the most commonly used methods have appeared in the
literature [25, 57, 58]. Here two of these methods are mentioned.

The maximum-length sequence (MLS) method [59] uses an excitation signal
which is a special binary sequence with flat magnitude spectrum and
pseudorandom phase. If the sequence is long enough, its autocorrelation
function approximates well an impulsive function. A good estimate of a RIR
can be then obtained by circular convolution of the measured output with the
time-reversed MLS sequence. Regarding the properties listed above, the MLS
method is not able to reject nonlinear distortions, is not very robust to variations
of the RTF, and it is not immune to the effect of noise. Indeed, as a consequence
of its pseudorandom phase, deconvolving the MLS response evenly distributes
the energy of any additional uncorrelated noise (stationary or impulsive) along
the duration of the retrieved RIR. This results in a reduction of the SNR, which
however can be increased by using longer sequences, although errors due to RTF
variations are more likely to appear. The MLS method has been very popular
in the past, as it was able to provide good RIR estimates in an inexpensive way.

Methods that gained wide-spread popularity in recent years involve the use of
sweep signals [60]. Their main characteristic is that the instantaneous frequency
of the signal increases with time. The RIR is retrieved by linear convolution
of the measured output with the analytical inverse filter built from the time-
reversed sweep signal, with some additional correction. Given that the ambient
noise is normally more prominent at low frequencies, having a spectrum closer
to ’pink’ (-3 dB/octave) than to ’white’, a better SNR is achieved using a
sweep signal following an exponential time-frequency relation, hence its name
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exponential sine-sweep (ESS) [61], which provides the system with more energy
in the low part of the spectrum.

The time-frequency correspondence of the ESS signal provides a series of
desirable properties. It is able to push a large part of the background noise into
the non-causal part of the retrieved RIR, which is then discarded, as well as
part of the energy of impulsive noise events, unless they occur during the final
part of the sweep. Morever, also part of the nonlinear distortions produced by
the loudspeaker are found in the non-causal part of the retrieved RIR. Finally,
the ESS method proved to be less vulnerable to RTF variations in time than
a linear sweep or the MLS method [58], such that extending the length of the
sweep or averaging the responses obtained from multiple measurements can
further increase the SNR without introducing significant errors.

Nevertheless, some of the nonlinear artifacts of the loudspeaker end up in the
causal part of the retrieved RIR [58, 62]. In Chapter 2, the ESS method
has been used to carry out RIR measurements in a rectangular room using a
subwoofer as a source. This is a challenging scenario, as the subwoofer presents
a strongly nonlinear behavior in the range of very low frequencies, where also
the background noise is typically significant. It follows that, in order to obtain
RIR measurements of good quality, the favorable properties of the ESS method
have to be combined with a careful calibration of the measurement setup.

Analyzing room responses

Once a RIR is acquired, some analysis is necessary to first assess the quality
of the measurement itself, and then to gain some insight into the acoustics
of the room that has been measured. The RIR, or better its reflectogram, is
analyzed to detect the presence of strong reflections, especially those that may
be perceived as echo, to assess the density of reflections in different portions of
the RIR [63], and to have a first impression of the reverberant characteristics of
the room. If the ESS method was used, the non-causal part of the response is
also of interest to assess the level of harmonic nonlinearities of the loudspeaker.

The analysis in the frequency domain provides other kinds of information. The
spectrum of the retrieved RIR, defined in (1.10), is computed in practice for N
discrete frequency values ωk, uniformly distributed between 0 and 2π, giving
the discrete Fourier transform (DFT),

H(ejωkTs) =
N−1∑

n=0
h(n) e−jωkTsn =

N−1∑

n=0
h(n) e−j 2πkn

N . (1.19)
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Figure 1.4: The magnitude frequency response of the RIR in Figure 1.3 on a
linear (left) and logarithmic (right) frequency scale.
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Figure 1.5: The spectrogram of the RIR in Figure 1.3.

The magnitude frequency response, obtained as the complex modulus of the
DFT, provides insight into the main low-frequency resonances of the room, their
bandwidth and the degree of modal overlap, and can give an indication of the
amount of absorption present in the room at different frequency regions. The
time and frequency representations are combined in the so-called spectrogram,
i. e. the squared modulus of the short-time Fourier transform (STFT), obtained
by computing the DFT of overlapping portions of the RIR sequence, with their
duration determining a trade-off between resolution in time and in frequency.
The analysis of the spectrogram is useful to asses the energy decay of the
response at different frequencies and to identify particularly energetic and slowly
decaying modes, as well as possible errors, such as impulsive noise or other
artifacts, in the measured RIR. The analysis of Figures 1.4 and 1.5, for instance,
reveals the presence of strong and slowly decaying resonances between 100Hz
and 200Hz, but also few isolated components at higher frequencies.
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Figure 1.6: The EDC of the RIR in Figure 1.3, and the regression lines for the
estimation of the EDT, the T30 and the NF.

Measuring reverberation time

Another important tool for RIR analysis is the energy decay curve (EDC), which
can be obtained by backward integration of the RIR, converted to a logarithmic
scale, as

EDC(t) = 10 log10

(∫∞
t
h2(t)dτ∫∞

0 h2(t)dτ

)
[dB], (1.20)

also known as Schroeder integral, which represents the normalized amount of
energy remaining in the RIR at a given time t [64]. The RT, or T60, is then
defined as the time instant at which the EDC reaches -60 dB, or in other words
the instant at which the energy of the modal responses have decayed, on average,
below that level. However, the presence of noise in the measurement produces
a bias in the EDC, which is useful to estimate the noise level, or noise floor
(NF), but prevents the direct use of the definition to find the RT.

As discussed in the previous section, the energy of a RIR ideally decays
exponentially with time, such that the EDC on a logarithmic scale presents
a linear trend, at least until the NF is reached. It is then possible to obtain
an estimate of the RT as the time instant at which a regression line fitting
the first portion of the EDC reaches -60 dB. Frequency-dependent values of
the RT are generally estimated by filtering the RIR with a bank of full-octave
or one-third-octave band-pass filters. Moreover, by fitting the regression line
on different portions of the EDC, more information can be inferred. The first
10 dB drop of the EDC determines the early decay time (EDT), which contains
information about the level of early reflections, whereas fitting a regression line
on different portions of the EDC, such as between -5 dB and -15, -25, or -35 dB,
giving respectively the T10, the T20, and the T30, provides a means of estimating
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the RT in noisy conditions and of detecting complex modal decays, such as
beating modes or double decays that often occur at low frequencies.

The estimation of the RT is indeed more involved at low frequency, where
not only the EDC often shows complex decays, but also high levels of the
NF. Moreover, fractional-octave filterbanks cannot be used, as the band-
pass filter response is usually longer than the modal decays, leading to a
significant over-estimation of the RT. Different procedures have been proposed
for the estimation of the RT and the modal decay at low frequencies [65],
by using modeling techniques or NF reduction methods, whereas the over-
estimation problem has been addressed using different types of filterbanks [66].
In Chapter 2, a procedure for RT estimation at low frequency is described,
which combines a fixed-bandwidth filterbank and a scalable modeling algorithm,
described in Part II, allowing to obtain a noiseless approximation of the RIRs
as OBF models and thus a more reliable estimate of the frequency-dependent
RT.

1.3 Modeling room impulse responses

In order to perform room acoustic signal processing tasks, it is usually necessary
to have a model of the room acoustics. Of interest in this work is the family of
room acoustic models called parametric models, which are commonly used in
practical applications. Parametric modeling of room acoustics aims at finding
a meaningful approximation of the RTF, in one of its definitions given in
Section 1.1, normally starting from measured RIRs. A RTF is the result
of the combination of an infinite number of resonant responses. By limiting
the frequency range of interest to the audible spectrum, i. e. by sampling the
measured RIR at, for instance, fs = 48 kHz, the number of resonances becomes
finite, but still extremely large, given the relation in (1.1) for f = fs/2.

The idea of parametric modeling is then to represent a room response with a
number of parameters that is large enough to model its essential features, but
at the same time small enough to be able to perform real-time signal processing
tasks. Indeed, an advantage of parametric models is that the approximated
RTF can be directly implemented using a digital filter, which is then used, with
or without manipulation, to process the audio signals in order to synthesize or
control the acoustic response of the room.
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1.3.1 Conventional parametric models

Different models within the family of parametric models have been developed,
which can be distinguished by the form of the RTF they try to approximate.

All-zero models

The all-zero (AZ) model [26] (also known as moving average (MA) model)
corresponds to the approximation of the RTF defined as in (1.8) with A(z) = 1,
where the polynomial B(z) is truncated to an order M . The transfer function
of the AZ model then approximates the z-transform of the RIR h(n) in (1.9),
which is implemented as an FIR filter withM coefficients. The filter parameters
are the coefficient values of the sampled RIR, truncated to the sample index
M . Filtering a digital audio signal u(n) using a causal FIR filter with M
coefficients bm (with m = 0, . . . ,M − 1) corresponds to performing a discrete-
time convolution, indicated with the symbol ∗, as [67]

y(n) =
M−1∑

m=0
bmu(n−m) =

∞∑

m=−∞
h(m)u(n−m) , (h ∗ u)(n) (1.21)

which corresponds to the firstM terms of the top row of the difference equation
in (1.5). Notice that the output signal at previous time indexes does not
contribute to its current value, or, in other terms, no feedback loop is present in
the filter structure. As a consequence, the filter response has a finite duration
of M samples. This is the main drawback of AZ models, which may require a
large number of parameters to describe the essential properties of a RIR with
a slow decay. Indeed, the RIR has an infinite impulse response, due to its
resonant components, such that models implemented as IIR filters may be more
appropriate.

All-pole and pole-zero models

The direct way to obtain an IIR filter is to model also the denominator
polynomial of the RTF, so to obtain a recursive filter by including a feedback
loop in the filter structure. Modeling the polynomial A(z) then implies the
estimation of the pole parameters. The all-pole model [26] (also known as
autoregressive average (AR) model) corresponds to the approximation of the
RTF defined as in (1.8) with B(z) = b0, where the polynomial A(z) has a finite
order P . The all-pole model is able to approximate the resonant characteristics
of the magnitude frequency response of the RTF, but generally not its phase
response. Not having zeros in the transfer function implies that the all-pole
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model can only approximate the minimum-phase characteristics of the system,
making it not suitable to model nonminimum-phase RIRs.

If both the numerator and the denominator polynomials in (1.8) are used, with
orderM and P respectively, the pole-zero (PZ) model [68] (or ARMA model) is
obtained, which is capable of modeling both the magnitude and phase response
of the RTF. The approximation of a RTF using a PZ model can lead to a more
compact representation, compared to the one achieved with an AZ model, but it
also presents some difficulties. One aspect to be considered is the selection of the
polynomial orders M and P , i.e. the number of model parameters. The choice
can be made by either selecting orders which provide a good approximation of
the target measured RIR, which involves performing the parameter estimation
multiple times, or by relying on some a priori knowledge of the system, such as
the number of room resonances to be modeled. Also, given that M and P are
not required to be equal, estimating their optimal values with respect to the
approximation of a given RTF is not a trivial task.

Another difficulty is that, differently from AZ and all-pole models for which
a closed-form solution for the parameter estimation problem is available, the
computation of the parameters of a PZ model is more involved. If the estimation
algorithm aims to solve the output-error problem, i. e. to minimize the difference
between the target RTF H(z) and its approximation Ĥ(z),

Eoe(z) , H(z)− Ĥ(z) = H(z)− B̂(z)
Â(z)

, (1.22)

nonlinear optimization algorithms have to be employed, with ensuing problems
related to convergence to local minima and issues due to finite numerical
precision [69].

Instead, linear regression methods, for which a closed-form solution is given by
the least squares (LS) estimator, can be used if the so-called equation-error is
minimized

Eee(z) , Â(z)H(z)− B̂(z), (1.23)

which is obtained from (1.22) by multiplying both the RTF and its approxi-
mation with the transfer function Â(z). This operation introduces a frequency
weighting in the estimation procedure, thus producing a biased estimate. In
practice, less weight is given to parts of the spectrum with larger energy, such
that the peaks of the RTF may not be modeled accurately.

The Steiglitz-McBride (STMCB) method [70] starts from an all-pole model, e.g.
estimated using linear prediction methods [71] or the Prony’s method [72], and
then iteratively solves the equation-error problem. The bias issue is alleviated by
compensating for the frequency weighting based on the denominator polynomial
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estimated at the previous iteration. The biggest problem with this algorithm,
especially for high model orders, is the potential instability resulting from poles
estimated outside the unit circle.

A method similar to the STMCB method, but directly solving the output-error
problem and less prone to instability issues, is the so-called Brandenstein-
Unbehauen (BU) method [73]. This method consists of an FIR-to-IIR
conversion algorithm, which iteratively estimates the denominator polynomial
by minimizing the energy of the output of an all-pass filter with the same
denominator, fed with the time-reversed RIR h(−n), based on the concept of
‘complementary signal’ [74]. The numerator coefficients are then estimated by
interpolation in closed-form according to a theorem by Walsh [75].

In all these cases, the RTF is approximated as a rational function with a form as
in (1.8) which can be implemented in IIR filters in direct form. In other words,
the estimated model parameters are the coefficients of the polynomials, which
correspond to the coefficients of a direct-form filter. If different implementation
forms are desired, such as cascaded or parallel forms [45], the estimated RTF has
to be factorized into first- and second-order IIR filters sections. The factorization
implies the computation of the roots of the polynomials B(z) and A(z), which
becomes problematic when the order of the polynomials is high, because of
numerical limitations. Algorithms for factorizing high-degree polynomials exist,
which however involve nonlinear optimization techniques [76, 77]. For this
reason, the estimation methods described above may not represent an optimal
choice for approximating a RTF in pole-zero form.

Pole-zero models in parallel form

Particular attention is given here to the parallel form of PZ models [45], here
referred to as parallel filter (PF) model, which corresponds to the finite-order
approximation of the RTF as a finite summation of first-order terms as in (1.13)
or of second-order terms as in (1.14). The advantage of PZ model in parallel form
is the possibility of fixing the poles in the model structure, thus determining the
frequency and damping of the exponentially-decaying sinusoidal components
in (1.15), whereas their amplitude and phase parameters, which appear linearly
in the model, can be estimated in closed-form by linear regression. The RIR
is then approximated as a linear combination of P (complex- or real-valued)
basis functions ψi, i. e. the exponentially-decaying sinusoids, built from a set
of poles p, each one weighted by a linear parameter di as

ĥ(n) =
P∑

i=1
ψi(n,p)di . (1.24)
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It is possible in this way to allocate arbitrary frequency resolution by choosing
appropriate radius and angle of the poles, for instance by matching the resolution
of the human hearing using a logarithmic or a Bark frequency scale [78]. Another
advantage over other PZ model forms is that PFs enable the use of parallel
computing, providing a useful implementation tool for real-time audio processing
applications [79].

These ideas have been exploited quite recently in many signal processing
applications, such as equalization [80, 81, 82], artificial reverberation [83],
active noise cancellation in headphones [84], head-related transfer function
approximation [85] as well as modeling and synthesis of room, loudspeaker,
and musical instrument responses [86, 87, 88]. However, some issues still
remain, mostly related to the estimation of the model parameters from a
target response. Even when the nonlinear problem inherent to pole-zero model
estimation is avoided by predetermining the pole distribution [80, 89], the
linear regression problem for estimating the numerator coefficients (i. e. the
residues) may be very ill-conditioned, especially for high model orders, thus
resulting in inaccurate estimates4. As for the estimation of the pole parameters
from measured RIRs, the nonlinear methods cited above can be used, but the
factorization of the denominator polynomial into its pole form is required, with
the ensuing numerical issues. Finally, the PF filter is not suitable to model
RTFs where the same pole appears more than once, in which case the filter
structure should be modified accordingly [67].

Warped models

A mapping of the frequency resolution that resembles that of the auditory
system can be also achieved by frequency warping [91]. Warping a RIR having
N coefficients consists in filtering the RIR sequence with a series of N first-order
all-pass (AP) filters with transfer function D(z), corresponding to the mapping

z−1 ← D(z) = z−1 − λ
1− λz−1

, (1.25)

with λ a pole parameter which can be tuned, for instance, to obtain a frequency
mapping closely approximating the Bark scale [91, 78]. The so-called warped FIR
(WFIR) filters and warped IIR (WIIR) filters are then obtained by substituting
each unit delay z−1 in the transfer function of the standard FIR and IIR filters
with a first-order AP filter as defined above5.

4the regression matrix has large condition number, which results in numerical inaccuracies
in the LS estimation [90].

5given the presence of AP filters in its transfer function, a WFIR filter, despite its name,
has actually an IIR.
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Also warped filters have been used for room response modeling [86], and
other audio applications [91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. In room
response modeling, the RTF obtained from the truncated RIR as in (1.9)
can be transformed to the warped domain using the mapping in (1.25), and
modeled with a WFIR or a WIIR filter. Alternatively, and more commonly,
the estimation of the filter parameters is not done with respect to the warped
model structure. Instead, the estimation procedure consists in pre-warping the
measured RIR, thus increasing resolution at low frequencies, estimating the
model parameters in the warped domain using one of the methods designed
for standard models, and finally remapping the estimated parameters to the
original ‘unwarped’ domain. Also in this case, however, problems with high
model orders may arise [91], and practical issues have to be considered for the
implementation of WIIR filters [101, 102].

Pole-zero models with common poles

When modeling room acoustic systems with multiple inputs and multiple
outputs, the RTF has to be estimated for each source-receiver pair. In order to
further reduce the number of parameters required to approximate a set of RTFs,
models based on common acoustical poles have been proposed, relying on the
fact that the poles, i. e. the resonant frequency and bandwidth, do not depend
on the source and receiver positions. The common-acoustical-poles and zeros
(CAPZ) model [103] approximates multiple RTFs defined in the rational form
in (1.8) by estimating a common set of denominator parameters and multiple sets
of position-dependent numerator parameters. The parameters are computed
by minimizing the average equation-error computed on the different RTFs, or
by averaging multiple sets of denominator parameters obtained by modeling
each RTF individually. The CAPZ model has been applied in different contexts,
such as multi-channel equalization [104, 105], HRTF modeling [106, 107] and
AEC [100, 108].

Similarly, the common-acoustical-poles and their residues (CAPR) model [109]
approximates a set of RTFs in the pole-residue form in (1.13), where the poles
are common to every RTF, while the residue for each individual RTF can
be obtained via linear regression or linear prediction methods. By fixing the
common poles in the second-order denominator polynomials, the residues values
can also be used to define the position-dependent variations of the RTF, thus
allowing to devise strategies for spatial interpolation and extrapolation of RTFs,
as suggested in [109]. In the same work, the poles are estimated by assuming
negligible absorption and by performing a search over a set of possible resonance
frequencies distributed in the range of interest at intervals of 1Hz. The common
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poles are then obtained as a by-product of the minimization of the interpolation
error computed at uniformly spaced positions.

Also output-error algorithms can be extended to the common denominator
case. For instance, the BU method [73] is easily modified to the multi-
channel case, as was proposed in the past for digital communication [110] and
automation [111] applications, and recently employed in the context of room
acoustic modeling [32] and of the characterization of the feedback path for AFC
in hearing aids [35].

1.3.2 Models based on orthonormal basis functions

An alternative to conventional parametric models presented is provided by
models based on OBFs [27], hereafter called OBF models. OBF models can be
regarded as a generalization of some of these conventional models. For instance,
they can be derived from an orthogonalization, followed by normalization, of
the PF model discussed above. Orthogonalization is obtained by zero-pole
cancellation using second-order AP filters, one for each second-order section,
whereas every section response is orthonormalized with respect to each other6.
It follows that, as for PF filters, the approximated RIR is the result of a
linear combination of P basis functions ϕi built from poles in p, which are the
impulse responses of the second-order filter sections, orthonormal in this case,
each weighted by a linear coefficient θi,

ĥ(n) =
P∑

i=1
ϕi(n,p)θi . (1.26)

As for the PF model and other fixed-denominator models in general, OBF models
offer the possibility of incorporating prior knowledge about the underlying
dynamics of the room acoustics system in the form of a set p of stable poles.
Moreover, fixed-denominator models and OBF models with the same set of poles,
span the same approximation space, such that the same approximated response
can be obtained if the optimal values for the numerator coefficients are available.
It is then reasonable to question whether orthonormality is such a desirable
property to justify the choice of a model with a higher filter complexity. The
answer is that, since the parameter estimation for non-orthogonal fixed-poles
models is normally very ill-conditioned, using an orthogonal model structure is
said to be the only practical way of fixing the poles in an IIR filter [112] and
be able to obtain numerically accurate estimates for the numerator coefficients.

6Amore detailed discussion about the properties of OBF models is provided in [27, 112, 113]
as well as in Chapter 3.



MODELING ROOM IMPULSE RESPONSES 25

Indeed, the poles being fixed and the numerator coefficients appearing linearly in
the model, linear regression methods can be used. Also, because of orthogonality
of the regressors, i. e. of the basis functions, a LS estimator for the linear
coefficients is obtained from the inner product between the truncated basis
functions and the N -samples response h(n) to be modeled, without requiring
any matrix inversion in the LS solution,

θ̂i = 〈ϕi,h〉 =
N−1∑

n=0
ϕi(n)h(n) . (1.27)

This expression corresponds to the zero-lag one-sided cross-correlation between
ϕi(n) and h(n) and thus it is a measure of their similarity.

The use of rational orthonormal bases appeared in the context of approximation
theory back in the 1920s [114, 115], and later further developed by Walsh [75].
Following the work of Wiener [116], most of the early applications of OBF
models are found in the field of continuous [117] and discrete-time [118] network
synthesis (i. e. filter design). Later on, the theory of OBF models started to be
developed in the context of system identification [119, 120], and their use began
to appear in control applications [121, 122]. From there, the popularity of OBF
models started to increase exponentially, with applications found in different
fields, such as system identification [123, 124, 125, 126, 127, 128, 129, 130],
signal processing [131, 132, 133, 134, 135], model approximation [136, 128], or
adaptive control [137], and seems to be an active topic even nowadays [138, 139,
140, 141, 142, 143, 144, 145, 146, 147].

Different models belong to the family of OBF models, normally referred to with
the names of their inventors or the name of the orthogonal polynomials they
are derived from. If the pole set p contains the same repeated real pole, the
Laguerre model, which is implemented as a prefiltered version of the WFIR
filter, or the Legendre model is obtained. If different real poles are included, the
model is called Takenaka-Malmqvist, whereas if p contains the same repeated
pair of complex-conjugate poles, the so-called 2-parameters Kautz model is
obtained.

Modeling room acoustics with OBF models

Of particular interest in room acoustic modeling is the model built from a set
of different pairs of complex-conjugate poles, sometimes referred to as Kautz
model. Indeed, the idea is to model the resonant response of the RTF with a
combination of resonances, thus estimating poles close to the true poles of the
system, but without the numerical problems of non-orthogonal models. OBF
models have been applied to acoustic and audio signal processing applications
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only recently. In particular, general multi-pole OBF models were used for speech
synthesis [33], loudspeaker response equalization [28], and modeling of room
and musical instrument responses [29, 30, 31, 32, 148, 149, 150, 33]. In the
rest of this thesis, when not specified otherwise, the term OBF model is used
to refer to the general model containing repeated and non-repeateted complex-
conjugate poles (such as the Kautz model or other possible realizations [112]),
and possibly real poles7.

The main problem concerning room acoustic modeling with OBF models is
the estimation of the nonlinear pole parameters. An option would be to rely
on prior information about the true poles of the system [27], which however is
often not available for room acoustic systems. Moreover, selection strategies,
based on optimality conditions [134, 135] or nonlinear recursive estimation
algorithms [151], are limited to OBF models with repeated single poles or to
low model orders [125, 152, 153].

The nonlinear pole estimation problem for the general OBF model is more
involved, especially for high model orders, and not many solutions have been
proposed in the literature. The use of the BU method was suggested in [148,
29] for the approximation of a RIR h(n), motivated by some analogy found
between OBF models and the estimation algorithm. More specifically, without
getting into the details discussed in [148, 29, 31] and reviewed in Chapter 7,
it was noticed that minimizing the energy of the ‘complementary signal’, as
done by the BU method, corresponds to a minimization of the error produced
by approximating the RIR with an OBF model. The BU method, however,
approximates the RTF using a linear frequency resolution. In order to increase
the accuracy in the approximation at low frequency, where it is normally more
important to obtain a good model of the RTF, the warped BU (wBU) method
was introduced in [150, 29], in which the BU method is applied to the warped
RIR. The estimated parameters are mapped back to the original frequency
scale, analogously to the estimation procedure using warped models discussed
previously.

A scalable matching pursuit (MP) algorithm, named OBF-MP and described
in Chapter 3, which consists of a greedy grid-search approach, was proposed
in [154, 113]8. The algorithm avoids the nonlinear problem by defining a set of
candidate poles and exploiting orthogonality to select at each iteration the pole
(or pair of poles) for which the approximation error is minimized. Advantages
with respect to the BU method consist in the possibility of arbitrarily allocating

7real poles are actually not very useful, given that a measured response always presents
a band-pass characteristic, due to the cut-off of the loudspeaker response at low frequencies
and to the anti-aliasing filter at high frequencies introduced in the AD conversion.

8A similar approach was adopted in [144] in a system identification framework, although
limited to low-order models applied to very simple systems.
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frequency resolution and to determine the order of the approximation during
the estimation. Moreover, the algorithm delivers unconditionally stable pole
estimates even at high model orders, for which the BU method may exhibit
some instability, and the parameters are estimated already in the complex pole
form, such that the factorization of high-order polynomials is not required.

Also OBF models can implement the idea of modeling multiple RTFs with
a common denominator. In this context, recent works proposed the use of
common-poles in OBF models for subband modeling of RIRs [32] and feedback
path characterization in hearing aids [35], in which the modification of the BU
method for the estimation of a common denominator mentioned above and
its version including frequency weighting [155] are used. Also the OBF-MP
algorithm can be easily extended to modeling with a common set of poles, as
introduced in [156] and described in Chapter 4 of this thesis.

1.4 Identification of room acoustic systems

In many practical applications, it is not possible to first obtain a measurement
of the RIRs at a number of different source-receiver positions inside the room
and to model the RTF directly. It follows that the system RTF has to be
identified from input-output signals. Moreover, in tasks such as AEC or AFC,
it is necessary to track the variations in the RTF, due to changes in the source
or receiver positions. For this reason, adaptive filters [157, 158] are normally
used to identify the RTF from the most recent values of the input and output
signals.

Adaptation algorithms

In the identification scenario, depicted in Figure 1.7, the coefficients αi of the
adaptive filter F̂ (z,α(n)) with M coefficients α(n) = [α1(n), . . . , αM (n)], are
updated at each incoming sample of the input signal u(n), in the attempt
of recursively minimizing some performance criterion, normally defined as a
function of the error signal

e(n) = y(n)− ŷ(n) = y(n)− F̂ (q,α(n))u(n). (1.28)

If, after a number of recursions, the identification is successful, the transfer
function of the filter F̂ (z,α(n)) should represent a good approximation of the
RTF H(z, n). The generic form of the update rule is given as

α(n+ 1) = α(n) + ∆α(n, e(n),u(n)) (1.29)
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F̂ (z, α(n)) H(z, n)

u(n)

y(n)
ŷ(n)

e(n)

F̂ (z, α(n))

Figure 1.7: Room acoustic system identification scenario.

where ∆α is the change in the coefficient values that occurs at sample n based
on the cost function of the adaptation algorithm adopted, which is a function
of the error signal e(n) and on the current and past values of the input signal,
included in the vector u(n).

The most commonly used algorithms try to minimize the mean square error
(MSE) cost function J = E{e(n)2}, which simplifies the adaptation task. Indeed,
such cost function has a quadratic error surface, which is differentiable and
guarantees the existence of a global minimum. These adaptation algorithms,
of which a detailed discussion is out of the scope of this section [157, 158], can
be divided into two main categories. Gradient-based algorithms, such as the
least mean squares (LMS) algorithm or its normalized version, descend step-by-
step in the direction of the gradient of the instantaneous squared error e2(n)
computed with respect to the filter coefficients. LS-based algorithms, such as
the recursive least squares (RLS) algorithm, minimize a cost function defined
using a (weighted) sum of a given number of previous samples of the squared
error signal, which allows to approach the optimal solution in a smaller number
of recursions, at the expense of a higher computational complexity.

The choice of a particular adaptation algorithm should be made based on the
application requirements. The performance of an adaptation algorithm can be
defined with respect to a number of different factors [157], i. e.

1. the accuracy of the identification at different recursions, quantified by the
misalignment (or misadjustment) between the actual RTF H(z, n) and
the filter transfer function F̂ (z,α(n)),

2. the variability of the filter coefficients after convergence, quantified by the
misalignment at steady-state (for n→∞), which describes the behavior
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of the algorithm in response to variations of the characteristics of the
input signal or to changes of the RTF,

3. the convergence behavior of the algorithm, defining how fast the value of
the filter coefficients approaches the steady-state solution, quantified by
the rate or time of convergence,

4. the computational complexity, defined as the number of operations involved
in a single recursion, and the memory requirements,

5. the robustness and stability of the algorithm with respect to internal or
external disturbances, and the ability to avoid local optimum solutions.

Adaptive filters

An important choice to be made even before selecting a particular adaptation
algorithm, pertains to the RTF model to be used. Among the different RTF
models discussed in the previous section and their relative filter implementation,
FIR filters are normally preferred over IIR filters for a number of reasons. First,
FIR filters being linear in their parameters, the implementation of adaptive
algorithms is simpler. For instance, the computation of the gradient vector is not
even necessary, since it corresponds to the input signal vector. Second, global
convergence and stability of the filter estimate in gradient-based algorithms is
normally guaranteed, unless a too large step is taken in the gradient direction.
Finally, a large selection of algorithms and theoretical results about their
behavior are available mostly for FIR adaptive filters.

However, some of the factors listed above are not independent from each other,
such that some of the requirements may not be met at the same time. For
instance, higher accuracy would require an FIR filter with a large number
of coefficients, which however normally implies slower convergence, higher
variability and increased complexity. On the other hand, if a low-order filter is
required, the tail of the RIR that is not modeled contributes in reducing the
accuracy of the identification and in increasing variability [159, 160, 161, 162].
It follows that in some cases, the use of adaptive IIR filters would be desirable to
obtain good accuracy using less filter parameters. However, IIR adaptive filters
in direct form are more difficult to handle than FIR filters, especially in the
output-error form configuration [163], which is the reason why it is quite rare to
find them used in practical applications. They require to check for stability and
to compute the gradient vector analytically, which are both computationally
demanding operations, and they are not guaranteed to converge to a global
minimum.
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Alternative forms of IIR filters can be used, such as the lattice form or the
parallel form [164], which make the stability monitoring easier, but still require
involved computations of the gradient vectors with respect to the denominator
coefficients and suffer from convergence to local minima. For this reason, fixed-
poles adaptive filters (FPAFs) [165] represent an interesting option. Indeed, by
fixing the poles in the filter structure, the result is linear in the parameters, such
that the same adaptation algorithms developed for FIR filters can be adopted
with the same implementation complexity. Moreover, the gradient vector with
respect to the linear parameters is readily available, stability is guaranteed by
fixing the poles inside the unit circle, and the algorithm converges to the global
minimum under the same conditions as for FIR filters. Thus, the performance of
a FPAF mostly depends on the location of the poles and on the characteristics
of the input signal. As a matter of fact, the identification accuracy and the
convergence properties depend largely on how far the filter poles are from the
real poles of the system and how the spectral characteristics of non-stationary
input signals may impact the adaptation of the linear coefficients of each section
of the filter [130]. Unfortunately, these dependencies are difficult to analyze
and thus the behavior of FPAFs hard to predict.

OBF adaptive filters

As for modeling, the orthogonality property of IIR filters based on OBFs,
hereafter named OBF filters, provide some advantages compared to other IIR
filters also in the adaptive context [166, 167]. For instance, the convergence
behavior of FPAFs depends on the correlation matrix of the responses of the filter
sections to the input signal, and more specifically on its numerical properties,
which in turn is related to the number and position of the poles, and to the
energy of the input signal at different frequencies. It turns out that, due to
orthogonality, OBF filters produce correlation matrices with better numerical
properties, and thus better convergence, not only for white input signals, but
for a large range of input spectra. Furthermore, orthogonality is also the key
aspect to enable the use of analysis tools, similar to the ones developed for FIR
adaptive filters [168]. It follows that, for given fixed poles, the performances
of an OBF adaptive filter with respect to the input signal characteristics, are
completely determined by the position of the poles. In addition, the analysis
results obtained for OBF filters, can be extended to FPAPs built from the same
set of poles [167, 169].

The problem, once again, is then to determine a set of poles which can provide
good performances with as few poles as possible, such that good accuracy
and fast convergence can be obtained simultaneously. Not many examples of
methods for the identification of the poles from input-output data were found,
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especially in the context of room acoustics. Recursive algorithms [170] should be
adopted in this case, such as the method in [151], which adapts the coefficients
of a single-pole OBF filter using a combination of RLS and a nonlinear recursive
algorithm. For the general OBF model, however, the analytical expressions of
the gradient vectors with respect to the poles are very involved [171], and a
strategy for the adaptation of the poles not very practical.

In order to avoid the nonlinear problem, the idea of using a grid search, as in
the estimation algorithms described in Part II, was also adopted to identify a
set of poles, possibly common to more source-receiver positions, from either
white noise or speech signals. The resulting scalable algorithm, described in
Chapter 5, uses the normalized LMS algorithm and a modified version of it to
search among a set of candidate poles the one that reduces the instantaneous
squared error the most.

Other system identification and data-driven modeling approaches

System identification consists of representing dynamical systems using mathe-
matical models obtained from measured input-output data. The most well-
established approach in system identification is based on parametric prediction
error and maximum likelihood methods [172, 173], both in time [174] and in
frequency domain [175]. These methods first rely on the selection of a model
structure of a given order, which is adequate to describe the system at hand.
If the model and its order are well chosen, the system can be identified with
good accuracy. Methods in this framework are the most widely used in room
acoustic system identification and other related fields, such as modal analysis
in structural engineering, where the aim is to estimate the modal parameters
(eigenfrequency, damping constant, mode shapes) from vibration data of a
structure [176]. Methods specifically developed for modal analysis are also
available, but tend to fail in cases of low SNR and for systems with high dynamic
range and modal density [177]. The system identification literature on OBF
models under this classical framework is well-established, even though mostly
limited to Laguerre and 2-parameter Kautz models, or to Generalized OBF
models, consisting of repeated sets of a finite number of poles (see references
in Section 1.3.2).

Another common approach worth mentioning, even though its application in
room acoustic modeling is quite limited [178], is subspace identification [179,
180]. Subspace identification methods aim at estimating a state-space model by
means of projections onto certain subspaces generated from input-output data,
normally using a singular value decomposition (SVD) algorithm. Advantages
of these methods are that no specific model structure has to be selected, that
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compact models can be easily achieved by model reduction, and that iterative
(nonlinear) optimization techniques are not required. On the contrary, it is
more difficult to include prior knowledge of the system, the estimation may
be less accurate than with prediction error methods [181], and the recursive
update of the SVD algorithm is not well-suited for online identification [182].

The already vast ’classic’ system identification literature recently became
even larger with the introduction of concepts borrowed from the fields of
statistics and machine learning, such as kernel-based, Bayesian, and regularized
estimation methods. Rather than relying on finite-dimensional models, kernel
methods [183] formulates the identification problem in an infinite-dimensional
space, consisting of all possible impulse responses, which are modeled as zero-
mean Gaussian processes. Prior knowledge is included by means of a covariance
function, also known as kernel, whereas ill-conditioning problems are avoided
using regularization methods [184, 185]. Kernel methods are potentially very
useful in RASE applications when also the nonlinearities of the loudspeaker
needs to be identified [186, 187]. The identification can be performed in the
infinite-dimensional space in an adaptive way [188, 189, 190, 191] without
problems of convergence to local minima, while obtaining a filter which is
nonlinear in the input space. In this context, the kernel could be constructed
based on OBFs [147], which imposes stability and may be particularly suited for
loudspeaker/room impulse response estimation. The RIR estimation problem
was also tackled using Bayesian estimation methods [192, 193], relying on the
assumed sparseness of the RIR coefficients.

A recent trend in room acoustic modeling is indeed to formulate the estimation
problem in the compressive sensing framework [194], with the aim of obtaining
a sparse representation of RIRs. The concept of sparsity in room acoustic
modeling can refer to the early part of the time-domain RIR, in which sound
reflections are discrete and scarce [195, 196], to the low portion of the spectrum
of the RTF, where the modal density is low [197], or to the spatial distribution
of room modes, which can be approximated by a linear combination of a
finite number of basis functions, such as plane waves [197, 198], spherical
harmonics [199] or spherical waves [200]. In this context, a RIR estimation
algorithm aiming at obtaining a sparse solution by selecting OBFs out of a large
dictionary using sparsity-promoting regularization and convex optimization was
proposed in [201], but not included in this thesis. In the thesis, sparsity in the
RIR representation is achieved using a different concept [202, 203, 204] by means
of analytical dictionaries built from OBFs.



ROOM ACOUSTIC SIGNAL ENHANCEMENT 33

1.5 Room acoustic signal enhancement

Modeling and identification of room acoustics are at the basis of all digital
signal processing tasks intended to correct, modify or synthesize the response of
the system, with the purpose of enhancing the desired qualities of sound signals.
In this section, three common RASE applications are described, namely digital
equalization, artificial reverberation and AEC.

1.5.1 Digital equalization

Equalization in room acoustics [6, 7, 8, 9] aims at improving the objective and
subjective quality of sound reproduced in rooms using digital signal processing
techniques9. In order to do so, the detrimental effects introduced by the
loudspeakers and the room acoustics should be corrected for. Ideally, a digital
equalizer should be designed in order to invert the loudspeaker-room response,
such that the source signal can be faithfully reproduced at the receiver position.
In practice, mainly due to the nonminimum-phase characteristics of the RIR,
perfect equalization at one or multiple positions inside a room is difficult to
achieve.

Minimum-phase equalization

A stable and causal inverse RTF is only achievable for minimum-phase systems,
since a RTF with zeros outside the unit circle, i. e. with Bout(z) 6= 1 in the RTF
in (1.17), would result in an unstable inverse RTF. A minimum-phase inverse,
however, can be achieved by first decomposing the RTF into a minimum-phase
component Hmp(z) and an AP component D(z) as

H(z) = Hmp(z)D(z) = Bin(z)Bout(z−1)
A(z)

Bout(z)
Bout(z−1) (1.30)

which is obtained by multiplying and dividing by the polynomial built by
reflecting excess-phase zeros inside the unit circle (z → z−1), and then inverting
the minimum-phase part Hmp(z) of the RTF10. Given that an AP transfer
function has a flat magnitude response, the magnitude response of the minimum-
phase component corresponds to the one of the original RTF. It follows that

9an exhaustive overview and classification of methods developed in the last 40 years can
be found in [9]

10in practice, a minimum-phase/all-pass decomposition can be obtained, for instance, using
the homomorphic method described in [45, 48].
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an equalization filter with transfer function equal to H−1
mp(z) is able to correct

for the spectral characteristics of the loudspeaker/room response.

The exact minimum-phase equalizer, however, presents some issues. The inverse
response, indeed, is characterized by a very long response, due to the fact
that deep and narrow notches in the room magnitude response correspond to
prominent and long-ringing resonances in the inverse response. For this reason,
a high-order equalizer is normally required for exact inversion. Moreover, the
inverse equalizer built from a given RTF measured at specific source-receiver
positions is effective only at those positions and only if the acoustic conditions
are almost unchanged [38]. Indeed, variations in the RTF can change the
position of the peaks and notches in the room magnitude response, especially at
higher frequencies, so that a sharp resonance in the equalizer aiming to correct
a notch in the measured RTF may actually create a detrimental boost in the
response.

To deal with these problems, the room magnitude response is normally smoothed
to a certain degree in order to level out deep notches and sharp resonances,
which extends the area of effective equalization and also results in a reduction
of the required length for the equalization filter. Another option is to design
the equalizer based on an approximated model of the RTF, in which peaks and
notches are coarsely modeled. For this purpose, warped models [93, 99] and
fixed-poles models, such as the PF [80, 87, 205] and OBF [28] models, have
been suggested, which also allow to obtain a desired frequency resolution, such
as the Bark frequency scale. By properly selecting poles [89, 205] it is possible
to unevenly allocate resolution and to control the sharpness of the resonances
in the equalizer response in different frequency regions. For instance, at low
frequencies, where it is important to correct for the modal behavior of the room,
high resolution and sharp resonances can be assigned to the filter, whereas
at higher frequencies, where the variability of the RTF is higher and notches
are less perceivable, a lower resolution and a gentler equalization is sufficient.
An alternative is to recur to multirate approaches [206, 207] in which different
subbands can be treated differently.

The robustness with respect to measurement errors and variations in the RTF
can be improved also by designing an equalizer based on the response measured
at multiple positions. A multi-point equalization filter is computed, for instance,
by minimizing the average equalization error at multiple microphones using
LS or adaptive filters [208], or by first obtaining a prototype response by
averaging [209] or clustering [210] techniques, which is then used in the design.
An alternative approach relies on the modeling of multiple RTFs using the
CAPZ model [104, 105, 211], where the common denominator A(z) is inverted
to be used as an FIR pre-equalizer, such that common room resonances are
partially compensated.
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Special kinds of filters are often found in loudspeaker and room response
equalization, such as those used in graphic [82, 212] and parametric equali-
zers [213, 214], normally having low filter orders. These equalizers are quite
popular, being implemented in many commercial products, such that equalizer
design methodologies that would allow to automatically correct for deviations
from a desired response without relying on the manual tuning of trained experts
are of interest [215, 216]. In this context, a novel procedure for equalization
using IIR biquadratic filters, which designs an efficient low-order equalizer while
focusing on the equalization of magnitude peaks, is described in Chapter 6.

Nonminimum-phase equalization

Even though the unbalanced magnitude response is the main source of coloration
and reduced perceived sound quality, it is often important to correct also for the
phase response [49, 217], especially if some reduction of the reverberation tail
is desired. In this case, a mixed-phase equalizer, correcting both the minimum-
phase and the nonminimum-phase components of the RTF, is required, and
the equalization task is sometimes referred to as dereverberation11. Such an
equalizer is unstable or noncausal by nature, but it can be made stable and
causal by introducing a modeling delay. Such delay should be chosen as the
duration of the noncausal inverse filter response, which is normally as long as
the original RIR [6]. Using a shorter delay, as required in practice, not only
provides only partial equalization, but also introduces errors in the equalized
response, known as pre-ringing or pre-echo, which appear in the equalized
response before the direct sound. Moreover, the variability of the RTF and
errors in the measured RIRs tend to amplify the problem [218].

Some of the methods cited above, such as the multi-point adaptive equaliza-
tion [208], and multi-channel methods based on the exact inversion of RTF
either in the time domain or in the frequency domain, e.g. [219, 220], have been
applied to the design of mixed-phase equalizers, but they normally exhibit the
aforementioned problems. More robust methods [221, 222] that mitigate these
issues, but only obtain partial dereverberation, have appeared in recent years.
Other approaches attempted to reduce the effective length of the mixed-phase
inverse filter, by using complex smoothing techniques [223] or IIR filters with
uneven frequency resolution. Also in the mixed-phase case, the use of fixed-
poles filters may be potentially useful to reduce the equalizer order and partially
control the behavior of the equalization, provided that poles are distributed in
a meaninful way. The use of OBF filters has been previously investigated [28]

11in case the source signals are not available, for instance when the signal to enhance is
coming from a person talking inside the room, the equalization task is told to be ‘blind’ [3].
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Figure 1.8: Overview of artificial reverberation methods.

for fixed configurations of the poles. In Chapter 5, a method is suggested for
identifying the poles of the equalizer implemented as an OBF filter.

A different multi-channel approach [224, 225, 226] has been proposed, which uses
a polynomial-based control systems framework providing analytical expressions
for the optimal filter. The aim is to partially invert the RTF of all the
acoustic channels, and then use sound field superposition to equalize a primary
loudspeaker with the aid of a number of support loudspeakers to reach the
desired target response at a number of control points and in their vicinity. Also,
the level of the pre-ringing introduced is controlled by means of an AP filter
designed from nearly common excess-phase zeros, whereas robustness to RTF
variability and RIR errors is addressed by modeling the RTFs as a sum of a
deterministic and a stochastic part. The method in [225] has been applied for
the design of a multiple-input/multiple-output (MIMO) equalizer for improving
the acoustics inside a car cabin [227], as described in Chapter 7, where the
design procedure is outlined and methods for modeling the RTFs and their
excess-phase components are suggested.
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1.5.2 Artificial reverberation

The term artificial reverberation refer to a large variety of different approa-
ches [10, 11] that try to simulate the acoustic response of a room in order to
enhance or manipulate its features. Artificial reverberation finds application
in different fields, such as acoustic design and analysis of the interior acoustics
of buildings, music (both live and recorded), film post-production, and, more
recently, virtual reality. These methods, of which a schematic overview is
given in Figure 1.8, can be divided into three main categories (see [10, 11] and
references therein):

1. delay networks methods, in which tapped delay lines and digital filters
(such as comb and AP filters) are used to simulate early reflections and
late reverberation. They are based on a perceptual approach, i. e. not
relying on measured RIR nor trying to simulate the acoustics of an existing
room, where the reverberation characteristics, such as RT, echo density
and diffuseness, are controlled by the parameters of the filters;

2. computational acoustics methods, which rely on physically-based room
models. Starting from a room with certain dimensions and properties
of the surfaces, the sound field at low frequencies is obtained by wave-
based methods [228], which predict how acoustic waves propagate in the
room using numerical methods. At higher frequencies, where wave-based
methods are too demanding, geometrical acoustics methods [229, 230, 231]
are used instead, which assume a ray-like behavior of sound;

3. convolution algorithms, which apply the measured, estimated or modeled
room response to an audio signal by convolution or filtering.

The third category is closely related to the scope of this thesis. Indeed, the
general approach, at least conceptually, is to convolve a ‘dry’ audio signal with
a RIR, so to apply to the signal the acoustic features of the space in which
the RIR was recorded. In practice, linear convolution, defined in (1.21), is a
very demanding operation, so that fast and efficient methods for convolving
long RIRs in real time have been developed, based on fast convolution in the
frequency domain using blocks [45] and partitioning of the RIR [232].

An alternative to the complexity problem of FIR-based direct convolution is to
model the measured RIR using techniques described in Section 1.3 and perform
the convolution using IIR filters with a reduced number of coefficients, thus
requiring less operations [233]. A possibility, useful to avoid problems related
to modeling with high model orders, is to recur to subband modeling using
multirate techniques [206, 207]. This way, not only the subband responses
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can be modeled with less parameters compared to the fullband case, but also
the number of parameters for each subband may vary, for instance because of
differences in modal superposition or time decays at different frequency regions,
thus leading to computational savings.

In recent years, the use of the PF, discussed in Section 1.3, was proposed
as a means of producing reverberation, where each filter section synthesizes
the response of a modal resonance. What is interesting in this modal
reverberator [83, 11] is that it provides a means of controlling the parameters of
each mode, i. e. frequency, damping constant and amplitude, in an interactive
way (in real-time and with no latency). For instance, movements of the source
or the listener inside the room could be simulated by modifying the mode
amplitude parameters, which are position dependent. Or the acoustic features
of a RIR, measured and modeled as a PF, could be altered by modifying the pole
parameters of the filter, and possibly other kind of effects [234]. The parameters
of the PF filter can be selected based on the desired decays of modes in different
frequency regions, or by modeling a measured RIR. In the original work [83],
the modal frequencies are estimated as the frequencies of the most prominent
spectral peaks, while the damping constants are determined based on the decay
times estimated in subbands. The amplitude parameters are then found by a
weighted LS estimation, where a weighting function is used to obtain a good
fit in the early part of the response. Alternatively, modeling methods, such as
those described in Section 1.3 and in Chapters 3 and 4, could be used instead.

1.5.3 Acoustic echo cancellation

One common task of room acoustic signal processing is the suppression of the
echo that often arises in hands-free applications, which has a very detrimental
effect on the quality of communication. The situation is depicted in Figure 1.9,
where the speech signal u(n) of the speaker in the transmission room on the
left is reproduced, with a certain transmission delay ∆T , in the receiving room
on the right, where it is modified by the room acoustics before being picked
up by the microphone. The role of AEC [22, 23] is to model and identify the
time-varying acoustic echo path F (z, n), i. e. the RTF, between the loudspeaker
and the microphone in the receiving room using an adaptive filter F̂ (z, n). In
this way, the echo signal y(n), which is normally corrupted by some additive
uncorrelated noise v(t), can be canceled and only the echo-free speech signal of
the speaker in the receiving room (in case he is talking) is sent to the loudspeaker
in the transmission room. The adaptive filter thus needs to identify the echo
path with good accuracy as quickly as possible, be able to track its variations
in time in an effective way, and be robust against the influence of noise.
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Figure 1.9: Acoustic echo cancellation scenario.

Problems in the context of AEC arise when both speakers are talking at the same
time. This double-talk situation results in slow convergence, or even divergence,
of the adaptive filter. A common solution is the use of a double-talk detector [23],
which freezes the filter adaptation when both speakers are concurrently active,
although other robust approaches have been suggested [235]. Another issue
is related to the poor excitation characteristics of speech signals. The non-
whiteness and non-stationarity of speech results in large variations of the signal
power, which translate to an ill-conditioned autocorrelation matrix of the input
signals. If a large model order is required for the adaptive filter, as is the case for
reverberant environments, the autocorrelation matrix gets larger, resulting in an
aggravation of the ill-conditioning problem and thus a slower filter convergence.
A common solution in this case is to recur to regularization methods, either
fixed or dependent on prior knowledge of the room acoustics [185], in order
to reduce the condition number of the autocorrelation matrix and speed up
convergence. Often a limited number of filter coefficients is available. In case
the echo canceler is implemented as an FIR filter with less coefficients than
the number of samples of the RIR, the unmodeled part of the echo path can
be interpreted as additional noise [159, 162]. As a consequence, the identified
echo path may present a bias and a high variance [160], which have a negative
impact on the performance of the echo canceler.

The undermodeling and the ill-conditioning problems are even more critical
in case two (or more) loudspeakers are present in the receiving room. In
stereophonic acoustic echo cancellation (SAEC) [161, 236], the two loudspeaker
signals from the transmission room are strongly correlated with each other,
which results in a highly ill-conditioned stereo autocorrelation matrix. This
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is translated not only to very slow convergence of the coefficients of the two
parallel echo cancelers, but also to a problem of identifiability of the echo paths
between the two loudspeakers and each microphone present in the receiving
room. For this reason, an additional stage is often necessary in order to
decorrelate the input signals, at least partially, before they are sent to the
loudspeakers. Decorrelation is normally achieved by processing the stereo
signals with a nonlinear operation [161], by adding spectrally-masked noise [236],
or by means of time-varying AP filters [237], where the degree of decorrelation
is limited by the level of degradation of the speech quality introduced by this
operation.

Some of the problems inherent to AEC and SAEC could be alleviated by
implementing the echo canceler as an IIR filter [103, 238]. Indeed, if the acoustic
echo path can be estimated without incurring in undermodeling problems using
a reduced number of filter coefficients, that would result in a better conditioned
autocorrelation matrix. However, the use of IIR filters in AEC have been
discouraged in the past by their difficulties in the filter adaptation and possibly
by the wide-spread belief that only a limited improvement over FIR filters can
be achieved [239, 240]. The first argument is no longer valid for FPAFs, even
though slower convergence is still a possibility.

Also in this application, the use of OBF adaptive filters can bring some benefit.
More precisely, their orthogonality property can reduce the ill-conditioning
problems due to the non-whiteness of the input signal, at least for the single-
channel case. However, practical advantages over FIR filters are only achieved
if the poles of the filter are selected to be close enough to the true poles of the
system, such that a small number of coefficients is required to estimate the echo
path. It follows that, once again, the main issue to be tackled is the estimation
of the pole parameters. A few examples of the use of single-pole OBF filters
in echo cancellation are found in the literature [34, 131, 241], whereas the use
of general OBF filters has been suggested in [171] but not verified on realistic
scenarios. In Chapter 5, the identification algorithms developed are applied
to a simple AEC scenario, where the poles are estimated from speech signals.

1.6 Overview of the thesis

The main aim of this thesis is the development of efficient parametric models
and identification methods for room acoustics signal enhancement (RASE)
applications, with a focus on equalization. Pole-zero (PZ) models with fixed-
poles are investigated, as their infinite impulse response (IIR) nature can bring
advantages over all-zero (AZ) models in terms of efficiency, especially in the low
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frequencies, without some of the typical problems with conventional PZ models.
A consistent part of this thesis is devoted to orthonormal basis function (OBF)
models and adaptive filters, whose properties make them particularly suited to
model room acoustics and to tackle some of the issues commonly encounter in
RASE applications.

1.6.1 Research objectives

The main research objectives of this thesis can be stated as follows:

1. Characterization of the room transfer function (RTF) in the modal
frequency region, where the acoustics of a room is more problematic,
especially in small spaces. The focus is on the measurement of room
impulse responses (RIRs) and the analysis of related issues due to the
ambient noise and the nonlinear behavior of the loudspeaker when driven
with high levels at low frequencies.

2. Development of efficient room acoustic parametric models with the same
modeling accuracy but a lower model complexity compared to the all-
zero model. Models based on OBFs are investigated in order to assess
their potential in providing a compact yet accurate representation of
the acoustic system. The effectiveness of the proposed models and the
related parameter estimation algorithms with respect to other methods
are evaluated by comparing their performance in approximating measured
target RIRs.

3. Application of the developed models and algorithms in a system identifi-
cation framework using adaptive filters, towards their implementation in
real RASE tasks. For this purpose, the problem of identifying a model of
the room response from both white noise and speech signals is addressed.

4. Design and implementation of equalization methods addressing the
problem of compensating the unbalanced response of a loudspeaker and
of a multiple position room acoustic system. The focus is on equalization
using IIR filters with reduced filter orders, so as to deliver effective
solutions with low complexity.

1.6.2 General overview

This thesis is divided in four parts, each addressing one of the four main research
objectives stated above, and each one related to one of the four main topics
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treated, namely room acoustic measurements, modeling, identification, and
equalization.

Part I (chapter 2) focuses on the characterization of room acoustics at very
low frequencies. The discussion is centered on the difficulties encountered
when performing acoustic measurements in the modal frequency range, such
as prominent ambient noise and nonlinear distortions of the loudspeaker, and
on the countermeasures to be used to obtain reliable room impulse response
(RIR) measurements. The problem of estimating the reverberation time in the
low-frequency range is also addressed.

Part II (chapters 3 and 4) deals with the topic of modeling room acoustics using
parametric models. The focus is on models based on orthonormal basis functions
(OBFs), which present interesting properties compared to other conventional
parametric models. Some of these properties have been exploited for the
design of a scalable matching pursuit (MP) algorithm, named OBF-MP, for
the estimation of the pole parameters of an OBF model from measured RIRs.
An extended version of the algorithm, named OBF-GMP, is also presented,
dealing with the problem of estimating poles common to a set of room transfer
functions (RTFs) measured at different locations inside the room, based on the
concept of common-acoustical-poles.

Part III (chapter 5) investigates the use of IIR adaptive filters based on OBF
models in a system identification framework, motivated by their good numerical
properties. The theory of OBF adaptive filters is reviewed, with emphasis on
their performance in relation to critical aspects, such as the filter order and
the characteristics of the input spectrum. A scalable identification algorithm,
inspired by the modeling algorithms described in Part II and named stage-based
(SB) OBF-GMP, is introduced, which is able to iteratively estimate the poles
of the OBF filter from white noise and speech multi-channel input signals. The
potential of OBF adaptive filters and of the proposed algorithm is assessed by
means of simple scenarios in the context of room response equalization (RRE)
and acoustic echo cancellation (AEC).

Part IV (chapters 6 and 7) presents two specific room acoustic signal
enhancement (RASE) applications in the context of digital equalization. The
first is an iterative procedure for the design of a low-order parametric equalizer
using constrained IIR filters, such as peaking and shelving filters. The procedure
is applied to the minimum-phase equalization (magnitude-only) of loudspeaker
and room responses. The second application is the implementation of a
nonminimum-phase response equalization method, which uses a polynomial-
based multi-channel framework for acoustic modeling and control design. The
focus is on the RTF modeling and on the design of mixed-phase filters enabling
nonminimum-phase partial inversion.
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1.6.3 Thesis outline

Chapter 2 introduces a new RIR database measured in a rectangular room
with subwoofers as sound sources. The measurements are performed with the
exponential sine-sweep (ESS) method, whose characteristics are suitable to deal
with the issues encountered at very low frequencies. It is shown that, indeed, the
recorded responses present high levels of ambient noise and nonlinear distortions,
both harmonic and impulsive, whose effects are partially mitigated by a careful
calibration of the measurement equipment and by postprocessing operations.
A procedure for estimating the reverberation time is also proposed, dealing
with the over-estimation and noise floor problems encountered by standard
procedures at low frequencies. A bank of narrow band-pass filters is used in
combination with an approximation of the RIRs using OBF models.

Chapter 2 has been published, as an engineering report, as:

• G. Vairetti, N. Kaplanis, E. De Sena, S. H. Jensen, S. Bech, M. Moonen,
and T. van Waterschoot, “The Subwoofer Room Impulse Response
(SUBRIR) database,” J. Audio Eng. Soc., vol. 65, no. 5, pp. 389–401,
May 2017.

Chapter 3 addresses the problem of modeling room responses using OBF
models, whose orthogonality property can bring additional advantages over
conventional models, such as model efficiency, stability and scalabilty. The latter
is found to be related to the analogy between OBF models and the definition of
the RIR as an infinite summation of exponentially decaying sinuosoids. These
properties are exploited in a novel MP estimation algorithm, named OBF-
MP, where the nonlinear problem of estimating the pole parameters is avoided
by means of a grid-search. The algorithm, whose performance is compared
to state-of-the-art modeling methods, not only delivers efficient, scalable and
stable model estimates, but also provides an added layer of flexibility in the
allocation of frequency resolution.

Chapter 3 has been published as:

• G. Vairetti, E. De Sena, M. Catrysse, S. H. Jensen, M. Moonen, and
T. van Waterschoot, “A scalable algorithm for physically motivated and
sparse approximation of room impulse responses with orthonormal basis
functions,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 25,
no. 7, pp. 1547—1561, Jul. 2017.

Chapter 4 presents a simple extension of the OBF-MP algorithm, intended
to estimate a set of poles common to multiple RTFs measured in the same
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acoustic space. Even though the poles estimated with this extended algorithm,
named OBF-GMP, cannot be claimed to be the true poles of the system, a more
compact representation of a set of RTFs is achieved, as shown by simulation
results performed on the low-frequency measurements presented in Chapter 2.

Chapter 4 is based on a conference paper published as:

• G. Vairetti, E. De Sena, T. van Waterschoot, M. Moonen, M. Catrysse,
N. Kaplanis, and S. H. Jensen, “A physically-motivated parametric
model for compact representation of room impulse responses based on
orthonormal basis functions”, in Proc. 10th Eur. Congr. Expo. Noise
Control Eng. (EuroNoise 2015), Maastricht, The Netherlands, pp. 149–
154, Jun. 2015.

Chapter 5 deals with the topic of room acoustic system identification using
adaptive filters based on OBF models. Contrary to standard IIR adaptive
filters, the orthogonality property of OBF filters with fixed poles enables an
analysis of their adaptation performance, showing good numerical properties
and similarities with finite impulse response (FIR) adaptive filters. The
properties of OBF adaptive filters are reviewed and an identification algorithm
is introduced, named SB-OBF-GMP, able to identify a common set of poles
from low-frequency multi-channel input-output data, both for white noise and
speech signals. Simulation results show that better performances compared to
FIR filters with the same number of adaptive coefficients can be achieved, with
the extent of this improvement dependent on the characteristics of the room
acoustics system, such as the room volume and the reverberation time. Possible
applications of OBF adaptive filters and the proposed algorithm are suggested
in the context of AEC, showing fast convergence and robust results with respect
to the undermodeling problem, and of single-channel RRE, where the frequency
resolution of the equalizer is directly determined by the identification of the
poles of the inverse filter.

Chapter 5 has been submitted for publication, as a tutorial paper, as:

• G. Vairetti, E. De Sena, S. H. Jensen, M. Moonen, and T. van
Waterschoot, “Orthonormal basis functions adaptive filters for room
acoustic signal enhancement,” Submitted for publication to Signal
Process., Elsevier, Apr. 2018.

Chapter 6 presents an automatic design procedure for a low-order parametric
equalizer. Differently from state-of-the-art methods, which aim at minimizing
the distance in magnitude between the system and the target responses, the
proposed design procedure of the minimum-phase equalizer is based on the
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minimization of the sum of squared errors, leading to an improved mathematical
tractability of the equalization problem and a stronger emphasis on the
equalization of the more perceptually relevant spectral peaks. Examples of
loudspeaker and room responses equalization show that an effective design of a
low-order equalizer is also achieved.

Chapter 6 has been submitted for publication as:

• G. Vairetti, E. De Sena, M. Catrysse, S. H. Jensen, M. Moonen, and
T. van Waterschoot, “An automatic design procedure for low-order IIR
parametric equalizers,” Submitted for publication to J. Audio Eng. Soc.,
Apr. 2018.

Chapter 7 deals with the problem of equalization of an acoustic system,
specifically an audio reproduction system inside a car cabin. An existing solution
has been adopted, which designs a robust nonminimum-phase MIMO equalizer
able to correct the response of a primary speaker at different receivers within a
given listening region, with the help of a number of support loudspeakers. The
approach, which is based on a polynomial-based control system framework,
strongly relies on modeling techniques. A possible implementation of the
suggested ‘probabilistic modeling’ of the RTFs, intended to provide robustness
to RTF variations, is described. The common-denominator (CD) BU method for
modeling RTFs with shared common poles has been derived, independently from
its recent appearence in [32], with the inclusion of a regularization parameter to
mitigate ill-conditioning problems. The BU method has been also adapted for
the modeling of the all-pass (AP) component of the RTFs, whose estimates are
required for the design of an all-pass filter meant to remove phase distortions
common to all positions in the listening area.

Chapter 7 is based on the final report for the IWT (Agency for Innovation by
Science and Technology) project RAVENNA: Proof-of-concept of a Rationed
Architecture for Vehicle Entertainment and NVH Next-generation Acoustics, in
collaboration with Premium Sound Solutions N.V.:

• G. Vairetti, T. Dietzen, D. Pelegrin Garcia, M. Moonen, and T. van
Waterschoot, “Automatic Calibration of Car Cabin Acoustics in a Multi-
Channel Equalization Framework,” KU Leuven, Tech. Report, July 2017.

Chapter 8 concludes the thesis by restating the research objectives, summari-
zing the contributions of this work, and suggesting possible directions for future
research.
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Abstract

This chapter introduces a new database of room impulse responses (RIRs)
measured in an empty rectangular room using subwoofers as sound sources. The
purpose of this database, publicly available for download, is to provide acoustic
measurements within the frequency region of modal resonances. Performing
acoustic measurements at low frequencies presents many difficulties, mainly
related to ambient noise and to unavoidable nonlinearities of the subwoofer. In
this chapter, it is shown that these issues can be addressed and partially solved
by means of the exponential sine-sweep method and a careful calibration of the
measurement equipment. A procedure for estimating the reverberation time
at very low frequencies is proposed, which uses a cosine-modulated filterbank
and an approximation of the RIRs using parametric models in order to reduce
problems related to low signal-to-noise ratio and to the length of typical band-
pass filter responses.

2.1 Introduction

Room impulse response (RIR) measurements are essential to assess the
performance of acoustic signal enhancement algorithms, e.g. for applications
such as dereverberation [242], source separation [243], source localization [50],
blind acoustic parameter estimation [244], convolutive reverb [245], and many
others. Several available RIR databases [246, 247, 242, 243, 50, 244, 245] are
intended for different audio signal processing tasks, each requiring a different
choice of measurement method and of the measuring equipment. For instance,
the databases in [246] and [247] contain binaural and head-related RIRs,
and are useful in hearing-aids applications. Other databases present specific
configurations of the microphones, usually arranged into arrays. What is
common to all these databases is that they use full-range loudspeakers, whose
frequency response typically has a lower bound of 50-100Hz. While these
databases cover a frequency range sufficient for the development and evaluation
of speech enhancement algorithms, information about a significant portion of
the modal response of the room is missing.

Nowadays, home audio systems generally include a subwoofer, which is intended
for the reproduction of low-frequency content typically in the region between
20Hz and 150Hz. In this frequency range, small-sized typical rooms operate
within the modal frequency region [1]. In small-sized rooms, most of the
acoustical problems are actually due to poor acoustics at very low frequencies
(LFs). The modal resonances are usually well separated, energetic, and
detectable by the human ear [248], thus degrading the perceived sound quality.
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A subwoofer with small enough lower cut-off frequency can even partially excite
the so-called cavity mode (i.e. the modal resonance centered at 0 Hz). Therefore,
algorithms for home audio system applications, such as room compensation
algorithms, should be validated also on RIRs measured within the frequency
region of modal resonances. Moreover, such RIRs may provide new insights
and be useful to validate physical models of room acoustics, although detailed
information about the boundaries conditions are not available. To the authors’
best knowledge, a RIR database measured at very LFs is not yet available.

The Subwoofer Room Impulse Response (SUBRIR) database introduced in
this chapter is a collection of RIRs measured in a standard domestic listening
room using a subwoofer as the sound source. Two subwoofers with different
characteristics and two types of omnidirectional microphones were used to
measure the RIR at different locations, for a total of 96 measurements1.
Performing acoustic measurements at very LFs presents some difficulties, mainly
related to LF ambient noise and to unavoidable nonlinear distortions of the
subwoofer [55].

Nonlinear distortions can be divided into two categories: regular nonlinear
distortions refer to systematic and reproducible distortions, such as harmo-
nic spectral components, whose impact to the overall performance of the
loudspeaker can be controlled in the design process [249]. Irregular nonlinear
distortions are instead due to loudspeaker defects and are less easily reproducible
and controllable [250]. The main irregular distortion artifact noticed in the
measurements presented in this chapter was recognized as the so-called rub &
buzz distortion [251, 250, 252]. This is a signal-dependent distortion caused
by defects due to manufacturing errors, aging or overload. Possible causes of
this type of distortion are buzzing parts (e.g. a loose glue joint), the voice coil
rubbing or bottoming (i.e. hitting the backplate due to over-displacement),
loose particles, air leakages, etc.

The family of methods for measuring RIRs known to have a high immunity
against distortion artifacts is the one where a sweep is used as the excitation
signal [253, 60, 254]. This chapter shows that the exponential sine-sweep
(ESS) method [61] is particularly suitable for measuring good quality LF-RIR
measurements regardless of all the difficulties mentioned above. The ESS is
known to provide a better signal-to-noise ratio (SNR) and a better rejection of
distortion artifacts than other RIR measurement methods [25, 57, 58, 255].

This chapter also outlines a procedure to estimate reverberation time (RT) at
very LFs. Indeed, the standard specifications [256] are not applicable in this
frequency region due to the low SNR [65] and to the influence of the response

1A subset of this database for one subwoofer and one microphone was already presented
shortly in [156].
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of the band-pass filters of the filterbank [257]. The proposed approach uses
a cosine-modulated filterbank, which reduces the bias introduced by typical
filterbanks at LFs, and a representation of the RIRs using orthonormal basis
function (OBF) models [27], which allows to remove the effect of the noise floor.

The chapter is structured as follows. In Section 2.2, a brief summary of the ESS
method is given, together with comments on advantages and disadvantages of
the method. Section 2.3 describes the room in which the measurements were
performed, together with details of the measurement equipment. In Section
2.4, an analysis of the measurements performed is given; the recorded signals
and the retrieved RIRs are analyzed and guidelines on how to obtain good
quality measurements are provided. In Section 2.5, values for the frequency-
dependent RT at LFs are estimated with the proposed approach. Section 2.6
concludes the chapter and summarizes the recommendations for performing
LF-RIR measurements.

2.2 The exponential sine-sweep (ESS) measure-
ment method: a summary

This section reviews the key points of the ESS method and discusses its
applicability in measuring LF-RIRs. A detailed treatment of the ESS method
can be found in [61, 25].

The excitation signal used by the ESS method is a sweep signal with
instantaneous frequency (IF) increasing exponentially with time. The IF at
time t of the sweep signal of duration T is given by

f(t) = e(1−(t/T)) ln(fa)+(t/T) ln(fb) = fa

(
fb
fa

)(t/T)
, (2.1)

where fa and fb are the starting frequency and stopping frequency, respectively.
The instantaneous phase is obtained by integrating (2.1) between 0 and t, and
used as the argument of a sinusoidal function, leading to the excitation signal,

s(t) = sin


 2πT

ln
(
fb
fa

) (f(t)− fa)


 . (2.2)

The excitation signal, s(t), is fed to the loudspeaker and the response y(t) is
recorded with a microphone. The RIR ĥ(t) is retrieved by linear convolution of
the recorded signal y(t) with the so-called inverse signal v(t) (ĥ(t) = y(t)⊗ v(t),
with ⊗ indicating convolution). The inverse signal is built such that the linear
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convolution of the sweep signal with the inverse signal produces a shifted delta
function s(t) ⊗ v(t) = δ(t − T ). The inverse signal can be obtained by time-
reversing the sweep signal, plus an amplitude scaling to compensate for the
different energy content at various frequencies, as

v(t) = C ·
(
fb
fa

)−(t/T)
s(T − t). (2.3)

Here, C is a normalization constant, modified from [255] to include start and
stop frequencies different from 0 and the Nyquist frequency, respectively, as

C = 2 fb ln(fb/fa)
(fb − fa)T . (2.4)

The excitation signal used in the measurements presented in this chapter is
the sweep signal defined in (2.2), with start frequency fa = 0.1 Hz and stop
frequency fb = fs/2, where fs = 48 kHz is the sampling frequency. The duration
of the sweep signal was set to T = 5 s, followed by one second of silence, to
ensure that the reverberant tail in the recorded signal has faded out.

The beginning and the end of the excitation signal is usually smoothed out
using a tapering window in order to force the sweep to start and stop with zero
phase, thus avoiding switching noise. In this way, ringing and ripples effects
are reduced, at the expense of a slight deviation from the desired magnitude
spectrum [25]. The tapering window used consisted of two ramp functions of
length 1000 samples. The one at the beginning of the sweep signal was defined
as a quarter of a cycle of a sinusoidal function (as suggested in [25]), while the
one at the end of the sweep signal was a linear ramp function.

The spectrogram of the sweep signal is given in Figure 2.1 (using the spgrambw
function included in the voicebox toolbox [258]), while the magnitude responses
of the sweep signal, of the inverse signal and of the result of the convolution
of the two is shown in Figure 2.2. From the latter, a slight deviation from
the ideal uniformly flat magnitude response can be noticed. This effect is due
to the tapering window and is only noticeable below 5Hz, i.e. outside the
frequency range of the subwoofers. The code for generating the sweep signal
and its inverse was adapted from the code provided in [50].

The main sources of error in measuring RIRs are the presence of ambient noise,
the nonlinear distortions caused by the loudspeaker, and the time-variance of
the acoustic system due to changes in the room temperature or in the position of
people. The ESS method is known to be robust in tackling these issues [58, 62].
According to (2.1), the IF grows faster as time advances, with the result that
the excitation signal has a magnitude spectrum with a pink characteristic (-3
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Figure 2.1: The spectrogram of the sweep signal in a linear frequency scale
(left) and in a logarithmic frequency scale (right). In both plots, the power
resolution is linear.
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Figure 2.2: The magnitude responses of the sweep signal (5), of the inverse
signal (4) and of the linear convolution between the two (�).

dB/octave). High SNR can be achieved because also the ambient noise normally
has a spectrum with a pink characteristic, rather than white.

A characteristic of the ESS method is that the time-frequency correspondence
of the sweep signal guarantees that at time t all the spectral components with
frequency above the IF of the sweep are shifted before the causal RIR after
convolution [61, 25, 58, 62]. As a consequence, the ambient noise having
frequency above the IF of the sweep is pushed in the acausal part of the retrieved
response, thus contributing to the increase of the SNR in the causal part.
Moreover, this characteristic of the ESS method makes it quite robust against
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impulsive noise, provided that the impulsive event does not occur towards the
end or just after the sweep signal, in which case the energy of the impulsive
noise would overlap with the causal room impulse response [58].

The same principle explains the ability of the ESS method to partially reject
regular nonlinear harmonic distortions caused by the loudspeaker when driven
beyond its linear operating range [251]; each order of distortion creates a sweep
with IF proportional to its order, e.g. the second-order distortion has IF
increasing twice as fast as the IF of the sweep signal. It follows that the linear
convolution with the inverse signal pulls back these distortions into the non-
causal part of the RIR. However, this is not true for all harmonic distortion
artifacts; each order of distortion also creates sweeps with IF proportional
to submultiples of its order, which means that odd-order distortions produce
artifacts with the same IF as the sweep signal, that overlap with the causal part
of the retrieved RIR. The same arguments are valid for irregular distortions
caused by defects [250], such as rub & buzz; the ESS method is able to reject
all the distortions with IF above the IF of the sweep.

A final consideration pertains to the sensitivity of the measurement method
to the time-variance of the acoustic system. This is important because a
better measurement SNR can be achieved by synchronous averaging of multiple
measurements recorded for the same source-receiver position pair [61, 25, 57, 58].
It was shown in [58] that the ESS method is more robust to time variations,
compared to other methods, so that an improvement of the SNR of 3 dB can be
obtained by doubling the number of measurements (or alternatively the duration
of the sweep signal) without introducing significant errors. In addition, the time
variance is more prominent at high frequencies, so that synchronous averaging
of multiple measurements can be safely applied to increase the SNR of the
retrieved RIR at LFs.

2.3 Measurement Setup

2.3.1 Room description

The measurements were conducted in an empty small-sized room, aiming to
model a typical domestic listening environment. The room dimensions were
4.09m L × 6.35m W × 2.40m H, which satisfy the IEC60268-13 specifications
[259] and ensure a reasonably uniform distribution of low-frequency room modes.
The theoretical values of the central frequencies of the first 20 room modes are
given in Table 2.1 [1]. The structure is based on a brick construction comprising
of lightly plastered painted walls, a wooden acoustic floating floor, and a
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Figure 2.3: A sketch of the room at B&O headquarters, Struer, Denmark.
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Figure 2.4: The spectrogram of the near-field recording SA4 MC
nfR1 (left) and of

the retrieved RIR (right). Notice the rub & buzz distortions above the sweep
signal in the left plot, and the harmonic nonlinear distortions in the anti-causal
part of the RIR in the right plot.

wooden suspended false ceiling filled with absorptive material. The IEC60268-
13 standard requires the room to be filled with ordinary room furnishings,
semi-covered floor and reflective roof to achieve a certain degree of diffusion and
absorption and meet a ‘typical’ RT (e.g. RT200Hz−4kHz = 0.3− 0.6 s). During
the measurements described here, the room was empty but included a total
of 16 high-frequency acoustic panels (8 panels on each side wall), measuring
0.5× 0.5× 0.025 m each, and 2 Helmholtz absorbers (1.20× 0.42× 0.13 m) with
resonance frequency 200Hz and 300Hz, attached on the rear wall. A sketch
of the room is given in Figure 2.3. The air conditioning was kept off to limit
possible low-frequency noise, but the room temperature was kept monitored at
21 ◦C (±1◦C).



58 MEASURING ROOM IMPULSE RESPONSES AT LOW FREQUENCY

fn (Hz) nx ny nz fn (Hz) nx ny nz

0 0 0 0 83.91 2 0 0

27.02 0 1 0 87.19 1 1 1

41.95 1 0 0 88.16 2 2 1

49.91 1 1 0 89.63 0 2 1

54.05 0 2 0 91.28 1 3 0

68.42 1 2 0 98.96 1 2 1

71.50 0 0 1 99.81 2 2 0

76.44 0 1 1 108.09 0 4 0

81.07 0 3 0 108.10 0 3 1

82.90 1 0 1 110.24 2 0 1

Table 2.1: The theoretical value of the eigenfrequencies, with the corresponding
mode index numbers [1].

q x y z p x y z

1 1.12 1.56 1.50 1 3.84 3.84 0.53

2 0.77 4.04 1.80 2 2.90 0.80 0.53

3 2.04 2.47 0.90 3 3.63 5.83 0.53

4 1.62 5.32 0.60 4 2.35 4.55 1.13

5 3.05 3.06 1.50

6 3.09 5.07 1.00

Table 2.2: Source-receiver positions (in meters). The source position
corresponds to the center of the subwoofer cone.

2.3.2 Measurement equipment

Two types of subwoofers were used as sound sources. The first, denoted here
as Subwoofer A, was a purpose-made loudspeaker based on a closed-box design
(Genelec 1094), comprising of an 18" driver in a rigid wooden cabinet (V≈168 `)
and capable of reproducing frequencies well below 20Hz (-6 dBSPL at 14Hz,
based on near-field measurements described below). The second, denoted here
as Subwoofer B, was a Genelec 7050B comprising of an 8" driver in a spiral
bass reflex design and a metallic cylindrical cabinet, having a high-pass filter
with cut-off frequency of 25Hz and a low-pass filter with cut-off frequency set
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Figure 2.5: The harmonic distortion magnitude response for subwoofer A up
to the fifth order.

at 120Hz [260].

The responses were recorded by two microphones connected to a B&K 2669
preamplifier and a B&K NEXUS 2690-A conditioner. The first microphone,
denoted here as Microphone C, was a B&K 4939 (1/4"), with a 0◦ incidence
frequency range from 4Hz to 100 kHz (±2 dB), thermal noise level of 28 dBA
and sensitivity of 4 mV/Pa. The second microphone, denoted here as Microphone
D, was a B&K 4133 (1/2"), with a 0◦ incidence frequency range from 4Hz to
40 kHz (±2 dB), thermal noise level of 20 dBA and sensitivity of 12.5 mV/Pa.
Microphones and subwoofers were connected to an RME UCX audio interface.
No signal processing was enabled within the signal chain.

A total of 96 RIRs were measured in the room using the two subwoofers and the
two omnidirectional microphones. Each subwoofer was placed at four positions
in the room and measured at six microphone positions, completing a set of 24
source-receiver combinations, in conformity with ISO3382-2 [256] for precision
measurements. The source-receiver positions are summarized in Table 2.2. The
notation SspM

m
q Rr will be used to refer to a particular recorded signal, with

s = {A,B} indicating the two subwoofers and m = {C,D} indicating the
two microphones, p = {1, . . . , 4} and q = {1, . . . , 6} indicating the source and
receiver positions, respectively (see Table 2.2), and r = {1, . . . , 10} indicating
the number of a particular recording. The subwoofer at position p = 2 is placed
facing the door, whereas at the other positions it is placed facing the wall
opposite the door.



60 MEASURING ROOM IMPULSE RESPONSES AT LOW FREQUENCY

2.3.3 Near-field and calibration measurements

In general, measuring the free-field response of a LF source requires rooms with
very large dimensions. Keele [261] suggested that such measurements could be
realized within a non-anechoic environment, by placing the receiver at a point of
maximum pressure i.e. at the apex of the driver. The near-field measurements
presented here were performed for subwoofer A placed at position p = 4 (see
Table 2.2) with the microphone capsule placed at a distance of 5mm on axis
from the driver’s cone at maximal outward displacement, as recommended
in [261]. For subwoofer B, information is provided by the manufacturer.

Figure 2.4 shows the spectrogram of the near-field recording and of the retrieved
RIR. In the spectrogram on the recorder signal, impulsive noise can be seen
above the sweep. This artifact, which is not visible in the retrieved RIR, is
often referred as rub & buzz distortion and is likely generated by the voice
coil periodically beating some internal parts of the speaker, such as connection
wires, loose particles or other defects [251, 250]. These distortions have a low
level compared to the recorded sweep signal, approximately -50 dB below the
peak of the signal , and will be either shifted in the non-causal part of the RIR
or made not visible in the spectrogram of the retrieved RIR by the presence of
the room resonances. It should be noticed that, being these types of distortion
deterministic, averaging over multiple measurements will not decrease their
level [250, 251].

Harmonic regular nonlinear distortions cannot be easily noticed in the
spectrogram of the recorded signal, but become visible in the spectrogram
of the retrieved RIR in the right plot of Figure 2.4; distortions at least up
to the fifth order appear in the anti-causal part of the RIR. The level of the
harmonic distortions is reported in Figure 2.5, where the magnitude response
of the linear component and of the first four higher harmonics are depicted on
a logarithmic frequency scale. Notice that the harmonic distortions are more
prominent between 10 and 50Hz, and tend to decay at higher frequencies. What
is recorded above 90Hz is practically ambient noise (the measured SNR was
around 70 dB). A similar plot for Subwoofer B is provided in [260].

The microphones were calibrated with a B&K 4231. The output level of each
subwoofer was then adjusted so that the sound level at 0.50m was equal for
the two subwoofers (56 dBCRMS / peak 70 dBSPLat 53 Hz)2 when placed at the
center of the room. Some of these calibration measurements are included in the
database for reference.

2C-weighted root mean square (RMS) value obtained by reproducing pink noise at equal
output level as the sine-sweep. Peak sound pressure level (SPL) obtained by reproducing
sine-sweeps.
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Figure 2.6: The spectrogram of the recorded signals SA4 MC
6 R1 (top left),

SA4 M
D
6 R1 (top right), SB4 MC

6 R1 (bottom left), and SB4 MD
6 R1 (bottom right).

Notice the differences in the frequency response of the two subwoofers (top vs.
bottom) and in the level of the ambient noise (left vs. right), and the steady
component at 16 kHz. Also notice the wide power range.

2.4 Measurement analysis and postprocessing

2.4.1 Recorded signals

For each source-receiver position pair, 10 recordings were performed sequentially.
The analysis of the recorded signals is important to detect possible issues and
assess the quality of the measurements.

Figure 2.6 shows the spectrograms of the first recordings for the position pair
(p, q) = (4, 6) and for the four combinations of subwoofers and microphones.
The following considerations apply in general for the other recordings and for
the other source-receiver position pairs. The sweep signal is only partially
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Figure 2.7: The magnitude response of the recorded signals SA4 MD
6 R1 (left)

and SB4 MD
6 R1 (center). The frequency range between 3Hz and 30Hz (right) of

the latter, showing the harmonic noise component (dashed lines). In all plots,
the theoretical values of the eigenfrequencies (5) are shown (see Table 2.1).

reproduced, according to the frequency range of the subwoofer response (see
Section 2.3). In comparison with the synthesized sweep signal in the right
plot of Figure 2.1 or with the near-field measurement in Figure 2.4, it can be
noticed how the recorded sweep is smeared out in time due to reverberation;
in particular, from these plots we can expect a strong resonance between 20
and 30Hz, corresponding to the first axial room mode (see Table 2.1). In
these plots, all the difficulties inherent to LF-RIR measurements discussed
earlier are visible. First, the LF ambient noise and the pink characteristic of its
spectrum are evident. Second, irregular nonlinear distortion artifacts (or rub
& buzz) for both subwoofers can be observed above the recorded sweep signal,
as discussed for the near-field measurements (cfr. Section 2.3.3 and Figure 2.4).
Finally, a steady component appearing in all measurements at 16 kHz can be
observed in Figure 2.6. This disturbance, which is well above the frequency
region of interest, was generated by a power adapter of one of the devices used
for the measurements. From the comparison between different combinations
of subwoofer and microphone, it can be seen how the 1/2” microphone (MD)
(plots on the right in Figure 2.6) provides a lower noise level (≈ 5 dB difference),
which is in agreement with specifications (see Section 2.3).

Figure 2.7 shows the magnitude response of recordings for the source-receiver
position pair (p, q) = (4, 6) with microphone D. It is clear that subwoofer
A has a larger operational frequency range than subwoofer B. In particular,
subwoofer A is able to partially excite the cavity mode (left plot); subwoofer
B, on the other hand, has a frequency range between 25Hz and 120Hz (center
plot). The same plot shows the presence of LF noise, which is not visible due
to the cavity modal resonance in the left plot. Strong noise components are
present at very LFs and have a harmonic structure, with fundamental frequency
at 3.7Hz (see right plot); as these components occur below the operating range
of the subwoofer, they are unlikely related to the nonlinearities of the subwoofer,
and are probably due to some external disturbance. Regarding the rub & buzz
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Figure 2.8: The RIRs retrieved from the recorded signals SA4 MD
6 R1 (top),

SB4 M
D
6 R1 (bottom).

distortion artifacts noticed in Figure 2.6, their characteristic impulsive nature
does not allow them to be seen in the magnitude response, since they mix
up with the ambient noise. According to Klippel [251, 250], these types of
distortion would produce a harmonic spectrum if driven with a constant tone,
which is not the case for a sweep with time-varying IF like the ESS sweep signal.
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Figure 2.9: Synchronous averaging. The spectrogram and the magnitude
response of the RIR retrieved from a single recording SB3 MD

5 R1 (top row) and
the corresponding responses after averaging over 10 recordings. The frequency
range between 3Hz and 30Hz (right) showing the harmonic noise component
(dashed lines).
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Figure 2.10: The retrived RIR SB3 M
D
5 before (left) and after postprocessing

(i.e. synchronous averaging over 10 recordings and low-pass filtering) (right).

2.4.2 Retrieved room impulse responses

The linear convolution necessary to retrieve the RIR is performed in the
frequency domain by multiplying the discrete Fourier transform (DFT) of the
recorded signal and of the inverse signal, computed with a DFT size equal to
twice the number of samples of the signals (2(T +1)fs), and then performing an
inverse DFT. Figure 2.8 shows the spectrograms of the RIRs retrieved from the
signals recorded at source-receiver position pair (p, q) = (4, 6) using microphone
D only (see right column of Figure 2.6). Compared to the spectrograms of the
recorded signals, the LF noise in the retrieved RIRs is significantly reduced, as
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a consequence of the higher SNR achieved with the ESS method at LFs. On the
other hand, the ambient noise at high frequencies is amplified in the retrieved
RIRs, as well as the 16 kHz steady component; this is probably due to the fact
that the ambient noise spectrum is not exactly pink.

Another effect is visible in these spectrograms; an impulsive event appears in
both cases as a downward slanted line starting in the anti-causal part of the
response, likely to be attributed to a strong occurrence of the rub & buzz
distortion. It is not clear if the impulsive event affects the linear causal part as
well, its level being close to the ambient noise level. The same can be said for
regular harmonic nonlinear distortions, which are not clearly distinguishable
from the background noise (except for a 2nd harmonic appearing in the bottom
plot). Finally, well-separated room resonances with long decay are particularly
noticeable as a smearing in time of the response in the causal part.

Postprocessing

In order to limit the presence of nonlinear distortions, a relatively low sound
level of the subwoofer has been set (see Section 2.3.3). As a consequence, the
SNR of the RIRs retrieved from a single recording is not very high. In order
to increase the SNR, the following postprocessing operations are suggested.
First, it is strongly recommended to perform a synchronous averaging over the
RIRs retrieved from different recordings for a given source-receiver position
pair and for a given subwoofer-microphone combination; as discussed already
in Section 2.2, the robustness to time variations of the ESS method, especially
at LFs, allows to perform such an averaging over the different recordings,
thus obtaining an SNR improvement of 3 dB per doubling of the number of
realizations [25, 58]. Notice that synchronous averaging could also be performed
on the recorded signals before retrieving the RIRs by linear convolution, and
that an alternative would be to double the length of the sweep signal.

The ESS method, however, has a poor noise rejection at high frequencies; a
simple low-pass filtering can be applied to get rid of the high frequency noise
(as well as the 16 kHz component). Finally, the non-causal part of the RIR can
be discarded, if the interest is limited to the causal part only. A ready-to-use
set of postprocessed RIRs, measured with subwoofer B and microphone D, for
which a low-pass filter with cut-off frequency at 1 kHz and 100Hz roll-off has
been used, is available for download3.

An example of the result of averaging is given in Figure 2.9, comparing
the spectrogram and magnitude response of the RIR retrieved from a single

3https://lirias.kuleuven.be/bitstream/123456789/572970/3/SUBRIR_SpB_MicD_RIRs.zip
(password: subrir2016)
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recording (top) and after synchronous averaging over 10 recordings (bottom),
with source-receiver position pair (p, q) = (3, 5), and with subwoofer B and
microphone D. From the magnitude responses, computed over the causal part
of the RIR, it can be seen how averaging is able to reduce the noise level by
at least 10 dB, including the very LF disturbance already noticed in Figure 2.7.
From the spectrograms, it can be observed how the reduction in the noise
level makes the nonlinear distortions more visible; the fact that the impulsive
occurrences of the rub & buzz effect are not reduced in level after averaging, is a
confirmation of the deterministic nature of these events. As a consequence, great
care has to be taken in the setup of the subwoofer sound level during calibration,
so that nonlinear distortions are kept to a minimum. The effect of synchronous
averaging can be also seen in Figure 2.10, showing the RIR measured at position
pair (p, q) = (3, 5) for a single recording and after averaging over 10 recordings.

2.5 Reverberation time

The RT (or T60) is defined as the time instant when the RIR energy decays by
60 dB from its peak value. This is usually calculated on the basis of the energy
decay curve (EDC), i.e. the total amount of energy remaining in the impulse
response at a given time [64]. The RT is taken as the time instant when the
EDC drops below -60 dB. In most measurements, however, the noise floor level
is above -60 dB and therefore this definition cannot be used in practice. In these
cases, the RT is calculated using linear regression analysis and the least-squares
fit procedure [256]. The decay curve is approximated by a line interpolating
the EDC instead of using the EDC itself: the T10 is defined by interpolating
the EDC between -5 and -15 dB, the T20 between -5 and -25 dB, and the T30
between -5 and -35 dB. The slope of the line interpolating the EDC within
a given integration interval provides the decay rate d (in dB/s), from which
an estimate of the RT is given as −60/d [256]. The ISO3382-2 standard [256]
also requires the noise floor level to be at least 10 dB below the lower limit of
integration, so that the the T30 can be reliably estimated only for an SNR of
at least 45 dB.

Frequency-dependent values of the RT are generally estimated using a bank of
full-octave or one-third-octave band-pass filters [256]. Estimating the RT in
subbands at very LFs is problematic. The main issues are related to low SNR,
to complex modal decays (such as beating modes or double decays) [65], and
to the influence of the bandpass filters of the filterbank [257]. Let us first focus
on the latter. At very LFs, typical one-third-octave filterbanks have band-pass
filters with a very narrow bandwidth, resulting in a long decay which may
exceed the RT of the RIR, especially if the attenuation requirement described
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by the standard [262] are met. The central frequency fc(b) of the bth band-pass
filter and its bandwidth B(b) are defined with respect to the 0th band centered
at 1000Hz as [262]

fc(b) = 2b/3 1000 [Hz], (2.5)

B(b) = fc(b)
21/3 − 1

21/6
[Hz]. (2.6)

As the central frequency decreases, the bandwidth decreases exponentially, so
that, e.g., the band b = −16 centered at fc(−16) = 25Hz has a bandwidth of
just B(−16) = 5.8 Hz. A very narrow band-pass filter has poles very close to the
unit circle of the z-transform domain, determining a slow decay of its impulse
response. As a result, one-third-octave filterbanks yield a strong overestimation
of the RT at LFs (at least for bands below b = −12, fc(−12) = 62.5Hz).

In order to reduce the influence of the filters, a cosine-modulated filterbank
with all filters having the same bandwidth can be used. The cosine-modulated
filterbank used has 10 channels evenly distributed over the range 0Hz to 200Hz,
and was generated with a finite impulse response (FIR) prototype filter designed
using the approach in [263], with a stop-band attenuation of 60 dB. The so-
obtained band-pass filters have a fixed bandwidth of 20Hz and a decay rate of
135ms, which is expected to be lower than the RT of the room.

Another issue is associated to the low SNR of the RIR measurements, which
results in a dynamic range not sufficient for the estimation of the T30. Figure
11 shows that the TRIR30 estimate is strongly biased due to the presence of noise,
while the T10 estimate remains largely unaffected. A conservative choice would
then involve using T10 for all frequency bands. However, as explained later in
this section, the T10 estimates sometimes fail to capture phenomena such as
double decays and beating modes. An alternative is to visually inspect the
EDCs in each frequency bands (or estimate their noise floor level) and choose
the most appropriate definition of the RT in each case.

In order to overcome this issue, an approach similar to [65] has been used.
Here, instead of calculating the RT of the noisy RIR directly, it is calculated
based on a best-fitting noiseless parametric room model. More specifically,
the RIRs of the database are first approximated by an OBF model [27],
which provides a representation of a RIR as a linear combination of resonant
responses. The model parameter values are estimated using the OBF-GMP
(group matching pursuit) algorithm described in [156], which is a scalable
greedy algorithm with no limitations in the model order. The number of
resonances used in the approximation was set to 70, which provided an accurate
approximation (average normalized mean square error of -37 dB) without
overfitting. This resulted in a nearly noiseless representation of the RIRs,
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Figure 2.11: The EDCs calculated from a RIR (SA2 MD
3 ) after postprocessing

and from its OBF approximation for the subband centered at 30Hz. The
interpolation lines for estimating the T30 and the T10 are also shown.

as shown in Figure 2.11. The figure shows the EDCs of a postprocessed RIR
and of its OBF approximation for the subband centered at 30Hz. Here, it is
clear that the T30 value (which is calculated by interpolating the EDC between
-5 and -35 dB) greatly overestimate the RT. On the other hand, the value
obtained from the EDC of the OBF approximations is largely unaffected by
noise. Notice also that the T10 is correctly estimated in both cases, as shown
in Figure 2.11, with the two interpolating lines for the T10 overlapping.

Figure 2.12 shows the average RT values in each subband estimated from
the OBF approximation of the RIRs retrieved from the signals recorded with
microphone D (for microphone C, similar curves are obtained). Only the
subbands centered within the limits of the frequency response of the subwoofers
are considered. It can be seen that, while the T30 is around 400ms above 75Hz,
it has much higher values at very LFs. This is probably due to the fact that the
first axial mode, the one with theoretical frequency at 27Hz, is very prominent.
The influence of this mode can be clearly seen in both plots of Figure 2.12
in the T30 curve, where the highest values for the RT correspond to the band
centered at 30Hz. The T10 is also of interest in the modal region, where the low
modal density gives rise to double decays and fluctuations due to beating modes
[65]. A particularly large difference between the two decay rates is observed in
Figure 2.11 for the frequency band around 30Hz, and this is the reason why
the T10 fails to capture the room resonant behavior in that region, as indicated
in Figure 2.12.
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2.6 Conclusion

A new RIR database measured with subwoofers as sound sources has been
introduced, filling the gap of available acoustic measurements at LFs. Common
difficulties in performing acoustical measurements at LFs have been addressed.
The main issues proved to be a prominent LF ambient noise and the presence
of impulsive irregular nonlinear distortions due to defects of the subwoofer (rub
& buzz).

The ESS method has been chosen to estimate the RIRs, due to its robustness
to nonlinear distortions and its capability of providing a higher SNR at LFs.
However, not all distortions can be isolated using the ESS method, with
impulsive distortions and odd-order harmonic distortions partially overlapping
with the causal RIR. For this reason, near-field and calibration measurements
become important to verify the nonlinear behavior of the subwoofer and to set
the subwoofer level accordingly, so as to avoid distortion artifacts or at least to
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reduce them to an acceptable level.

Synchronous averaging of the recordings for the same source-receiver position
pair is also recommended, since it allows to achieve an SNR increase of 3 dB for
each doubling of the number of recordings. The same increase can be achieved by
doubling the length of the sweep signal, but with an increased risk of impulsive
events occurring during the sweep.

Common difficulties in estimating the frequency-dependent RT at very LFs have
been also addressed. The influence of the band-pass filters has been reduced by
using a fixed-bandwidth cosine-modulated filterbank, while the problem of low
SNR has been tackled by estimating the RT from a noiseless approximation of
the RIRs obtained with OBF models.

The SUBRIR database is available for download4 and it is expected to find
application in the testing of acoustic signal enhancement algorithms intended for
music reproduction and in the validation of physical models for room acoustics.
The database has already been used in the validation of algorithms for multi-
channel room acoustic system identification with fixed-pole adaptive digital
filters [156, 264, 154, 113].
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Abstract

Parametric modeling of room acoustics aims at representing room transfer
functions (RTFs) by means of digital filters and finds application in many
acoustic signal enhancement algorithms. In previous work by other authors,
the use of orthonormal basis functions (OBFs) for modeling room acoustics has
been proposed. Some advantages of OBF models over all-zero and pole-zero
models have been illustrated, mainly focusing on the fact that OBF models
typically require less model parameters to provide the same model accuracy.
In this chapter, it is shown that the orthogonality of the OBF model brings
several additional advantages, which can be exploited if a suitable algorithm for
identifying the OBF model parameters is applied. Specifically, the orthogonality
of OBF models does not only lead to improved model efficiency (as pointed
out in previous work), but also leads to improved model scalability and model
stability. Its appealing scalability property derives from a previously unexplored
interpretation of the OBF model as an approximation to a solution of the
inhomogeneous acoustic wave equation. Following this interpretation, a novel
identification algorithm is proposed that takes advantage of the OBF model
orthogonality to deliver efficient, scalable and stable OBF model estimates,
which is not necessarily the case for nonlinear estimation techniques that are
normally applied.

3.1 Introduction

Parametric modeling of room acoustics aims at representing room transfer
functions (RTFs) by means of rational expressions in the z-transform domain,
implemented through digital filters, and finds application in a variety of
acoustic signal enhancement tasks, e.g. echo cancellation, feedback cancellation,
and dereverberation, as well as in auralization systems. The most common
parametric models are all-zero (AZ) models [26], which define a finite impulse
response (FIR) filter as a truncation of a sampled room impulse response
(RIR). AZ models enable achieving an arbitrary degree of accuracy, but a good
approximation of a RIR usually requires a large number of model parameters.
Pole-zero (PZ) models [68], which produce an infinite impulse response (IIR),
are used sometimes in order to reduce the number of parameters. PZ models
have a more meaningful motivation from a physical point of view, in the sense
that the resonant behavior of room acoustic responses can be represented by
means of complex-conjugate poles in the transfer function. This is particularly
true when a PZ model is implemented using the parallel form of fixed-pole
IIR filters [45, p.359]. This parallel filter (PF), proposed in recent years for
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RTF modeling and audio equalization [80, 81, 86, 265, 82], consists of second-
order all-pole filters, each of which is defined by a pair of complex-conjugate
poles. Its transfer function is given by a linear combination of resonances, in
analogy with the physical definition of a RTF as an infinite summation of room
modes [1, 37, 109]. However, since RTFs are characterized by a complicated time-
frequency evolution and a large number of room resonances, the improvement in
modeling efficiency obtained with PZ models compared to AZ models is in some
cases only marginal [239]. Moreover, PZ models often suffer from instability
and ill-conditioning issues in the estimation of the model parameters, especially
for high model orders, which is why AZ models are usually preferred.

In order for models producing an IIR to become a valid alternative to
AZ models, models with improved model efficiency and with stable and
numerically well-conditioned identification algorithms (and possibly other
interesting properties) are sought. Fixed-pole models based on orthonormal
basis functions (OBFs) [27, 126, 112, 266] can be derived directly from an
orthogonalization of PF models. OBF models span the same approximation
space of PF models for the same set of poles, with the difference that the
outputs of each second-order all-pole filter are made orthogonal to each other
by a sequence of all-pass filters (i.e. by zero-pole cancellation). The use of
single-pole OBF models for acoustic echo cancellation [131, 34], and of multiple-
pole OBF models for loudspeaker response equalization and modeling of room
and musical instrument responses [148, 149, 150, 29, 28] have been previously
motivated by the possibility of positioning the poles anywhere inside the unit
circle, thus providing stability of the filter and giving freedom in the allocation of
the frequency resolution. It has been shown that these properties, together with
orthogonality, provide a more accurate representation of the RTF for a given
number of model parameters, compared to conventional models. Differently
from PF models, orthogonality makes the estimation of the parameters that
appear linearly in OBF models straightforward and numerically well-conditioned.
The poles, on the other hand, appear nonlinearly in the model, which makes
their estimation a difficult problem, requiring in principle nonlinear estimation
techniques. In [34], the pole parameters of single-pole OBF models were
optimized using the Gauss-Newton method. In [148, 149, 150, 29, 28], multiple
poles were estimated with a nonlinear iterative algorithm for FIR-to-IIR filter
conversion, called the Brandenstein-Unbehauen (BU) method [73], resembling
the Steiglitz-McBride (STMCB) method for PZ modeling [70]. The BU method
exploits the orthogonality of OBF filters by minimizing the energy of a target
RIR with a sequence of all-pass filters. Although this method is capable of
producing accurate pole estimates, it is not exempt from numerical problems
for high model orders, in which case the algorithm can converge to a local
minimum and even produce unstable poles. Modifications of the BU method
have been proposed to overcome this problem, such as through prewarping of
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the target RIR, here called warped BU (wBU) [150, 91], in order to approximate
a desired frequency resolution, or partitioning of the target RIR in frequency
subbands or in time [30]. Furthermore, the BU method and its variants require
the model order to be determined before estimation, resulting in a non-scalable
algorithm that has to be run every time the number of poles to be estimated
changes.

The nonlinear problem of estimating the poles was bypassed in [201] by applying
convex optimization to a discrete grid of candidate stable poles. A sparse
solution was obtained by selecting basis functions out of a large non-orthogonal
dictionary. In [154], a matching-pursuit-based algorithm called OBF-matching
pursuit (MP) was introduced. A similar algorithm was also suggested in [197] for
the estimation of the poles of a RIR model described as the linear combination
of sampled exponentially decaying sinusoids, but not considering any particular
filter implementation of the model (if not the implicit use of FIR filters); however,
the choice of this model implies a non-orthogonal dictionary and, consequently,
ill-conditioning problems in the estimation of the parameters, which would
require the use of computationally more complex versions of the algorithm,
such as Orthogonal MP as in [267], or suboptimal iterative procedures [197].
The OBF-MP algorithm [154], instead, exploits the appealing properties of
OBF models, i.e. orthogonality, stability and numerical well-conditioning, in
order to deliver efficient, scalable and stable OBF model estimates for room
acoustic modeling, which can be directly implemented through a stable IIR
filter. It is shown in the present work that the scalability property of the
algorithm stems from a previously unexplored interpretation of OBF models as
an approximation to a solution of the inhomogeneous acoustic wave equation.
Indeed, OBF models are physically motivated in the modal region, where the
RTF is a linear combination of room resonances, sparse in frequency. The
OBF-MP algorithm thus provides a sparse approximation of the most dominant
modes in the low-frequency region of the RTF, while approximating the spectral
envelope at higher frequencies. In this chapter, the OBF-MP algorithm is
further investigated and its performance in terms of efficiency and computational
complexity is studied for a large set of measured RIRs.

The chapter is organized as follows. In Section 3.2, fundamentals of the theory
of room acoustics are briefly reviewed, together with an overview of conventional
parametric models. In Section 3.3, the OBF models are reviewed in detail, as
well as their use in the approximation of a target RIR. The OBF-MP algorithm
is described in Section 3.4 and its computational complexity is analyzed. In
Section 3.5, the concept of model and filter complexity of different parametric
models is introduced. Simulation results are shown in Section 3.6, comparing
the performance in the approximation of a large set of measured RIRs of OBF
models estimated using the OBF-MP algorithm with respect to conventional
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models and OBF models estimated using the BU method. A discussion of the
results and future work can be found in Section 3.7, which also concludes the
chapter.

3.2 Parametric modeling of room acoustics

This section reviews elements of room acoustics and provides an overview of
conventional parametric models.

3.2.1 Fundamentals of room acoustics

The RTF between an omnidirectional point source s(r, t) = s(t)δ(r − rs)
at position rs = (xs, ys, zs) (with s(t) a given source function and δ(·) the
Kronecker delta function) and a receiver at position r = (x, y, z), can be seen
as a linear superposition of room modes, mutually orthogonal in the space
dimension, with the mode amplitudes depending on r and rs. This is described
by the Green’s function (GF) of the inhomogeneous acoustic wave equation,
which, neglecting higher-order terms such as the variability of the temperature
and of the density of the medium [1, 37], is given by

P (r, rs, ω) = G(ω)
∞∑

i=1

ψi(r)ψi(rs) jω
ω2 − ω2

i − 2jζiωi + ζ2
i

, (3.1)

with P (r, rs, ω) the sound pressure in a room at the driving frequency ω for
given receiver and source positions r and rs, and G(ω) a frequency-dependent
gain constant. The eigenfrequencies ωi, also called resonance frequencies [1],
are the values of ω for which the acoustic wave equation has non-zero solutions
satisfying the boundary conditions. The eigenfunction ψi corresponding to
eigenfrequency ωi defines a three-dimensional standing wave, called a room
mode. A given room mode is dominant when the driving frequency ω is close
to its resonance frequency ωi, while it has little contribution to the sound field
when the source or the receiver is placed on one of its nodal surfaces, i.e. where
either ψi(rs) or ψi(r0) is close to zero. The damping constant ζi accounts
for frequency-dependent energy losses at the walls and determines the -3 dB
half-bandwidth of the room resonance, which is B = ζi/π (in Hz) [1, 37].

The inverse Fourier transform (FT) of (3.1) gives the RIR, which, for t ≥ 0, is
a sum of exponentially decaying sinusoids,

h(r, rs, t) =
∞∑

i=1
cie
−ζit cos(ωit+ φi), (3.2)
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where the ith sinusoid has amplitude ci and phase φi, resonance frequency ωi
and a decay determined by the damping constant ζi. The GF describes the
sound field for any possible position of the source and the receiver inside any
kind of room. However, a closed-form analytical expression for ψi exists only
for simple room shapes and for idealized boundary conditions.

The problem of modeling a RIR presents many challenges, mainly because of
its complicated time-frequency structure. The RIR measured in a reverberant
room has typically a very long duration and presents a complicated pattern of
the arrival of reflections. An example [268] of a typical RIR is shown in Fig. 3.1.
Furthermore, the modal density increases with the square of the frequency ω,
i.e. the approximate number of eigenfrequencies per Hz is given by

nωi(ω) ≈ V

c3π
ω2 , (3.3)

with V the volume of the room and c the sound velocity. The expression
(3.3) is derived for rectangular rooms, but is asymptotically valid for rooms
of any shape [1, 37]. It follows that the modes are well separated only at
low frequencies, while they tend to overlap at higher frequencies. The so-called
‘Schroeder frequency’ [39] gives an indication as to where the transition between
these two regions occurs:

fSch ≈ 2000
√
T

V
, (3.4)

where T is the reverberation time, defined as the time it takes for the RIR
to decay to 60 dB below its starting level, which depends on the damping
characteristics of the walls [1]. This expression shows that the overlap is
strong already at low frequencies especially for large halls and for rooms with
highly absorptive surfaces, for which resonances have larger bandwidth. A
consequence of the overlap is that in diffuse field conditions, i.e. above the
Schroeder frequency fSch, the number of magnitude peaks in the RTF in a
given range is much lower than the theoretical number of modes [1]. The idea
of modeling a RTF using OBF models is then to use a finite number of resonant
responses, as opposed to the infinite summation in equations (3.1) and (3.2), to
model accurately low-frequency well-separated dominant room modes and to
approximate the spectral envelope of overlapping modes at higher frequencies.

3.2.2 Conventional parametric models for room acoustics

Parametric modeling of room acoustics aims at approximating the GF in (3.1)
by a rational function in the z-domain,

H(r̈, z) = B(r̈, z)
A(r̈, z) =

∑Q
i=0 bi(r̈)z−i

1 +
∑P
i=1 ai(r̈)z−i

, (3.5)
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Figure 3.1: RIR measured in the Speech Lab at KU Leuven.

where r̈ = (rs, r) denotes a particular source-receiver position pair. Common
assumptions to be made are stability, causality, linearity, and time-invariance
of the acoustic system. The expression in (3.5) can be rewritten in a pole-zero
form by factorizing the numerator and denominator polynomials, yielding

H(r̈, z) = B(r̈, z)
A(r̈, z) = b0(r̈)

∏Q
i=1 {1− qi(r̈)z−1}

∏P
i=1 {1− pi(r̈)z−1}

. (3.6)

The zeros qi represent anti-resonances and time delays in the RIR, while poles
pi are associated with room resonances.

AZ models [26], for which A(r̈, z) = 1, can achieve an arbitrary degree of
accuracy by using a high-order FIR filter. The main problem is that the number
of parameters of the filter necessary to model the resonant behavior of the system
often has to be quite large, depending on the sampling frequency fs and the
reverberation time T . Furthermore, the RIR strongly depends on the source
and receiver position, so that the parameter values obtained for approximating a
RIR at a given source-receiver position r̈1 = (rs1 , r1) are in general significantly
different from those for a RIR at another position r̈2 = (rs2 , r2).

Models producing an IIR are used in an attempt to reduce the number of
parameters needed to approximate a target RIR [269]. PZ models [68] uses
both zeros and poles, so that both room resonances and time delays can be
modeled, as well as the non-minimum-phase components of the RTF. However,
since both A(r̈, z) and B(r̈, z) in (3.6) are non-constant polynomials in z−1,
no closed-form solution exists to the model parameter estimation problem and
nonlinear optimization methods are required. These methods usually start
from the estimation of an all-pole model and then iteratively compute optimal
parameter values in the Least Squares (LS) sense. The most popular one is the
so-called STMCB method [70], which, however, is not guaranteed to converge
and may become unstable, especially for high model orders. Another difficulty
lies in determining the optimal values for Q and P in (3.5) or (3.6), i.e. the
order of the numerator and denominator polynomial, respectively.
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PF models, which use the parallel form of fixed-pole IIR filters [45, p.359]
consisting of a parallel of second-order all-pole filters, result from a partial
fraction expansion (PFE) of the transfer function in (3.5), which, for Q < P ,
can be written as

H(r̈, z) =
P∑

i=1

Ri(r̈)
(1− pi(r̈)z−1) , (3.7)

where Ri are the residues of the poles pi. If Q ≥ P , an FIR filter of order
Q− P + 1 should be added to the right-hand side of the equation [45, pp.112-
114],[67, 265]. When the coefficients of A(z) and B(z) in (3.5) are real, complex
poles will occur in conjugate pairs, so that for each one-pole filter defined by
(Ri, pi) there will be a one-pole filter defined by (R∗i , p∗i ). These two terms can
be added together to form a real second-order section, so that (3.7) becomes

H(r̈, z) =
P/2∑

i=1

{
Ri(r̈)

1− pi(r̈)z−1
+ R∗i (r̈)

1− p∗i (r̈)z−1

}
, (3.8)

whose impulse response, with n = tfs the discrete time variable, is given by

h(r̈, n) =
P/2∑

i=1
{Ri(r̈) [pi(r̈)]n +R∗i (r̈) [p∗i (r̈)]n} , (3.9)

which is a finite sum of pairs of geometric series, each for a pair of complex-
conjugate poles. After some elaborations, this can be shown to be equivalent
to

h(r̈, n) =
P/2∑

i=1
2|Ri(r̈)|ρni cos(σin+ ∠Ri(r̈)), (3.10)

with ρi and σi respectively the radius and the angle of the pole pi = ρie
jσi , which

is a finite linear combination of exponentially decaying sinusoids sampled in
time, with amplitude and phase determined by the residues Ri. It is evident by
comparing the expressions in (3.10) and (3.2) that a RIR can be approximated
by a PF model using poles with radius and angle defined by the damping
constants ζi and the resonance frequencies ωi as

ρi = e−ζi/fs ,

σi = ωi/fs .
(3.11)

Notice that, when ρi is small and σi is close to either 0 or π, the resonance
generated by pi is influenced by the resonance generated by p∗i , so that their
magnitude peaks have frequency slightly different from ±ωi [67, 213]. The PF
model as an approximation of the GF was first discussed in [109] in relation
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Figure 3.2: The PF model structure (with M = P/2). The impulse responses
to the second-order IIR filters, denoted by ϕi,0 and ϕi,1 for i = 1, . . . ,M , are
used as basis functions in a linear-in-the-parameters model structure.

to the modeling of a RTF by using common-acoustical-poles and their residues
(CAPR). It has been shown that the GF in (3.1) is a normalized mean square
error (NMSE) for the resonance frequencies, which can be approximated by
a PF model, assuming ζi � ωi. It is also shown that the residues Ri(r̈) are
related to the eigenfunctions ψi of the GF, thus expressing the variation of the
RTF at different source and receiver positions.

The transfer function of the PF in (3.8) can be rearranged as

H(r̈, z) =
P/2∑

i=1

[
di,0(r̈) + di,1(r̈)z−1

(1− pi(r̈)z−1)(1− p∗i (r̈)z−1)

]
,

di,0(r̈) = Re{Ri(r̈)} = |Ri(r̈)| cos(∠Ri(r̈)), (3.12)

di,1(r̈) = Re{Ri(r̈)p∗i (r̈)} = |Ri(r̈) pi| cos(σi − ∠Ri(r̈)),

and implemented as a parallel of second-order filters, shown in Fig. 3.2, which
is linear in the parameters {di,0, di,1}, but nonlinear in the poles {pi, p∗i }. Each
second-order section models a room resonance, with resonance frequency and
bandwidth determined by the position of {pi, p∗i }, within the unit circle in
order to ensure stability. Particular attention should be given to repeated poles,
which produce polynomial amplitude envelopes on the decaying exponentials
[67], the order of which is determined by the multiplicity of the repeated pole.
It should be noticed that, in the presence of repeated poles, the model structure
in Fig. 3.2 has to be modified accordingly.
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3.3 Orthonormal basis function models

Parametric models based on OBFs can be derived from an orthogonalization of
PF models. The orthogonality of the basis functions, together with the linearity
in the parameters, introduces some desirable properties which bring a number
of advantages in terms of efficiency and numerical stability in the modeling of
RIRs. In this section, OBF models are also described as a generalization of
other parametric models. Furthermore, their properties are described along
with their application in the approximation of a target RIR.

3.3.1 Construction of OBF models

OBF models are derived with a Gram-Schmidt orthonormalization procedure
applied to one- and two-pole filters [27, 126, 112]. Starting from a normalized
first-order IIR filter with pole p1 and transfer function

Ψ1(z, p1) = A1
1− p1z−1

, (3.13)

where A1 =
√

1− |p1|2 is a normalization factor, a second-order filter with
poles [p1, p2] and transfer function orthogonal to (3.13) can be obtained as

Ψ2(z, [p1, p2]T ) = A2(z−1 − p∗1)
(1− p1z−1)(1− p2z−1) , (3.14)

with A2 =
√

1− |p2|2 and with * indicating complex conjugation. The
orthogonality of Ψ1 and Ψ2 is provided by the zero in z = 1/p∗1 and can be
investigated using Cauchy’s residual theorem via the inner product on the
Hardy space on the unit circle H2(T) (with T , {z : |z| = 1}) as (see [112])

〈Ψ1,Ψ2〉 = 1
2π

∫ π

−π
Ψ1(ejω)Ψ∗2(ejω)dω = 1

2πj

∮

T
Ψ1(z)Ψ∗2(1/z∗)dz

z
= 0. (3.15)

The transfer function in (3.14) can be seen as the product of a normalized
first-order IIR filter defined by p2 and a first-order all-pass filter defined by
p1. By repeating the procedure for a set of poles pi = {p1, . . . , pi}, the ith

transfer function will consist of a normalized first-order IIR filter defined by
pi and a sequence of first-order all-pass filters defined by the pole set pi−1 =
{p1, . . . , pi−1},

Ψi(z,pi) =
(√

1− |pi|2
1− piz−1

)
i−1∏

l=1

(
z−1 − p∗l
1− plz−1

)
, (3.16)
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Figure 3.3: The Takenaka-Malmquist OBF model structure for M real poles.

which is also known as the Takenaka-Malmquist function [27]. The correspon-
ding model structure is shown in Fig. 3.3, where the model output h(n,p,θ) is
a linear combination of the responses of the basis functions, weighted by the
linear parameters θi.

An OBF model based on the functions in (3.16) can be seen as a generalization
of other well-known models. If all the poles are identical and real, the Laguerre
model [123] is obtained, which is in turn a normalized version of a so-called
warped FIR filter model [91], with the value of the warping parameter the
repeated real pole. If the pole is placed in the origin, then the Laguerre filter
simplifies to an AZ model.

When the pole set pi contains complex poles, the basis functions in (3.16) are
generally complex-valued and are thus not useful for the identification of real
systems. As for PF models, two real-valued basis functions can be obtained by
combining pairs of complex-conjugate poles, and by orthogonalizing each pair of
basis functions with respect to each other (plus a normalization factor). Different
realizations of an OBF model can be obtained for particular choices of these
normalization factors, as explained in [112]. A combination of a Takanaka-
Malmquist model and the so-called Kautz model can be used, as suggested
in [149], modeling real and complex poles, respectively. This model structure,
henceforth called mixed-Kautz model, is shown in Fig. 3.4 for ṁ real poles
and m̈ pairs of complex-conjugate poles. The basis functions of a mixed-Kautz
model are defined for a real pole pi as

Ψi(z,pi) =
(

Ai
1− piz−1

) i−1∏

l=1

(
z−1 − p∗l
1− plz−1

)
, (3.17)
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Figure 3.4: The mixed-Kautz model structure for ṁ real poles and m̈ pairs of
complex-conjugate poles. For convenience, the basis functions corresponding
to real poles defined in (3.17) are followed by the basis functions corresponding
to complex-conjugate pole pairs defined in (3.18).

or for a complex-conjugate pole pair {pi−1, pi} = {pi, p∗i } as

Ψ′i(z,pi) = c′i(z−1 + 1)
(1− piz−1)(1− p∗i z−1)

i−2∏

l=1

(z−1 − p∗l )
(1− plz−1) ,

Ψ′′i (z,pi) = c′′i (z−1 − 1)
(1− piz−1)(1− p∗i z−1)

i−2∏

l=1

(z−1 − p∗l )
(1− plz−1) .

(3.18)

with Ai =
√

1− |pi|2, and normalization factors c′i = |1− pi|Ai/
√

2 and c′′i =
|1 + pi|Ai/

√
2. Notice that the pair of basis functions in (3.18) are built as a

product of a sequence of i − 2 first-order all-pass filters given by the poles in
pi−2, a second-order all-pole filter defined by {pi, p∗i } and a normalization term,
so that the model structure for complex-conjugate poles is given by a parallel
of orthonormalized second-order IIR filters. However, real poles may not be of
much interest in the approximation of measured RTFs; even though positive
real poles would be useful for modeling the cavity mode of a room response, a
measured RTF has a band-pass characteristic, with a cut-off at low frequencies
determined by the response of the high-pass filter of the loudspeaker, and a
cut-off at high frequencies given by the low-pass behavior of the loudspeaker
or the anti-aliasing filter. For this reason, only complex-conjugate poles can be
considered, thus resulting in the use of a Kautz model.
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3.3.2 Properties of OBF models

The orthogonality of the basis functions provides some desirable properties.
First, the OBFs form a complete set in H2(T), under the assumption that∑∞
i=0(1− |pi|) =∞ [112]. Thus, by decomposing a target RIR in terms of an

orthogonal expansion, the approximation error can be made arbitrarily small
by choosing a large enough number of poles.

Second, orthogonality provides flexibility, which results from the fact that poles
can be arbitrarily positioned inside the unit circle (for the sake of stability),
and that frequency resolution can be allocated unevenly in different regions of
the spectrum without numerical conditioning problems, regardless of the model
order. This is not the case, for example, for PZ models, where problems of
ill-conditioning and instability can arise for high model orders.

Third, OBF models are linear in the parameters θi, which means that linear
regression can be applied in order to estimate their optimal values. Moreover,
due to the orthogonality of the basis functions, it is not necessary to carry out
a matrix inversion, which is often a source of numerical problems. Another
consequence of orthogonality is the fact that the parameters θi for each IIR
filter are independent from the ones for others filters in the structure, so that
a model of lower order can be obtained from a model of higher order only by
truncation, and similarly additional poles can be included without recomputing
the values of the θi’s corresponding to the poles already used. An additional
advantage of OBF models over PF models is that the same pole can be included
more than once (e.g. to model modes with a double decay) without the need to
modify the structure. These properties are exploited in the scalable algorithm
described in Section 3.4.

3.3.3 Approximation of a RIR with an OBF model

The approximation of a target RIR h(n) using an OBF model consists in
estimating the parameters in the pole set p = {pi} and in the set of parameters
θ = {θi}, with i = 1, . . . ,M (cfr. Fig. 3.4 where M = ṁ+ 2m̈), that minimize
the distance between a target RIR h(n) and the model response h(n,p,θ) for
n = 1, . . . , N . For a fixed set of poles p, the problem of estimating θ is linear
and can be solved in closed form. The response h(n,p,θ) of an OBF model for
an impulse input signal δ(n) is the linear combination of the responses ϕi(n,pi)
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of the M basis functions Ψi(z,pi) (see e.g. Fig. 3.3 or Fig. 3.4),

h(n,p,θ) =
M∑

i=1
θiΨi(z,pi)δ(n)

=
M∑

i=1
θiϕi(n,pi) = ϕ(n,p)Tθ,

(3.19)

where ϕ(n,p) is a vector containing the responses ϕi(n,pi) at time n. By
stacking all the vectors ϕ(n,p) for n = 1, . . . , N in a matrix Φ(p) of size N×M ,
the optimal values for θ for a given input-output set {δ,h} = {δ(n), h(n)}Nn=1
can be estimated in LS sense as

θ̂ = Φ(p)Th. (3.20)

Note that the LS estimation does not require any matrix inversion, given that
the orthonormality of the basis functions implies Φ(p)TΦ(p) = IM . It can be
seen from (3.20) that the optimal estimate for θ corresponds to the correlation
of the basis functions in Φ(p) with the target RIR vector h, so that θ̂ gives the
degree of similarity between each basis function and the target RIR.

The problem of estimating the optimal pole set p̂ can be then regarded as finding
the poles that generate basis functions that are maximally correlated with the
target RIR, so that the approximation error between the model response and
the target RIR is minimized. However, no closed-form solution to the pole
estimation problem is available. The state-of-the-art approach for the multiple-
poles case is the BU method [148, 149, 150, 29, 28], an iterative nonlinear
method based on FIR-to-IIR filter conversion [73]. Frequency prewarping of the
target response has been proposed for audio applications in order to match a
particular frequency-scale mapping, such as the Bark scale [78]. The BU method
exploits the orthogonality of OBF models and provides accurate estimates for
the pole parameters. However, the model order has to be predetermined, and
stability problems can arise from numerical issues at high model orders.

3.4 The OBF-MP algorithm

The problem of sparse linear approximation of a signal consists in finding
a compact representation by a combination of functions taken from an
overcomplete basis. These functions are usually called predictors or atoms,
which altogether form a basis, sometimes called dictionary. The most popular
methods for sparse approximation can be divided in two main categories



88 MODELING ROOM IMPULSE RESPONSES USING ORTHONORMAL BASIS FUNCTIONS

[203]. In the first one, convex optimization techniques are used to minimize a
functional, such as the `1 norm in the least absolute shrinkage and selection
operator (LASSO) [270]. The second category includes iterative greedy
algorithms, such as orthogonal matching pursuit (OMP) [271, 272, 204].

Our approach aims to find a sparse approximation of a target RIR as a linear
combination of a finite number of OBFs. A RIR cannot be considered a sparse
time-frequency signal itself, with a certain degree of sparsity only in the modal
region. By first modeling dominant low-frequency modes and the spectral
envelope at higher frequencies, the proposed algorithm is able to provide a
sparse approximation of a RIR using a finite-order OBF model. In this section,
an OMP-based greedy algorithm, which is termed here OBF-MP [154], is used
to iteratively select poles from a large set of candidate poles distributed over
the unit disc, thus bypassing the inherent nonlinear problem. At each iteration
of the OMP algorithm, the predictor that has the highest correlation with the
current residual response is selected. The problem in the OBF-MP algorithm,
given that OBFs are defined by previous poles in the structure, consists in
defining a dictionary of candidate predictors, where the dictionary has to be
updated at each iteration using the predictor selected at the previous iteration.
The advantage of OBF-MP over the conventional OMP algorithm is that the
orthogonal projection of the current residual response onto the set of predictors
selected at the previous iterations is not necessary. The predictors, in fact,
are already orthogonal to each other by construction. This ensures that the
algorithm does not contain any matrix inversion, thus avoiding ill-conditioning
problems. Moreover, since the candidate predictors are orthogonal to the
predictors selected at previous iterations, computing the correlation with the
current residual response is equivalent to computing the correlation with the
target RIR.

Another consequence of orthogonality is the scalability of the algorithm, from
which it follows that the number of parameters of the final model structure does
not have to be defined in advance. A pole and the related linear coefficient
are estimated at each iteration, independently of poles selected at previous
iterations. It follows that additional poles can be estimated just by running
extra iterations of the algorithm, without any problem of instability or numerical
ill-conditioning. This scalability property of the algorithm is also a consequence
of the fact that, similarly to what was discussed at the end of Section 3.2 for
PF models, also OBF models can be regarded as a way of approximating a
RTF. It has been already mentioned that, for the same set of non-repeated
poles, the basis functions of a PF model and the ones of an OBF model span
the same approximation space, so that it is possible to convert the values of
the linear parameters from one model form to the other by simply a linear
transformation [81].
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Figure 3.5: The OBF-MP algorithm block diagram. Inbound dashed lines
represent initial conditions and inputs, while outbound dashed lines represent
outputs.

Following the above interpretation, the idea of the OBF-MP algorithm is to
iteratively compute a sparse approximation ĥ of a target RIR h of length N
samples as a linear combination of length-N OBFs, analogously to the definition
of a RIR as a summation of exponentially decaying functions, independent one
from each other. The OBFs are selected from a dictionary Φk of candidate
predictors ϕi (i = 1, . . . , D) and included in the basis ΦAk . At each iteration
k, D candidate predictors ϕi, orthogonal to the predictors in the current basis
ΦAk−1 constructed with the current set of active poles pAk , are built from G
poles placed arbitrarily in a grid pg inside the upper half of the unit disc. The
matrix Φk has dimensions N ×D, with D = ṁ+ 2m̈ where ṁ and m̈ denote
respectively the number of real poles and complex poles in the grid pg, so that
G = ṁ+ m̈.

The OBF-MP algorithm is described in detail below, and a graphical
representation is depicted in Fig. 3.5. First, a grid of G candidate poles pg is
defined, similarly to [201, 154, 197], with poles distributed according to a desired
frequency resolution or prior knowledge about the system. In [201, 154, 197],
the angle and the radius of the poles were distributed either uniformly or
logarithmically on the unit disc, with the latter option intended to increase
the resolution at low frequencies. Here, a different pole grid is used, depicted
in Fig. 3.6, henceforth referred to as Bark-exp grid; the radius ρi of the poles
decreases exponentially at the increase of the angle σi, as suggested in [28],
according to ρi = %

σi
π , with % the value of the radius defined at the Nyquist

frequency. Regarding the values for %, it is suggested here to set the number
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Figure 3.6: The Bark-exp pole grid for the OBF-MP algorithm (here with 5
radii and 400 angles and upper angle limited to 0.8π).

of radii for each angle and distribute them logarithmically in order to increase
density toward the unit circle. Differently from [28], in which the angles follow
a logarithmic scale, the Bark frequency scale [78] was chosen. The Bark scale
further increases the resolution at low frequency, providing an effect similar to
the prewarping of the RIR used in the wBU method. In this way, a higher
density of poles close to the unit circle is achieved at low frequencies, allowing
a more accurate approximation of energetic and narrow-bandwidth resonances,
while at higher frequencies poles sparser in frequency and more distant from
the unit circle provide a coarser approximation.

At the first iteration, the current basis ΦA0 and the set of active poles pA0
are empty (with the number of predictors in the basis nA = 0). Also the
target approximation vector ĥ0, is initially set to zero. At each iteration k, the
matrix of candidate predictors Φk(pg) is updated according to the mixed-Kautz
structure in Fig. 3.4. The matrix Φk has always dimension N ×D (since an
OBF model admits repeated poles, a pole that is selected by the algorithm
is not removed from the pole grid pg) and its columns are the OBFs built
from the poles in pg with transfer functions as in (3.17) and in (3.18), thus
orthonormal to the predictors in the current basis ΦAk−1 built from the poles in
the current active pole set pAk−1. The predictor(s) in Φk that has the largest
absolute correlation αi with the target RIR vector h is selected and added to
the basis ΦAk , while the corresponding pole is included in the set of active poles
pAk . The correlation for real and complex poles is computed in two different
ways. For real poles, the correlation is the projection of h onto the predictor ϕi
(αi = ϕTi h). For a pair of complex-conjugate poles {pi, p∗i } the correlation is
the projection of h on the plane defined by predictors ϕ′i and ϕ′′i (see Fig. 3.7),
which are mutually orthogonal, and is given by

αi =
√
α′i

2 + α′′i
2 =

√
(ϕ′i

Th)2 + (ϕ′′i
Th)2. (3.21)
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Algorithm 1 OBF-MP algorithm
1 pg = {p1, . . . , pG} . Define poles in the pole grid
2 ΦA0 = ∅, nA = 0 . Initialize set of active predictors (basis)
3 pA0 = ∅ . Initialize the set of active poles
4 ĥ0 = 0 . Initialize target approximation vector
5 k = 1 . k: iteration counter
6 while nA < M do . M : desired number of OBFs
7 Build Φk(pg) . Build matrix of candidate predictors ϕi
8 s = arg maxi |αi| . Find ϕi max. correlated with h
9 pAk = [pAk−1 ps] . Add selected pole to active pole set
10 if ps real then . Update basis and predicted component
11 ΦAk = [ΦAk−1 ϕs], nA = nA + 1
12 x̂k = ϕsαs

13 else if ps complex then
14 ΦAk = [ΦAk−1 ϕ′s ϕ

′′
s ], nA = nA + 2

15 x̂k = [ϕ′s ϕ′′s ][α′s α′′s ]T

16 end if
17 ĥk = ĥk−1 + x̂k . Update target approximation vector
18 k = k + 1
19 end while

ϕ′
i

ϕ′′
i

αi

h

α′i

α′′i

Figure 3.7: Graphical interpretation of the correlation between the target RIR
vector h and the predictors of a pair of complex-conjugate poles {pi, p∗i }.

The kth predicted component x̂k is obtained from the last added predictor(s)
using the maximum correlation αs as regression coefficient (with s =
arg maxi |αi|), by x̂k = ϕsαs, if the selected pole is real, or by x̂k =
[ϕ′sϕ′′s ][α′s α′′s ]T , otherwise. The current target RIR approximation vector ĥk
is obtained by adding the predicted component x̂k to the previous target RIR
approximation vector ĥk−1. As a consequence of its scalability property, the



92 MODELING ROOM IMPULSE RESPONSES USING ORTHONORMAL BASIS FUNCTIONS

algorithm can terminate when the desired number M of predictors in the basis
is reached, or alternatively when the approximation error falls below a desired
value.

3.4.1 Algorithmic complexity analysis

Here the asymptotic computational complexity of the OBF-MP algorithm is
analyzed, assuming for simplicity that only complex poles are included in
the pole grid. With reference to Algorithm 1, there are two operations that
determine the asymptotic behavior of the algorithm. Building the matrix Φk of
candidate predictors (step 7) at each iteration is the most demanding operation,
which involves the generation of D predictors of length N , which sums up to a
complexity ofO(3ND) multiplications (cfr. the expressions in (3.18) and Figure
3.4). The second operation to consider is the computation of the correlation
coefficients (step 8), which is a multiplication of the matrix Φk with the vector
h of length N , which results in O(ND) multiplications. The computational
complexity associated to vector updates and other operations is negligible. The
overall complexity of the OBF-MP algorithm after k = M/2 iterations, is
O(2MND) multiplications, i.e. linearly proportional to the three variables
considered. In other words, the computational complexity increases linearly
with the length of the impulse response, the number of candidate poles, and
the number of iterations. This is comparable with the complexity of the BU
method, whose most demanding operation is represented by the solution to a
set of overdetermined linear equations, which implies a QR factorization of a
large N ×M rectangular matrix (complexity O(NM2)), followed by a back-
substitution of a M ×M triangular matrix (complexity O(M2)) [273]. This
is performed for I iterations, with the overall computational complexity of the
BU method summing up to O(INM2), which is quadratic with respect to the
number of estimated poles M .

3.5 Model and filter complexity

In this section, the complexity of the parametric models presented in the
previous sections will be analyzed from two different perspectives. First, the
model complexity (or representation complexity) Cm is considered, which is the
number of parameters that is necessary to represent the system under study.
Second, the filter complexity (or simulation complexity) Cf is considered as the
number of operations that are required to obtain the filter output signal for a
given input signal when the parameter values are available. While a measure
often used in the literature is the model order, it is believed that the two
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concepts just proposed are less prone to misinterpretation and thus preferable
for the comparison of different parametric models in terms of complexity. For
simplicity, OBF models and PF models having complex-conjugate pole pairs
only are considered.

Model complexity

The calculation of the model complexity Cm is straightforward for AZ and
PZ models. By referring to (3.5) and (3.6), the number of parameters for AZ
models corresponds to the number of numerator coefficients (Cm = Q + 1),
while for PZ models it is the sum of denominator and numerator coefficients
(Cm = P +Q+ 1). For PF models, if P/2 is the number of complex-conjugate
poles pairs, the number of parameters required is Cm = 2P , since each second-
order section can be represented with one pole pi (which is a complex number
defined by two parameters, while p∗i is given by complex conjugation) and two
linear parameters (denoted by di,0 and di,1 in (3.12) and in Fig. 3.2). The same
is obtained for OBF models, in which the all-pass filters and the normalization
factors can be computed from the knowledge of the poles (see e.g. Fig. 3.4).
The model complexity Cm is summarized in the left column of Table 3.1.

Filter complexity

The filter complexity Cf is calculated here as the number of multiplications
required to compute the filter output for a given input signal. For AZ and PZ
models, one multiplication is required for each coefficient, so that Cf = Cm.
This is true also for PF models, in which four multiplications are required for
each second-order section, two for the second-order IIR filter and two for the
linear parameters (see Fig. 3.2). In case of repeated poles, the structure has to
be modified, but the number of multiplications remains the same [67]. For OBF
models, the normalization coefficients c′i and c′′i can be combined together with
the related linear parameters θ′i and θ′′i , so that the only difference between
OBF models and PF models in terms of filter complexity is determined by
the orthogonalization. By including the second-order all-pass filters in the
structure, two more multiplications per section have to be included (assuming
that the input of the all-pass filter is the output of the previous second-order
IIR filter), summing up to six per section, so that the filter complexity for P/2
pairs {pi, p∗i } is Cf = 3P . The filter complexity Cf is summarized in the right
column of Table 3.1. Notice that an OBF model is more complex than a PF
model. However, these two models span the same approximation space for the
same set of poles, thus leading exactly to the same filter response when the
optimal linear coefficients are computed using the `2 norm in LS design. It
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Table 3.1: Model and filter complexity

model Cm Cf

AZ Q+ 1 Q+ 1
PZ P +Q+ 1 P +Q+ 1
PF 2P 2P
OBF 2P 3P

would be then possible to convert an OBF model into a PF model with lower
filter complexity, as was also suggested in [80].

3.6 Simulation results

The modeling performance of the OBF-MP algorithm described in Section
3.4 was tested on R = 41 RIRs measured for several source-receiver positions
in three different rooms with different reverberation times. The RIRs were
taken from three publicly available databases, namely MARDY [242], SMARD
[50], and MIRD [243]. A fourth database of 24 low-frequency RIRs, called
SUBRIR [274], was used separately to evaluate the modeling performance of
the algorithm in the modal frequency region, as will be discussed later in this
section. Their specifications, such as the room volume V , the surface area S,
the reverberation time T , the Schroeder frequency fSch computed as in (3.4),
and the mixing time tm, are listed in Table 3.2. According to [53], the most
accurate estimate of the mixing time tm, i.e. the time instant at which the
diffuse reverberation tail begins, is given by a formula related to the concept
of mean free path length, given by tm = 20V/S + 12 (in ms). Notice that the
MIRD database includes RIRs measured in a room where the reverberation time
is controlled by means of movable acoustic panels, resulting in 3 different values
of T in Table 3.2. All target RIRs are sampled at fs = 48 kHz and truncated to
N = 6000 samples. This corresponds to the shortest ‘useful duration’, defined
as the time instant where the SNR of the measured RIR is 10 dB [65]. In
order to compute the SNR value, the decay curve and the noise floor level
were estimated with the method by Lundeby et al. [56]. Since the modeling of
the delay of the RIR is not part of the scope of this chapter, the direct path
component was considered as the starting point of the RIR. However, a simple
delay could be easily included in the model structure of the OBF model by
setting the parameter d in Fig. 3.4.
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Table 3.2: Database specifications

database V (m3) S (m2) tm (ms) T (s) fSch (Hz) RIRs

SMARD 170.4 207.3 28.4 0.15 59 8
MARDY 208.8 255.6 28.0 0.45 93 9

0.16 86 8
MIRD 86.4 129.6 25.3 0.36 129 8

0.61 168 8
SUBRIR 62.3 102.1 24.2 0.5-1.5 >180 24

In the simulations presented in this section, an approximated response ĥ(r),
with r = 1, . . . , R, was computed for each target RIR h(r) using the OBF-MP
algorithm. OBF models obtained with OBF-MP were compared to AZ and
PZ models and to OBF models obtained with the wBU method suggested in
[29], henceforth called OBF-wBU models. The measure used to compare the
performance of different models with the same model complexity Cm is the
NMSE, averaged over all R RIRs, which in the time domain is given by

hNMSE(dB) = 10 log10
1
R

R∑

r=1

‖hr − ĥr‖22
‖hr‖22

, (3.22)

while the average frequency response NMSE is defined as

HNMSE(dB) = 10 log10
1
R

R∑

r=1

‖Hr − Ĥr‖22
‖Hr‖22

, (3.23)

withHr and Ĥr the discrete Fourier transform (DFT) of hr and ĥr, respectively.
The NMSE was computed on the complete time response (hfull

NMSE), and on
the early (hearly

NMSE) and late (hlate
NMSE) responses separately. The time instant

separating the two parts was set to 25 ms, corresponding to the shortest mixing
time tm for the three rooms considered (see Table 3.2). Also the NMSE in
the frequency response was analyzed for the frequency range between 0 Hz
and 20 kHz (H full

NMSE), as well as at low/mid frequencies between 0 and 4 kHz
(H low/mid

NMSE ), and at high frequencies between 4 kHz and 20 kHz (Hhigh
NMSE), in order

to show the differences in performance of the models in different frequency
ranges. Although the Schroeder frequency in (3.4) would have been a more
natural choice for separating the frequency range, its value in the databases
considered was found to be below or just above the lower cut-off frequency of
the loudspeaker used for the measurements. The upper limit of 20 kHz was
chosen to avoid considering the frequency range dominated by the influence of
the anti-aliasing filter.
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Figure 3.8: The average time-domain NMSE in (3.22) for different pole
allocations and densities of a Bark-exp grid. The darker line indicates the
grid chosen for the simulations.

The Bark-exp grid used in these simulations counts G = 6000 poles with 5
different radii distributed logarithmically with values % at Nyquist from 0.5 to
0.99, and 1200 different angles placed from 48 Hz to 19.2 kHz according to the
Bark frequency scale [78] with Bark-warping factor w = 0.766. The limits on
the angle were chosen to avoid approximating the response below the cut-off
frequency of the loudspeakers and above the cut-off frequency of the anti-aliasing
filter. As a result, the grid contains only complex poles. The reason of such
an uneven allocation of the number of radii and angles is due to the frequency
resolution that is required to approximate low-frequency resonances and to
the observation that increasing the resolution in the angle is more important
than in the radius. Using 1200 angles provides a constant resolution of 2.5 Hz
below 500 Hz; this seems to be already a sufficient resolution, as confirmed by
the results depicted in Fig. 3.8, showing the average full-response time-domain
NMSE over a selection of 10 RIRs, computed for different allocations of radii
and angles of poles in the Bark-exp grid. It should be noted in the figure that
doubling the number of poles in the grid from 6000 to 12000 does not provide
a significant increase in the accuracy.

The wBU method, also using Bark-warping factor w = 0.766, was slightly
modified in order to avoid numerical instabilities. Although it has been proved
in [73] that the BU method provides a stable IIR filter by conversion of an FIR
filter, we observed cases where the solution with the minimum conversion error
contains poles outside the unit circle. In the same paper, instabilities were
noticed in those cases where the FIR filter was maximum-phase. However, in
those cases, the conversion error was supposed to be high, so that it was always
possible to find a stable solution with low conversion error. In [29], numerical
limitations were observed in the wBU method and in the computation of the
roots of the poles for a number of parameters Cm above 300. Since higher values
of Cm were considered in our simulations, the wBU method was modified by
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Figure 3.9: The average NMSE vs. the model complexity Cm. (left) The average
time-domain NMSE in (3.22) for the entire response (top) and for the early
(middle) and late response (bottom). (right) The average frequency-domain
NMSE in (3.23) for the entire frequency range (top) and for the frequency
regions [0, 4] kHz (middle) and [4, 20] kHz (bottom). AZ models (∗), PZ models
(◦), OBF models obtained with OBF-wBU (MMM) and with OBF-MP (−). At the
bottom, occurrences of unstable solutions for OBF models obtained with OBF-wBU
(left bars) and PZ models (right bars) are reported (same plot on both columns).

choosing the first stable solution with minimum conversion error. The number
of iterations was set to 100. For PZ models, the STMCB method [70] with
P = Q+ 1 parameters has been used, with the initial estimate obtained with
Prony’s method [72]. In order to reduce the number of unstable solutions, only
three iterations were executed.

Fig. 3.9 presents simulation results comparing the performance of the different
models for varying model complexity Cm. The matlab code for generating
the results presented in this section is available online1. The NMSE produced
by OBF models obtained with OBF-MP was computed at each iteration, while
for other models the NMSE was computed only for given values of Cm. In the
bottom row of the figure, the occurrences of unstable solutions given by the

1https://lirias.kuleuven.be/handle/123456789/581178
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wBU method and the STMCB method are reported. For the wBU method, the
first stable solution was used, as described above, while for PZ models, unstable
solutions were removed from the calculation of the average NMSE. It is clear
that both methods suffer from instability due to ill-conditioning above certain
values of Cm.

In the left column of Fig. 3.9, results for the NMSE in the time domain defined
in (3.22) are given for the complete response, for the early reflections and
for the late reverberation. The plot on top shows that OBF models provide
in general a better approximation of the target RIR over N samples, with
OBF-MP outperforming AZ models even in the approximation of the early
response (middle plot), except when AZ models achieve perfect modeling (at
Cm = 1200, hearly

NMSE(dB) = −∞ for AZ models). Focusing on OBF models, OBF-
MP shows an overall improvement over OBF-wBU, with the former having a
better performance in the early part of the response and the latter performing
better in the late part (bottom plot).

The plots in the right column of Fig. 3.9 show results in the frequency domain.
Results in the frequency range between 0 and 4 kHz show a clear improvement
in the approximation of the low/mid frequencies given by OBF models, with
OBF-MP and OBF-wBU having a similar performance for small Cm, but with
an increased accuracy for increasing Cm provided by the wBU method. This
does not imply a degraded performance in the higher part of the spectrum,
where OBF models give an error comparable to the error of AZ and PZ models,
with OBF-MP providing an improvement over OBF-wBU and the other models,
as can be seen in the plot at the bottom (this improvement is less visible than
above, given the larger frequency range considered).

In general, differences in the performance of OBF-MP and OBF-wBU are a
result of the inherent discretization of the OBF-MP algorithm; its limited
resolution prevents the OBF-MP algorithm from perfectly matching the
frequency and bandwidth of some magnitude peaks. As a consequence, these
peaks are approximated using poles with a slightly shorter radius, which
corresponds to a larger bandwidth and a shorter decay of the time response;
which is the reason why OBF-wBU shows better performances at low frequencies
and in the late response. On the other hand, OBF-MP has a higher resolution
at higher frequencies and, as a result, a better performance in that frequency
region and in the approximation of the early response.

These results can be visualized on the approximated frequency magnitude
responses of the example in Fig. 3.10, showing the more accurate approximation
of low-frequency resonances provided by OBF models with a Bark-scale
resolution compared to AZ and PZ models, with the OBF model obtained
with OBF-wBU performing better than the OBF-MP, for the reason explained
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above. However, a large error is introduced by OBF-wBU at high frequencies,
while OBF-MP is able to better approximate the envelope of the magnitude
response. Looking at the selected pole sets for the different models, some
differences can be observed: for PZ models, the poles are evenly distributed
in the entire Nyquist interval, while for OBF models, the poles are mostly
concentrated in the low frequencies (and closer to the unit circle), with a larger
concentration in the very low frequencies for OBF-wBU models. It should be
noted that, while the wBU method allows to control the frequency resolution
only by means of the warping parameter, the pole grid of the OBF-MP algorithm
offers more flexibility in the selection of the candidate poles and the possibility
of incorporating prior knowledge about the characteristics of the room.

As discussed in Section 3.5, another important aspect to consider when
comparing different parametric models is their filter complexity Cf. While
the filter complexity Cf for AZ and PZ models equals the model complexity
Cm, OBF models require extra computations (cf. Table 3.1). As an illustrative
example, Fig. 3.11 shows the error of the different models as a function of the
filter complexity Cf, and should be compared to the top-left plot of Fig. 3.9.
The corresponding model complexity Cm for OBF models is reported on the
axis underneath. It can be seen that using OBF models gives a smaller average
NMSE compared to AZ and PZ models also in terms of filter complexity. Given
the equivalence in terms of filter response between OBF models and PF models,
the number of multiplications for OBF models can be reduced by using a PF
implementation (in which case Cf equals Cm).

In order to perform the same kind of analysis in the modal region, similar
simulations were run on the SUBRIR database [156, 274]. The SUBRIR
database is a collection of RIRs measured at low frequency using a subwoofer
as a source. Here, a subset of R = 24 RIRs measured with a Genelec 7050B
subwoofer (with frequency range 25-120Hz) and a B&K 4133 (1/2") microphone
was used. The RIRs were downsampled to fs = 800 Hz and truncated to 1.5 s
(corresponding to the maximum reverberation time, as reported in Table 3.2
and in [274]).

The OBF-MP grid used is this case has 600 angles uniformly placed from
0 to π (the Bark scale below 500 Hz has uniform resolution) and 10 radii
logarithmically distributed from 0.75 to 0.999, while the BU method is applied
without prewarping. The top plot of Fig. 3.12 shows the error of the different
models as a function of the filter complexity Cf, similarly to Fig. 3.11. As in the
previous examples, although OBF-MP models and OBF-BU models perform
similarly, the BU method leads to numerical conditioning problems and to
unstable solutions for values of the model complexity as low as Cm = 240. PZ
models were not considered here, as the STMCB algorithm provided unstable
solutions almost in every situation. In this case, the improvement obtained with
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Figure 3.10: Approximated magnitude responses for (from top to bottom) an AZ
model, a PZ model, OBF models with the wBU method and with the proposed
method using a 5× 1200 Bark-exp pole grid, together with the corresponding
selected pole set (Cm = 300). The target response (from MARDY) is shown in
gray.

OBF models with respect to AZ models is more accentuated than in the previous
examples. The reason for this is that in the modal region the number of room
resonances is low and the models based on OBFs provide a more meaningful
approximation of a RTF than AZ models, as discussed in Section 3.3.

The comparison of the performance of OBF-MP and OBF-BU in the frequency
region of the loudspeaker, instead, presents significant differences (bottom plot).
Our interpretation is that the ill-conditioning problems of the BU method are
worsened by the fact that the spectrum above 130 Hz contains only noise. The
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Figure 3.11: The average time-domain NMSE in (3.22) for the entire response
for different values of filter complexity Cf. AZ (∗), PZ (◦), OBF-wBU (MMM)
and OBF-MP (−) models. The filter complexity corresponds to Cm for AZ and
PZ models, while the corresponding values of Cm for OBF models are shown in the
additional axis.

result is that also poles above that frequency are estimated. The poles selected
by the well-conditioned OBF-MP algorithm, even though the poles in the grid
are placed from 0 to π, are instead well concentrated within the range of the
loudspeaker response, as shown in Fig. 3.13.

3.7 Conclusion and future work

The use of OBF models for obtaining a compact and accurate approximation
of a target RIR has been motivated by the desirable properties derived from
orthogonality, such as an improved numerical conditioning in the estimation of
the numerator parameters of the transfer function for a fixed denominator.
However, also OBF models are nonlinear in the parameters, so that the
estimation of the poles is still a nonlinear problem. The state-of-the-art
technique, the BU method, based on an FIR to IIR conversion which exploits
the orthogonality property of OBF models, has some restrictions.

In this chapter, the novel algorithm, termed OBF-MP, has been studied and
compared to the BU method in terms of modeling performance. Simulation
results for RIRs measured in different rooms showed that OBF models are able
to achieve a reduction in the approximation error compared to conventional
parametric models for the same model and filter complexity, provided that the
estimation of the pole parameters is accurate. Although the two algorithms
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Figure 3.12: SUBRIR database. (top) The average time-domain NMSE in
(3.22) for the entire response w.r.t. the filter complexity Cf. (bottom) The
average frequency-domain NMSE in (3.23) between 20 Hz and 130 Hz w.r.t. the
filter complexity Cf. AZ (∗), OBF-BU (MMM) and OBF-MP (−) models.
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Figure 3.13: SUBRIR database. The set of 40 complex-conjugate pole-pairs
(Cm = 160) obtained with OBF-MP (left) and the BU method (right) in the
approximation of one RIR (fs = 800 Hz).

considered for the estimation of the poles in an OBF model seem to have similar
modeling capabilities, they present many differences. While the BU method
suffers from numerical conditioning problems and instability, the OBF-MP
algorithm always delivers stable and well-conditioned OBF model estimates.
Indeed, the OBF-MP algorithm bypasses the nonlinear problem of estimating
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the poles of an OBF model by defining a set of candidate stable poles and by
selecting a complex-conjugate pole pair at each iteration based on the correlation
between the target RIR and the basis functions built from the candidate poles.
Orthogonality of the basis functions assures that this operation is numerically
well-conditioned.

Moreover, while the BU-method requires the number of poles to be determined
before estimation, the OBF-MP algorithm is scalable, in the sense that a
new pair of complex-conjugate poles can be estimated independently of the
poles estimated at previous iterations. Scalability turned out to be related
to the analogy between OBF models and the definition of the RIR as an
infinite summation of exponentially decaying sinuosoids independent from each
other. The OBF-MP algorithm follows this interpretation by creating an
approximation of the target RIR by adding a pair of OBFs and reducing the
approximation error at each iteration. Differences in the performance between
OBF-MP and OBF-BU in different time and frequency regions are a consequence
of the approach to the pole estimation problem. While the BU method does not
make any assumption on the position of the poles and controls the frequency
resolution only by prewarping of the target RIR, the grid of candidate poles
of the OBF-MP algorithm is an important design choice that adds a layer of
flexibility. Any desired frequency resolution could be obtained, motivated by
prior knowledge about the acoustics of the room or by application requirements.
In this chapter, the Bark-exp grid was introduced to provide an accurate
approximation at low frequencies, following the physical interpretation described
above. However, the Bark-exp grid provides low resolution at high frequency,
so that for larger model complexities, i.e. after the dominant modes and the
spectral envelope have been approximated, pole grids with higher resolution at
high frequencies can become more efficient. A possibility to overcome this issue
could be to refine the estimation of the poles at each iteration using numerical
optimization methods. This possibility and the inclusion of prior knowledge
about the system in the estimation problem is left for future work.

The computational complexity of the OBF-MP algorithm is determined by
the length of the target RIR sequence, the number of poles in the grid and
the number of model parameters, and it is comparable with the algorithmic
complexity of the BU method. Different approaches have been presented for
reducing the complexity of the BU method and overcome its limitations, such
as subband modeling [150], polyphase design and successive segmentation in
the time domain [30]. It is believed that such extensions could be applied to
the OBF-MP algorithm as well. Another interesting aspect is the possibility of
exploiting the concept of common acoustical poles, as considered e.g. in [109]
and [103]. The OBF-MP algorithm was modified in [156] in order to estimate
a common set of poles from measurements taken for different source-receiver
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positions inside a room. It has been shown that a significant reduction in the
number of parameters necessary to model the RTF for different source-receiver
positions can be achieved. A block-based version of the OBF-MP algorithm
has been proposed in [264] and applied in [154] to the estimation of the poles
of an adaptive IIR filter based on OBFs from input-output data of a SIMO
room acoustic system. Results show that poles can be accurately estimated
from white input-output data as well, offering a reduced approximation error
compared to FIR filters, with the same convergence rate and complexity of the
adaptation algorithm for the linear coefficients, but an improved robustness
to the variability of the RTF for different source-receiver positions. Further
research will focus on understanding the relation between the estimated common
poles and the acoustic characteristics of the room, and on estimating the poles
from nonstationary input-output data.
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Abstract

A room impulse response (RIR) shows a complex time-frequency structure, due
to the presence of sound reflections and room resonances at low frequencies.
Many acoustic signal enhancement applications, such as acoustic feedback
cancellation, dereverberation and room equalization, require simple yet accurate
models to represent a RIR. Parametric modeling of room acoustics attempts at
approximating the room transfer function (RTF), for given positions of source
and receiver inside a room, by means of rational functions in the z-domain that
can be implemented through digital filters. However, conventional parametric
models, such as all-zero and pole-zero models, have some limitations. In this
chapter, fixed-pole infinite impulse response (IIR) filters based on orthonormal
basis functions (OBFs) are used as an alternative, motivated by their analogy
to the physical definition of the RIR as a Green’s function of the acoustic wave
equation. An accurate estimation of the model parameters allows arbitrary
allocation of the spectral resolution, so that the room resonances can be
described well and a compact representation of a target RIR can be achieved.
The model parameters can be estimated by a scalable matching pursuit (MP)
algorithm called OBF-MP, which selects the most prominent resonance at
each iteration. A modified version of the algorithm, called OBF-GMP (group
matching pursuit), is introduced for the estimation of a common set of poles
from multiple RIRs measured at different positions inside a room. Simulation
results using a database of RIRs measured using a subwoofer show that, in
comparison to OBF-MP, the OBF-GMP significantly reduces the number of
parameters necessary to represent the RIRs.

4.1 Introduction

A room impulse response (RIR) shows a complex time-frequency structure,
due to the presence of room resonances at low frequencies and the intricate
temporal structure of sound reflections. Parametric models are used in all
those acoustic signal enhancement applications that require the RIR to be
represented in a simple yet accurate way. Examples of these applications are
acoustic feedback cancellation, dereverberation, and room equalization. In
parametric modeling, a room transfer function (RTF), corresponding to a
Green’s function of the acoustic wave equation for specific positions of the
loudspeaker and the microphone inside a room, is represented by means of a
rational function in the z-domain and implemented through digital filters. This
rational function can be written in terms of zeros and poles by computing
the complex-valued roots of the numerator and denominator polynomials,
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respectively. However, conventional parametric models, such as all-zero and
pole-zero models, present some limitations. The all-zero (AZ) model [26] uses
a finite impulse response (FIR) filter to approximate the sampled RIR, with the
number of parameters corresponding to the sample index at which the RIR is
truncated. A zero approximation error is obtained up to the truncation index,
but a large number of parameters is generally required in order to capture the
resonant characteristics of the room, especially when the reverberation time is
high. Moreover, the parameter values are strongly dependent on the source and
receiver positions. All-pole and pole-zero (PZ) models are used in an attempt to
overcome these limitations. These models use pairs of complex-conjugate poles
to represent resonances in the RTF. The infinite impulse response (IIR) nature
of these models enables to reduce the number of parameters and potentially
to obtain parameter values less sensitive to changes in the source and receiver
positions. The common-acoustical-poles and zeros (CAPZ) model [103] exploits
the fact that room resonances are independent of the position of the source and
receiver, but are rather a characteristic of the room itself. As the name suggests,
the RTFs measured at different positions in the room are parametrized by a
common set of poles, while differences between these responses are described by
different sets of zeros. In this way, a more compact representation of a group
of RIRs is obtained.

An alternative to conventional parametric models is provided by a particular
family of models based on orthonormal basis functions. Orthonormal basis
function (OBF) models [27, 126, 112] define a fixed-pole IIR filter, which
is an orthonormalized parallel connection of second-order resonators, whose
impulse responses represent damped sinusoids. Then, the RIR approximation
is built as a linear superposition of a finite number of exponentially decaying
sinusoids, whose frequency and decay rate is determined by the position of
the poles inside the unit circle. The analogy with the definition of the RTF
is clear. Each term of the Green’s function corresponds to a resonator whose
impulse response is a sinusoid, oscillating at a particular resonance frequency
and damped with a particular damping constant [1]. OBF models possess many
other desirable properties, such as orthogonality and stability. These models are
also very flexible, in the sense that poles can be distributed arbitrarily inside the
unit circle of the z-plane, thus giving freedom in the allocation of the spectral
resolution. However, since OBF models are nonlinear in the pole parameters,
estimating the poles that provide a good approximation of a given RIR is a
nonlinear problem. Nonlinear optimization techniques have been proposed for
the optimization of the poles in different applications, such as acoustic echo
cancellation [34], and loudspeaker and room modeling [29]. In [275, 113], the
nonlinear problem was avoided by iteratively selecting poles from a discrete
grid using a scalable matching pursuit algorithm, called OBF-MP.
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This chapter introduces a modified version of the OBF-MP that aims at
estimating a set of poles common to multiple RIRs measured at different
positions in the same room. It is shown that the modified algorithm, termed
here OBF-GMP, approximates the set of RIRs more accurately, for the same
total number of parameters, compared to the case when the poles are estimated
individually for each RIR or when the all-zero model is used. Simulations
have been performed on the database of low-frequency RIRs, introduced in
Chapter 2.

The chapter is structured as follows. In Section 4.2, the OBF-GMP algorithm
is introduced. Simulation results are presented in Section 4.3, whereas Section
4.4 concludes the chapter and indicates possible directions for future work.

4.2 The OBF-GMP algorithm

The OBF-MP algorithm [154, 113], described in Section 3.4, is a matching
pursuit algorithm which, at each iteration, selects the predictors, i.e. the pair of
basis functions, that are mostly correlated with the target RIR. The candidate
predictors are generated based on a grid pg = {p1, . . . , pG} of poles distributed
inside the unit circle, each pole representing also its complex-conjugate. The
distribution of the poles in the grid can be dictated by the desire of a higher
spectral resolution in the frequency range of interest or by other considerations
based on prior knowledge about the acoustics of the room. Two examples are
given in Figure 4.1. The left example shows a pole grid with angles distributed
logarithmically, which yields a higher resolution at low frequencies. The right
example shows a pole grid with radii distributed logarithmically, which yields
a higher resolution close to the unit circle. A third example was given in
Figure 3.6.

At each iteration, the matrix Φk(pg) is built with the basis functions computed
for each pole in the grid pg and orthogonalized to the basis functions added
in previous iterations. The OBF-MP algorithm is scalable. In fact, since the
resulting filter structure is orthogonal by construction, the linear coefficients
do not have to be recomputed at each iteration. As a consequence, the model
order does not have to be determined beforehand and more poles can be added
just by running extra iterations. At each iteration, the approximation error is
reduced and the algorithm can be stopped when the desired degree of accuracy
is obtained. Orthogonality also implies that the linear coefficients correspond
to the correlation of the basis functions with the RIR. It follows that no
matrix inversion operation is involved in the algorithm, avoiding any problem
of numerical ill-conditioning.
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Figure 4.1: Pole grids using 500 poles, with 50 values for the angle [1, fs/2−1] Hz
and 10 values for the radius [0.75,0.99]. (left) Logarithmic angles. (right)
Logarithmic radii.

Here, the OBF-MP algorithm is modified in order to estimate a set of poles
which is common to a set of R RIRs measured in the same room. The modified
algorithm, called OBF-GMP (Group Matching Pursuit), is intended to reduce
the number of parameters necessary to represent the RIRs by identifying the
resonant characteristics of the room, common to all RIRs. The OBF-GMP
algorithm, listed below, works as follows. First, a grid pg of G candidate poles
has to be defined. Then, the R target RIRs hr = {hr(n)}Nn=1 are stacked in a
matrix Υ = [h1, . . . ,hR]. At each iteration k, the algorithm selects the pair of
predictors in Φk having maximum correlation, on average, with the target RIRs
in Υ. As for the OBF-MP algorithm, the correlation αri with each RIR vector
hr is defined as the projection of hr on the plane defined by the predictors ϕ′i
and ϕ′′i of a pair of complex-conjugate poles {pi, p∗i } (see Figure 4.2), and is
given by

αri =
√

(αri ′)2 + (αri ′′)2 =
√

(ϕ′i
Thr)

2
+ (ϕ′′i

Thr)
2
, (4.1)

where the correlation coefficients αri ′ and αri
′′ are obtained from the matrix

product Λk = ΦT
kΥ, with αri ′ corresponding to the element of Λk at column r

and row 2i− 1, and αri ′′ to the element at column r and row 2i.

For each pair of complex-conjugate poles, the correlations with all the R target
RIRs are then summed together, and the pole pair {ps, p∗s} selected is the one
with index

s = arg max
i

R∑

r=1
|αri |. (4.2)

The pole ps ∈ pg is included in the set of active poles pAk and the corresponding
pair of predictors {ϕ′sϕ′′s} added to the basis Φk built from pAk . Each kth

predicted component x̂rk is obtained from the last added pair of predictors



THE OBF-GMP ALGORITHM 111

ϕ′
i

ϕ′′
i

hr

αri

αri
′

αri
′′

Figure 4.2: Graphical interpretation of the correlation between the rth target
RIR hr and the predictors of a pair of complex-conjugate poles.

Algorithm 2 OBF-GMP algorithm

1 Υ = [h1, . . . ,hR], Υ̂0 = 0 . Define matrices of target and approx. RIRs
2 pA0 = ∅ , pg = {p1, . . . , pG} . Initialize the set of active poles and the pole grid
3 ΦA0 = ∅, k = 1 . Initialize basis, k: iteration counter
4 while 2k ≤M do . M : desired model order
5 Build Φk(pg) . Φk: matrix of candidate predictors built from pg

6 Λk = ΦT
kΥ . Compute matrix of correlation coefficients

7 αri =
√

(αri ′)2 + (αri ′′)2 . Compute correlations for each pair of predictors

8 s = arg maxi
∑R

r=1 |α
r
i | . Find average max. correlation

9 pAk = [pAk−1 ps] . Add selected pole to active pole set
10 ΦAk = [ΦAk−1 ϕ′s ϕ

′′
s ] . Update current basis

11 X̂k = [x̂1
k, . . . , x̂

R
k ], x̂rk = [ϕ′s ϕ′′s ][αrs ′ αrs ′′]T . Update predicted components

12 Υ̂k = Υ̂k−1 + X̂k . Update matrix of RIR approx. vectors
13 Ek = Υ− Υ̂k . Compute current approx. error matrix
14 k = k + 1
15 end while

using the corresponding correlation coefficients as regression coefficient by x̂rk =
[ϕ′sϕ′′s ][αrs′ αrs′′]T , and stored in the matrix X̂k = [x̂1

k, . . . , x̂
R
k ]. Each current

RIR approximation vector ĥrk is then obtained by adding the corresponding
predicted component x̂rk to the previous RIR approximation vector ĥrk−1, or
in matrix form Υ̂k = Υ̂k−1 + X̂k, with Υ̂k = [ĥ1

k, . . . , ĥ
R
k ]. The algorithm

terminates when the desired number M of functions in the basis is reached or
when the approximation error falls below a desired value.
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4.3 Simulation results

The simulation results presented here aim at comparing the OBF-GMP
algorithm with the OBF-MP algorithm and the all-zero modeling. The obtained
models are compared in terms of their ability to approximate a set of R RIRs
for a given number of parameters. For the all-zero modeling, the number of
parameters is R times the number of taps used in the FIR filter for each RIR. For
the OBF models with only complex-conjugate poles, the number of parameters
is the number of complex-conjugate poles P plus the number of linear coefficients
P , which sum up to 2P coefficients (see Section 3.5). When estimating P/2 pole
pairs individually for each RIR with the OBF-MP algorithm, the total number
of parameters is then C = 2PR. In case P/2 pole pairs are estimated jointly
for all RIRs with the OBF-GMP algorithms, only one common set of P poles is
necessary, and the total number of parameters becomes C = P+PR = P (R+1).

The different models were tested on R = 23 RIRs taken from the SUBRIR
database [274]. Each RIR was downsampled to fs = 800 Hz and truncated to
N = 1600 samples from the first strong peak, selected as its starting point. The
OBF-GMP pole grid used G = 1000 poles with 20 different radii distributed
logarithmically from 0.75 to 0.995 and with 50 different angles placed linearly
in the range [1, fs/2 − 1] Hz (right plot of Figure 4.1). The error measure
used to compare the performance of different models with the same number of
parameters is the normalized mean square error (NMSE) in the time domain,
averaged over all RIRs, given by

hNMSE(dB) = 10 log10
1
R

R∑

r=1

‖hr − ĥr‖22
‖hr‖22

. (4.3)

Figure 4.3 shows the average NMSE produced by the OBF models using the
two algorithms and by the all-zero modeling, for the same total number C of
model parameters divided by the number of RIRs. It can be seen that the
OBF models provide a better approximation compared to the all-zero model.
Moreover, there is a significant reduction in the approximation error when
the OBF-GMP algorithm is used instead of the OBF-MP algorithm, mainly
resulting from the use of a larger number of poles (almost double). The fact
that this improvement is less noticeable when the number of parameters is small
can be explained by observing that the OBF-MP algorithm tends to select poles
closer to the unit circle, which approximate better the main strong resonances
of the target magnitude response with a small number of poles.
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Figure 4.3: The average NMSE w.r.t. the total number of model parameters
divided by the number of RIRs. AZ models (∗) and OBF models with poles
estimated using the OBF-GMP algorithm (NNN), and the OBF-MP algorithm
(HHH).

4.4 Conclusion and future work

In this chapter, the OBF-MP algorithm for the estimation of the poles was
modified in order to approximate multiple RIRs jointly. The idea is also
exploited in the CAPZ model, with the main difference that the CAPZ model
requires the model order to be determined in advance. Simulation results on
a set of low-frequency RIRs measured in a rectangular room show that the
OBF-GMP algorithm allows to reduce the number of parameters, obtaining a
more compact representation of multiple RIRs.

Future research will further investigate the topic in the pursuit of a better
understanding of the behavior of the OBF-GMP algorithm w.r.t. different
configurations of the pole grid, which could be informed by prior knowledge
about the characteristics of the room, different numbers of RIRs and different
pole selection criteria, also including a comparison with the CAPZ modeling.
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Abstract

Room acoustic signal enhancement applications strongly rely on algorithms
for identifying the acoustic response of the room (or its inverse) at one or
multiple locations of the sound sources and microphones. As shown in recent
studies, stable infinite impulse response (IIR) filters based on orthonormal basis
functions (OBFs) (hereafter calledOBF filters) are well-suited for approximating
room responses, especially at low frequencies where the approximation is
well motivated also from a physical point of view. Moreover, when used in
an adaptive algorithm, the orthogonality property of OBF filters enables an
analysis of their tracking performance, with theoretical results showing faster
convergence compared to other fixed-poles IIR filters for a wide range of input
spectra. In this chapter, the theory of OBF adaptive filters is reviewed in
relation to the identification of room acoustic systems. An iterative algorithm is
proposed for the identification of room acoustic systems at low frequencies, able
to accurately estimate the characteristic poles of the room transfer functions
from white noise and speech signals. It is shown that the actual advantage
compared to the use of finite impulse response filters mostly depends on the
characteristics of the room itself, e.g. its dimensions and reverberation time.
Finally, the applicability of OBF adaptive filters to acoustic signal enhancement
algorithms is discussed by means of examples in the context of acoustic echo
cancellation and room equalization.

5.1 Introduction

Applications of room acoustic signal enhancement (RASE), such as acoustic
echo cancellation (AEC) [22], acoustic feedback cancellation (AFC) [24], or
room response equalization (RRE) [9], normally rely on the modeling and
identification of the room impulse response (RIR) or its inverse at one or
multiple locations of the sound sources and microphones. The most commonly
used RIR model is the all-zero model, in which the model parameter values are
identified as the coefficients of a finite impulse response (FIR) adaptive filter [26].
The reasons for the popularity of FIR adaptive filters are their simplicity, a
well-consolidated theory, and a large variety of algorithms available for each
specific application. Far less popular is the use of infinite impulse response
(IIR) filters, which implies modeling a room transfer function (RTF) as a pole-
zero model [68]. In theory, IIR filters would allow to reduce the number of
coefficients required to adequately model the RTFs, thus providing more efficient
algorithms. However, their adoption in RASE applications has been discouraged
by their higher complexity, the added difficulty in the adaptive identification
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of the pole parameters, potential instability issues and convergence to local
minima [163], and possibly by the wide-spread belief that no relevant advantage
can be obtained compared to FIR filters [239, 240].

Recent years have witnessed an increasing interest into pole-zero models based
on orthonormal basis functions (OBFs) [27, 126, 112] for modeling room
acoustics [113, 156, 29, 32]. The idea consists in modeling a RTF as a weighted
combination of second-order resonators, whose frequencies and bandwidths are
determined by the position of the pole parameters, while their amplitude is
controlled by a set of linear coefficients (or weights). As for other fixed-poles IIR
filters [165], advantages of using IIR filters based on OBFs (hereafter called OBF
filters) are related to the increase in accuracy obtained by having the poles of the
filter transfer function (TF) closer to the true poles of the system [27, 130, 167],
while easily ensuring filter stability. In addition, the orthogonality property of
OBF filters provides numerical well-conditioning and fast convergence of the
filter adaptation [130, 169, 276], and is the key aspect in enabling an analysis
of the error performance and of the dynamic behavior of adaptive algorithms,
analogously to the FIR case.

Even though the theory is well established within the field of system
identification, OBF filters have been adopted for room acoustic modeling only
recently. Effective modeling algorithms have been suggested for the estimation
of the poles, showing that a set of stable and accurate poles can be obtained,
with the possibility of allocating frequency resolution unevenly in different
regions of the spectrum [113, 29]. These algorithms have been modified for
the estimation of a common set of poles from multiple RTFs [156, 32] and
for modeling in subbands [32] and in time-domain partitions [30]. Although
improvements in the approximation accuracy can be obtained over all-zero
models on the entire audible spectrum [113], OBF models are particularly
suited at low frequencies, where the RTFs are characterized by moderately
overlapping and slowly decaying modes [113, 156].

Nonetheless, the use of OBF filters in RASE applications is still very limited.
Some examples are found in the context of AEC [276], AFC [35] and RRE [28,
277], all relying on the availability of measured or pre-identified RIRs. The
few cases in which the filter pole parameter values are directly estimated from
input-output data have been found applied to the identification of acoustic echo
systems. Methods have been proposed for the on-line estimation of both the
poles and the linear coefficients [151, 34, 241], but limited to the case of an OBF
filter with a single repeated pole (known as Laguerre and 2-parameter-Kautz
filters). The method in [241] is said to be applicable to OBF filters with non-
repeated pairs of complex-conjugate poles (also known as Kautz filters) using
approximated expressions for the gradients [171], but this possibility has not
yet been verified on realistic AEC scenarios.
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The purpose of this chapter is to discuss the applicability of OBF adaptive
filters to RASE algorithms. In Section 5.2, a review of OBF models and OBF
adaptive filters is provided. The focus is on the frequency domain analysis
of the error performance and dynamic behavior of adaptive algorithms with
respect to the characteristics of the input and noise signals. It is shown that
adaptive algorithms developed for FIR filters are easily extended to the OBF
filter case when poles are fixed, whereas the adaptation of the poles requires
nonlinear recursive identification algorithms. An alternative version of the
normalized least mean squares (NLMS) algorithm is introduced to deal with the
adaptation of the linear coefficients when the filter order is small. The proposed
modification, called here OBF-NLMS, normalizes the response of each OBF
second-order section individually, in an analogy with transform-domain (TD)
adaptive filters [278, 279, 280, 281, 282].

In Section 5.3, an identification algorithm is introduced, inspired by the scalable
group matching pursuit (GMP) modeling algorithm, named OBF-GMP and
described in [113, 156], which ameliorates the previously proposed block-based
(BB)-OBF-GMP identification algorithm in [154]. The algorithm, named here
stage-based (SB)-OBF-GMP, performs an iterative grid search that avoids the
nonlinear problem and gives the possibility of estimating a common set of
poles from multiple microphone signals to be then fixed and used in RASE
applications. The newly proposed identification algorithm uses the NLMS and
OBF-NLMS adaptation algorithms in order to overcome the problems of the
BB algorithm in dealing with non-stationary and non-white input signals.

Section 5.4 provides identification results at low frequencies performed on
measured and simulated RIRs. The aim of this section is to analyze the relation
between the characteristics of the room, such as its dimensions and reverberation
time, and the advantages over FIR filters that can be expected by using OBF
adaptive filters with a common set of poles. In Section 5.5 examples are given
in order to illustrate possible uses of OBF adaptive filters and the proposed
identification algorithm in the context of AEC and RRE. Finally, Section 5.6
discusses the applicability of OBF adaptive filters to RASE applications and
Section 5.7 concludes the chapter.

5.2 OBF adaptive filters

A RTF can be expressed as an infinite summation of room resonances, each with
a certain central frequency, bandwidth and amplitude, whose density increases
with frequency [1]. It can be approximated by means of an OBF filter as a
finite summation of second-order all-pole filters (or resonators), having TF as
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Figure 5.1: The OBF adaptive filter for m pole pairs.

in (5.1), each weighted by a pair of linear amplitude coefficients.

Pi(z) = 1
Di(z)

= 1
(1− piz−1)(1− p∗i z−1) , (5.1)

Ai(z) = D̄i(z)
Di(z)

= (z−1 − pi)(z−1 − p∗i )
(1− piz−1)(1− p∗i z−1) , (5.2)

N±i (z) = |1± pi|
√

1− |pi|2
2 (z−1 ∓ 1) . (5.3)

Each resonator is defined by a pair of complex-conjugate poles pi = [pi, p∗i ] =
ρie
±jϑi , with radius ρi = e−ζi/fs (ρi < 1 for stability) related to the bandwidth

ζi, and angle ϑi = ωi/fs related to the resonance frequency ωi (fs being the
sampling frequency and ∗ indicating complex conjugation). The responses of
the resonators are orthogonalized with respect to each other by means of a
series of all-pass filters built from the same pole pairs pi with TF as in (5.2)
(the influence of the poles pi and p∗i is canceled by the nonminimum-phase
zeros in 1/pi and 1/p∗i of the all-pass TF [112]), whereas a pair of first-order
all-zero filters with TF as in (5.3) produces mutually orthonormal responses.
Given that a RTF presents multiple resonances with different frequencies and
a band-pass characteristic due to the band-pass response of the loudspeaker
(and the anti-aliasing filter), only OBF filters with multiple complex poles are
considered here. For more details about the construction of OBF models and
their relation to room acoustics and other parametric models, the reader is
referred to [113].
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The OBF adaptive filter structure is depicted in Figure 5.1. Each ith resonator
section has a pair of orthonormal TFs, or basis functions, given by Ψ±i (z, p̃i),
which are weighted by a pair of time-varying amplitude coefficients θi(n) =
[θ+
i (n), θ−i (n)] (with i = 1, . . . ,m and m the number of complex-conjugate pole

pairs), giving the overall filter TF at discrete time-instant n = t/fs

G(z,p,θ(n)) = z−d
m∑

i=1

[
θ+
i (n)Ψ+

i (z, p̃i) + θ−i (n)Ψ−i (z, p̃i)
]

with Ψ±i (z, p̃i) = N±i (z)Pi(z)
i−1∏

ι=1
Aι(z), (5.4)

p = [p1, . . . ,pm]T a set of m pairs of complex-conjugate poles, θ(n) =
[θ1(n), . . . ,θm(n)]T , both with dimensions M × 1 (M = 2m), and p̃i =
[p1, . . . ,pi]T . Figure 5.2 shows the power spectrum of the basis functions
Ψ±i (z, p̃i) generated from a set of m = 5 pole pairs with different radii and
angles.

The intermediate signals κi(n, p̃i) = [κ+
i (n, p̃i), κ−i (n, p̃i)] are filtered versions

of the input signal u(n) (i.e. κ±i (n, p̃i) = Ψ±i (q, p̃i)u(n), with q−1 the backward
time-shift operator for which q−1u(n) = u(n− 1)), and the output signal of the
filter is a weighted summation of the intermediate signals given as

ỹ(n,p,θ) =
m∑

i=1
[ỹi(n, p̃i,θi)]

=
m∑

i=1

[
ỹ+
i (n, p̃i, θ+

i ) + ỹ−i (n, p̃i, θ−i )
]

=
m∑

i=1

[
κ+
i (n, p̃i)θ+

i (n) + κ−i (n, p̃i)θ−i (n)
]
, (5.5)

or in vector form as

ỹ(n,p,θ) = κT (n,p)θ(n)

with κ(n,p) = [κ1(n, p̃1), . . . ,κm(n, p̃m)]T . (5.6)

Finally, a d-samples delay can be included to take the acoustic delay of the RIR
into account (cfr. leftmost block in Figure 5.1).

The main reason for using an orthonormal model structure in place of other non-
orthogonal fixed-pole ones is related to numerical considerations: even though
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Figure 5.2: The power responses of 5 pairs of basis functions generated from
the pole pairs depicted in the top-right corner. The resulting γM (ω,p) in (5.12)
is also shown (thick line).

orthogonal and non-orthogonal models with the same fixed poles span the same
approximation space, it is found that the estimation of a RTF with respect to
the non-orthogonal structure can be very ill-conditioned. Orthogonal model
structures, instead, provide a well-conditioned estimation problem for a wide
range of input power spectral density (PSD) (not only white), so that their use
is said to be the only practical way of fixing the poles in a filter structure [130].
For the same reason, OBF adaptive filters also show faster convergence than
other fixed-poles adaptive filters.

To keep the discussion as simple as possible, a RTF H(z) is assumed to be
linear and time-invariant, so that a microphone signal can be defined as

y(n) = H(q)u(n) + v(n), (5.7)

with v(n) a zero-mean additive white noise (WN) signal with variance Sv(ω) =
E{v2(n)} = σ2

v , ∀ω, and u(n) the loudspeaker input signal having spectral
density

Su(ω) =
∞∑

τ=−∞
Ru(τ)e−jωτ , (5.8)

with covariance function Ru(τ) = E{u(n)u(n− τ)} (E{·} denotes the expected
value). The input PSD plays an important role in the behavior of OBF adaptive
filters, as it will be explained later on. Indeed, the power σ2

ι of each intermediate
signal κι(n) (corresponding to κ+

i (n) for ι odd and to κ−i (n) for ι even, with
i = (ι+ι mod 2)/2 and ι = 1, . . . ,M) is determined by the product between
the input PSD and the power of the corresponding OBF frequency response
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Ψι(ejω, p̃i),
E{|κι(n)|2} = 1

2π

∫ π

−π
Su(ω)

∣∣Ψι(ejω, p̃i)
∣∣2dω. (5.9)

This means that an intermediate signal will have small power at a given
frequency ω whenever either Su(ω) or the power of the OBF frequency response
is small. Also notice that, because of normalization,

1
2π

∫ π

−π

∣∣Ψι(ejω, p̃i)
∣∣2dω = 1 . (5.10)

Finally, it is noticed here that the total power of the intermediate signals is
given by the sum of the power of each intermediate signal as

E{‖κ(n,p)‖2} =
M∑

ι=1

1
2π

∫ π

−π
Su(ω)

∣∣Ψι(ejω, p̃i)
∣∣2dω

= 1
2π

∫ π

−π
Su(ω)

M∑

ι=1

∣∣Ψι(ejω, p̃i)
∣∣2dω

= 1
2π

∫ π

−π
Su(ω)γM (ω,p)dω, (5.11)

with γM (ω,p) =
M∑

ι=1

∣∣Ψι(ejω, p̃i)
∣∣2 (5.12)

a frequency-dependent term that will be essential in the analysis of the main
properties of OBF adaptive filters, summarized in the remainder of the present
section. For more extensive explanations, including the case for time-varying
systems, the reader is referred to [130, 167, 169, 27].

5.2.1 Estimation accuracy: bias and variance errors

An estimate of H(z) obtained using an OBF filter as in (5.4) with poles fixed
in p produces a prediction error given by

ε(n,p,θ) = y(n)− ỹ(n,p,θ) = y(n)− κT (n,p)θ(n). (5.13)

If N samples of the input and output signals are available and the following
quadratic cost function is adopted

VN (θ,p) = 1
2N

N∑

n=1
ε2(n,θ,p), (5.14)



126 ROOM ACOUSTIC SYSTEM IDENTIFICATION USING OBF ADAPTIVE FILTERS

a least squares (LS) estimate θ̂N of the linear amplitude coefficients θ can then
be found by minimizing (5.14) with respect to θ. The estimation error produced
is made of two terms, a bias error Eβ(ω) and a variance error Eν(ω), and it
can be written (in the frequency domain, where ω ≡ ejω) as

E(ω,p, θ̂N ) = H(ω)−G(ω,p, θ̂N )

= [H(ω)−G(ω,p,θo)] + [G(ω,p,θo)−G(ω,p, θ̂N )]

= Eβ(ω,p,θo) + Eν(ω,p,θo, θ̂N ), (5.15)

with θo = limN→∞ θ̂N the Wiener solution (θo = R−1
κ r, where Rκ =

E{κ(n,p)κT (n,p)} is the autocorrelation matrix of the intermediate signals
and r = E{κ(n,p)y(n)} is the cross-correlation vector between the intermediate
signals and the microphone signal, assuming u(n) and y(n) being jointly wide-
sense stationary stochastic processes, both with zero mean). This means that
the bias error depends on the model structure chosen and on its order (i.e.
the dimension of p and θ), whereas the variance error depends on the actual
estimation of the parameters, and is thus influenced by the characteristics of
the input and noise signals. It can be seen from (5.15) that both terms also
depend on the pole set p, which means that not only the number of poles, but
also their position, affects the estimation error.

It is quite intuitive to expect a decrease in the bias error when the poles are
moved away from the origin of the z-plane closer to the true poles of the system.
A result valid for a constant Su(ω) = σ2

u, but extendable to other cases [130],
formalizes this idea showing that the bias error tends to zero for M → ∞
(more specifically, it decreases geometrically in the model order M) and that
it is proportional to the distance between the K true poles ξκ of the system
(κ = 1, . . . ,K) and the M poles pi of the model structure (i = 1, . . . ,M),
according to

Eβ(ω,p,θo) ≤
K∑

κ=1

∣∣∣∣
ℵκ

ejω − ξκ

∣∣∣∣
M∏

i=1

∣∣∣∣
ξκ − pi

1− p∗i ξκ

∣∣∣∣ , (5.16)

with ℵκ the residues of the partial fraction expansion of H(z) (see [130]).

The dependency of the asymptotic variance error on the poles is instead less
intuitive. It turns out [167] that the influence of the pole location is quantified
by the frequency-dependent term γM (ω,p) in (5.12) in such a way that the
variance can be approximated as

E{|Eν(ω,p,θo, θ̂N )|2} ≈ 1
N

σ2
v

Su(ω)γM (ω,p), (5.17)
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which is a generalization of the FIR case, for which γM (ω,p) = M, ∀ω [168].
The implications are that increasing the number of poles in order to reduce the
bias error in a certain frequency region would also increase the sensitivity to
noise in that same region. As a consequence, a good estimate of H(z) would
have as few poles, as close as possible to the actual poles of the RTF.

5.2.2 Adaptation of the linear coefficients

In most RASE applications, an estimate of a RTF has to be obtained adaptively,
as new samples of the source and microphone signals are available. The
adaptation rule for the recursive estimation of the linear filter parameter vector
θ(n) is given by

θ̂(n+ 1) = θ̂(n) + g(n,p)ε(n,p, θ̂) , (5.18)
with g(n,p) a gain vector. When considering the linear θ parameters, OBF
models are linear regression models, as can be seen in (5.5) (the regression
vectors are independent from the previous estimates of the parameters). Thus, it
is possible to apply standard adaptive algorithms developed for FIR filters [157],
with the only difference that the regression vector for an OBF adaptive filter
is represented by the vector of intermediate signals κ(n,p), instead of u(n) =
[u(n), u(n− 1), . . . , u(n−M + 1)] (the last M samples of the input signal u(n)).
The increase in complexity is only given by the filtering of the input signal to
compute κ(n,p), and not in the adaptation scheme itself.

Based on how the gain vector g(n,p) is computed, different algorithms are
obtained: the least mean squares (LMS) algorithm is obtained for

g(n,p) = µκ(n,p), (5.19)

with µ the step size. Normalization is usually necessary to avoid that large
values in κ(n,p) would lead to large variations in θ̂(n+ 1). The vector of
intermediate signals κ(n,p) can hence be normalized, leading to the NLMS
gain vector

g(n,p) = µ̃

δ + ‖κ(n,p)‖2κ(n,p), (5.20)

where δ is a small regularization term to avoid instability or convergence
problems resulting from poor excitation [185, 283]. Another common, yet
more complex, adaptation algorithm is the recursive least squares (RLS)
algorithm [165, 130], for which the gain vector is given by

g(n,p) = Υκ(n)κ(n,p), with

Υκ(n+ 1) = 1
λ

{
Υκ(n)− Υκ(n)κ(n,p)κT (n,p)Υκ(n)

λ+ κT (n,p)Υκ(n)κ(n,p)

}
, (5.21)
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λ = 1 − µ a forgetting factor and Υκ(n) an estimate of the inverse of the
autocorrelation matrix Rκ = E{κ(n,p)κT (n,p)} of the intermediate signals.
A trade-off between convergence and complexity is obtained with the affine
projection algorithm (APA) [284], for which the update rule in (5.18) becomes

θ̂(n+ 1) = θ̂(n) + µKQ(n)
(
δIQ +KT

Q(n)KQ(n)
)−1

εQ(n) (5.22)

where IQ is the Q × Q identity matrix used for regularization with δ a small
constant, KQ(n) = [κ(n,p),κ(n − 1,p), . . . ,κ(n − Q + 1,p)] of size M × Q,
and εQ(n) = [ε(n,p,θ), ε(n − 1,p,θ), . . . , ε(n − Q + 1,p,θ)], with Q the so-
called projection order. Notice that for Q = 1, the APA corresponds to the
NLMS algorithm. Most algorithms developed for FIR adaptive filters can be
derived easily for OBF filters as well. For instance, variable step size (VSS)
algorithms [285, 286, 287] or regularized algorithms [185] can be used for highly
non-stationary signals, or the Kalman filter [130] for time-varying systems.

Dynamic behavior: transient and steady-state errors

As mentioned earlier, orthogonality offers the possibility of studying the error
behavior and transient performance of OBF filters in adaptive algorithms and
the relation to step size, noise power and input PSD. The following results have
been derived in [130] for M →∞, but proved (empirically) to be valid also for
small model orders.

The steady-state error (after convergence, i.e. for n → ∞) is similar to the
expression of the variance in (5.17), with the introduction of the step size µ,

E{|E(ω,p, θ̂(∞))|2} ≈ µσ2
v

[Su(ω)]r γM (ω,p), (5.23)

where r = 0 for LMS and r = 1 for RLS (with µ = 1 − λ). This expression
shows that the LMS algorithm depends on the choice of the step size and on
the noise variance, but it is invariant to the input PSD Su(ω), whereas for RLS
the steady-state estimation error is inversely proportional to Su(ω); for NLMS,
expression (5.23) with r = 0 is still valid, if the normalization in (5.20) is
considered to be included in the step size µ, which depends on Su(ω) according
to (5.11). As for the variance, also the steady-state error in (5.23) depends
on γM (ω,p), i.e. it increases for a larger number of poles and for larger poles
densities, and it is equal to the FIR case for γM (ω,p) = M [168].
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The transient error for the LMS algorithm, i.e. the estimation error at iteration
n+ 1 with respect to the error at iteration n, can be approximated as

E{|E(ω,p, θ̂(n+ 1))|2} ≈[1− µSu(ω)]2E{|E(ω,p, θ̂(n))|2}

+ µ2σ2
vSu(ω)γM (ω,p), (5.24)

which shows the error dependency on two terms: when µSu(ω) is large, the
error is reduced in the first term, but it increases based on the second term.
The presence of the frequency-dependent term γM (ω,p), i.e. the number and
location of the poles, affects the second term of (5.24), which also depends on
the noise variance. Once again, the expression in (5.24) is a generalization of
the FIR case [168].

Convergence rate: step size and numerical conditioning

The orthogonality property of OBF filters ensures better-behaved and faster
convergence of the adaptation algorithm, compared to non-orthogonal fixed-
pole adaptive filters [130]. For the LMS algorithm, the convergence speed
is determined by the choice of the step size µ and by the condition number
C of the intermediate signals correlation matrix Rκ, defined as the spread
of its eigenvalues as C(Rκ) = λmax/λmin, with λmax and λmin the maximum
and minimum eigenvalues, respectively [273]. Convergence is controlled by the
exponential factor (1 − µλmin)n, with a larger value for λmin yielding faster
convergence [157], which decays to zero for µ < 1/λmax. It follows that the
convergence rate in the mean for the LMS algorithm can be no faster than [130]

(
1− λmin

λmax

)n
=
(

1− 1
C(Rκ)

)n
. (5.25)

For OBF filters with a WN input signal, i.e. with constant PSD Su(ω) = σ2
u,

the convergence rate is optimal as C(Rκ) ≈ 1 (Rκ ≈ σ2
uI, with I the identity

matrix). For colored input signals, the optimal conditioning of the correlation
matrix is lost. However, by virtue of orthogonality, a bound on C(Rκ) in
relation to the input PSD is derived as

min
ω∈[−π,π]

Su(ω) ≤ λ(Rκ) ≤ max
ω∈[−π,π]

Su(ω), (5.26)

with λ(Rκ) the set of eigenvalues of Rκ, so that an upper bound on the average
convergence rate can be found as [130]

(
1−

min
ω∈[−π,π]

Su(ω)

max
ω∈[−π,π]

Su(ω)

)n
. (5.27)
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This means that OBF adaptive filters are particularly robust in terms of
numerical well-conditioning for a wide range of input PSD [169], so that the
condition number is expected to be smaller compared to the case in which a
non-orthogonal structure is used, and thus the convergence rate faster.

5.2.3 The OBF-NLMS and its analogy to TD-NLMS

As mentioned above, the NLMS algorithm is meant to avoid that large values in
the regression vector would result in large variations in the parameter update.
Whereas in FIR adaptive filters, this is accomplished by normalizing with
respect to the power of the previous M samples of the input signal (or, by
considering µ̃ = µM , with respect to the mean value of ‖u(n)‖2) [283], the
normalization in the OBF filter case has a different interpretation. Indeed, the
NLMS update in (5.20) normalizes the regression vector κ(n,p) with respect to
the instantaneous power of all the intermediate signals at time n, or equivalently,
by considering µ̃ = µM , by their mean power. This means that the update rule
has no memory of previous samples of κ(n,p), so that large values of the input
signal may result in large variations of the linear coefficients. It is possible,
indeed, especially when the filter order M is very small, that the power σ2

ι at
time n of different intermediate signals κι(n) is similar, and so is their mean
power.

For this reason an alternative version of the NLMS algorithm (named OBF-
NLMS) is introduced here, which normalizes each intermediate signal κι(n)
individually based on an estimate of its power σ2

ι . The gain vector g(n) for the
OBF-NLMS is then

g(n) = µ[δIM + Σ̂M (n,p)]−1κ(n,p) , (5.28)

with Σ̂M (n,p) an M ×M diagonal matrix, whose ιth diagonal element σ̂2
ι is

an estimate of the the intermediate signal power σ2
ι . The power estimates are

computed using an exponential window update, implemented as a one-pole filter
with pole 0� β < 1 (i.e. the forgetting factor) as

σ̂2
ι (n) = βσ̂2

ι (n− 1) + (1− β)|κι(n)|2 (5.29)

Each linear coefficient is then updated individually as

θ̂ι(n+ 1) = θ̂ι(n) + µ

δ + σ̂2
ι (n)κι(p̃i, n)ε(n,p,θ) . (5.30)

The only disadvantages compared to the standard NLMS are a small increase
in complexity due to (5.29) and the requirement of a reasonable initial estimate
σ̂2
ι (0) at the beginning of the adaptation, in order to avoid slow convergence
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of the power estimates. This second issue is easily overcome by computing a
short-term mean on the first few samples of |κι(n)|2 before starting to adapt
the filter coefficients.

The necessity of introducing the OBF-NLMS algorithm for low model orders
M is illustrated in Figure 5.3, showing the identification of a low-frequency
RIR simulated using the randomized image-source method (RIM) [230]
(reverberation time (RT) T60 = 0.25 s, room M in Table 5.1) with male speech
input signal downsampled to fs = 800 Hz. The curves represent the normalized
misalignment (NM) obtained using the standard NLMS and the OBF-NLMS
algorithm, which is defined as

NM(n) = 10 log10

(
‖h− ĥ(n,p, θ̂)‖22

‖h‖22

)
dB, (5.31)

where h is the true RIR vector of lengthN samples, and ĥ(n,p, θ̂) = ΨN (p)θ̂(n)
is the estimated RIR at time n, with the columns of the N ×M matrix ΨN (p)
being the N -samples OBF responses to an impulsive input signal (see [113]).
It can be seen in the top plot that large values of the input signal results
in large variations of the steady-state error for the NLMS algorithm when
the model order is small (here M = 6). The OBF-NLMS algorithm, on the
other hand, provides faster convergence and low parameter variability in the
steady-state. For higher model orders, instead, the NLMS adaptation rule
in (5.20) becomes effective in dealing with large values of the input signal, with
comparable performance at a lower complexity, as can be seen in the bottom
plot for M = 20.

An analogy between the OBF-NLMS algorithm and the time-domain imple-
mentation of TD adaptive algorithms [278, 279, 280, 281, 282] is noticed.
TD algorithms apply an orthonormal transform, such as the discrete Fourier
transform (DFT) or the discrete cosine transform (DCT) to name the most
common, in order to partially decorrelate the samples of the input signal vector
u(n) and thus accelerate the rate of convergence of the FIR filter parameters
when using the NLMS algorithm. It has been shown [279] that the convergence
actually improves when, instead of normalizing all the intermediate signals (i.e.
the transformed input signals) with respect to the instantaneous power of u(n)
as in the standard NLMS algorithm, the normalization is performed at each
intermediate signal with respect to the inverse of a short-time average of its
power, as in (5.30). It is actually this normalization and not the transformation
itself that reduces the eigenvalue spread and speeds up convergence.

Another, more conceptual, analogy between OBF adaptive filters and TD
algorithms is in their interpretation as filterbanks [280, 282]: the orthonormal
transforms, such as the DFT or the DCT, can indeed be seen as a parallel
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Figure 5.3: The comparison between the NM of NLMS (dashed) and OBF-
NLMS (solid) for M = 6 (top) and M = 20 (bottom).

of band-pass filters with a uniform distribution of their central frequencies.
The decorrelation performance of different transforms depends mainly on the
characteristics of the input PSD [280]. For instance, the DCT is particularly
suitable for input signals with a low-pass characteristic. Also OBF adaptive
filters can be seen as a parallel of band-pass filters which partially decorrelate the
intermediate signals, with the difference that the filter central frequencies and
bandwidth (i.e. the poles) are chosen with respect to the system to be identified
and not to the expected input PSD, even though both the pole location and
the input PSD influence the tracking behavior of the algorithm, as explained
in the previous section.

5.2.4 Adaptation of the poles

Gradient-based algorithms can also be used as well in the adaptation of the
denominator coefficients of the TF of IIR filters [163]. However, difficulties
arise from the fact that a pole-zero model is a nonlinear regression model, in
the sense that the regressors depend on previous values of the filter coefficients
(at least in the output-error approach) [163, 168, 170]. This issue is normally
circumvented in direct-form pole-zero models by disregarding this dependency
and treating the problem as in linear regression (in which case they are called
pseudolinear regression models). This is not a possibility for OBF adaptive
filters, the reason being that each pole pair pi appears in the all-pass sequence
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of the successive m − i TFs (5.4) and in the normalization filters as well, so
that they cannot be regarded as pseudolinear regression models.

When minimizing the sum of squared errors in (5.14), recursive prediction
error algorithms [170], or Gauss-Newton-type recursive algorithms, should be
then used to try to adjust the filter coefficients. For instance, an algorithm
was proposed in [151], in which linear coefficients and poles are updated in
an alternating fashion using RLS and a recursive Gauss-Newton algorithm
with a backtracking strategy for determining the optimal step-size, respectively.
The idea of recursive nonlinear identification algorithms is to update the pole
parameters p(n) along the search direction q(n) according to

p(n+ 1) = p(n) + µq(n), (5.32)

where q(n) for the quadratic cost function in (5.14) has the form

q(n) = 2B−1
p (n)∇εp(n)ε(n,p,θ), with

∇εp(n) = ∂ε(n,p,θ)/∂p(n) = −∂ỹ(n,p,θ)/∂p(n). (5.33)

Different algorithms differ on how Bp(n) is chosen. For instance, the steepest
descent algorithm chooses Bp(n) = I, while in the Gauss-Newton algorithm
Bp(n) = ∇εp(n)∇εHp (n) is an approximation of the Hessian matrix [288] ({·}H
indicating the Hermitian transpose). Common to all these algorithms is the
computation of the gradient vector ∇εp(n), i.e. the derivatives of the error
with respect to the pole parameters. The expressions for the gradient with
respect to the kth pole pair pk are obtained by computing (and leaving out the
dependency of ỹ(n) and ỹi(n) on p and θ for brevity)

∂ỹ(n)
∂pk(n) =

m∑

i=1

∂ỹi(n)
∂pk(n) , (5.34)

which can be divided in three parts, as

∂ỹ(n)
∂pk(n) =

k−1∑

i=1

∂ỹi(n)
∂pk(n) + ∂ỹk(n)

∂pk(n) +
m∑

i=k+1

∂ỹi(n)
∂pk(n) . (5.35)

The first term is zero, since ỹi(n) for i = 1, . . . , k − 1 is independent from
pk. Even though analytic expressions for the other two terms can be derived,
the nonlinear dependency of the filter output on the pole parameters makes
the expressions involved and expensive to compute. Also, the pole parameters
being complex-valued, a parametrization of the poles is necessary in order to
obtain real-valued expressions for the gradients. Although it would be natural to
parametrize the poles in terms of their radius ρi and angle ϑi, the computation
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of the gradients becomes slightly simpler by considering the parameters ζi =
−(pi + p∗i ) = −2ρi cosϑi and ηi = pip

∗
i = ρ2

i , for which Di(z) in (5.1) becomes
Di(z) = 1 + ζiz

−1 + ηiz
−2 (in [151] the real and imaginary part of the pole

parameters were used instead). The expressions for the gradients with respect
to ζi and ηi were derived in [171] for a slightly different realization of OBF
filters and for orthogonal filters.

The full and approximated expressions for the gradients in the realization
used in this chapter are given in Appendix A.1. It can be seen that these
expressions are quite complicated, especially for the third term in (5.35).
A computationally reasonable, but suboptimal way of adapting the pole
parameters is by approximating the gradients (with χk either ζk or ηk) as

∂ỹ(n)
∂χk(n) ≈

∂ỹk(n)
∂χk(n) , (5.36)

which assumes slow convergence of the parameters and poles close to the unit
circle (see [171]). A further simplification is obtained by renouncing to the
normality property of OBF filters by redefining N±i (z) = (z−1 ∓ 1), in which
case the gradient becomes

∂ỹ(n)
∂χk(n) ≈

∂ỹk(n)
∂χk(n) = − 1

Dk

∂Dk

∂χk
ỹk(n) , (5.37)

with ∂Dk/∂ζk = z−1 and ∂Dk/∂ηk = z−2. This simplification of the OBF model
to an orthogonal model would also allow to regard it as a pseudolinear model,
with the regressors defined by the input signal u(n) and the various outputs of
resonators and all-pass filters (signals ai(n), xi(n) and their previous samples),
where the dependency of the regressors on previous values of the parameters to
be estimated is ignored. In the following, these ideas for the adaptation of the
poles are not developed further. Instead, an iterative identification algorithm
is proposed, which estimates the poles of one or multiple RTFs avoiding the
nonlinear problem by employing a grid-based matching pursuit approach.

5.3 The SB-OBF-GMP identification algorithm

It was shown in the previous section that the identification of the linear
coefficients of an OBF adaptive filter is governed by the same conditions and
with the same implementation complexity as for the identification with an FIR
filter (with differences in frequency resolution and noise sensitivity based on
γM (ω,p) defined in (5.12)). The identification of the poles, on the other hand, is
a nonlinear problem and, even though it is possible to devise recursive algorithms
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as discussed above, problems such as slow convergence or convergence to local
minima may occur. Slow convergence is also related to the number of poles
and the choice of the initial values in recursive algorithms, which should be
based on some prior (usually unavailable) knowledge about the system. Another
issue is the computational complexity of the recursive algorithm, especially if a
backtracking strategy for the selection of the step-size in (5.32) is used to speed
up convergence [288].

Here, a different approach to the identification of the poles is taken. Instead
of adapting the pole parameters, the inherent nonlinear problem is avoided
by using a grid search and by selecting poles one by one in an order-recursive
fashion. The iterative algorithm proposed here is similar to the BB-OBF-GMP
algorithm in [154], in which a dictionary is built by collecting Nb samples of
candidate intermediate signals, with poles defined on a grid spanning a portion
of the unit disc. In each block b, one pair of complex-conjugate poles pb is
selected from the grid as the one that produces the pair of intermediate signals
that is mostly correlated, on average, with the last Nb samples of the prediction
error signals εr(n) produced in each acoustic channel r considered (r = 1, . . . , R)
using LS estimation. The pole-pair pb is then added to the previously selected
common poles in the multi-channel OBF adaptive filter, whose number m of
resonator sections increases by one (m← m+ 1), whereas the linear coefficients
for each acoustic channel are adapted with respect to each εr(n) using the
LMS update rule in (5.18) with gain vector as in (5.19). A description of the
algorithm is detailed in Appendix A.2.

The BB-OBF-GMP algorithm proved to be capable of accurately identifying a
common set of poles from WN input signals in a single-input/multiple-output
(SIMO) room acoustic system. The LMS algorithm, however, works well as long
as the input PSD is constant and the step size is correctly chosen according to
it. As a consequence, when the input signal is non-stationary and non-white,
the step size may be too small or too large, and the algorithm would either
converge very slowly or become erratic. Also, when the linear coefficients adapt
too slowly and the size of the block is not sufficient, the prediction error signals
εr(n) compared to which the correlation with the candidate intermediate signals
in the dictionary is computed, may not have reached the steady-state, resulting
in a poor identification performance.

The SB-OBF-GMP algorithm proposed here introduces a series of modifications
meant to deal with these issues. First, instead of collecting Nb samples of
both the candidate intermediate signals and the residual signals, the correlation
between them is tracked in time for a given number of samplesNs (withNs < Nb
required), before one new pole pair is selected. The NLMS algorithm is used,
as it is equivalent to an adaptation of the correlation between the error signals
and the candidate intermediate signals using an exponential window update, as
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it will be explained later on. Another modification pertains to the introduction
of the OBF-NLMS adaptation rule (5.28) in the multi-channel OBF adaptive
filter. The reason is to deal with large values of the intermediate signals when
the model order M = 2m is small, i.e. when the multi-channel OBF adaptive
filter has a small number m of resonator sections, as explained in Section 5.2.3.
For higher model orders, the performance of OBF-NLMS and NLMS are similar,
with the latter being less expensive computationally, so that when a sufficiently
large number of poles m has been included in the multi-channel OBF adaptive
filter, it is possible to employ the NLMS update with gain vector as in (5.20).

The idea of the proposed algorithm is indeed that, since the poles are
considered to be a characteristic of the room itself and thus approximately time-
invariant [103], the identification of a common set of poles can be performed
once for a given setup or environment at the beginning of the session of a
RASE task, and then kept fixed afterwards, with RTF variations tracked by
the adaptive linear coefficients only. The algorithm is designed for SIMO room
acoustic systems, but it can be extended to the multiple-input/multiple-output
(MIMO) case, as suggested in Section 5.4. It could be also used to find good
initial values and to determine the order M , as required by nonlinear recursive
algorithms, which could be also used to adapt the poles to track slow variations
in time of the room acoustics.

5.3.1 Algorithm description

The proposed algorithm aims to build a SIMO OBF adaptive filter including one
common pole pair at each stage. A stage is defined as the period at the end of
which a pole pair pc is selected and included in the multi-channel OBF adaptive
filter. A new pole pair pc is selected based on the correlation coefficients, which
values are tracked using the NLMS algorithm for the duration of a stage, between
the prediction error signals εr(n) and the candidate intermediate signals. The
pole pair in the grid associated with the pair of candidate intermediate signals
with the highest correlation, averaged over theR acoustic channels and evaluated
at the end of the stage, is selected and added to the active pole set pAm+1 =
[pAm , pc] of the multi-channel OBF adaptive filter, thus adding a new resonator
section. At the beginning of each new stage (m← m+1), the linear coefficients
θ̂rm(n) = [θr+m (n), θr−m (n)] associated with the intermediate signals built from
the pole pair pc selected at the previous stage, start to be adapted for each
channel r, together with θ̂ri (n) = [θr+i (n), θr−i (n)] with i = 1, . . . ,m − 1. In
other words, the size of each rth set of linear coefficients increases by two at
the end of each stage, and their value adapted using either the OBF-NLMS or
the NLMS update. The algorithm stops whenever the number of selected poles
m reaches a maximum value mmax or some stopping criterion based on the
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average power of the prediction error signals is satisfied. Readers uninterested
in the details of the algorithm may skip the following description and resume
the reading from Section 5.3.2 or even from Section 5.4, without compromising
their understanding of the rest of the chapter.

The aim of the SB-OBF-GMP algorithm is to minimize the sum of the
instantaneous squared errors, over the R channels,

minimize
pAm,Θ̂M (n)

‖εm(n)‖2 =
∥∥∥y(n)− ŷm(n,pAm, Θ̂M )

∥∥∥
2

=
∥∥∥y(n)− κ(n,pAm)T Θ̂M (n)

∥∥∥
2

,
(5.38)

where εm(n) = [ε1
m(n), . . . , εRm(n)] represents the vector of prediction error

signals εrm(n) (with r = 1, . . . , R) for the R acoustic channels at time n,
y(n) = [y1(n), . . . , yR(n)] is the vector of output signals and ŷm(n,pAm, Θ̂M ) =
[ŷ1
m(n,pAm, θ̂1(n)), . . . , ŷRm(n,pAm, θ̂R(n))] the vector of estimated outputs of the

multi-channel OBF adaptive filter, with the linear filter coefficient vectors
defined as θ̂r(n) = [θ̂r1(n), . . . , θ̂rm(n)]T and θ̂ri (n) = [θ̂r+i (n), θ̂r−i (n)]. The
symbol {̂·} is used instead of {̃·} to indicate the fact that ŷm(n,pAm, Θ̂M )
is an estimate. The vector of estimated output signals ŷm(n,pAm, Θ̂M ) is
obtained by the linear combination of the M = 2m intermediate signals
κ(n,pAm) = [κ1(n), . . . ,κm(n)]T weighted by the linear filter coefficient vectors
θ̂r(n), which are stacked in theM×R matrix Θ̂M (n) = [θ̂1(n), . . . , θ̂R(n)]. The
intermediate signals in κ(n,pAm) are the output signals of the orthonormalized
resonator sections built from the active pole set pAm and having TFs Ψ(z,pAm) =
{Ψ±1 (z, p̃A1 ), . . . ,Ψ±m(z, p̃Am)}, where Ψ±i (z, p̃Ai ), defined as in (5.4), is built from
the first i poles p̃Ai = [p1, . . . ,pi]T ∈ pAm.

A schematic of the SB-OBF-GMP algorithm is depicted in Figure 5.4 and listed
in Algorithm 3 with a slightly simplified notation, both containing elements
explained below.

Multi-channel OBF linear filter coefficient adaptation

As already mentioned, the proposed OBF-NLMS update rule in (5.28) is used,
at least while M is small, for the adaptation of the linear coefficients of the
multi-channel OBF filter, which in matrix form for the multi-channel case
becomes

Θ̂M (n+ 1) = Θ̂M (n) + µ[δIM + Σ̂M (n,pAm)]−1κ(n,pAm)εm(n) . (5.39)
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u(n)
Ψ(z,pAm)

Θ̂M (n)

+

−
(A.5)
(5.29)

Γ±(z,pl)

α̂±m+1(n,pl)

+

−

α̂r
m+1(n,pl) =

√
α̂r+

m+1(n,pl)
2 + α̂r−

m+1(n,pl)
2

c = arg maxl

∑R
r=1 α̂

r
m+1(n,pl)

pc

Update pole set
pAm+1 = [pAm ,pc]

αr
m+1(n,pc)

e±m+1(n,pl)

(5.43)

Hr(z)Hr(z)Hr(z)

am(n,pAm)

κm+1(n,pl)

y(n)

εm(n)

κ(n,pAm)

ŷm(n)

pAm
Ωg

Ωg

pAm+1

m← m+ 1

Select common pole
if n = (m + 1)Ns do

Figure 5.4: The simplified schematics of the SB-OBF-GMP algorithm.

Initially (m = 0), the active pole set pAm is empty, so that the vector of estimated
output equals to all zeros (ŷ0(n) = 0) and ε0(n) = y(n). At the beginning of
each new stage, a new pole pair pc is added to the multi-channel OBF filter
based on the selection strategy described below, and a pair of linear coefficients
per each channel is included in each coefficient vector θ̂r(n), thus augmenting
the size of the square matrices IM and Σ̂M (n,pAm) and the number of rows of
Θ̂M (n) in (5.39) by two (M ←M + 2).

Common-poles selection strategy

The main purpose of the SB-OBF-GMP algorithm is to identify a set of poles
common to all R acoustic channels to be fixed into a multi-channel OBF
adaptive filter. The poles are estimated using a matching pursuit approach.
First, a grid Ωg of L candidate pairs of complex-conjugate poles is defined on
the unit disc based on some prior knowledge of the room acoustic system or
some particular desired frequency resolution [113]. For each pole pair pl ∈ Ωg

(with l = 1, . . . , L), the pair of candidate intermediate signals κm+1(n,pl) =
[κ+
m+1(n,pl), κ−m+1(n,pl)] is obtained as the (m+1)-th intermediate signals of an

OBF filter built from the pole set [pAm,pl], i.e. by filtering the input u(n) with the
TFs Ψ±m+1(z,pl) = N±m+1(z,pl)Pm+1(z,pl)

∏m
i=1Ai(z,pi), where the product

corresponds to the series of m second-order all-pass filters defined by the pole
pairs pi ∈ pAm (cfr. Figure 5.1). Equivalently, κm+1(n,pl) can be computed by
filtering the output of the all-pass series am(n,pAm) =

∏m
i=1Ai(q,pi)u(n) with

pairs of filters having TFs Γ±(z,pl) = N±m+1(z,pl)Pm+1(z,pl).
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Algorithm 3 SB-OBF-GMP algorithm
1 Ωg = {p1, . . . ,pL} . Define pole grid

2 pA0 = ∅ ,m = 0 . Initialize the set of active poles
3 ε0(n) = y(n), a0(n) = u(n− d) . Initialize signals
4 α̂±l (0) = 0, l = 1, . . . , L . Set correlation coefficients
5 while m < mmax do . mmax: max number of pole pairs

Update multi-channel OBF adaptive filter

6 if m > 0 then
7 εm(n) = y(n)− κ(n,pAm)T Θ̂M (n) . (5.38)
8 σ̂2

ι (n) = βσ̂2
ι (n− 1) + (1− β)|κι(n)|2 . (5.29)

9 Θ̂M (n+ 1) = Θ̂M (n) + µ[δIM + Σ̂M (n,pAm)]−1κ(n,pAm)εm(n) . (5.39)
10 end if

Update candidate intermediate signals and correlation coeffs.

11 κ±m+1(n,pl) = Γ±(q,pl)am(n), ∀pl ∈ Ωg

12 α̂±m+1(n+ 1,pl) = λα̂±m+1(n,pl) + (1− λ)
κ±m+1(n,pl)εm(n)
‖κm+1(n,Ωg)‖2/2L

. (5.43)

Select common pole and set variables

13 if n = (m+ 1)Ns then

14 α̂rm+1(n,pl) =
√
α̂r+
m+1(n,pl)

2 + α̂r−m+1(n,pl)2
. (5.44)

15 c = arg maxl
∑R

r=1 α̂
r
m+1(n,pl) . (5.45)

16 pAm+1 = [pAm , pc] . Add pc to active pole set
17 σ2

ι = ‖κm+1(n,Ωg)‖2/2L . Set power estimate
18 θ̂rm+1(n)← α̂rm+1(n,pc) (r = 1, . . . , R) . Set new θ

19 m← m+ 1 . Move to next stage
20 α̂±l (n) = ∅, ∀l . Reset correlation coefficients
21 end if
22 end while

The result is a parallel of L pairs of candidate intermediate signals κm+1(n,pl)
with a common input am(n), which can be stacked in a vector κm+1(n,Ωg) =
[κm+1(n,p1), . . . ,κm+1(n,pL)]T of size 2L × 1. The idea is that, while
the linear coefficients Θ̂M (n) of the OBF filter are being adapted using the
OBF-NLMS rule to minimize the power of the error signals in εm(n), the
algorithm updates also the correlation coefficients α̂r±m+1(n,pl) between each
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error signal εrm(n) and each candidate intermediate signal κ±m+1(n,pl). In
order to minimize the instantaneous squared error signals in e±m+1(n,pl) =
[e1±
m+1(n,pl), . . . , eR±m+1(n,pl)], averaged over the R channels, produced by each

candidate intermediate signal,

minimize
pl,α̂

±
m+1(n)

∥∥e±m+1(n,pl)
∥∥2 =

∥∥εm(n)− κ±m+1(n,pl)α̂±m+1(n,pl)
∥∥2

, (5.40)

each vector of correlation coefficients α̂±m+1(n,pl) = [α̂1±
m+1(n,pl), . . . , α̂R±m+1(n,pl)]

is adapted in time. It follows from simple calculations that the LMS adaptation
rule minimizing (5.40) can be written as

α̂±m+1(n+ 1,pl) =
(
1− µ|κ±m+1(n,pl)|2

)
α̂±m+1(n,pl) + µκ±m+1(n,pl)εm(n).

(5.41)

Normalizing the step size µ with respect to the instantaneous power of the
regressor, gives (for λ = 1− µ)

α̂±m+1(n+ 1,pl) = λα̂±m+1(n,pl) + (1− λ)
κ±m+1(n,pl)εm(n)
|κ±m+1(n,pl)|2

, (5.42)

which is recognized as an exponential window update of the normalized
instantaneous correlation between κ±m+1(n,pl) and εm(n) with forgetting factor
λ.

The update rule in (5.42) is not immune to large values of the intermediate
signals κ±m+1(n,pl), which would result in large variations of the estimates
α̂±m+1(n+ 1,pl). Since tracking the power of each κ±m+1(n,pl) as proposed for
the OBF-NLMS would be too expensive, an effective solution is proposed, which
consists of normalizing the instantaneous correlations by the instantaneous
average of the overall power of all candidate intermediate signals, giving

α̂±m+1(n+ 1,pl) = λα̂±m+1(n,pl) + (1− λ)
κ±m+1(n,pl)εm(n)
‖κm+1(n,Ωg)‖2/2L

. (5.43)

The average of the instantaneous power is in this case a good estimator of the
actual power of the candidate intermediate signals, given that the poles in the
grid are numerous and distributed within a wide frequency range. This is the
same argument to explain the comparable performance of the NLMS algorithm
with respect to OBF-NLMS for higher model orders (cfr. Figure 5.3).

At the end of each stage, i.e. at sample n = (m+ 1)Ns, the selection of the pole
pair is performed. Given that (5.43) is a correlation update, the choice is based
on which pair of candidate intermediate signals is mostly correlated on average
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with the error signals εm(n). The correlation of each pair of intermediate signals
for the r-th channel is computed as

α̂rm+1(n,pl) =
√
α̂r+m+1(n,pl)

2 + α̂r−m+1(n,pl)
2
. (5.44)

A pole pair pm+1 ← pc is then chosen from the grid as the one giving
intermediate signals with the highest average correlation on the R acoustic
channels as

c = arg max
l

R∑

r=1
α̂rm+1(n,pl) (5.45)

and added to the active pole set pAm+1 = [pAm , pm+1] of the OBF adaptive
filter. The linear filter coefficients θ̂rm+1(n) = [θ̂r+m+1(n), θ̂r−m+1(n)] are set equal
to the correlation coefficients α̂rm+1(n,pc) = [α̂r+m+1(n,pc), α̂r−m+1(n,pc)], so
that they are already close to their steady-state value. Moreover, if the OBF-
NLMS is used, the power estimates for the newly added poles are set equal to
σ2
ι = ‖κm+1(n,Ωg)‖2/2L (with ι equal toM+1 andM+2). Finally, the algorithm

moves to the next stage (m← m+ 1), all the correlation coefficients are reset
to zero, and another pole pair is estimated as described above, until a desired
number of poles m = mmax has been selected or some other stopping criterion
based on the error in (5.38) is satisfied.

5.3.2 Algorithm evaluation

The final goal of the SB-OBF-GMP algorithm is to determine a set of poles,
common to multiple acoustic paths, which are close to the true poles of the
system considered. Since this knowledge, as well as the knowledge of the optimal
pole parameters of an OBF filter, is usually not available, the algorithm is
evaluated with respect to the OBF-GMP algorithm [113, 156]. Also, it should
be noticed that the poles identified do not have a one-to-one correspondence
with the true poles. In many cases, due to the mode overlapping, the finite
resolution of the grid, and the iterative nature of the algorithm, one pole pair
with slightly smaller radius is selected in the vicinity of two or more true pole
pairs, so that on average the distance between the estimated poles and the true
poles is reduced, as well as the bias error in (5.16).

Most estimation methods, including the OBF-GMP algorithm, for estimating
the pole parameters of an OBF filter rely on the availability of measured
RIRs. Thus, the purpose of this evaluation is to verify whether the proposed
identification algorithm is able to achieve the same approximation error that is
obtained with the OBF-GMP algorithm using the same pole grid. Obtaining
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Figure 5.5: The averaged NM for the OBF-GMP algorithm (◦), which has access
to the measured RIRs, and for the SB-OBF-GMP algorithm with different stage
lengths Ts. Room M, T60 = 0.5 s, WN input signals.

comparable results is a confirmation of the performance of the SB-OBF-GMP
algorithm, given that estimating the parameters from input-output signals is
more involved than from measured RIRs.

Identification from white noise signals

The evaluation is performed with respect to the identification of a set of
simulated RIRs generated using the RIM [230] at sampling frequency fs =
800 Hz at one loudspeaker and 4 microphone positions (R = 4, room M, T60=
0.5 s, see Section 5.4 for details). First, the RIRs are modeled using the
OBF-GMP algorithm [113, 156]. The pole grid used has 400 angles uniformly
placed from 1 Hz to 399 Hz and 5 radii logarithmically distributed from 0.7
to 0.9925, summing up to L = 2000 candidate pole pairs. The NM in (5.31),
averaged over the 4 RIRs, is computed for each estimation of a new pole pair
and depicted in Figure 5.5 using ◦. Then, the SB-OBF-GMP algorithm is
tested for 10 realizations of an input WN sequence with unit variance, using
the same pole grid described above. The NM is averaged over the 4 RIRs and
over the different realizations of the input signal. Three different values for
the stage length Ts = Ns/fs have been used, with a new pole pair added to
the active pole set every 0.2, 0.4, and 0.6 seconds, corresponding to the three
curves of the averaged NM in Figure 5.5. It is seen that results very similar
to the OBF-GMP algorithm can be obtained already with stages of Ts = 0.4 s
(a significant improvement with respect to the BB-OBF-GMP algorithm [154]
requiring blocks of more than 2 s).
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Identification from speech signals

The identification from non-stationary and non-white signals, such as speech,
is more challenging. One difficulty is related to the slower convergence rate
due to the non-constant input PSD, as described in Section 5.2.2, for which
longer stages may be required to reduce the misalignment. Moreover, since
OBF-NLMS and NLMS are used to counteract problems related to the non-
stationarity of speech, the non-constant input PSD increases the steady-state
error (see (5.23)), both for the linear coefficients in Θ̂M and the correlation
coefficients in α̂±m+1(n,pl). Convergence rate can be increased using a larger
step size µ (see (5.24)), at the expense of a larger steady-state error, which also
leads to higher misalignment and less accurate pole identification. On the other
hand, greater accuracy is achieved by reducing the step size, which however
requires longer stages for the coefficients to converge.

In any case, regardless of the stage length Ts chosen, the short-term frequency
spectrum within one stage is usually far from flat, resulting in an uneven
excitation of the frequency range of interest. In a given stage, some of the
candidate OBF TFs are not sufficiently excited for the corresponding correlation
coefficient to converge sufficiently fast. It follows that the pole selection is
influenced by the frequency content of the input signal in the current stage,
so that deviations from the behavior of the modeling algorithm are normally
expected.

Another issue is the long-term frequency range excited by a speech signal at
low frequencies. The voiced speech of an adult male typically has fundamental
frequency between 85 and 180 Hz, whereas that of an adult female between
165 and 255 Hz [289], so that a speech signal rarely has sufficient power to
excite the lower modes of the system. Relatively small rooms already have
modal frequencies well below the cut-off frequency of a speech signal. Thus, the
capabilities of the algorithm of identifying the system from speech signals at
low frequencies depend on both the characteristics of the signal itself and of the
modal characteristics of the room response, as discussed further in Section 5.4.

To illustrate these concepts, the SB-OBF-GMP algorithm is tested on 10 long
sequences of male speech taken from an audiobook “A Tramp Abroad” by
Mark Twain1, downsampled to fs = 800 Hz, where the silent portions of
the signals were removed using a voice activity detection algorithm [290, 258].
The same pole grid as in the WN case is used. Three different stage lengths
Ts = {0.5, 1, 2} s have been chosen, corresponding to the three curves of the
NM, averaged over the 4 RIRs and over the 10 different input signal sequences

1publicly available at http://librivox.org/a-tramp-abroad-by-mark-twain/, MP3-files at
128kbps were converted to WAV.
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Figure 5.6: The averaged NM for the OBF-GMP algorithm (◦) and for the
SB-OBF-GMP algorithm with different step sizes µ and different stage lengths
Ts. Room M, T60 = 0.5 s, male speech input signal (librivox).

(the vertical lines correspond to the range between the maximum and minimum
values). The experiment is repeated for three different values of the step size
µ, corresponding to the three plots in Figure 5.6. In the top plot (µ = 0.003),
roughly the same result, with similar deviations, is obtained for different stage
lengths, even though the performance of the OBF-GMP algorithm is not
attained. This bias is mostly due to the large steady-state error, and not due
to the low convergence rate, given that a longer stage does not provide almost
any improvement. As already mentioned, a lower misalignment is achieved by
employing a smaller step size, thus reducing the parameter variability. The
convergence rate, however, decreases, so that improvements are obtained only for
stages long enough to allow the coefficients to converge. An overall improvement
can be noticed in the middle plot, especially for Ts = 1 s and Ts = 2 s. By
further reducing the step size, the parameter variability decreases, but also
the convergence rate, so that a further reduction in the misalignment may be
difficult even for long stages, as suggested from the bottom plot of Figure 5.6
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Figure 5.7: The averaged NM for the OBF-GMP algorithm (◦) and for the
SB-OBF-GMP with different stage lengths Ts. Room M, T60 = 0.5 s, male
(top) and female (bottom) speech input signal (EBU-SQAM).

for µ = 0.0005 and Ts = 2 s. Extensive simulations on different materials show
that, in general, a good trade-off between convergence rate and steady-state
error is provided by a step size between µ = 0.002 and µ = 0.001, which gives
reasonably low misalignment for a stage length Ts below 1 s.

Another example is presented showing the same experiment performed on a
male speech sequence taken from the EBU-SQAM database [291] (see top plot
of Figure 5.7). In this case, the SB-OBF-GMP algorithm with stage length 1 s,
is able to obtain similar results in terms of NM as the OBF-GMP algorithm2.
What differentiates this case from the previous ones is the approximately flat
long-term PSD above 80 Hz, which also corresponds to the cut-off frequency
of the frequency response of the room. To conclude, the algorithm is tested
for a female speech sequence from the same database. As mentioned above,
the fundamental frequency of female speech is normally above 165 Hz. As a
consequence, not enough signal power is available below that frequency, and
the system cannot be fully identified. This is shown in the bottom plot of
Figure 5.7, where, after a certain number of stages, adding a new pole pair does
not significantly reduce the NM.

2the SB-OBF-GMP algorithm gives a small improvement over the OBF-GMP algorithm
in some cases because the iterative pole selection strategy of both algorithms is optimal only
in relation to the poles already selected.
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5.4 Identification results at low frequencies

In all system identification tasks, the first step is to decide which model is the
most adequate for the problem at hand. Trying out different models is normally
cumbersome and in some cases not even possible. It is then important to have
an indication about which model to use, based on some prior knowledge of the
system. For applications in room acoustics, the prior information that may be
available regards the room dimensions, the characteristics of the surfaces in the
room and/or the reverberation time.

The question regarding the adequateness of IIR models in RASE applications
(especially AEC) is a recurrent topic in the literature [238, 240, 239]. In these
works, one common conclusion is that the advantage given by the superior
modeling capabilities of IIR filters over FIR filters is not significant enough to
justify their use, given the higher filter complexity and the added difficulty in the
approximation/identification process. This result was explained by observing
that a RTF is composed of a large number of resonances, and since an IIR filter
models each resonance by a second-order TF, the number of filter parameters
that is required to accurately identify the system may be not far from the
required number of filter taps in an FIR filter.

In [113], it was shown by simulation results on a number of RIRs measured in
different rooms that the use of OBF filters gives an advantage over FIR filters,
even when the increased filter complexity is accounted for; this advantage is
more significant at low frequencies, where a RTF normally presents sharper
resonances and a lower degree of modal overlap [1]. The actual advantage of
using OBF filters is then dependent on these two elements, which in turn are
related to the room dimensions, the reverberation time, and the number of
poles used.

In this section, simulation results are shown in order to analyze the use of
OBF and FIR adaptive filters in relation to the characteristics of the room at
low frequency. Moreover, the estimation of poles common to multiple acoustic
channels, which brings computational savings [113, 156] (since each loudspeaker
signal is filtered by the same OBF filter, having microphone-dependent linear
coefficients), is evaluated at positions in the room (validation microphones)
others than the ones at which the poles are estimated (training microphones).
The analysis is first performed on simulated scenarios, and then verified on
measured RIRs.



IDENTIFICATION RESULTS AT LOW FREQUENCIES 147

Table 5.1: RIM simulated room specifications

room V (m3) Nfs/2 T60 (s) fSch (Hz) NfSch

S 17 113 0.15, 0.25, 0.50 188, 243, 343 12, 25, 71
M 50 332 0.25, 0.50, 0.75 141, 200, 245 15, 42, 76
L 300 1993 0.50, 0.75, 1.00 82, 100, 115 17, 31, 47

5.4.1 Simulated rooms

Three different rooms were simulated at fs = 800 Hz using the RIM [230] with
a random displacement of 1 cm, each room with three different RTs, resulting
in 9 different cases. The characteristics of the rooms are given in Table 5.1,
listing the room volume V , the theoretical number of modes [1] below half the
sampling frequency,

Nfs/2 ≈
4π
3 V

(
fs/2

c

)3
(5.46)

(with c = 343 m/s the sound velocity), the 3 different RTs T60 per each room,
their corresponding Schroeder frequency fSch ≈ 2000

√
T60/V , and the theoretical

number of modes NfSch below the Schroeder frequency. The particular choice
of the sampling frequency was made to include the highest Schroeder frequency
among the 9 cases considered.

Multiple loudspeakers and microphones are distributed in a fixed configuration
in the rooms as illustrated in Figure 5.8, also showing the room widthW , length
L and height H. Full dots represent the validation microphones, consisting of
four arrays Va (a = 1, . . . , 4) of 4 microphones each, with inter-microphone
spacing of 25 cm (note that V4 cannot be used for Room S). Empty dots
represent the training microphones, consisting of two arrays Tb (b = 1, . . . , 2)
of 4 microphones each. The first 3 validation arrays and the training arrays
form a 1m×1m area, that will be referred at as sweet-spot, whereas the fourth
validation array is the isolated array. In both training and validation, two
different WN input signals are fed to two loudspeakers X and Y, indicated
with a full square. The microphone noise was set very low (SNR = 60dB)
so not to influence the performance of the identification. It is assumed that
the loudspeaker-microphone distances are known, so that the acoustic delay
parameter dr can be set in the filter for each rth acoustic channel3.

3in a practical implementation, the dr-samples delays are applied to the intermediate
signals before they are fed to the multi-channel linear coefficients.
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Figure 5.8: Schematics of the three simulated rooms considered, with the relative
position of loudspeakers (�), and training (◦) and validation (•) microphones.

In the training, a set pAm of common poles of the multi-channel OBF adaptive
filter is identified from the 8 microphone signals of arrays Tb using the SB-
OBF-GMP algorithm with Ts = 0.5 s and variables defined as in Section 5.3.2.
When the identification is performed from two (or more) loudspeakers, the two
loudspeaker signals have to be filtered individually by two SIMO OBF filters
in parallel. If the input signals are uncorrelated, as for different realizations of
WN, the MIMO system can be correctly identified from the microphone signals,
and a set of poles common to all the MIMO acoustic channels considered can be
obtained with the pole selection strategy of the SB-OBF-GMP algorithm with
very minor modifications. The identification from correlated signals is discussed
in Section 5.5.1 in the framework of stereophonic acoustic echo cancellation
(SAEC). Even though the pole grid could be chosen according to some prior
knowledge of the room and its RT, here the same grid has been used in all
conditions. The pole grid has L = 4000 pole pairs, with 400 angles uniformly
placed from 1 Hz to 399 Hz (giving approximately 1 Hz of resolution), and
10 radii logarithmically distributed from 0.85 to 0.9925. These limits for the
radius ρ are chosen to include the minimum and the maximum values of the
RT T60 considered, according to the formula [1]

ρ = 10
−3

T60fs (5.47)

The lower bound (ρmin = 0.85), corresponding to relatively wide resonances
with a decay time of 50ms, is meant to allow for the approximation of the
superposition of multiple resonances.
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In the validation, the estimated common poles pAm are fixed in the multi-channel
OBF filter and only the linear coefficients are adapted from the microphone
signals of both training and validation arrays. The adaptation on the training
and validation arrays using the same signals is performed also with FIR adaptive
filters, whose performance is compared to that of the OBF adaptive filters with
the same number M = 2m of adaptive linear coefficients. For both filters, the
NLMS algorithm in (5.20) is used, as the case of very low orders requiring the
OBF-NLMS algorithm is not considered here. The validation on each array for
a specific value ofM is repeated 3 times, each time using 2 different realizations
of WN (30 s long, one per each loudspeaker) as the input signals.

The NM, as defined in (5.31), is computed for each acoustic channel for the
loudspeaker-microphone pairs in the specific configuration (2 loudspeakers, 1
array), and then averaged over the number of acoustic channels and the 3
repetitions,

NMZ(∞) = 10 log10

(
1

3RZ

RZ∑

r=1

3∑

k=1

‖hkr − ĥkr (∞,pAm, θ̂r)‖22
‖hkr‖22

)
dB, (5.48)

where ĥr(∞,pAm, θ̂r) indicates the RIR estimated at steady-state at the end of
the kth repetition for a set of poles pAm identified during training, and Z indicates
the array used in the validation (e.g. Tb or Va) with a total of RZ channels. In
practice, the NM at steady-state is computed by averaging the misalignment
obtained on the last 10 s of the validation signal, when the parameters have
normally converged, as

‖hkr − ĥkr (∞,pAm, θ̂r)‖22
‖hkr‖22

≈ 1
10fs

30fs∑

n=20fs

‖hkr − ĥkr (n,pAm, θ̂r)‖22
‖hkr‖22

. (5.49)

Also the average convergence time CTZ is computed per each array Z as the
time instant at which the average NM reaches +2 dB above NMZ(∞). These
quantities are illustrated in Figure 5.9.

In the following analysis, four measures are considered:

(i) the average NM on the training sets (speakers X and Y, and arrays Tb,
RTb = 8) calculated for the validation microphone signals, using OBF and
FIR adaptive filters.

NMT(∞) = 1
2

2∑

b=1
NMTb(∞), (5.50)
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(ii) the distance in dB between NMT(∞) and the average NM using OBF
adaptive filters on the validation sets,

∆NMTV(∞) = 1
Na

Na∑

a=1

[
NMT(∞)−NMVa(∞)

]
dB, (5.51)

with NMVa(∞) computed using (5.48) on set a (speakers X and Y, and
array Va, RVa = 8) and Na the number of validation sets considered in
the average,

(iii) the distance in dB between the average NM for the validation sets obtained
using OBF adaptive filters and FIR adaptive filters,

∆NMVF(∞) = 1
Na

Na∑

a=1

[
NMVa(∞)−NMFa(∞)

]
dB, (5.52)

with NMFa(∞) computed using (5.48) for FIR adaptive filters on set a
(speakers X and Y, and array Va),

(iv) the average convergence rate, defined as the ratio between the NM at
+2 dB above the steady-state and the convergence time CT, averaged
over multiple arrays,

CR = 1
Na

Na∑

a=1

[
NMZa(∞) + 2

CTZa

]
dB/s, (5.53)

calculated on the validation sets for OBF and FIR adaptive filters (Za =
{Va,Fa}).

For all these averaged measures, also the minimum and maximum values are
computed and plotted as vertical bars in the plots that follow. The analysis
is performed on the 9 room configurations (3 rooms, 3 RTs each), first on the
arrays in the sweet-spot, and then separately on the isolated array.

Evaluation at the sweet-spot

The results for the measures, computed as in (5.50)–(5.53) for the training and
the first 3 validation sets, are given in Figure 5.10, where each row corresponds
to a measure and each column to one room. The first row, instead, shows the
magnitude responses (loudspeaker X, first microphone of array T2) for the 3
rooms with 3 different values of the RT, with the vertical lines indicating the
corresponding Schroeder frequency.
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Figure 5.9: Illustration of the quantities used in the analysis measures: the NM
computed on the training microphones (thick), and on the validation arrays
using OBF (solid) and FIR (dashed) filters. Room M, T60 = 0.75 s, M = 60.

(i) Misalignment at training positions Looking at the curves in the second
row of Figure 5.10, the first thing that can be noticed is that the average
NM reduces consistently for increasing numbers M of the linear coefficients.
This is of course expected, since the common poles are identified at the training
positions based on the minimization of the average power of the residuals, which
is also the reason for the small differences between the NM at the two training
arrays (see the ‘short’ bars in the plots).

Also, the absolute reduction in the NM is dependent on the RT: a shorter
RT implies wider resonances and a more prominent modal overlap, so that a
smaller number of poles is required to approximate the RTF (e.g. notice in the
top-left plot the reduced number of spectral peaks for T60 = 0.15 s compared
to T60 = 0.5 s). However, a shorter RT also implies a faster time decay of the
RIR, which means that an FIR filter as well requires less parameters to attain
a given NM. The NM thus reduces with the RT both for OBF and FIR filters
for increasing M , with the former showing a stronger reduction, which will be
analyzed further on the validation sets.

Another factor influencing the absolute reduction in the NM is the volume of
the room, and more precisely the number of modes Nfs/2 in the RTF. Indeed,
large rooms have a large number of modes in a fixed frequency range and thus a
higher modal density. However, they normally also have a long RT, so that the
overlap between modal resonances is only partial (at least at low frequencies),
as can be noticed in the top-right plot. This means that, for a given RT and
a given number of poles, the absolute NM that is achievable depends on the
room dimensions, with larger rooms having higher NM (e.g. compare the three
rooms for T60 = 0.5 s and M = 120).
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Figure 5.10: Sweet-spot: identification results for measures in (5.50-5.53), using
OBF (solid) and FIR (dashed) filters with different orders M , and for the 9
cases considered (3 rooms, 3 RTs). Top row: example magnitude responses and
corresponding fSch (vertical lines).

An alternative way of quantifying the difference in performance of OBF and
FIR filters is to compare the number of coefficients that is required for them
to achieve a predefined value of the NM. As an example, consider the medium
room with T60 = 0.75 s at NMT(∞) = −18 dB: in this case, OBF filters require
M = 90 linear coefficients, while FIR filters M = 180.

(ii) Misalignment at validation positions The assessment of the NM at the
training positions is useful to analyze the performance of OBF filters for
the identification algorithm used. In practice, however, the receiver may
change position in space, so that it is of interest analyzing the degradation
in performance at other positions when the poles are kept fixed. The variations
in the NM in positions others than those at which the poles were computed
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is quantified here by means of the measure defined in (5.51). The third
row in Figure 5.10 shows that the degradation introduced by moving the
receivers within the sweet-spot area is limited to 1 dB (with ±1 dB variability),
irregardless of the room characteristics. This is a good indication that the
estimated poles can be considered common, at least in the neighborhood of the
training positions.

The validation of the identification results at a position away from the training
positions is considered later on. Moreover, the tracking performance, i.e. the
ability of the adaptive algorithm to track variations in the RTF due, for instance,
to the receiver changing position during adaptation, is analyzed in the AEC
example in Section 5.5.1.

(iii) Comparison between OBF and FIR filters The third measure considered
is intended to verify the actual advantage that is given by OBF filters over FIR
filters at validation positions within the sweet-spot, which is the actual situation
in case poles are estimated at some training positions and kept fixed when used
at other positions. Starting from small rooms, it can be seen that the gap
between OBF and FIR filters, defined as in (5.52), increases for increasing M .
However, it can be noticed that, for short RT, this gap is reduced above a
certain value of M , the reason being that all the main resonances of the RTF
have been already modeled, so that adding one more pole pair reduces the NM
less than adding two more taps to an FIR filter.

The same trend is noticed for medium rooms, which have a larger number of
resonant modes in the frequency range considered. As already mentioned, a
longer RT implies sharper resonances and the need of a larger number of poles
to achieve a small NM. For this reason the absolute reduction in the NM is less
than in small rooms (as is the case at the training positions). It can be also
seen that for longer RT (see T60 = 0.75 s), the gap increases more slowly for
increasing M . This can be ascribed to the lower degree of modal overlap and
the consequent increase in the number of resonances that have to be modeled.
This fact is even more noticeable for large rooms, where the number of modes
becomes even larger. Even though the number of required coefficients for FIR
filters increases (given the longer decay time of the RIRs), a large number of
coefficients is required for OBF filters as well, so that the difference between
the two types of filters becomes less significant (which is the main argument
against the use of IIR filters in the literature [240, 239]).

Another factor influencing the gap between the performances of OBF and FIR
filters is the finite resolution of the pole grid of the SB-OBF-GMP algorithm
used in the training phase. Even though the grid-based approach is effective in
finding a good low-order approximation of the RTFs, it happens that a mode
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is not efficiently modeled by a single pole pair in the OBF filter because the
true pole of the system has values for the angle and/or radius in-between the
values used in the grid. Thus, this lack of resolution may lead to a reduced gap
between the performances of OBF and FIR filters, especially when the modal
resonances are sharper and more numerous, as happens in large rooms.

(iv) Convergence rate The convergence rate (CR) measure in (5.53) is meant
to assess the relation between the NM at steady-state and the time it takes
for the adaptation algorithm to attain it. The CR is clearly dependent on the
step size µ, so that a faster CR is achieved for a larger µ, at the expense of
a larger steady-state error (see Section 5.2.2). As shown in Section 5.2.2, the
estimation error for OBF adaptive filters between two successive iterations is
governed by the term γM (ω,p) in (5.24), with γM (ω,p) = M for FIR filters.
In these simulations, the step size in the NLMS adaptation rule in (5.20) was
kept fixed at µ = 0.002, so that µ̃ = µM increases with increasing values of M .
It is worth recalling that the loudspeaker signals are in this case unit-variance
WN sequences (i.e. Su(ω) = 1, ∀ω), and that the microphone noise variance is
quite low (σ2

v ≈ 10−6).

From the last row of Figure 5.10 it can be seen that the CR is basically constant
for FIR filters, with possibly a slightly lower rate for small model orders (the
first samples of a downsampled RIR correspond to early reflections, which are
large in absolute value and so more iterations are needed for the coefficients
to converge from zero). Since µ̃ increases for increasing M , the first term of
the error in (5.24) must decrease, whereas the second term increases. It follows
that, for the CR to be constant, the two terms must compensate each other.

The faster convergence rate for OBF filters at low values of M can then be
partially explained by the fact that γM (ω,p) < M for most values of the
frequency, so that the second term in (5.24) remains small. By adding more
poles, the NM reduces, but γM (ω,p) increases, at least at those frequencies
where the pole density is high. The other reason can be found in how the
NM decreases for increasing M . Whereas, apart from early reflections, the
NM for FIR filters tends to decrease linearly (on a logarithmic scale), OBF
filters show a decreasing exponential trend of the NM (see [113, 156] for more
convincing examples than in Figure 5.10). This is a consequence of the fact
that with OBF filters, and especially when iterative procedures are used, the
most dominant room modes are modeled first, so that the relative reduction in
the NM decreases with increasing M , and consequently the CR.
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Figure 5.11: Isolated array: identification results for measures in (5.51-5.52),
using OBF and FIR filters with different ordersM , and for the 6 cases considered
(2 rooms, 3 RTs).

Evaluation at the isolated array

The above analysis focused on receivers relatively close to the training positions.
Here, validation is performed on an array of microphones V4 placed at roughly
2m from the training microphones. The results are shown in Figure 5.11.
Even in this case, the difference in the NM between training and validation
are basically independent on the room characteristics, but larger than in the
sweet-spot. The degradation is even more prominent for larger rooms (around
5.5 dB), where the fact of having more and sharper resonances increases the
chances of a higher variability in the spatial distribution of the modes in the
room (i.e. the finite number of common poles selected at the sweet-spot may not
correspond, at least in part, to the set of dominant modes in the isolated array).
The analysis of the comparison between OBF and FIR filters at validation
positions done above is still valid in this case, with the difference that the gap is
smaller due to the higher NM at V4. The trends seen in Figure 5.10 (fourth row)
are recognizable also in this case, with the gap between OBF and FIR filters
getting larger for increasing M in the medium room case, and no substantial
difference for large rooms, with FIR filters slightly outperforming OBF filters.
It follows that common poles estimated in a restricted area of a room do not
correspond to all the poles of the system, so that more microphones should be
placed around the room in order to extend the sweet-spot area. This is not a
surprising result, whose implications are discussed later on in Section 5.6.
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5.4.2 Real room (SMARD database)

The same experiment and the same analysis described above in the case of
simulated RIRs is repeated here for RIRs measured in a real rectangular room
of dimension 7.34m × 8.09m × 2.87m with a measured RT below 400Hz of
T60 = 0.3 s (V = 209m3, Nfs/2 = 1387, fSch = 93Hz, NfSch = 17) [50].
Two loudspeakers and two orthogonal arrays were used in the simulations,
the training set consisting of two loudspeakers and 8 microphones from the first
array (inter-microphone distance ≈15 cm) and the 2 validation sets consisting
of the same two loudspeakers and 4 microphones from the second array4. The
same room and configurations were also simulated using the RIM, so to compare
the results with respect to the real room. Already from the comparison of the
magnitude response at the top of Figure 5.12 (microphone 4Y, first array),
it is clear that the simulated response does not match the actual response
very closely, the main reason being the fact that in the simulated scenario the
same homogeneous broadband reflection coefficient was used for all the surfaces.
The result is that the real response shows some strong and sharp resonances
(probably due to a lack of absorption at low frequency) and a high degree of
modal overlap at higher frequency, whereas the simulated response has sharp
resonances also above 200Hz.

The same kind of analysis as above is performed also in this case. The NM at
training positions shows characteristics similar to previous simulation results,
with a distance between OBF and FIR filters around -6 dB. For the simulated
room, the NM decreases more slowly as a results of the larger number of spectral
peaks to be modeled, as already discussed. The degradation at validation
positions is around 3 dB, but with a larger variability if compared to the
simulated room. The OBF-FIR gap (fourth row) increases only slightly for
increasing M ; for the real room, the reason being that, apart from few slowly
decaying modes below 100Hz, the response decays quite fast, so that it can be
approximated with a relatively small number of coefficients of an FIR filter as
well. For the simulated room the gap is only 1 dB, because the large number
of spectral peaks makes the advantage of OBF over FIR filters less significant,
as it was the case for the large rooms in the simulated environment discussed
above. Finally, the CR results are in accordance with previous analysis, with
OBF filters showing high efficiency especially for small M , i.e. when the most
prominent modes are approximated with a small number of poles, such that
γM (ω,p) has small values.

4more specifically, configurations 1000 and 1100 for the training set, and 1001 and 1101
for the validation sets (see http://www.smard.es.aau.dk/).
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Figure 5.12: SMARD: identification results for measures in (5.50-5.53), using
OBF (solid) and FIR (dashed) filters with different orders M , and for the
measured and simulated responses of the SMARD room. Top: example
magnitude response and corresponding fSch (vertical line).

5.5 Applications in acoustic signal enhancement

In the previous section it has been shown that the use of OBF adaptive filters can
bring an advantage compared to FIR filters in terms of identification accuracy
and convergence behavior, depending on the characteristics of the room, and
that common poles estimated at given positions inside a room can be considered
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Figure 5.13: Schematics of the AEC scenario using an OBF filter.

valid at other positions in their vicinity. The aim of the current section is to
show, by means of examples, how OBF adaptive filters can be practically used
in RASE applications. It has been discussed in Section 5.2 how OBF filters with
fixed poles can be seen as a generalization of FIR filters, also possessing similar
properties in terms of coefficient adaptation. The only difference consists in the
location of the fixed poles, which influences the estimation accuracy, but also
convergence and the variability of the coefficients at steady-state. It follows
that most of the tasks encountered in RASE applications can be tackled with
the same strategies usually employed with FIR filters.

Even though the application examples presented in this section, as well as the
previous analysis, focus on low frequencies, the extension to higher frequencies
is straightforward, especially if a subband processing approach is used. The
discussion about the use of OBF filters at higher frequencies is postponed to
Section 5.6. In the following, examples are provided for two RASE tasks, namely
AEC and RRE.

5.5.1 Acoustic echo cancellation (AEC)

The first scenario, depicted in Figure 5.13, considers a simple monophonic
acoustic echo canceler. A male speaker M is talking in the transmission
room (small RIM room, T = 0.15 s, position X, see Figure 5.8), and his
voice signal sM(t) is convolved with RIR gM(t) and picked up by microphone
VT (first microphone, array V3). The resulting (sampled and delayed by ∆T

samples) signal u(n−∆T ) is reproduced in the receiving room (SMARD room,
configurations 1000 and 1001) through loudspeaker XR. The reproduced speech
signal is then convolved with RIR hA(t), picked up by the microphone at position
A (corresponding to microphone 1Y in the first orthogonal array) and, finally,
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the (sampled and delayed) microphone signal y(n) is transmitted back through
loudspeaker XT to the transmission room, where it is perceived as echo. At a
certain time t1, the male speaker stops talking, whereas the female speaker F
starts talking (position Y). After some time, at t2, while F is still speaking,
the microphone in the receiving room moves from position A to position B
(microphone 3Y, first array) and then, at time t3, to position C (microphone
7X, second array), so that the acoustic path in the receiving rooms first becomes
hB(t), and then hC(t). Finally, at time t4, the female voice stops, and the male
speaker resumes talking, with the microphone in the receiving room still at
position C. An external noise source is present in the receiving room, which
produces a WN signal v(t), assumed uncorrelated to the speech signal u(t) and
distributed in space (i.e. not localized), with = 30dB SNR.

The aim of AEC is to identify the acoustic path in the receiving room so as
to allow the removal of the echo from the microphone signal y(n). For this
purpose, the loudspeaker signal u(n) is processed by a filter Ĥ(z, n), either
an FIR or an OBF adaptive filter, whose linear coefficients are adapted using
NLMS, thus producing the signal ŷ(t). The poles of the OBF adaptive filters
are first identified using the SB-OBF-GMP algorithm from the male speech
sequence [291] with voice activity detection (VAD) activated and using the
configuration described in Section 5.4.2 (only one sound source, maximum radius
in the grid ρ = 0.975, and stage duration Ts = 1 s). A set of 30 pole pairs is
identified (M = 60) and then fixed in the OBF echo canceler, counting m = M/2
resonator sections having TFs Ψ(z,pAm) = {Ψ±1 (z, p̃A1 ), . . . ,Ψ±m(z, p̃Am)}. Two
cases are considered for the order of the FIR echo canceler, MF = 60 and
MF = 80, with the latter determined such that the steady-state NM at the
training positions is roughly equal to the one obtained by the OBF filters in
the identification (i.e. -17 dB). The step size is set to µ = 0.002 for both the
OBF and the FIR echo canceler, giving comparable convergence rate for both.

One drawback of using OBF filters in AEC consists in the necessity of estimating
the acoustic delay parameter d (cfr. Figure 5.1). Different methods are available
in the literature, from single-channel algorithms based on (generalized) cross-
correlation or on adaptive filters, to more sophisticated multi-channel algorithms
(see [292] for an overview). For simplicity, the acoustic delays of the acoustic
paths used in the following examples (selected from the SMARD database) are
assumed to be known and applied to both OBF and FIR filters.

In addition to the difficulties described in Section 5.3.2 about identifying the
room acoustic system from speech signals, such as non-stationarity and the
high-pass characteristics of speech, an extra difficulty is represented here by the
presence of reverberation in the loudspeaker signal u(n), which has a negative
impact on the accuracy of the identification of the poles, compared to the case of
an ‘anechoic’ loudspeaker signal, as can be seen in Figure 5.14. Reverberation in
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Figure 5.14: Top: the NM for the OBF-GMP algorithm (◦) and for the SB-
OBF-GMP algorithm with ‘anechoic’ (dotted) and reverberated (solid) speech
input signal (EBU-SQAM) in the AEC scenario. Bottom: The power responses
of the 30 pairs of basis functions generated from the estimated pole set p, and
the resulting γM (ω,p) and γMF

(ω) = MF .

the transmission room introduces additional coloration in the loudspeaker signal,
thus increasing the condition number C of the signal correlation matrix, which
leads to slower convergence of the parameters (see Section 5.2.2). Moreover,
the spectral properties of the RTF of the transmission room have an influence
on the excitation characteristics of the loudspeaker signal, so that an RTF in
the receiving room may not be fully identifiable. In the case considered, the
magnitude response of the Small simulated room (see top-left plot of Figure 5.10,
T = 0.15 s) presents small energy below 100Hz and above 370Hz, plus a number
of deep anti-resonances. It follows that the system is not excited enough in
those regions, thus making the identification more difficult. This is confirmed
by the lack of OBFs in some parts of the spectrum, as seen in the bottom
plot of Figure 5.14 showing the power responses of the OBFs built from the
estimated poles p and the resulting shape of the γM (ω,p) factor in (5.12)
compared to the two constant factors γMF

(ω) = MF considered for the FIR
echo cancelers. Nevertheless, as long as the characteristics of the speech signal
are similar in terms of excitation to those of the speech signal used in the pole
identification, the set of poles estimated in the training phase allows to achieve
good cancellation performances, as shown in the following.

Apart from the NM in (5.31), a common measure to evaluate the effectiveness of
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an acoustic echo canceler is the echo return loss enhancement (ERLE), defined
as the ratio of the power of the microphone signal in the receiving room and
the power of the residual signal after cancellation,

ERLE(n) = 10 log10

(
Sy(n)
Se(n)

)
dB, (5.54)

where estimates of Sy(n) and Se(n) of the two signals are obtained by low-
pass filtering their instantaneous power. Figure 5.15 shows the NM and the
ERLE obtained in the scenario described above using the standard NLMS for
adapting the coefficients of both types of canceler. It can be seen that, when
MF = M = 60, the FIR canceler initially converges quickly to low values of NM,
but then it starts diverging with the passing of time. This is a consequence of
the order MF of the FIR canceler being much shorter than the effective length
of the RIR. Indeed, FIR filters using standard adaptive algorithms provide a
biased estimate with a large variance when the system is undermodeled [160]
(i.e. for RIRs truncated to a small number of samples), so that the unmodeled
part of the RIR (i.e. its ‘tail’) contributes to an increase in the NM [161] and to
a reduction of the ERLE. Increasing the order of the FIR canceler to MF = 80
reduces this effect and a performance comparable to that of the OBF canceler
withM = 60 is achieved. The OBF canceler, due to its IIR, is indeed less prone
to misalignment problems related to a low filter order.

To test the robustness to undermodeling in the AEC case, the order of both
cancelers is reduced to M = MF = 40 (for the OBF filter only the first 20
estimated pole pairs are used). The results are shown in Figure 5.16, showing
on one hand the aggravated misalignment problem for the FIR canceler, and, on
the other hand, the well-behaved dynamic properties and the good misalignment
performance of the OBF canceler even at a lower order. Also, it is worth noticing
the difference in the ERLE compared to the previous case. It follows that OBF
filters represent a more robust choice than FIR filters in AEC, especially when
the number of adaptive coefficients is required to be low.

Moreover, as discussed in Section 5.2, OBF filters can be regarded as a
generalization of FIR filters, so that most of the algorithms developed for the
latter can be modified to work with the former as well (in most of the cases
just substituting the expression of the gradient vector, as seen in Section 5.2.2).
The problem of slow convergence, normally originating from the poor excitation
properties of the speech signals, can be addressed in different ways, such
as using VSS algorithms (see [285, 286, 287] for an overview and examples),
regularization techniques [185], or more complex adaptation algorithms. As an
example, the scenario above is considered to evaluate the use of the APA[284]
with projection order Q = 8 (µ = 0.005, δ = 10−4). It is shown in Figure 5.17
how the increase in complexity improves the speed of convergence for both
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Figure 5.15: The NM (top) and the ERLE (bottom) for the AEC scenario,
using an OBF filter of order M and FIR filters of order MF .

cancelers compared to when NLMS is used (see Figure 5.15), but all the other
considerations still apply.

As a final note, the behavior of the echo cancellation algorithms when abrupt
changes occur in the scenario is analyzed. First, notice at t1, when the male
speaker stops and the female speaker starts talking in the transmission room,
that the degradation in both NM and ERLE is limited, with the coefficients
of the canceler quickly adapting to the varied excitation characteristics of the
speech signal. Modified conditions in the receiving room, instead, degrade the
NM and the ERLE more dramatically, especially in the case (at t3) when the
receiver position moves to the second array. This is mostly due to the fact
that, being at low frequencies, the RTF at position C presents more differences
compared to position A and B, which belong to the same array. Nevertheless,
the common poles estimated on the first array are still valid at position C, as
confirmed by the low NM in the last period, when the male speaker resumes
talking.

It follows that a monophonic acoustic echo canceler needs to reconverge
especially when large changes in the receiving room occur, whereas less problems
are encountered when the speaker and/or its location varies in the transmission
room. This is not true in SAEC [236, 161], where two microphones are located in
the transmission room and two loudspeakers in the receiving room, in which case



APPLICATIONS IN ACOUSTIC SIGNAL ENHANCEMENT 163

M = 40

MF = 40

algorithm: NLMS

−20

−10

0
N

M
(d

B
)

M = 40

MF = 40

[gM , hA] [gF , hA] [gF , hB] [gF , hC] [gM , hC]

0 t1 = 90 t2 = 180 t3 = 270 t4 = 360 450
0

10

20

time (s)

E
R

L
E

(d
B

)

Figure 5.16: The NM (top) and the ERLE (bottom) for the AEC scenario,
using an OBF filter and an FIR filter, both of order M = MF = 40.

other issues have to be considered. The fact that the two loudspeaker signals
u1(t) and u2(t) originate from a common source (the speech signal), convolved
with two RIRs gM1 and gM2 in the transmission room, results in a high degree of
their cross-correlation. In turn, this produces a very ill-conditioned covariance
matrix, which leads to high misalignment and slow convergence [161, 293]. The
misalignment can be reduced by using higher orders of the echo canceler, at
the expense of slower convergence rate and higher ill-conditioning. Conversely,
ill-conditioning is reduced if the order of the cancelers is much lower than the
effective length of the RIRs in the transmission room, at the expense of a higher
misalignment.

The IIR nature of OBF filters could help in achieving lower misalignment with
a lower number of adaptive coefficients, thus meeting the second requirement
more easily. However, it is often the case that using an IIR echo canceler does
not solve the ill-conditioning problem to an acceptable degree. Moreover, the
robustness to coloration of OBF filters and their good numerical conditioning
properties discussed in Section 5.2 only refer to the monophonic case, whereas
the ill-conditioning still remains in the stereophonic case. Thus, it is necessary to
introduce a preprocessing stage with the aim of reducing the cross-correlation
of the stereo signals. Common approaches achieve partial decorrelation by
introducing psychoacoustically-masked noise [236], by applying a non-linear
function, such as the one proposed in [161], or by preprocessing the input
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Figure 5.17: The NM (top) and the ERLE (bottom) for the AEC scenario,
using an OBF filter of order M and FIR filters of order MF , both using the
APA.

signals with a pair of time-varying all-pass filters [237]. This last approach,
with parameters as proposed in [294] for low frequency subbands (chosen in
such a way not to introduce perceptible speech degradation), has proven to be
an effective decorrelation method for the low-frequency case considered here.
When the two loudspeaker signals are successfully decorrelated, poles of a multi-
channel OBF adaptive filter can be estimated similarly to the cases presented
above, and the echo cancellation performance is comparable to the monophonic
AEC.

5.5.2 Room response equalization (RRE)

The other RASE application considered is the equalization of RTFs (see [9]
for an overview). In general terms, the aim of RRE is to correct the RTF
for deviations from a desired target response, so as to improve the quality of
the sound reproduced in the room or of the signal captured by a microphone.
Digital filters are used to modify the frequency spectrum of the source signal
before it is sent to the loudspeaker or after it is captured by a microphone, such
that the spectrum of the equalized microphone signal is as close as possible to
the source signal spectrum.
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The use of OBF filters for minimum and nonminimum-phase equalization of
room responses was proposed in [28]. It was suggested that the possibility of
fixing the poles of the equalizer allows to obtain a desired frequency resolution
and potentially reduce the number of filter parameters necessary for a given
degree of equalization. The advantage of fixing the poles is the ability to control
the resolution of the equalizer not only in terms of frequency distribution (the
angle of the poles), but also in terms of frequency selectivity (the radius of the
poles), so that an equalizer can be designed, for instance, to correct for sharp
resonances and notches in low frequencies (by having dense poles with large
radius) and to correct for the overall envelope of the magnitude response at
higher frequencies. Another possibility is to limit the angle of the poles, with
the pole with the lowest angle determining the high-pass cut-off frequency of
the equalized response. Different pole placement strategies were proposed in
[28], from the simple distribution of poles on the unit disc based on a desired
frequency resolution, to the poles obtained from modeling an estimate of the
inverse RTF. When the equalizer is designed from the minimum-phase inverse
of a measured single-point RTF, the equalizer can only compensate for the
magnitude room response. Moreover, a measured RTF has to be available
or at least identified in advance. In [277], a blind equalization method is
presented in which the RTF is first estimated as an FIR filter using a method
relying on higher-order statistics. Then, the poles of the equalizer are placed in
correspondence with the zeros of the RTF which are closest to the unit circle
or obtained by an FIR-to-IIR conversion of the equalizer impulse response.

The example presented in the following focuses on adaptive single-input/single-
output (SISO) equalization. The two scenarios considered, depicted in
Figure 5.18, are those in which the signal to be processed by the equalization
filter is either the microphone signal y(n) (top scheme) or, alternatively, the
source signal s(n) before it is sent to the loudspeaker (bottom scheme). The
coefficients of the equalizer with TF F̂ (z, n) are adapted based on the residual
error signal ε(n) between the equalized microphone signal ỹ(n) and, assuming
a flat target response, the delayed source signal. The equalization problem can
be formalized as

minimize E
{
ε2(n)

}
= E

{(
s(n−∆)− ỹ(n)

)2}
, (5.55)

where ∆ is a modeling delay and ỹ(n) = H(q, n)F̂ (q, n)s(n) is the equalized
microphone signal, i.e. the source signal filtered by the equalizer and convolved
with the RTF at time n, H(z, n). In case the equalizer is an OBF filter with a
predefined set of poles p, having TF F̂ (z, n) defined as in (5.4), the minimization
is performed by adapting the linear coefficients θ̂i(n) (see Figure 5.18).

Here we propose two direct equalization filter design methods (i.e. not requiring
a priori inversion of a RTF) which directly estimate the poles of the equalizer.
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Figure 5.18: The simplified schematics of the off-line (top) and the on-line
(bottom) methods for pole estimation of an OBF equalizer.

Both methods use a modified version of the SB-OBF-GMP algorithm. The first
method is an off-line design procedure that aims at estimating the poles by post-
equalizing the microphone signal y(n). The setting is typical of equalization
intended to dereverberate the microphone signal, in which case equalization
is not performed in the room during the estimation. The SB-OBF-GMP pole
estimation algorithm can be used in this case, with the microphone signal
y(n) entering the OBF filter instead of the loudspeaker signal (compare the
top schematics of Figure 5.18 with Figure 5.4). The pole selection strategy is
unmodified, given that in this case the coefficients α̂±m+1(n,pl) represent an
estimate of the correlation between the residual error signal εm(n) produced by
the current OBF equalizer with m resonator sections having TFs Ψ(z,pAm) =
{Ψ±1 (z, p̃A1 ), . . . ,Ψ±m(z, p̃Am)} and the output of the series of m all-pass filters
processed by the candidate OBFs Γ±i (z,pl) in the dictionary. If desired, once
the poles are estimated, the equalizer can be moved in front of the loudspeaker,
in a pre-equalization setup.

The second method is instead an on-line design procedure in which the equalizer
built from the set of active (already selected) poles is placed in front of the
loudspeaker, thus performing the actual equalization task in the room already
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during the pole estimation, while the pole selection is still performed at the
microphones side (see right schematics of Figure 5.18). However, in this case,
the regression vector required for the adaptation of the linear coefficients of the
OBF filter (which would correspond to the intermediate signals convolved with
the RIR) is not available, as they cannot be retrieved from the microphone
signal. An option, to be verified, would be to compute the regression vector
using an estimate of the RIR obtained at the previous iteration of the algorithm.
Another drawback is related to the first stages of the algorithm, when the OBF
equalizer has only few poles. In this case, the equalizer response being a linear
combination of sparse resonant responses, the microphone signal, instead of
being equalized, will present a resonant response, with a resulting degradation
of the reproduced sound quality. A more useful application of the on-line method
then consists in starting with a pre-equalizer built from a predefined set of poles
(either chosen arbitrarily or pre-estimated with the off-line method), with the
possibility of adding new poles while equalization is performed in the room.

Apart from the possibility of determining the order of the equalizer (by
interrupting the algorithm when the desired equalization is achieved), the
advantage of estimating the poles compared to distributing them in a fixed
configuration consists in having frequency resolution determined by the
optimization process and not by an initial choice. This is useful in particular
when the order of the equalization filter is constrained to a small value (not
too small, as said above), so that at each stage the one pole pair (among those
available in the grid) for which the equalization error reduces the most is selected.
When the number of poles increases, the algorithm tends to distribute them
more evenly in the whole frequency range, so that estimating the poles may not
bring a significant advantage over a fixed configuration.

As an example, equalization results are shown in the low frequency range of
a RTF taken from the SMARD database (microphone 7Y, first array) [50].
The grid counts L = 2000 poles with 400 different angles distributed uniformly
between 80Hz and 399Hz. The radius of the poles decreases exponentially at
the increase of the angle [28, 113] according to ρi = %

ϑi
π , where 5 values for %

(the radius defined at the Nyquist frequency) were distributed logarithmically
between 0.7 and 0.925, such that pole density toward the unit circle is increased
(see shaded area in top-right plot of Figure 5.19). In this way, the equalizer
will be able to correct for sharper deviations at lower frequencies and provide
a smoother correction at higher frequencies. The equalization results of the
OBF equalizer with m = 20 pole pairs estimated with the off-line method
(Ts = 0.5 s) are compared with a fixed-pole OBF equalizer with m = 20 pole
pairs distributed in the same way, but only for % = 0.85 (bottom-right plot of
Figure 5.19). The modeling delay was set to 35 samples and both equalizers
are adapted with NLMS (µ = 0.002, δ = 10−5).
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Figure 5.19: Equalization example results using poles estimated with the
proposed off-line method (left column) and using a fixed configuration of 20
pole pairs (right column). The plots show (top) the RIR h(t), the equalizer
impulse response f̂(t), the equalized RIR h̃(t), and (center) their respective
magnitude frequency responses |H(ω)|, |F̂ (ω)|, and |H̃(ω)| (the latter shifted
by 20 dB).

From Figure 5.19 it can be seen that the resolution below 200Hz is higher
for the equalizer with estimated poles, with sharper peaks and dips in the
equalizer magnitude response |F̂ (ω)|. The result is a flatter equalized response
|H̃(ω)|, also with reduced depth of the anti-resonances. At higher frequencies,
only 2 poles are estimated, against 9 in the fixed configuration, which explains
the lower resolution in the former above 250Hz. Also notice in both cases
that the response is not equalized below 80Hz, corresponding to the lowest
frequency allowed for the poles. Concerning the time domain, the presence of
some estimated poles with large radius translates to a longer response of the
equalization filter f̂(t) and a different distribution of the error in the equalized
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response h̃(t) after the main pulse; for the case with estimated poles, this post-
ringing is longer but with lower amplitude compared to the case with predefined
poles. Also notice in both cases the presence of a significant pre-ringing effect,
due to the low order of the equalizer and the short modeling delay. Both pre-
ringing and post-ringing can be reduced by employing higher filter orders and
longer modeling delays.

The extension to adaptive multi-point (SIMO) equalization [208], is straightfor-
ward for poles already fixed in the equalizer. The estimation of the poles using
the two methods suggested is still possible, but presents limitations, mainly
of a complexity nature. In the off-line configuration, poles could be estimated
for each acoustic channel independently, but this would imply running the full
algorithm in parallel for each microphone signal. For the on-line setup, a set
of poles common to all channels could be computed, but still each microphone
signal would need to be processed by the all-pass filter Am(z) and by the 2L
candidate OBFs Γ±(z,pl). Moreover, the idea of having an equalizer with
common poles would be motivated by the debatable assumption that not
only resonances, but also anti-resonances are a characteristics of the room,
independent of the source and receiver positions.

5.6 Discussion

The main idea of representing a RTF by means of a pole-zero model is that
a better approximation can be obtained by reducing the distance between
the model poles and the true poles of the room acoustic system. From a
different viewpoint, employing an IIR filter may help reducing the number
of filter coefficients compared to the sampled truncated RIR representation
inherent to modeling with FIR filters. The applicability of IIR filters in place of
FIR filters in RASE applications has always been a matter of debate. A number
of works [240, 239] concluded that the advantages are normally out-weighted by
the increased difficulties encountered in the estimation and adaptation of the
filter parameters, such as convergence to local minima or instability. It has been
discussed in the first part of this chapter that IIR adaptive filters based on OBFs
make the problem of instability easy to keep under control (the information
about the pole radius being readily available) and, by virtue of orthogonality,
provide a well-conditioned estimation problem under a wide range of conditions.
As a result, OBF adaptive filters show the fastest convergence among fixed-poles
IIR filters. Moreover, OBF adaptive filters can be seen as a generalization of
FIR filters, so that, when poles are fixed, most filter adaptation algorithms
developed for FIR filters can be easily applied to the OBF case as well.
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When approaching a RASE problem, the first thing to be considered is whether
OBF adaptive filters can bring an advantage compared to the common FIR
filters. Since stability and convergence are not an issue, the choice should be
made with respect to different criteria, based on the specific application scenario.
First, the characteristics of the room play an important role in defining the
expected performance in the identification of the room acoustic system using
OBF filters. To summarize the findings from Section 5.4, an OBF filter can
provide a significant advantage when it is able to approximate the RTF with a
small number of filter parameters, i.e. when the RTF is characterized by either
a small number of sparse resonances (such as at low frequency in small rooms)
or a significant modal overlap (such as in rooms with high absorption). As the
volume of the room increases, and with that the RT, the number of relatively
sharp modes increases as well, and consequently the number of spectral peaks
that have to be modeled. These results were observed in the low-frequency band
considered (0-400Hz), for which the modal density can be high, but possibly not
high enough to be able to approximate the superposition of multiple resonances
with a small number of poles. Moreover, real rooms present non-homogeneous
characteristics at different frequency regions, as noticed in the SMARD database
example. Thus, simulation results presented should be used just as an indication,
as the performance in real scenarios may differ due to a number of different
reasons.

Second, the potentially expected reduction in the filter order and the use of a
common set of poles may not only bring computational savings, but also help
in overcome some of the problems encountered in RASE applications, such
as undermodeling, as suggested in the AEC example. It has been shown that
common poles estimated at low frequencies in a limited area of the room provide
a good approximation also at locations in the surrounding area, but less so in
other parts of the room. It follows that the estimation of the poles might have
to be performed in a wider area, with ensuing issues pertaining to the spatial
sampling of the microphone setup. This may not be too much of an issue at
higher frequency, where the higher modal overlap reduces the variability of the
modal distribution in space, as suggested above. Third, the possibility of fixing
the poles in the filter allows to achieve a desired frequency resolution, either
by fixed configurations of the poles or by estimation algorithms, as suggested
in the RRE example. This is a feature not encountered in FIR filters, unless
warping techniques are used.

However, the use of OBF filters is beneficial only provided that the poles are
well estimated, or at least fixed in a meaningful way according to some prior
knowledge or some desired properties of the filter. The estimation of the poles
is then possibly the most critical issue for a wide-spread adoption of OBF
filters in RASE applications. Whereas stable and effective modeling algorithms
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are already available, also for common poles (see [113] and Section 5.1), the
identification from input-output signals is more challenging. The identification
algorithm proposed in this work proved to be effective in estimating a common
set of poles for SIMO and MIMO systems, also from speech signals. Nonetheless,
the identification is a time and resource-consuming task, not only with the
proposed method, but also when recursive algorithms are applied.

It follows that in some situations, it may not be possible to identify the poles
from input-output signals during the actual RASE task. In these cases, one
option is to estimate common poles in advance, and then keep them fixed during
the task. Another possibility is to first obtain a solution for the problem at
hand using already available methods for FIR filters, and then convert, with
one of the modeling methods cited, the obtained filter to an OBF filter with
reduced order, whose linear coefficients can be adapted to track RTF variations.

Future work should then address the identification problem. Gradient-based
recursive algorithms, as discussed in Section 5.2.4, should be investigated further.
The proposed algorithm could be used to obtain good initial values for the pole
parameters, so that only few iterations of the recursive algorithm should suffice.
This would probably overcome the limitations imposed by the discrete resolution
of the pole grid and attain improved performance, at least in some situations
(e.g. when modes are sharp and only moderately overlapping). The actual
improvement achievable by refining the pole parameters should be verified, also
taking into account the necessity of adapting the pole parameters to track
possible changes in the room acoustic system.

Modeling and identification at higher frequency bands should be also assessed.
It can be expected at higher frequencies that the increased modal density and the
increased absorption would result in favorable conditions for the applicability
of OBF filters. Subband modeling seems to be a promising direction [32], but
more in-depth analysis is required to understand if the potential advantages
over FIR filters are consistent enough to justify the additional processing.

5.7 Conclusion

In this chapter, the use of OBF adaptive filters in room acoustic system
identification and RASE applications has been considered. Since some of
the problems typical of IIR filters are not encountered in the OBF case, the
choice between an OBF and an FIR filter should be made based on application
requirements and the characteristics of the application scenario. One aim of
this chapter was to provide the reader with the knowledge and some of the
necessary tools to make an informed decision in this regard.
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The main properties of OBF adaptive filters have been reviewed, with a focus
on the error performance and dynamic behavior of filter adaptation algorithms;
in this context, a modified version of the NLMS algorithm (analogous to the
adaptation rule in TD algorithms and named OBF-NLMS) has been suggested
to deal with issues at very low model orders. An identification algorithm
has been proposed, capable of estimating a set of common poles for a MIMO
room acoustic system, from both WN and speech signals. The algorithm has
been used to identify the RTFs at low frequencies in different scenarios for
real and simulated rooms, highlighting the relation between the characteristics
of the room, such as its volume and it reverberation time, and the expected
performance of OBF and FIR filters. Although the analysis has been performed
at low frequencies, which is already of interest in applications such as RRE or
SAEC, the methods and algorithms presented are applicable at higher frequency
as well, especially if a subband approach is adopted.

Finally, examples in the context of two RASE applications were given. In the
AEC example, it has been shown that OBF filters can provide good identification
and cancellation performances already for small model orders, for which FIR
filters may encounter undermodeling problems. In the RRE example, two
methods were presented to directly estimate the poles of an equalizer in a SISO
scenario, useful to allocate frequency resolution where it is more necessary, and
to keep the order of the equalizer as low as possible. To conclude, OBF adaptive
filters represent a useful and flexible tool for approaching most of the problems
encountered in RASE applications, whose adoption should be considered based
on each specific case, and whose possibilities may still have to be explored.
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Abstract

Parametric equalization of an acoustic system aims to compensate for the
deviations of its response from a desired target response using parametric
digital filters. An optimization procedure is presented for the automatic
design of a low-order equalizer using parametric infinite impulse response
(IIR) filters, specifically second-order peaking filters and first-order shelving
filters. The proposed procedure minimizes the sum of square errors (SSE)
between the system and the target complex frequency responses, instead of the
commonly used difference in magnitudes, and exploits a previously unexplored
orthogonality property of one particular type of parametric filter. This brings
a series of advantages over the state-of-the-art procedures, such as an improved
mathematical tractability of the equalization problem, with the possibility of
computing analytical expressions for the gradients, an improved initialization
of the parameters, including the global gain of the equalizer, the incorporation
of shelving filters in the optimization procedure, and a more accentuated
focus on the equalization of the more perceptually relevant frequency peaks.
Examples of loudspeaker and room equalization are provided, as well as a note
about extending the procedure to multi-point equalization and transfer function
modeling.

6.1 Introduction

Parametric equalization of an acoustic system aims to compensate for the
deviations of its response from a target response using parametric digital filters.
The general purpose is to improve the perceived audio quality by correcting for
linear distortions introduced by the system [295, 7, 8, 296]. Linear distortions,
usually perceived as spectral coloration (i.e. timbre modifications) [297, 298],
are related to changes in the magnitude and phase of the complex frequency
response with respect to a target response. Even though phase distortions are
perceivable in some conditions [49], their effect is usually small compared to
large variations in the magnitude of the frequency response [299]. Consequently,
a low-order equalizer should focus on correcting the magnitude response of the
system, rather than its phase response.

Parametric equalizers using cascaded infinite impulse response (IIR) filter
sections consisting of peaking and shelving filters are commonly used [300,
301, 302, 214], especially when a low-order equalizer is required. Indeed,
the possibility of adjusting gain, central frequency and bandwidth of each
section of the equalizer results in a greater flexibility and, if the values of the
parameters are well-chosen, in a reduced number of equalizer parameters w.r.t. ,
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for instance, a graphic equalizer with fixed central frequencies and bandwidths,
or a finite impulse response (FIR) filter. However, since manually adjusting
the values of the control parameters, as often done, can be difficult or may
lead to unsatisfactory results, the availability of automatic design procedures
is beneficial.

For a parametric equalizer design procedure to be fully automatic, various
relevant aspects should be considered, such as the number of filter sections
available, typically fixed between 3 and 30 based on the application, and
the structure of the filter sections, which can have different characteristics
and be parametrized in different ways, especially in terms of the bandwidth
parameter [300]. Other design choices pertain the definition of a target response,
based on a prototype or defined by the user, and its 0-dB line, relative to
which the global gain of the equalizer will be set, as well as preprocessing
operations, such as smoothing of the system frequency response. Once all these
aspects are determined, an automatic design procedure requires the definition
of an optimization criterion (or cost function), typically in terms of a distance
between the equalized system magnitude response and the target magnitude
response, as well as the choice of an optimization algorithm for the estimation
of the parameter values of the filter sections. The focus of this chapter is on
automatic parametric equalizer design procedures operating in a sequential way,
optimizing one filter section at a time, starting with the one that reduces the
cost function the most, i.e. in order of importance in the equalization [215, 216].
The idea is to select an initial filter section, to search for better parameter values
by minimizing the cost function using an iterative optimization algorithm, and
then move to the initialization and optimization of the next filter section.

The choice of the cost function has a fundamental role in determining the final
performance of the design procedure. The characteristics of the first- and second-
order peaking and shelving filters used in minimum-phase low-order parametric
equalizers are well suited for the equalization of the magnitude response and
have only a small influence on the phase response. As a consequence, the cost
function generally chosen uses the difference between the magnitudes of the
equalized response and the target response, discarding the phase response. The
procedure described by Ramos et al. [215] uses a cost function which is the
average absolute difference between the equalized magnitude response and the
target magnitude response, computed on a logarithmic scale. More recently,
Behrends et al. [216] proposed a series of modifications to the aforementioned
procedure, including the evaluation of the cost function on a linear scale. Such
a choice is meant to favor the equalization of frequency peaks, which are known
to be more audible than dips [303]. This is a desirable feature, especially for
low-order equalizers, which also limits the selection of filters producing a sharp
boost in the response that may cause clipping in the audio system.
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In the proposed procedure, the focus on equalizing peaks is even more prominent.
The cost function employed uses the sum of squared errors (SSE) between the
equalized and the target complex frequency responses. Minimizing the SSE
does not explicitly aim at maximizing the ‘flatness’ of the equalized magnitude
response, as for the procedures cited above, but rather at compensating for
the deviations of the equalized response by putting more emphasis in the
equalization of energetic frequency peaks over dips. Even though the use of the
SSE may be a less intuitive way of defining the equalization problem, it brings
some advantages over using the magnitude response error. Specifically, the SSE
gives the possibility of computing analytical expressions for the gradients of the
cost function w.r.t. the parameters of the filter sections, such that efficient line
search optimization algorithms can be used, and of estimating the global gain
of the equalizer (i.e. the 0-dB line). Moreover, if only the linear-in-the-gain
(LIG) structure of the parametric filters [300, 301] is used, the gain parameters
can be estimated in closed form using least squares (LS), thus enabling the use
of a grid search procedure for the initialization of the other filter parameters, as
well as the inclusion of first-order shelving filters in the optimization procedure.
It follows that most of the design aspects to be considered are based on the
minimization of the cost function and not on arbitrary choices or assumptions
regarding the magnitude response to be equalized, as in the procedures in [215]
and [216], briefly described in Section 6.2.

The present chapter is organized as follows: Section 6.2 gives an overview of
the state-of-the-art procedures for automatic equalizer design using parametric
IIR filters. Section 6.3 formalizes and discusses the equalization problem
defined in terms of the SSE. In Section 6.4, LIG parametric IIR filters are
described and the closed-form expression for the gain parameter is derived.
The proposed automatic procedure for parameter estimation of a low-order
parametric equalizer is detailed in Section 6.5. In Section 6.6, results of the
equalization of a loudspeaker response are evaluated using different error-based
objective measures [296], as well as objective measures of perceived audio
quality [304, 298, 305]. In Section 6.7, application to room response equalization
is also considered. The modification to the proposed procedure for multi-point
equalization and transfer function modeling is briefly discussed in Section 6.8.
Section 6.9 concludes the chapter.

Terminology

The following terms and conventions are defined and used throughout the
chapter. The term system response H0(k) indicates the frequency response
to be equalized, which could be either a loudspeaker response, a room response,
or a joint loudspeaker-room response. The radial frequency index k refers to the
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evaluation of the transfer function on the unit circle at the kth radial frequency
bin ωk (k is short for ejωk/fs , with fs the sampling frequency). The equalized
response Hs(k) is defined as the system response filtered by the parametric
equalizer having s filter sections. The term parametric equalizer refers to the
cascade of S parametric filters, while the term parametric filter refers to either
a peaking filter with filter order m = 2 or a shelving filter with filter order
m = 1. A parametric filter has two possible implementation forms: a LIG
form, typically used in the literature with a positive gain (in dB) to generate a
boost in the filter response, and a nonlinear-in-the-gain (NLIG) form, typically
used with a negative gain (in dB) to generate a cut in the filter response (see
Section 6.4).

6.2 State-of-the-art procedures

The purpose of parametric equalization is to compensate for the deviations
of the system frequency response H0(k) from a user-defined target frequency
response T (k) using a parametric equalizer of order M with overall response
FM (k). In other words, the purpose is to filter H0(k) with the equalizer FM (k)
in order to approximate the target response as closely as possible, based on the
following error:

EM (k) = W (k)
{
H0(k) · FM (k)− T (k)

}
. (6.1)

with W (k) a weighting function used to give more or less importance to the
error at certain frequencies.

Different cost functions are possible. In the procedure proposed by Ramos et
al. [215], the mean absolute error between the magnitudes in dB of the equalized
response and the target response, computed on a logarithmic frequency scale,
was chosen to account for the ‘double logarithmic behavior of the ear’,

εdB
M = 20

N

∑

k

∣∣∣W (k)
{

log10 |H0(k) · FM (k)| − log10 |T (k)|
}∣∣∣, (6.2)

with N the number of frequencies included in the frequency range of interest.
The system magnitude response |H0(k)|, as commonly done in low-order
parametric equalization, is smoothed by a certain fractional-octave factor
(usually 1/8th or 1/12th) in order to remove narrow peaks and dips that are less
audible [303] and to facilitate the search for the optimal parameter values. For
each filter section, the procedure in [215] uses a heuristic algorithm to optimize
the parameters. The procedure was extended in [306] to include second-order
shelving and high-pass (HP) and low-pass (LP) filters in the equalizer design.
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The decision of including shelving filters has to be made by analyzing the error
areas above and below the target magnitude response at the beginning and
at the end of the frequency range of interest. A shelving (or HP/LP) filter is
then included if the error area is larger than a predefined threshold, with the
values of the filter parameters optimized using the same heuristic algorithm.
Another extension proposed in [215] adds the possibility of reducing the order
of the parametric equalizer by removing the peaking filters that are correcting
for inaudible peaks and dips, according to psychoacoustic considerations [303].

In Behrends et al. [216], the higher perceptual relevance of spectral peaks is
directly taken into account in the definition of the cost function by considering
the error on a linear magnitude scale, instead of a logarithmic scale, i.e.

εlinM = 1
N

∑

k

∣∣∣W (k)
{
|H0(k) · FM (k)| − |T (k)|

}∣∣∣. (6.3)

While the cost function used in Eq. (6.2) equally weights the error produced
by deviations of the equalized magnitude response above and below the target
response, the evaluation of the cost function on a linear scale as in Eq. (6.3),
gives more importance to the portions of the equalized magnitude response
that lie above the target, thus favoring the removal of frequency peaks, rather
than the boosting of the dips, In [216], Behrends et al. also suggest to employ
a derivative-free algorithm, called the Rosenbrock method [307], which offers a
gradient-like behavior, and thus faster convergence.

A critical aspect of the procedures by Ramos et al. [215] and Behrends et
al. [216] is the selection of the initial values of the parameters of each new
parametric filter. The selection is done by computing the areas of the magnitude
response above and below the target, using either (6.2) or (6.3). The largest
area becomes the one to be equalized, with the half-way point between the two
zero-crossing points and the negation of its level (in dB) defining the central
frequency and gain of the filter section, respectively, and the -3 dB points
defining the bandwidth (or Q-value). This approach assumes that the system
magnitude response is a combination of peaks and dips above and below the
target magnitude response. The problem with such an assumption is that, in
case of highly irregular system magnitude responses, the initial filter placement
approach may provide initial values quite distant from a local minimizer. In
this case, the reduction in the cost function provided by the initial filter may
even be quite limited. Furthermore, the placement of the 0-dB line becomes an
important aspect of the procedure, for which a clear solution was not provided.

An example system magnitude response, similar to an example in [216], is
given in Figure 6.1, also showing the filter responses for the initial values
computed with different procedures. Between 100Hz and 16 kHz, there are
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Figure 6.1: Initialized (thick lines) and optimized (thin lines) responses of a
single filter section using different procedures.

seven error areas A1−A7 above and below the predefined flat target magnitude
response. The procedure by Ramos et al. [215] places the initial filter based on
the largest error area computed according to (6.2), which is A3 in the example;
the parameters of the initial filter are chosen as described above; the irregularity
of the system magnitude response makes the selection based on the half-way
point of the area far from optimal, with the initial filter far from the optimal
solution (also shown in the figure). The largest error area for the procedure
in [216], computed according to (6.3), is instead A2. As shown in the figure,
using the same approach as in [215] leads to similar problems. A peak finding
approach, as also suggested in [216], may provide a better initialization in this
particular example, but it may not be effective in general and introduces the
problem of defining the initial value for the bandwidth. The initial filter obtained
with the proposed procedure is also shown in the figure. The initialization, which
will be described in Section 6.5, is not based on the largest error area approach,
but on a grid search with optimal gain (in LS sense) computed w.r.t. the SSE.
It can be seen that initial parameters are found quite close to the optimal ones.

Other examples of automatic parametric equalizer design can be found in [308],
where nonlinear optimization is used to find the parameters of a parametric
equalizer starting from initial values selected using peak finding; in [309], where
the gains of a parametric equalizer with fixed frequencies and bandwidths are
estimated in closed form exploiting a self-similarity property of the peaking
filters on a logarithmic scale; and in [310], where a gradient-based optimization
of the parameters of an equalizer is proposed, which uses filters parametrized
in terms of the numerator and denominator coefficients of the transfer function
and not a constrained form defined in terms of gain, central frequency and
bandwidth, as the one considered in this chapter.
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6.3 Equalization based on the SSE

In this chapter, a cost function is used based on the SSE between the frequency
responses, i.e.

εSSE
M = 1

N

∑

k

(
W (k)

[
H0(k) · FM (k)− T (k)

])2
. (6.4)

Such formulation, even though less intuitive than (6.2) and (6.3), brings
some advantages, as will be detailed later on: (i) it provides an improved
mathematical tractability of the equalization problem, with the possibility of
computing analytical expressions for the gradients w.r.t. the filter parameters;
(ii) when the parametric filter is in the LIG implementation form, it leads
to a closed-form expression for the gain parameters (see Section 6.4), which
simplifies the automatic design procedure; (iii) it provides a better way to
initialize a parametric filter prior to optimization; (iv) it allows to include
first-order shelving filters, and (v) to estimate the global constant gain in
closed-form; and (vi) it focuses on the equalization of the more perceptually
relevant frequency peaks rather than the dips.

The parametric equalizer considered, comprising a cascade of minimum-phase
parametric filters, has a minimum-phase response. An interesting property of
a minimum-phase response is that its frequency response H(ω) is completely
determined by its magnitude response. The phase φH(ω) is, indeed, given by
the inverse Hilbert transform H−1{·} = −H{·} of the natural logarithm of the
magnitude [45, 311]:

H(ω) = |H(ω)|ejφH(ω),

with φH(ω) = −H{ln |H(ω)|}.
(6.5)

This is a consequence of the fact that the log frequency response is an analytic
signal in the frequency domain

lnH(ω) = ln |H(ω)|+ jφH(ω), (6.6)

whose time-domain counterpart is the so-called cepstrum [45]. In the digital
domain, the phase response of the minimum-phase frequency response H(k)
can be obtained as the imaginary part I of the DFT of the folded real periodic
cepstrum ĥ(n) = IDFT{ln |H(k)|}

φH(k) = I{DFT{fold{ĥ(n)}}} (6.7)

where the DFT and IDFT operators indicate the discrete Fourier transform and
its inverse, and the fold operation has the effect of folding the anti-causal part
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Figure 6.2: Two peaking filters with gains G = 3 dB and G = 6 dB (thick lines),
and the corresponding cut filter responses (thin lines) with gain optimized to
give equal error using different cost functions.

of ĥ(n) onto its causal part. More details can be found in [312] or [67]. Thus,
given the relation between the magnitude and the phase of a minimum-phase
frequency response as given in (6.5), minimizing the cost function in (6.4),
remarkably, still corresponds to a magnitude-only equalization.

The use of the SSE in (6.4) compared to the linear function in (6.3) puts more
emphasis on the error generated by strong peaks, as described in more detail in
Appendix B.1. Here an intuitive interpretation is given as follows. In Figure 6.2,
the boost magnitude response of two peaking filters with positive gains G = 3 dB
and G = 6 dB is considered. A cut in the filter magnitude response, having the
same central frequency and bandwidth, is obtained using a negative gain. The
negative gain parameter is optimized such that the error w.r.t. the 0-dB line
computed with the cost functions in (6.2), (6.3) and (6.4), is equal to the one
obtained for the boost response. For the cost function in (6.2), the cut filter
response is obviously specular to the boost filter response on a logarithmic scale
(the gain is −G), whereas for the cost functions in (6.3) and (6.4) it is not. This
is the consequence of the fact that the evaluation of the error on a linear scale
puts more weight on values above the 0-dB line. Whereas for the G = 3dB
gain case (left plot) the cost function in (6.3) and (6.4) produce almost the
same error, for higher gains (see right plot for G = 6dB) the SSE gives more
emphasis to errors above the 0-dB line.
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6.4 Linear-in-the-gain parametric filters

Digital IIR filters used in parametric equalizers are first- and second-order
IIR filters, with constraints on the filter magnitude response defined at the
zero frequency, at the Nyquist frequency, and, for peaking filters, at the
central frequency. Different parameterizations satisfying these constraints are
possible. However, even though the various parameterizations have different
definitions for the bandwidth parameter, all parameterizations satisfying the
same constraints are equivalent [300].

Among different possibilities, the structure of first- and second-order parametric
filters originally proposed by Regalia and Mitra [301] is chosen here. This
structure, shown in Figure 6.3, comprises an all-pass (AP) filter Am(z) of order
m and a feed-forward path. If the AP filter is independent from the gain
parameter V , the parametric filter has a transfer function Fm(z) which is linear
in the gain V ,

Fm(z) = 1
2 [(1 + V ) + (1− V )Am(z)] (6.8)

= 1
2[(1 +Am(z)) + V (1−Am(z))], (6.9)

where expression (6.9), corresponding to the equivalent filter structure in
Figure 6.3b, highlights this linear dependency [302, 214]. Given that for
V > 0 the filter response is minimum-phase, whereas for V < 0 it is maximum-
phase [301], only filters with positive linear gain will be considered.

Another characteristic of this filter structure, which is exploited in the proposed
procedure, follows from the energy preservation property [313] of the AP filter:
since the energy of the output signal of the AP filter is equal to the energy of
its input signal, the signals yη(n) = x(n) + z(n), corresponding to a notch, and
yβ(n) = x(n)− z(n), corresponding to a resonance, are found to be orthogonal
to each other. An intuitive proof is provided in Appendix B.2. If follows
that, when the gain parameter V does not appear in the AP filter transfer
function, the gain V is only acting on the resonant response yβ(n), whereas the
notch response yη(n) is not changed when V is modified. This can be seen in
Figure 6.4, showing the magnitude response of two shelving filters (left) and
two peaking (right) filters in LIG form with gains V = 2 and V = 0.5, together
with the corresponding notch and resonance responses. If should be noticed
that the LIG filter structure is able to produce both a boost and a cut in the
response, even though the cut response tend to have a reduced bandwidth [301],
as discussed below.
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Figure 6.3: The Regalia-Mitra parametric filter

6.4.1 First-order shelving filters

A shelving filter is used whenever the lowest or highest portion of the system
frequency response has to be enhanced or reduced. Shelving filters are described
by a set of two parameters, namely the gain V and the transition frequency fc,
defined as the -3 dB notch bandwidth. By using the filter structure in (6.8) or
(6.9), a first-order shelving filter at low frequencies (LFs) or at high frequencies
(HFs), respectively, is obtained by defining a first-order AP filter as

ALF
1 (z) = aLF − z−1

1− aLFz−1
, AHF

1 (z) = aHF + z−1

1 + aHFz−1
. (6.10)

The LIG form is obtained by defining the parameter a in terms of the transition
frequency fc and the sampling frequency fs as

abLF = 1− tan(πfc/fs)
1 + tan(πfc/fs)

, abHF = tan(πfc/fs)− 1
tan(πfc/fs) + 1 . (6.11)

As a consequence, the AP filter does not depend on the gain V . However, for
0 < V < 1, when the filter represents a cut, the effective transition frequency of
the filter response tends towards lower (or higher for the HF case) frequencies
(see left plot of Figure 6.4 or [301]). To obtain a cut response, for 0 < V < 1,
with response specular to the one obtained with the LIG form when V is replaced
by 1/V , the parameter a has to be modified to be dependent on the gain [214],

acLF = V − tan(πfc/fs)
V + tan(πfc/fs)

, acHF = tan(πfc/fs)− V
tan(πfc/fs) + V

(6.12)
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which yields the NLIG form of a shelving filter.

Another option would be to redefine the parameter a in order to obtain a single
expression that provides specular responses for a boost with gain V and a cut
with gain 1/V [314, 300, 295]. However, the resulting filter structure of the
proportional shelving filter is nonlinear in the gain parameter.

Finally, it should be noticed, also from the left plot of Figure 6.4, that the notch
response yη(n) of the LF shelving filter corresponds to a first-order HP filter
(i.e. when V = 0). The same is true also for the notch response of the HF
shelving filter, which corresponds to a first-order LP filter.

6.4.2 Second-order peaking filters

Peaking filters are used to compensate for peaks or dips in the system magnitude
response. As for first-order shelving filters, second-order peaking filters can be
implemented with the filter structure in (6.8) by defining a second-order AP
filter as

A2(z) = a+ d(1 + a)z−1 + z−2

1 + d(1 + a)z−1 + az−2
, (6.13)

with d = − cos(2πf0/fs), where f0 is the central frequency of the peaking filter.
The LIG form is obtained by defining the bandwidth parameter a as

ab = − tan(πfb/fs)− 1
tan(πfb/fs) + 1 , (6.14)

with fb defined as the -3 dB notch bandwidth obtained for V = 0 [301, 300].
Similar to first-order shelving filters, peaking filters do not show a specular
response when replacing V by 1/V (see right plot of Figure 6.4 or [301]). In
order to obtain symmetric boost and cut responses, either the NLIG form [214]
for 0 < V < 1, with

ac = − tan(πfb/fs)− V
tan(πfb/fs) + V

, (6.15)

or the proportional filters in [314, 300, 295] could be used. In both cases, the
linear dependency w.r.t the gain parameter is lost. Only the LIG form is used
in the proposed automatic equalization procedure. It is possible in any case
to convert the parameters of a filter, either shelving or peaking, from the LIG
form to the NLIG or the proportional form.
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Figure 6.4: Shelving and peaking filters in LIG form

6.4.3 LS solution for the gain parameter

The advantage of the LIG form is that the linearity and orthogonality properties
described above enable a closed-form solution for the estimation problem of the
gain parameter. When the equalizer is made of only one parametric filter, the
cost function in (6.4) can be written as

εSSE
m = 1

N

∑

k

(
W (k)

{1
2H0(k)[F ηm(k) + V F βm(k)]− T (k)

})2
, (6.16)

where F ηm(k) = 1 + Am(k) and F βm(k) = 1 − Am(k), respectively, and k =
1, . . . , N . The minimization of the cost function is performed by setting to zero
the first-order partial derivative of εSSE

M w.r.t. V . The LS solution is obtained
by

V̂ =
∑
k |W (k)|2 F β∗m (k)H∗0 (k)T (k)
∑
k |W (k)|2|H0(k)|2|F βm(k)|2

(6.17)

with {·}∗ indicating complex conjugation, which is independent from F ηm(k)
because of the orthogonality between F ηm(k) and F βm(k) (see details in
Appendices B.2 and B.3). This feature will be also used in the parameter
initialization, as described in Section 6.5. Indeed, if the equalizer is designed
one parametric filter at a time, the optimal value V̂s of the gain parameter of
the sth filter section, is obtained by substituting the system frequency response
H0(z) in (6.17) with the equalized response Hs−1(z).
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6.5 Proposed design procedure

The aim of the proposed procedure is to design a parametric equalizer of order
M as a cascade of S filter sections, each consisting of a parametric filter of
order ms = 1 (shelving) or ms = 2 (peaking) having frequency response Fms(k)
defined as in (6.8-6.9), i.e.

FM (k) = C
S∏

s=1
Fms(k), withM =

S∑

s=1
ms, (6.18)

where s indicates the filter section index and C a global gain. The parameter
values of the sth filter section are optimized so as to minimize the cost function
F(as, ds, Vs), defined as

εSSE
s,ms = 1

N

∑

k

(
W (k)

{
Hs−1(k)Fms(k)− T (k)

})2
, (6.19)

with Hs−1 the system response filtered by the equalizer comprising the previous
s− 1 filter sections.

The proposed design procedure consists of the steps depicted in Figure 6.5
and detailed in the rest of the section. A preliminary step is to define a
target response T (k) and a minimum-phase preprocessed version of the system
response H0(k). Optionally, the value of the global gain C can be estimated
in closed-form using LS. The design of each new filter section can be divided
into two stages. The first stage provides initial parameter values by means
of a grid search, in which the optimal gain parameter for predefined discrete
values of the central frequency and bandwidth is estimated as described above.
The second stage consists of a line search optimization, which is intended to
iteratively refine the initial parameter values and reach a local minimum of the
cost function.

6.5.1 Spectral preprocessing

The spectral preprocessing of the system frequency response follows the steps
outlined in [312]: first, the system magnitude response |H0(k)| is smoothed
according to the Bark frequency scale, in order to approximate the critical
bands of the ear, using a moving-average (MA) filter with bandwidth increasing
with frequency. Apart for frequencies below 500Hz, at which the smoothing
is performed over a fixed 100Hz interval, the bandwidth of the filter is set to
an interval equal to 20% of the frequency. The amount of smoothing can then
be controlled by the length of the window of the MA filter; either fractional
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Figure 6.5: Schematics of the proposed design procedure.

critical bandwidth smoothing or fractional-octave smoothing can be easily used
instead.

The second (and optional) step of the spectral preprocessing in [312] is to warp
the frequency axis in order to approximate the Bark frequency scale, i.e. to
allocate a higher resolution to the LFs. An alternative, also adopted in this
chapter, is to resample the frequency axis from linear to logarithmic, by defining
a logarithmically spaced axis, e.g. with 1/48th-octave resolution as in [215], and
thus evaluating the magnitude response at those frequency points (e.g. using
Horner’s method [45], after the phase retrieval step explained below). Yet
another way of favoring the equalization of a given frequency range, which
can be used in conjunction with the strategies above, is to tune the weighting
function W (k) in (6.19) accordingly.
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Finally, the cost function in (6.19) requires the minimum-phase response
H0(k) to be retrieved from the preprocessed system magnitude response. A
common solution, also suggested in [312], to create a minimum-phase frequency
response is by means of the cepstral method [45, 312], where the smoothed
(and/or warped) magnitude response is used to retrieve the corresponding phase
response, as given in (6.5-6.7). Notice that, in order to avoid time-aliasing given
by deep notches that can remain in the magnitude response after smoothing
(e.g. towards 0 Hz), it is advisable to increase the FFT size to a high power of
two and to clip the response, as suggested in [67].

6.5.2 Target response

Although the choice of the target response is arbitrary, it should be made
cautiously. If the target response is too distant from the system frequency
response, the equalization will be more difficult to be realized. For instance,
if the lower cut-off frequency of the target response is below the lower cut-off
frequency of the loudspeaker, the equalizer would contain a parametric filter
with positive gain, which would move the loudspeaker driver outside its working
range.

There is no complete agreement on the optimal target response for loudspea-
ker/room response equalization, and no single target for all sound reproduction
purposes and all listeners can be defined [315]. It is out of the scope of this
chapter to discuss the characteristics of an optimal, according to some criterion,
target response for different sound reproduction systems and situations. Here
only a brief overview of different approaches and guidelines is given. The target
response can be defined in its magnitude and then its phase can be retrieved
with the cepstral method.

Prototype-based: A prototype target magnitude response can be defined as,
e.g., a band-pass filter transfer function or the magnitude response of a different
loudspeaker. In this case, particular attention should be given to matching
the cut-off frequencies of the system magnitude response and of the prototype
target response, in order to avoid overloading of the loudspeaker driver. Another
option is to use a strongly smoothed version of the system magnitude response,
such as the one-octave smoothed response [308] or smoothing based on power
averaged sound pressure [316], which eliminates peaks and dips, while preserving
the coarse spectral envelope of the system response.
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User-defined: A target magnitude response can be obtained as an interpola-
tion of a set of points defined w.r.t. the system magnitude response [216]. In
this way, it is easy to match the cut-off frequencies of the system magnitude
response and to determine any desired characteristic of the response in the
pass-band.

Mixed strategies: A combination of the two approaches can be used. For
instance, the target magnitude response may be obtained by smoothing the
system magnitude response in the LFs and in the HFs, whereas the response in
the middle range may be defined by the user, e.g. a flat response or a boost at
LFs.

6.5.3 Optimal global gain

Another aspect to consider is the optimization of the global gain C of the
parametric equalizer, or, equivalently, the setting of the 0-dB line. Indeed,
this has an influence on the characteristics of the filters selected by the design
procedure. Centering a loudspeaker response around 0 dB would most likely
avoid the selection of wide-band filters. However, in case of a room response, it
is more difficult to determine the level at which the response should be centered,
so that wide-band filters, with possibly high gains, are more likely to be selected,
especially if the target response is not chosen carefully.

As described in Section 6.2, the placement of the 0-dB line is a critical aspect
in the procedures proposed in [215] and [216]; the requirement for the system
magnitude response to be centered around the 0-dB line of the target response in
order to create error areas to be equalized is somewhat arbitrary. A possibility
would be to place the 0-dB line by visual inspection or as the mean of the
magnitude response of the system within a frequency range of interest (e.g. mid
frequencies). This solution is not guaranteed to be an optimal one.

The use of the cost function based on the SSE, instead, allows the estimation of
a global gain using LS, similarly to the estimation of the linear gain described
in Section 6.4.3; by replacing the parametric equalizer FM (k) in (6.4) by a
constant C, an estimate for the global gain Ĉ is given as

Ĉ =
∑
k |W (k)|2H∗0 (k)T (k)∑
k |W (k)|2|H0(k)|2 (6.20)

This global gain C can be regarded as a scaling factor that centers the system
response around the 0-dB line that minimizes the cost function in (6.4). Since
the SSE puts more emphasis on the peaks (see Section 6.3), the system
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magnitude response will tend to have dips that are more prominent than the
peaks w.r.t. the target response. This may not be desirable, as the design
procedure may favor the boost of spectral dips rather then the cut of spectral
peaks. If desired, this may be avoided by adding an offset of a few dB to the
global gain in order to restore the emphasis on the equalization of peaks over
dips.

6.5.4 Grid search initialization and constraints

The initialization of the parameters of each new parametric filter in the cascade,
as well as the selection of either a peaking or a shelving filter, is performed in
an automatic way by means of a grid search using a discrete set of possible
frequency and bandwidth values. A pole grid is defined, similarly to [113], where
the radius and angle of complex poles determine respectively the bandwidth
fb and central frequency f0 of the peaking filters. The radius of the real poles
defines the transition frequencies fc of LF (positive real poles) and HF (negative
real poles) shelving filters. The gain for the filters built using each pole p in
the grid is defined by LS estimation as described in Section 6.4.3, and the
parameters of the filter that reduces the SSE the most are selected as initial
parameter values of the current filter section. The gain can be limited based
on hardware specifications, by defining a minimum (e.g. Vmin = 0.25) and
a maximum value (e.g. Vmax = 4). Note that, being the system response
minimum-phase, the gain V will always be positive [301].

Given the critical-band smoothing and the logarithmic resolution of the
frequency axis, the angle σ = 2πf0/fs of the complex poles, which define peaking
filters, can be discretized according to a logarithmic or a Bark-scale distribution,
with minimum and maximum angles defined, for instance, by the frequency
limits of the equalization. The radius ρ =

√
a of the complex poles p = ρejσ

can be defined between a lower and an upper limit determined by the constraints
imposed on the gain and bandwidth parameters for the different values of σ.
It is common to define constraints in terms of the Q-factor, which provides an
indication of the filter bandwidth relative to its central frequency [214]. The
parameter a can be converted into the corresponding Q-factor in closed form,
but the two cases of V > 1 and V < 1 must be addressed separately. Filters in
the LIG form defined in terms of the parameters a and d (see Section 6.4.2),
can be converted in the corresponding LIG boost form and NLIG cut forms
defined in terms of Q and the auxiliary variable K = tan(πf0/fs) as in [214],
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Figure 6.6: Magnitude response of constant-Q (top) and constant relative
bandwidth (bottom) peaking filters.

respectively with

Qb = sin(2πf0/fs)
2 tan(πfb/fs)

= sin(σ)
2 1−ab

1+ab
if V > 1 , (6.21)

Qc = sin(2πf0/fs)
2V tan(πfb/fs)

= sin(σ)
2V 1−ab

1+ab
if V < 1 . (6.22)

The Q-factor can be limited as well in order to avoid filters too narrow-band
(e.g. Qmax = 10) or too wide-band (e.g. Qmin = 0.5).

However, for given fixed values of Q and V , the actual bandwidth (in octaves)
of a peaking filter reduces for increasing frequencies and the filter response on
a logarithmic scale becomes asymmetric when f0 approaches fs/2 (top plot of
Figure 6.6). In order to keep the relative bandwidth approximately constant
over the whole frequency range (bottom plot of Figure 6.6), the radius ρ of the
complex poles is set to decrease exponentially with increasing angle σ, according
to ρ = R

σ
π , with R the value of the radius defined at the Nyquist frequency [28].

The value for R can be computed to match the response of a filter defined in
terms of a given Q [214] at a given angular frequency σq. The parameter aq is
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computed from (6.21-6.22) as

abq = 2Qb − sin(σq)
2Qb + sin(σq)

if V > 1, (6.23)

acq = 2V Qc − sin(σq)
2V Qc + sin(σq)

if V < 1, (6.24)

from which the corresponding R = a
π

2σq
q is obtained. The limits for R are

computed the same way inserting the constraints in (6.23-6.24). The minimum
and maximum radius at the Nyquist frequency for V > 1 (Rbmin, Rbmax) are
computed from (6.23) for Q = Qbmin and Q = Qbmax, whereas for V < 1,
Rcmin and Rcmax are computed from (6.24) for Q = Qcmin and Q = Qcmax, with
V = Vmin. This results in two partially overlapping allowed areas of the unit
disc, one valid when V > 1 and the other when V < 1, , where generally
Rcmin < Rbmin and Rcmax < Rbmax.

In general, the bandwidth constraints for filter with V > 1 (Qb) and filters with
V < 1 (Qc) can be chosen to be different, with the limitation dictated by the
requirement of having a positive value for a (and thus ρ real). From (6.24) with
σq = π/2, it is required that Qcmin > 1/2Vmin, thus trading-off between sharp cut
filters with high gain and broader cut filters with limited gain. Also, it is required
from (6.23) that Qbmin > 0.5 (which is anyway quite wide, approximately 2.5
octaves). Notice that for very large bandwidths, the filter responses tend to
skew towards the Nyquist frequency, but less dramatically than for the filters
with fixed Q (see Figure 6.6). A unique allowed area could be found by setting
Qcmin = Qbmin/Vmin and Qcmax = Qbmax/Vmin, but this would lead to filters with cut
responses (V < 1) much narrower compared to boost responses (V > 1).

Regarding the values forR between Rcmin andRbmax, it is suggested in [113] to set
the desired number of radii (for each angle) and distribute them logarithmically
in order to increase density towards the unit circle (obtaining the so-called Bark-
exp grid [113]) and thus to increase the resolution of narrow peaking filters. If
the allowed areas do not coincide, the complex poles with smaller radius are
valid only for V̂ < 1 (i.e. cut responses), whereas they would produce too wide
boost responses for V̂ > 1. On the other hand, complex poles very close to the
unit circle, valid for V̂ > 1, would produce too narrow cut responses for V̂ < 1.
It is then necessary to check the constraints after the estimation of the optimal
gains V̂ , and select the initial filter as the one that minimizes the cost function
within the constraints. This can be done by checking that the parameter
as = ρ2

s of the selected complex pole ps = ρse
jσs satisfies abmin ≤ as ≤ abmax or

acmin ≤ as ≤ acmax, where abmin and abmax are computed from (6.23) for Q = Qbmin
and Q = Qbmax, and acmin and acmax from (6.24) for Q = Qcmin and Q = Qcmax,
with V = Vmin, where σq is replaced by σs.
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Figure 6.7: A Bark-exp pole grid for the grid-search.

Finally, the radius of the real poles, determining the transition frequency fc
of the shelving filters, may be set arbitrarily within the range of equalization.
The effective transition frequency corresponding to ρ can be easily computed
from (6.11) and (6.12), for V > 1 and V < 1, respectively. An upper and a
lower limit for the radius of real poles can be imposed using (6.11) for V > 1 and
using (6.12) with V = Vmin for V < 1. It is also possible to include first-order
HP/LP filters in the grid search by forcing the gain of the shelving filters to
zero, effectively using only their notch responses, as mentioned in Section 6.4.

An example Bark-exp pole grid is shown in Figure 6.7, withQcmin = Qbmin = 0.75
and Qcmax = Qbmax = 10, and with Vmax = 1/Vmin = 4, where abq and acq in (6.23)
and (6.24) are evaluated at σq = π/4, giving a good balance between narrow and
wide band filters. The central frequencies f0 are distributed between 100Hz
and 21 kHz, with poles having 75 possible angles, and 20 possible radii. The
cut-off frequencies fc of the candidate shelving and HP/LP filters are linearly
distributed between 100Hz and 1 kHz, and between 18 kHz and 21 kHz.

6.5.5 Line search optimization

Once the pole ps = ρse
jσs corresponding to the optimal parametric filter in the

grid search is selected, the parameters d(0)
s = − cos(σs) and a(0)

s = ρ2
s are used

as the initial conditions of a line search optimization [288], meant to refine their
value and reduce the cost function F(as, ds, Vs) further. In the optimization,
σ

(0)
s is used instead of d(0)

s to take into account its cosinusoidal nature, important
in the computation of the search direction. The cost function in (6.19),
indeed, allows the computation of the gradients w.r.t. to the filter parameters,
thus enabling the use of gradient-based algorithms, such as steepest descent
(SD), quasi-Newton or Gauss-Newton (GN) algorithms, which guarantee fast
convergence to a local minimum, provided that the initial values are chosen
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properly. The assumption that the initial filter parameters obtained with the
grid search are sufficiently close to a local minimum is reasonable, as long as
the density of the poles in the grid is sufficiently high. The same assumption
is required also for the derivative-free algorithms in [215] and in [216], in order
to guarantee convergence in a relatively small number of iterations, with the
exception that in those cases the initial filter parameters are obtained by an
indirect minimization of the cost function, without verifying if the initial values
provide a good starting point for the equalization.

The parameter vector, initialized as θ(0) = [a(0)
s , σ

(0)
s ]T for a complex pole

(peaking filter), or θ(0)
s = a

(0)
s for a real pole (shelving filter), is updated at each

iteration i = 0, 1, 2, . . . as

θ(i+1)
s = θ(i)

s + µ(i)p(i), (6.25)

where µ(i) indicates the step size, and p(i) the search direction along which the
step is taken in order to reduce the cost function in (6.19), such that

F(θ(i)
s + µ(i)p(i), V (i)

s ) < F(θ(i)
s , V (i)

s ), (6.26)

where V (0)
s is the gain estimated in the grid search, which is updated by LS

estimation at each evaluation of the cost function. In other words, the search
direction p(i) has to be a descent direction, i.e. p(i)T∇F (i)

s < 0 with ∇F (i)
s =

∇F(θ(i)
s , V

(i)
s ) the gradient of the cost function (i.e. the vector of its first-order

partial derivatives) w.r.t. the parameters in θ(i)
s ,

∇F (i)
s = ∂F(i)

s /∂θ(i)
s = [∂F(i)

s /∂a(i)
s , ∂F

(i)
s /∂σ(i)

s ]T , (6.27)

with {·}T indicating the vector transpose. The analytic expressions for the
gradient are given in Appendix B.4.

The search direction generally has the form

p(i) = −{B(i)}−1∇F (i)
s , (6.28)

whereB(i) is a symmetric and nonsingular matrix, whose form differentiates the
different methods. When B(i) is an identity matrix, p(i) is the SD and (6.28)
corresponds to the SD method. When B(i) is the exact Hessian∇2F (i)

s (i.e. the
matrix of second-order partial derivatives), (6.28) corresponds to the Newton
method. The Hessian can be approximated at each iteration without the need
for computing the second-order partial derivatives, leading to quasi-Newton
methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
The GN method, instead, computes the search direction by expressing the
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derivatives of F (i)
s in terms of the Jacobians ∇e(i)

s , as

p(i) = −
(
∇e(i)H∇e(i)

)−1
∇e(i)He(i), with

∇e(i) = ∂e(i)
/∂θ(i)

s = [∂e(i)
/∂a(i)

s , ∂e
(i)
/∂σ(i)

s ]T ,

e(i) = [e(1,θ(i)
s , V (i)

s ), . . . , e(N,θ(i)
s , V (i)

s )]T ,

e(k,θ(i)
s , V (i)

s ) = W (k)
{1

2Hs−1(k)F (i)
ms(k)− T (k)

}
,

F (i)
ms(k) = Fms(k,θ(i)

s , V (i)
s ) (6.29)

with {·}H indicating Hermitian transpose, where the Jacobians are obtained
as an intermediate step in the calculation of the gradients (see Appendix B.4).
The GN method approximates the Hessian with ∇e(i)H∇e(i), thus having
convergence rate similar to the Newton method, i.e. faster than the SD method.

The convergence rate of line search algorithms also depends on the choice of
the step size µ(i). In order to select a value of µ(i) that achieves a significant
reduction of F (i)

s without the need to optimize for µ(i), backtracking with the
Armijo’s sufficient decrease condition [288] is used. The backtracking strategy
consists in starting with a large step size µ(i) < 1 (µ(i) = 1 for Newton and
quasi-Newton methods) and iteratively reducing it by means of a contraction
factor κ ∈ (0, 1), such that µ(i) ← κµ(i). At each repetition of the backtracking,
a sufficient decrease condition is evaluated to ensure that the algorithm gives
reasonable descent along p(i). The condition in (6.26) is however not sufficient to
ensure convergence to a local minimum. A different condition is then required,
such as the commonly used Armijo’s sufficient decrease condition

F(θ(i)
s + µ(i)p(i), V (i)

s ) ≤ γµ(i)p(i)T∇F(θ(i)
s , V (i)

s ) (6.30)

with γ ∈ (0, 1), which states that a decrease in F (i)
s is sufficient if proportional

to both µ(i) and p(i)T∇F (i)
s . A final value for µ(i) is obtained when the Armijo’s

condition is fulfilled, or when it becomes smaller than a predefined value µmin.
Also, the parameters in θ(i)

s +µ(i)p(i) should be checked to ensure that a(i)
s and

σ
(i)
s still satisfy the constraints described in the previous section. Stability is

guaranteed by amax < 1.

The line search for the current stage terminates when p(i)T∇F (i)
s ≤ τ , with τ

a specified tolerance or when a maximum number of iterations I is reached. It
should be mentioned that it is possible to include a closed-form expression of
V in terms of as and ds in the filter transfer function Fms(k) in (6.19), at the
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expense of more complicated analytic expressions for the gradients. Another
alternative is to include the gain V in the vector of parameters θi and perform
the line-search without updating the gain parameter between two iterations.
However, experimental results showed that the speed of convergence and the
final result of these two alternatives are comparable to the results of the line-
search algorithm described above.

6.6 Loudspeaker equalization example

In this section, an example of parametric equalization of a loudspeaker response
is presented. The aim is to show the performance of the proposed procedure
described above, in comparison to the state-of-the-art procedures presented
in Section 6.2. In an attempt to keep the comparison as fair as possible, the
same target response, the same range of equalization 100Hz-21 kHz, and the
same preprocessing (logarithmic frequency axis, Bark-scale smoothing, etc.) is
used for the three procedures considered. The target response is built to match
the pass-band characteristics of the loudspeaker response, using second-order
high-pass and low-pass Butterworth filters with cut-off frequency of 250Hz and
22 kHz, respectively. The loudspeaker response is scaled so that the 0-dB line
of the target response corresponds to the response mean value between 400Hz
and 6 kHz, which satisfies the requirement of the state-of-the-art procedures of
having peaks and dips to be equalized (see Figure 6.8). The same termination
conditions are used for all procedures; the algorithm moves to the next filter
section whenever either a maximum number of iterations (e.g. I = 100) is
reached, or the step size gets smaller than a given value (e.g. µmin = 10−4),
or the reduction in the cost function in a number of previous iterations (e.g.
10) is less than a predefined tolerance value (e.g. τ = 10−8). The Rosenbrock
method [307] is applied for both the state-of-the-art procedures, using a step
expansion factor α = 1.5 and a step contraction factor ζ = 0.75, starting from
an initial variation of 0.5% of the value of the initial filter parameters (see [216]).
In the procedure by Ramos et al. (R) [215], the Q-factor of the filter is initialized
based on the bandwidth of the selected error area, while in the one by Behrends
et al. (B) [216] it is set to Q0 = 2.

The Bark-exp grid used in the proposed procedure (P) is the one in Figure 6.7.
In the example, the GN algorithm is used in the line search, which provides
very similar results as SD in a much smaller number of iterations. The initial
step size is set to µ(i) = 0.9, the contraction factor for the backtracking to
κ = 0.8, and the Armijo’s condition constant to γ = 0.05. The global gain C is
estimated as explained in Section 6.5.



200 LOUDSPEAKER AND ROOM EQUALIZATION WITH IIR PARAMETRIC FILTERS

102 103 104

−40

−20

0

R

B

P

s = 15

Frequency (Hz)

M
a
g
n
it
u
d
e
(d

B
)

Figure 6.8: Loudspeaker equalization. Top: the unequalized response (solid)
with the target response (dotted) and the ideal high-order FIR equalizer (thick);
From top to bottom (10 dB offset): the equalized response (solid) and the
corresponding equalizer (thick) using procedures R, B and P.
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Figure 6.9: The error produced by the different procedures at each stage
according to the different cost functions.

The error produced by the different procedures with increasing number of filter
sections s is shown in Figure 6.9. As expected, the proposed procedure (P)
performs best in minimizing the normalized SSE (NSSE), i.e. the error in (6.19)
normalized w.r.t. the error in (6.4) computed without equalizer (FM (k) = 1)
and converted to decibels; the procedure by Ramos et al. (R), with cost function
as in (6.2), outperforms the other procedures in minimizing the logarithmic
error, whereas the procedure by Behrends et al. (B) fails to minimize the linear
cost function in (6.3) more than the other procedures (at least in this example).
Procedure P is the one that, for all cost functions considered, is able to achieve
the largest error reduction in the first two stages. Also, the error for procedure
P exhibits a staircase-like behavior, which is due to the vicinity of the initial
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parameter values to a local minimum and the subsequent small improvement
given by the line search. In general, the different procedures for an increasing
number of stages are not too different from each other in terms of equalization
performance, all capable of attaining the target response to a certain degree, as
can be seen in Figure 6.8 for s = 15. A difference is found in the total number
of iterations (ni), with procedure P using the GN algorithm having an order
of magnitude less than the other procedures, including the backtracking (see
Table 6.1), due to the efficiency of both the initialization and the GN algorithm.
However, the grid search and each iteration of the line search are computationally
more demanding than the iterations of the Rosenbrock algorithm, eventually
obtaining similar execution times for the different procedures.

Apart from the performance evaluation based on the different cost functions
themselves, other measures are considered, namely the spectral flatness measure
(SFM) and the spectral distance measure (SDM) described in [296]. The SFM
is the ratio between the geometric mean and the arithmetic mean of the power
spectrum (on a linear frequency scale). The target response not necessarily
being flat in the range of equalization, the measure is computed using the
power spectrum of the equalized system response divided by the target response
H̃s(k) = Hs(k)/T (k)

SFMs = N

N

√∏
k |H̃s(k)|2

∑
k |H̃s(k)|2 , (6.31)

so that the ideal high-order FIR equalizer defined as D(k) = T (k)/H0(k) has
SFM=1. The SDM is also based on the power spectrum of the responses, and
it is given by

SDMs =

√√√√∑

k

∣∣∣∣
|H̄s(k)|2 − |T̄ (k)|2

N

∣∣∣∣
2
, (6.32)

where in this case H̄s(k) and T̄ (k) are the loudspeaker and target responses
resampled on a logarithmic frequency scale with 1/5 octave resolution [296].
Results for these two measures are shown in Table 6.1 for the different procedures
using equalizers with 5, 10 and 15 parametric filters. For both measures, the
greatest improvement is achieved with 5 filters only, with smaller improvements
for increasing number of filters. It is interesting to notice that, even though
not specifically designed to maximize the SFM of the loudspeaker response as
for procedures B and R, the proposed procedure (P) achieves a good level of
flatness. Regarding the SDM, procedure P achieves a performance close to that
of procedure R. Also notice that the optimization of the global gain (at s = 0)
already contributes to a reduction of the SDM.

From a subjective point of view, it is commonly accepted that a flat (in the
pass-band) frequency response is perceived as more natural, and that deviations
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measure procedure s = 0 s = 5 s = 10 s = 15

ni

R 0 232 552 824
B 0 260 593 885
P 0 29 53 70

SFMs

R 0.922 0.991 0.996 0.998
B 0.922 0.986 0.990 0.993
P 0.922 0.983 0.991 0.995

SDMs

R 0.435 0.100 0.045 0.030
B 0.435 0.118 0.078 0.051
P 0.375 0.101 0.064 0.035

Table 6.1: Error-based objective measures

from this are perceived as spectral coloration. Perceptual objective measures
based on these assumptions are used here for speech and music stimuli. These
are the average log-spectral difference measure (LSDM) [304], and a measure
based on a linear distortion auditory model [305], referred to here as perceptual
linear distortion measure (PLDM).

The LSDM is the square difference between the logarithm of the magnitude
responses of a clean speech segment convolved with the target response
ST (k) (reference) and the same speech segment convolved with the equalized
loudspeaker response SHs(k),

LSDMs =
√

1
N

∑

k

[
log(SHs(k))− log(ST (k))

]2 (6.33)

The average LSDM is then computed for those segments (in this case of 25ms
with 15ms overlap) where active speech is detected. The PLDM is a measure of
the perceived subjective naturalness of speech or music w.r.t. linear distortions,
represented by spectral ripples and tilts in the magnitude response (see [305]
for detailed information).

Results obtained using a male voice speech signal [291] and a music signal
consisting of the instrumental introduction of a rock song [317] (having a wide-
band spectrum) are shown in Table 6.2. For both measures considered, a strong
improvement for the low-order equalizers (s = 5) is shown, with procedure R
slightly better than procedure P, except for the LSDM using the music signal.
For the LSDM, the use of higher-order equalizers improves the scores only
slightly, whereas a more consistent improvement is still visible for the PLDM
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measure procedure s = 0 s = 5 s = 10 s = 15

LSDMspeech

R 0.350 0.144 0.118 0.099
B 0.350 0.158 0.143 0.135
P 0.350 0.160 0.142 0.118

LSDMmusic

R 0.308 0.165 0.143 0.127
B 0.308 0.171 0.163 0.159
P 0.296 0.146 0.136 0.110

PLDMspeech

R 0.785 0.349 0.222 0.178
B 0.785 0.366 0.258 0.174
P 0.785 0.399 0.259 0.217

PLDMmusic

R 0.960 0.380 0.267 0.224
B 0.960 0.414 0.314 0.257
P 0.960 0.405 0.278 0.238

Table 6.2: Perception-based objective measures

with s = 10. Notice, however, that small differences in the score values will
most likely not be perceived as a difference in sound quality.

6.7 Room equalization example

The proposed procedure can be applied to the equalization of the combined
loudspeaker/room response without major modifications. Differently from
loudspeaker equalization, the purpose of room transfer function (RTF)
equalization is not only to obtain a more balanced response w.r.t. a target
response, but also to compensate (as much as possible) for strong resonances
at LFs. Thus, the smoothing should be less prominent, with fractional-octave
smoothing (e.g. 1/6th) preferred over Bark-scale smoothing, which has constant
resolution below 500Hz. Based on the amount of smoothing, which determines
the level of detail in the spectral envelope of the response, the number of
parametric filters required to attain the target response with a certain accuracy
may vary.

The definition of the target response is a critical issue. RTFs have a more
irregular frequency structure than loudspeaker responses, which cannot be easily
recognized as deviations from a flat response. Moreover, spectral complexity
combined with a less aggressive smoothing result in less smooth error surfaces
produced by the cost functions, presenting a large number of local minima. In
order to obtain a target response that produces peaks and dips in the RTF to
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Figure 6.10: Room equalization. Top: the unequalized response (solid) with
the target response (dotted) and the ideal high-order FIR equalizer (thick);
From top to bottom (15 dB offset): the equalized response (solid) and the
corresponding equalizer (thick) using procedures R, B and P.

be equalized, as required by the state-of-the-art procedures, one could use a
strongly smoothed (e.g. one-octave resolution) version of the response as the
target, which however may not provide a desired response. These procedures
can be still used in general, but are more likely to incur into problems.

The proposed procedure is instead less sensitive to the selection of the target
response, and will always start optimizing a new filter section from an initial
point reasonably close to a useful local minimum, provided that the density
of the poles in the grid is proportional to the amount of smoothing applied.
In this example, the number of possible angles was increased to 300. This,
however, makes the grid search at each stage more computationally demanding.
If efficiency is an issue, an option is to start from a dense grid and effectively
use only a subset of the grid points, different for every filter section (e.g., by
taking one every n = 4 angles and shift over one angle for the following n− 1
filter sections). Simulation results show that this solution leads to very similar
results to those obtained with the solution based on the full grid.

In the example shown here, the magnitude of a RTF measured in the
parliament hall of the Provinciehuis Oost-Vlaanderen in Ghent, Belgium, having
a reverberation time of 1.5 s, has been smoothed with 1/6 octave resolution and
the equalization is evaluated in the range 30Hz-18 kHz. The target response
used is a combination of a forth-order high-pass Butterworth filter with cut-off
frequency of 45Hz and a first-order low-pass Butterworth filter with cut-off
frequency of 3 kHz, which produces a slight roll-off at higher frequencies (see
Figure 6.10). Table 6.3 provides results of the different error functions and
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measure procedure s = 0 s = 10 s = 20 s = 30

ni

R 0 642 1150 1584
B 0 668 1353 2026
P 0 231 595 792

NSSEs
R 0 -12.6 -14.6 -14.6
B 0 -9.4 -13.9 -16.5
P 0 -11.9 -15.7 -18.3

εdB
s /N (6.2)

R 3.91 0.80 0.54 0.54
B 3.91 0.96 0.57 0.42
P 3.91 0.94 0.65 0.51

εlins /N (6.3)
R 0.402 0.077 0.051 0.051
B 0.402 0.082 0.052 0.037
P 0.402 0.077 0.048 0.037

SFMs (6.31)
R 0.915 0.966 0.979 0.978
B 0.915 0.986 0.992 0.995
P 0.915 0.960 0.966 0.979

SDMs (6.32)
R 1.146 0.176 0.106 0.104
B 1.146 0.186 0.106 0.066
P 1.146 0.146 0.078 0.049

Table 6.3: Error-based objective measures (RTF)

other error measures produced by the different procedures. Given the more
complicated error function surfaces, the GN algorithm in the proposed procedure
(P) now needs more iterations than in the previous example, but still two or
three times fewer than the other two procedures. As in the loudspeaker example,
all procedures are able to achieve equalization with a comparable accuracy (see
also Figure 6.10 for s = 30), with the strongest improvement obtained in the
first 10 stages. The proposed procedure achieves better results in terms of NSSE
and of SDM, and slightly worse performances in the error measures related to
the flatness of the equalized response. Also in this example, procedure B is
slightly outperformed by the other procedures in its own cost function, but
has better performance in terms of the SFM. It should also be noted that
procedure R do not achieve any improvement with the inclusion of the last 10
filter sections (s = 30). In this particular case, the Rosenbrock method gets
stuck into a local minimum and is unable to correct for the largest error area,
which is then selected at each new filter initialization, thus failing to produce
any further performance improvement.
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6.8 Note on multi-point equalization and transfer
function modeling

When the aim is to improve the response of a loudspeaker at multiple listening
angles or the room response at multiple positions, a single equalizer can
be designed based on a prototype response which contains the common
acoustic features of the multiple responses. Averaging and smoothing the
magnitude responses was proven to offer an effective solution [318], which also
increases robustness to spatial variations. The proposed procedure can then
be extended to multi-point equalization by including an averaging operation in
the prepocessing step.

A very similar procedure to the one described for automatic design of a
parametric equalizer can be applied to the problem of transfer function modeling.
This idea can be useful, for instance, to model the ideal FIR equalizer
D(k) = T (k)/H0(k) using a low order parametric filter, the response of a graphic
equalizer [309], or more generally any minimum-phase transfer function. For
the modeling problem, the cost function becomes

εSSE
M = 1

N

∑

k

(
W (k)

[
D(k)− FM (k)

])2
. (6.34)

Also in this case, LIG parametric filters can be used, with the possibility of
computing the gradients w.r.t. the other filter parameters.

6.9 Conclusion and future work

An automatic procedure for the design of a low-order parametric equalizer has
been proposed, which uses a series of second-order peaking filters and first-
order shelving filters. The proposed procedure minimizes the SSE between
the system response and the target responses, instead of the commonly used
difference in the magnitude responses, bringing some advantages, such as
an improved mathematical tractability of the equalization problem, with the
possibility of computing analytical expressions for the gradients w.r.t. the filter
parameters and a closed-form solution for the estimation of the gain parameters,
an improved parameter initialization, the inclusion of shelving filters in the
optimization procedure, and a more accentuated focus on the equalization
of frequency peaks over dips. Examples of loudspeaker and room response
equalization have shown that effective equalization using a small number of
parametric filters can be achieved. The proposed procedure can be extended
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to multi-point equalization, by means of a prototype average response, and to
transfer function modeling.

Acknowledgments

The authors would like to thank Televic N.V. for the use of their equipment
and their premises, especially Vincent Soubry and Frederik Naessens for the
useful collaboration in the early stage of this work. The authors would also
like to thank Martin Møller (Bang & Olufsen) for providing the loudspeaker
responses and Rainer Huber (Uni Oldenburg) for the fruitful discussions and
the code for the PLDM. The scientific responsibility of this work is assumed
by its authors.





Chapter 7

Multi-channel equalization of
car cabin acoustics

Automatic calibration of car cabin acoustics in a multi-
channel equalization framework
Giacomo Vairetti, Thomas Dietzen, David Pelegrin Garcia, Marc Moonen, and
Toon van Waterschoot

Final report for the IWT (Agency for Innovation by Science and Technology)
project RAVENNA: Proof-of-concept of a Rationed Architecture for Vehicle
Entertainment and NVH Next-generation Acoustics, in collaboration with
Premium Sound Solutions N.V.

209



210 MULTI-CHANNEL EQUALIZATION OF CAR CABIN ACOUSTICS

© 2017 KU Leuven. Without written permission of KU Leuven or PSS Belgium NV, it
is forbidden to reproduce or adapt in any form or by any means any part of this work.
Requests for obtaining the right to reproduce or utilize parts of this work should be
addressed to info@esat.kuleuven.be.

Also note that some of the methods, products, schematics and programs described in
this work are IP-protected and hence cannot be used for industrial or commercial use
without written permission of the IP owner. See Section 7.1 for more details.

The candidate’s contributions as first author include: literature study, co-development
of the presented modeling algorithms, software implementation and computer
simulations, co-design of the evaluation experiments, co-formulation of the conclusions,
text redaction and editing.



INTRODUCTION 211

Abstract

This chapter is based on the final report for the IWT project RAVENNA:
Proof-of-concept of a Rationed Architecture for Vehicle Entertainment and NVH
Next-generation Acoustics. The report deals with the problem of equalization
of an acoustic system, specifically an audio reproduction system inside a car
cabin. The objective is the design of a multiple-input/multiple-output (MIMO)
equalizer filter able to correct for minimum-phase as well as nonminimum-
phase distortions of the acoustic paths of one primary speaker at different
receivers within a given listening region, with the help of a number of support
loudspeakers. The approach adopted falls into a polynomial-based control
system framework, which allows the inclusion of other functionalities, such as
equalization at higher frequencies, channel similarity using two or more primary
speakers, multi-zone equalization, and listening enhancement in noisy conditions.
In this chapter, the theoretical solution to the equalization problem is carefully
analyzed and an interpretation is given. Methods for efficient transfer function
modeling are presented, based on an existing method, which has been modified
to reduce numerical problems through regularization, to estimate a single set
of denominator coefficients common to all transfer functions, and to accurately
estimate the all-pass excess-phase component of the transfer functions.

7.1 Introduction

The present chapter deals with the problem of equalization of an acoustic
system, specifically an audio reproduction system inside a car cabin. In the
single-input/single-output (SISO) case, the problem corresponds to the design
of a single pre-filter intended to correct for the deviations of the system transfer
function (TF) with respect to an ideal response. When several loudspeakers
are used to equalize the response at one receiver position, an individual filter is
designed for each loudspeaker independently. However, designing an equalizer
based on the responses measured at only one receiver position will produce
errors at other positions, due to the high spatial variability of the TFs.

A common solution to multipoint equalization is to use minimum-phase filters
to compensate for the minimum-phase part of the acoustic impulse responses
(AIRs) in a given listening region. In this case, common distortion components
in the TF magnitude responses are compensated for. The minimum-phase
compensating filter, however, is not sufficient to correct for all deviations of the
time-domain AIRs, which are typically mixed-phase.
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For this reason, in order to correct the responses at multiple receiver positions,
mixed-phase filters should be used. The problem with mixed-phase filters is
that they generally introduce errors in the equalized response, known as pre-
ringing or pre-echo. It is then important to keep the level of this type of artifact
under control so that it is inaudible when the equalizer is applied. In order to
do so, only the nonminimum-phase distortions that are common to all receiver
positions should be corrected [224].

Different approaches for the multiple-input/multiple-output (MIMO) equali-
zation problem are possible, ignoring methods in which the position of the
loudspeakers is optimized. A common approach is based on multi-channel
filter design, which is based on the exact inversion of TF matrices either in the
time domain or in the frequency domain (e.g. [219, 208, 220]). These methods,
however, are not robust to TF variations, and require the number of receivers
to be smaller than the number of loudspeakers.

The work presented here uses a different approach [225, 226]: the idea is to select
a primary loudspeaker to be equalized, with a number of support loudspeakers
intended to help the primary loudspeaker to attain the desired target response.
In this chapter, a detailed analysis and implementation of the method in [225]
is presented. This method performs a partial channel inversion and sound field
superposition in order to reach the desired target response. In other words, after
individual phase compensation of all loudspeakers, the support loudspeakers
are used to equalize one or more primary loudspeakers. It has been shown
in [225] that a significant reduction of the mean square error (MSE) and of the
spatial variability is obtained, particularly at low frequencies (LFs), and that
the performance of the equalization increases with the number of loudspeakers
used. Also, the solution is robust to modeling errors and provides a way to
control the level of the pre-ringing introduced.

The reason of choosing the method in [225] is not only dictated by the results
shown for LF equalization. The method makes use of a polynomial-based
control system framework, which can be used to jointly address other problems:
equalization at high frequencies (HFs), with limitations determined by the
spacing between microphones in the listening region, balanced equalization
of two primary loudspeakers (stereo staging) [319], i.e. the minimization of
the differences between two TFs after equalization, and of multiple listening
positions [320], i.e. staging, as well as sound field control [321, 322] and
active noise control [323]. The method and its extensions are already used
in commercial systems by Dirac Research AB, which go under the commercial
name of Dirac Unison [324]. A number of patents has been filed in relation to
this technology [325, 326, 327, 328].

The present chapter is structured as follows: Section 7.2 introduces the problem
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statement, and analyzes the framework for equalization of single-input/multiple-
output (SIMO) and MIMO systems; the objective of this section is to concisely
put together the work in [224, 225, 329]1, and to provide an interpretation of
the solution proposed therein. Section 7.3 describes the modeling of the TFs
using infinite impulse response (IIR) filters. The algorithm for TF modeling,
known as BU method [73], is used. Modifications are proposed for the modeling
of TFs with a common denominator, derived independently from [32], and of
their all-pass (AP) excess-phase components, as required for the design of an
AP filter meant to remove phase distortions common to all positions in the
listening region. Moreover, regularization is introduced to avoid problems of
rank deficiency in the estimation of the model parameters. Section 7.4 presents
some simulation results of the acoustic modeling for the in-car LF equalization.
Section 7.5 concludes the chapter.

Notation and conventions

The same notation and terminology from [225] is used throughout the chapter2.
Scalar- and vector-valued discrete-time signals are denoted by normal and
boldface italic letters, such as s(n) and s(n), respectively. Discrete-time filters
and transfer functions are represented by polynomial and rational matrices in
the backward shift operator q−1, defined by q−1s(n) = s(n − 1), where q−1

corresponds to z−1 or e−jω in the frequency domain.

Constant matrices are denoted by boldface capital letters as, for example, C.
The element at row i and column j of a matrix C is denoted C(i,j), whereas the
ith row and jth column of a matrix are denoted C(i,:) and C(:,j), respectively.
Scalar polynomials are denoted by italic capital letters as C(q−1) = c0 + c1q

−1 +
c2q
−2 + · · · + cP q

−P , where the nonnegative integer P is called the degree
of C(q−1). Polynomial matrices are denoted by bold italic capital letters as
C(q−1) = C0 + C1q

−1 + · · ·+ CP q
−P , which define a polynomial matrix as a

polynomial whose coefficients consist of matrices. An alternative, but equivalent,
definition of a polynomial matrix is that of a matrix whose elements consist of
polynomials.

Rational matrices are denoted by bold calligraphic letters as G(q−1), and are
represented on right matrix fraction description (MFD) form as G(q−1) =
C(q−1)D−1(q−1), which for SIMO systems is equivalent to the common deno-
minator form G(q−1) = C(q−1)/D(q−1), where C(q−1) is a polynomial matrix
and the scalar monic polynomial D(q−1) is the least common denominator of all
rational elements in G(q−1). For scalar rational functions, normal calligraphic

1notice that, in some cases, the rephrasing from the reference material may be limited.
2the notation is defined almost exactly as in [225].
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letters are used, like G(q−1). The arguments q−1, q, z−1, z, etc. will often be
omitted if there is no risk of misunderstanding. All signals and polynomial
coefficients are assumed to be real valued.

For any polynomial matrix C(q−1), or scalar polynomial C(q), their respective
conjugates are defined as C∗(q−1) = C0 + C1q + · · · + CP q

P and C(q) =
c0 + c1q + c2q

2 + · · ·+ cP q
P . The reciprocals of C(q−1) and C(q−1) are defined

as C̄(q−1) = q−PC∗(q) and C̄(q−1) = q−PC∗(q) , respectively. The symbol
� indicates element-wise multiplication (Hadamard product). The notation
diag(v), for a column vector v, represents a diagonal matrix with the elements
of v along the diagonal. A filter or a TF having l inputs and p outputs is said
to be of dimension p|l.

7.2 Theoretical solution to the equalization pro-
blem

In this section, the equalization problem statement is introduced, and the
theoretical solution to the equalization problem for the SIMO case and the
MIMO case are discussed.

7.2.1 Problem statement

The aim of equalization of an acoustic system is to compensate for the deviations
of the system response from an ideal behavior. In other words, the scope
is to design a MIMO equalizer that, applied before the loudspeakers, would
precompensate for deviations of the response measured at different receiver
positions.

In this work, a MIMO system comprising l loudspeakers placed outside a single
listening region Ω ∈ R3, and p microphones distributed inside Ω is considered.
If the input signals to the l loudspeakers are represented by a signal vector
u(n) = [u1(n), . . . , ul(n)] of dimension l|1 and the output signals from the p
microphones by y(n) = [y1(n), . . . , yp(n)] of dimension p|1, the input-output
relation for the MIMO system is described by

y(n) =H(q−1)u(n), (7.1)

where the rational matrix H of dimension p|l contains p× l rational scalar TFs
of the form Hij(q−1) = Bij(q−1)/Aij(q−1), with Bij(q−1) and Aij(q−1) scalar
polynomials of arbitrary degree and with Aij(q−1) having its roots inside the
unit circle (i = 1, . . . , p and j = 1, . . . , l). The roots of Aij(q−1), i.e. the poles
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of the TF Hij(q−1) are known to be common to all loudspeaker and microphone
positions, so that a common denominator polynomial A(q−1) could be used to
model each TF. However, in order to account for differences in the response
of the various loudspeakers, a common denominator Aj(q−1) will be used to
model the TFs describing the acoustic path between loudspeaker j and each of
the p microphones in Ω, resulting in the following representation

H(q−1) = B(q−1)A−1(q−1)

=




B11(q−1) . . . B1l(q−1)
...

...
Bp1(q−1) . . . Bpl(q−1)


×




A1(q−1) 0
. . .

0 Al(q−1)




−1

.

(7.2)

In order to obtain a MIMO equalizer for a wide listening region Ω, a very
large number of microphones should be distributed inside Ω. In order to
obtain a robust MIMO equalizer designed from relatively sparse measurements,
a probabilistic modeling technique has been used in order to represent the
variability of the TF. Each modeled TF Hij(q−1) is decomposed into two
parts, a nominal part H0ij(q−1), which represents components of the TF that
vary slowly with space (e.g. low frequencies and the first-order reflections),
and a stochastic uncertainty part ∆Hij(q−1) which is intended to capture the
variability in space of the TFs within Ω, especially at higher frequencies and
in the ‘late’ reflections. By dropping the shift operator argument q−1 for a
moment, and describing the two parts as pole-zero (PZ) models, the individual
TFs can be written as

Hij = H0ij + ∆Hij = B0ij
A0j

+ ∆Bij
B1j
A1j

= B0ijA1j + ∆BijB1jA0j
A0jA1j

= B̂0ij + ∆BijB̂1j
A0jA1j

,
Bij
Aj

(7.3)

where ∆Bij is a polynomial with zero-mean random variables as coefficients,
scaled so that E{|∆Bij(e−jω)|2} = 1, and B1j/A1j is a filter, common to TFs
model related to each loudspeaker, for shaping the spectral distribution of the
uncertainty part.

In polynomial matrix form, the above representation becomes

H =H0 + ∆H = B0A
−1
0 + ∆BB1A

−1
1

= (B0A1 + ∆BB1A0)(A0A1)−1 = (B̂0 + ∆BB̂1)(A0A1)−1 , BA−1,
(7.4)
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with B̂0 = B0A1, B̂1 = B1A0, B = (B̂0 + ∆BB̂1) and A = A0A1. The
matrices B, B0 and ∆B have dimension p|l, whereas matrices B1, A, A0, and
A1 are diagonal matrices of dimension l|l, where the jth element of the diagonal
is common to all TFs related to the jth loudspeaker. This modeling technique
is described in detail in Section 7.3.

7.2.2 SIMO equalizer

The case when only one loudspeaker is considered [224] is discussed first. The
objective in this case is to design a single equalizer filter R(q−1) so that the
measured TFs H(q−1) from the loudspeaker to the multiple receivers in the
listening region are corrected and closer to the predefined target TFs D(q−1)
(see Figure 7.1). If both the rational matrices H(q−1) and D(q−1) are modeled
as PZ models with common denominators, then the error signal of a SIMO
system can be written as

y(n) = D(q−1)w(n)−H(q−1)R(q−1, q)w(n)

= D(q−1)
E(q−1)w(n)− B(q−1)

A(q−1)R(q−1, q)w(n)
(7.5)

where

D(q−1) = D(q−1)/E(q−1) = [D1(q−1) . . . Dp(q−1)]T /E(q−1),

H(q−1) = B(q−1)/A(q−1) = [B1(q−1) . . . Bp(q−1)]T /A(q−1),
(7.6)

A(q−1) and E(q−1) are stable monic polynomials, and w(n) is a scalar-valued
input signal defined as a zero-mean unit-variance white noise.

The objective in the SIMO case is to design the equalizer filter R(q−1, q) so
that the sum of the power of the p components in the vector-valued error signal
y(n) is minimized, i.e. the MSE cost function becomes

J = E{||y(n)||22} = E{tr(y(n)yT (n))}. (7.7)

It was shown in [224] that the MSE-optimal, stable, possibly noncausal, mixed-
phase SIMO precompensator R(q−1, q) is required to have the structure

R(q−1, q) = q−d0F∗(q)R1(q−1) = q−d0
F̄∗(q)
F∗(q)

R1(q−1) = q−d0
Bc∗(q)
βc∗(q)

R1(q−1).

(7.8)

The polynomial F̄ (q−1) is such that the zeros of F̄ (z−1) are the common excess-
phase zeros (the zeros outside the unit circle |z| = 1) of the elements in
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w(n)
R1(q−1) q−d0 F∗(q) H0(q−1) V (q−1)

z1(n)

W (q−1)

z2(n)

∆H(q−1)

D(q−1)

−

u(n)

y(n)
R(q−1, q)

H(q−1)

Figure 7.1: Block diagram of the robust SIMO feedforward control problem.
The thin lines represent scalar signals, and the thick lines represent vector-valued
signals of dimension p|1 (adapted from [225]).

B(q−1). This is expressed in the rightmost side of the equation above, with
Bc(q−1) indicating the numerator polynomial common to all the modeled TFs,
and βc(q−1) its minimum-phase part, so that B̃c(q−1) = Bc(q−1)/βc(q−1) is the
common AP excess-phase (nonminimum-phase) part of Bc(q−1). It follows that
F(q−1) = F̄ (q−1)/F (q−1) is a causal stable AP filter and its conjugate F∗(q) is
a stable noncausal AP filter. The response of F∗(q) is noncausal, which is the
reason why a delay of d0 samples is applied to shift the response in the causal
domain. The role of this AP filter is to remove group delay distortions common
to all positions in the listening region.

In practice, there are no exactly common excess-phase zeros among the different
TFs. However, nearly common excess-phase zeros can be found by clustering
zeros together, where a cluster contains exactly one zero for each TF. An
AP filter can then be designed from the zeros chosen as the center of these
clusters. When the compensator is applied, pre-ringing is introduced in each
equalized TF, with a level dependent on the distance between the center of the
clusters and the actual excess-phase zeros of the TF. By controlling the allowed
maximum dimension of the clusters, the level of pre-ringing introduced can be
predicted and thus controlled, as will be explained in Section 7.3. In practical
applications, the finite impulse response (FIR) approximation of the noncausal
response of F∗(q) is used, and a modeling delay d0 is chosen large enough so
that (part of) the noncausal response becomes causal. The same modeling delay
has to be applied to all the TFs in the target rational polynomial matrix

D(q−1) = D(q−1)/E(q−1) = [D1(q−1) . . . Dp(q−1)]T /E(q−1)

= [q−d0D̃1(q−1) . . . q−d0D̃p(q−1)]T /E(q−1).
(7.9)

Finally, R1(q−1) represents a causal stable filter, whose structure derives from
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the unique solution to the bilateral Diophantine equation (see [224, 225] and
references within). To simplify the derivation of R1(q−1), and given that F(q−1)
can be computed in advance, an augmented system incorporating the delayed
AP response can be defined as

H̃(q−1) =H(q−1)q−d0F∗(q) = B(q−1)q−d0F∗(q)
A(q−1) = B̃(q−1)

A(q−1) (7.10)

The causal stable filter R1(q−1) thus assumes the structure

R1(q−1) = A(q−1)β−1(q−1)
{
β−1
∗ (q)B̃∗(q)D(q−1)/E(q−1)

}
+
, (7.11)

where β(q−1) is the root mean square (RMS) spatial average model defined as
the minimum-phase spectral factor of

β∗(q)β(q−1) = B̃∗(q)B̃(q−1) = B∗(q)B(q−1) =
p∑

i=1
Bi∗(q)Bi(q−1), (7.12)

and the operator {·}+ represents the causal portion of the response of its
argument. Here an interpretation of the rather complicated expression for
the MSE-optimal precompensator reported in (7.8) and (7.11) is given (more
details are provided in Appendix C.1). For this scope, the notation is slightly
simplified and the two equations combined into

R = q−d0F∗
A

β

{
qd0F B∗

β∗

D

E

}
+

= q−d0F∗
A

β

{B̃∗
β∗

D

E

}
+
. (7.13)

The term q−d0F∗ in the first part of the right-hand side (RHS) of the equation is
the excess-phase equalizer, which corresponds to the time-reversed and delayed
FIR approximation of the common AP filter F . The next term A/β is the
minimum-phase average equalizer, which corresponds to the inverse of the
average minimum-phase model response β/A. The argument of the causal
operator is meant to shape the equalizer w.r.t. the desired target TFs and to
compensate for an average of the non-common excess-phase part of the modeled
TFs.

A common case is when the target TFs at all receiver positions are the same, so
that the numerator polynomial matrix B(q−1) can be replaced by their complex
spatial average model B0(q−1) =

∑p
i=1Bi(q−1). The SISO case is instead a

special case of the SIMO case presented here. In this case, the AP filter contains
all the excess-phase zeros of the modeled TF B(q−1), and the optimal SISO
compensator becomes

R = q−d0F∗
A

β

D

E
. (7.14)
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One problem in this approach is the fact that the number p of TFs is limited,
so that the RMS average β is a good representative of the minimum-phase
response at the receiver positions, but not at other position within Ω. To
improve robustness, in [224] spectral smoothing of β with fractional-octave (e.g.
1/6 octave) resolution has been suggested. Another problem is related to the
bandlimited frequency range of the loudspeaker. In order for the compensator
to avoid correcting for the responses outside the working frequency range of
the loudspeaker, a weighting polynomialW (q−1) is applied to the control signal
u(n) = R1(q−1)w(n). Another modification is the introduction of a diagonal
weighting matrix V (q−1) of dimension p|p for the error signal y(n), so that the
error in different frequency regions can be controlled. The introduction of these
weighting matrices leads to a modification of the expression in (7.12)

β∗β = B∗V∗V B +A∗W∗WA, (7.15)

and of the cost function in (7.7), which becomes

J = E
{
||V (q−1)y(n)||22 + ||W (q−1)u(n)||22

}
. (7.16)

Notice that, when the probabilistic model given in (7.4) is used, the numerator
polynomial matrix of the augmented system in (7.10) becomes

B̃ = Bq−d0F∗ = (B̂0 + ∆BB̂1)q−d0F∗ = B̌0 + ∆BB̌1, (7.17)

with B̌0 = B̂0q
−d0F∗ and B̌1 = B̂1q

−d0F∗. As a consequence, the expression
in (7.15) is modified as

β∗β = B̌0∗V∗V B̌0 +A∗W∗WA+ B̌1∗E{∆B∗V∗V ∆B}B̌1, (7.18)

with A = A0A1, which, given the scaling of the variance of ∆B to unit, can be
simplified as

β∗β = B̌0∗V∗V B̌0 +A∗W∗WA+ B̌1∗Il tr(V∗V )B̌1. (7.19)

The expression in (7.13) for the final SIMO compensator then becomes

R = q−d0F∗
A

β

{B̌0∗V∗V D
β∗E

}
+
. (7.20)

A solution to obtain β and its inverse is described in a section of the original
report, not included here, for the MIMO case, which is a generalization of the
SIMO case, as explained below.
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7.2.3 MIMO equalizer

In the MIMO case, the objective is to design a set of l compensatorsR(q−1, q) =
[R1(q−1, q) . . . Rl(q−1, q)]T in such a way that l − 1 support loudspeakers help
attaining the target TFs defined for a primary loudspeaker. It was shown
in [225] that a sufficient condition for obtaining a solution in the MIMO case
is to apply noncausal phase compensation filters F1∗(q), . . . ,Fl∗(q), designed
similarly as in the SIMO case, to each of the loudspeakers, and then design a
full causal and stable MIMO compensator R1(q−1) such that the target TF of
the primary loudspeaker is attained with minimum error. The role of the filters
F1∗(q), . . . ,Fl∗(q) is to remove group delay distortions that are common and
systematic throughout Ω for each loudspeaker. The role of R1(q−1), instead, is
to use all the individual phase-corrected loudspeaker responses in an optimal
way, so to obtain an overall sum response that is closer to the target TF than
it would be in the SIMO case.

The p-dimensional error signal in the MIMO case is defined similarly to (7.5)

y(n) = D(q−1)w(n)−H(q−1)R(q−1, q)w(n)

= D(q−1)
E(q−1)w(n)−B(q−1)A−1(q−1)R(q−1, q)w(n)

(7.21)

where D contains the modeling delay d0 as in (7.9), andH is defined as in (7.2).
The MSE-optimal MIMO-compensator is given, analogously to (7.8), by

R(q−1, q) = ∆̃(q−1)F∗(q)R1(q−1), (7.22)

where
∆̃(q−1) = diag

([
q−(d0−d1) . . . q−(d0−dl)]T

)
,

F(q−1) = diag
([
F1(q−1) . . . Fl(q−1)

]T)
,

R1(q−1) =
[
R11(q−1) . . . R1l(q−1)

]T
,

(7.23)

where dj , j = 1, . . . , l are individual delays used to include individual deviations
in distances between the listening region and each loudspeaker, whereas the
elements in F(q−1) are computed as in the SIMO case for each individual
loudspeaker.

The matrices ∆̃(q−1) and F(q−1) can be incorporated into the augmented
system

H̃(q−1) =H(q−1)∆̃(q−1)F∗(q) = B(q−1)∆̃(q−1)F∗(q)A−1(q−1) = B̃(q−1)A−1(q−1),
(7.24)
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R1(q−1) ∆̃(q−1) F∗(q) H0(q−1) V (q−1)
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Figure 7.2: Block diagram of the constrained MIMO equalizer design. The thin
lines represent scalar signals, and the thick lines represent vector-valued signals
of dimension p|1 (adapted from [225]).

where, in case the probabilistic modeling defined in (7.4) is used

B̃ = B∆̃F∗ = (B̂0 + ∆BB̂1)∆̃F∗ = B̌0 + ∆BB̌1, (7.25)

with B̌0 = B̂0∆̃F∗, B̌1 = B̂1∆̃F∗, and A = A0A1.

In order to attain the target TF of the primary loudspeaker, the objective is to
find the optimal causal and stable MIMO compensator that minimizes the cost
function defined, with reference to Figure 7.2, as

J = Ē
{
E
{
||V (q−1)y(n)||22

}
+ E

{
||W (q−1)u(n)||22

}}
. (7.26)

with y(n) and u(n) the error and control signals, respectively, and W (q−1) a
l|l weighting matrix applied to the control signal.

The final causal, stable, MSE-optimal MIMO compensator is then given by

R = ∆̃F∗Aβ−1
{
β−1
∗ B̌0∗V∗V D/E

}
+
, (7.27)

where the l|l unique minimum-phase spectral factor β is obtain by factorizing

β∗β = B̌0∗V∗V B̌0 +A∗W∗WA+ B̌1∗Il tr(V∗V )B̌1. (7.28)

The computation of β and its inverse β−1 from the RHS of (7.28) is discussed
in a section of the original report, not included here.

Checklist

Here a summary of the equations necessary to practically implement the MIMO
controller is given, so to identify the elements that need to be modeled, and the
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design choices to be made.

R = ∆̃F∗Aβ−1
{
β−1
∗ B̌0∗V∗V D/E

}
+

(7.29)

∆̃ = diag
([
q−(d0−d1) . . . q−(d0−dl)]T

)
(7.30)

F = diag
([
F1(q−1) . . . Fl(q−1)

]T)

= diag
([ F̄1(q−1)
F1(q−1) . . .

F̄l(q−1)
Fl(q−1)

]T)

= diag
([Bc1(q−1)
βc1(q−1) . . .

Bcl (q−1)
βcl (q−1)

]T)

(7.31)

β∗β = B̌0∗V∗V B̌0 +A∗W∗WA+ B̌1∗Il tr(V∗V )B̌1 (7.32)

B̌0 = B̂0∆̃F∗ (7.33)

B̌1 = B̂1∆̃F∗ (7.34)

B̂0 = B0A1 (7.35)

B̂1 = B1A0 (7.36)

B = (B̂0 + ∆BB̂1) (7.37)

A = A0A1 (7.38)

The optimal MIMO compensator has dimension l|1, the target TFs matrix
D = D/E (and thus D) has dimension p|1, the minimum-phase spectral factor
β has dimension l|l, whereas the weighting matrices W and V have dimension
l|l and p|p respectively. The polynomial matrices B̌0, B̌1, B̂0, B̂1, B0, B1,
and ∆B have dimensions p|l, while A, A0, B1, A1, ∆̃, and F are diagonal
matrices of dimensions l|l. The modeling of the TFs using the probabilistic
modeling technique and of the identification of the nearly-common excess-phase
zeros is presented in Section 7.3.

Design choices pertain to the selection of the target TFsD = D/E, the modeling
delay d0, the definition of the weighting matrices V andW , and the selection of
the parameters to control the pre-ringing level in the design of F . Apart from
the latter, shortly described in Section 7.4, the other aspects are not discussed
in this chapter, but can be found in the final report.
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7.3 Acoustic modeling

The first step in the design of a MIMO controller, is actually the modeling
of the measured TFs and the design of the AP filters from the clustering of
nearly-common excess-phase zeros. In the following, all the TFs are modeled as
IIR filters, which are preferred to FIR filters (which however are still an option)
because they provide more flexibility and lower model orders for the same
modeling accuracy. In the practical equalizer design, the FIR approximation of
the IIR filter responses will be used in some cases. As a preliminary step, the
acoustic delays of each individual AIR were computed (using a peak detection
algorithm), stored for use in ∆̃ in the controller design, and removed from the
AIRs prior to modeling. The probabilistic modeling (Sections 7.3.1 and 7.3.2) is
performed on the full-band TFs, whereas the TF modeling (Sections 7.3.3, 7.3.4
and 7.3.5) is performed on the LF (probabilistic) TFs, i.e. after resampling to
f ′S = fS/Ds, with Ds ∈ Z+.

7.3.1 Probabilistic modeling

As briefly mentioned in the introduction, the MIMO controller is designed
starting from a number of AIRs measured within a given listening area Ω.
The number of microphones in Ω ∈ R3 should be ideally large, with the
actual number determined by the dimensions of Ω, and the spacing between
microphones limiting the highest frequency that can be effectively equalized.
When an insufficient number of microphones is available to design the equalizer,
a certain amount of overfitting at the microphone positions has to be expected.
In order to obtain a more spatially robust solution from a limited number of
sparse microphones, a probabilistic model is used to describe the TF variability
in the listening area [329].

The measured TFs in H(q−1) can be decomposed as in (7.4) into two parts, a
nominal part H0(q−1) and a stochastic uncertainty part ∆H(q−1)

H(q−1) =H0(q−1) + ∆H(q−1) (7.39)

where ∆H(q−1) is parameterized by zero-mean random variables, assumed to
be independent from any signal in the system, and describes possible deviations
from the nominal part. The nominal part contains the direct path and the LF
parts of the TFs, which are the components that vary slowly with space. In the
region of modal frequencies, i.e. below the Schroeder’s frequency, the sound
field is less diffuse than at higher frequencies. Moreover, when the wavelength
is much larger than the microphone spacing, the sound pressure in-between
adjacent microphones can be interpolated linearly from the sound pressure
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at the microphones. The ‘complementary’ uncertainty part ∆H(q−1) models
the reverberant part of the AIRs and the sound field at higher frequencies,
where the spatial variability in-between microphones is more prominent. When
dealing with equalization at LFs, the use of this probabilistic model is less
important, since the LF part of the TFs is included in the nominal part only.
In the implementation described below, a certain degree of variability at lower
frequencies was allowed, in order to improve robustness of the solution (and to
help overcome the lack of measurements in the listening area).

The two parts of the TF matrix can be described in the right MFD notation as

H =H0 + ∆H =H0 + ∆BH1 = B0A
−1
0 + ∆BB1A

−1
1

= (B0A1 + ∆BB1A0)(A0A1)−1 = (B̂0 + ∆BB̂1)(A0A1)−1 , BA−1,
(7.40)

with B̂0 = B0A1, B̂1 = B1A0, B = (B̂0 + ∆BB̂1) and A = A0A1. The
matrices B, B0 and ∆B have dimension p|l, whereas matrices B1, A, A0,
and A1 are diagonal matrices of dimension l|l, where the jth element of the
diagonal is common to all TFs related to the jth loudspeaker. Each element of
∆B is a polynomial with zero-mean random variables as coefficients, scaled so
that E{|∆Bij(e−jω)|2} = 1. Each element of the diagonal of H1 = B1A

−1
1 is

an IIR filter, common to all modeled TFs related to one loudspeaker, used for
shaping the spectral distribution of the uncertainty part. The use of FIR filters
is an option, which can be easily obtained by setting A0 = 1 and A1 = 1.

The decomposition of the TF matrix into two parts is performed, as suggested
in [329], by applying a variable low-pass (LP) filter to each TF to obtain
the nominal part H0ij of the AIR, while the complementary variable high-
pass (HP) filter is used to obtain the corresponding reverberant part HRij .
The cut-off frequency of the LP/HP filter pair decreases from the Nyquist
frequency to a certain frequency fC , over a given time frame, starting some
time tstart (e.g. 1ms) after the direct path of the AIR, and ending at tstop
(e.g. 7ms). The variable LP/HP filter pair was implemented frame-by-frame,
by using overlap-and-add with non-overlapping rectangular windows, where
the frame length L is determined by tstart (for fS = 44.1kHz and tstart = 1
ms, L = 45). A variable linear phase FIR filter design technique was used to
design the LP/HP filters [330, 331]. A prototype LP filter hM0 is first obtained,
with a desired transition bandwidth and cut-off frequency at -6 dB defined as
ωc0 = 2π(0.25 + 1/2L) (for L odd). Here a window-based design technique was
used (see e.g. [45]), with a Hamming window w(n) of length L (which for L = 45
has a stop-band attenuation of almost -60 dB), so that hM0 = w(n)ωc0sinc(ωc0n)
(with n = −(L−1)/2 : (L−1)/2). A LP filter with arbitrary cut-off frequency ωc
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Figure 7.3: Variable HP/LP filters (Listener 1, FL loudspeaker, L microphone).

can be obtained from the prototype filter as

hLPc (n) =
{
c(n)ωc for n = 0
c(n) sin(ωcn) for 1 ≤ |n| ≤ (L−1)/2

, (7.41)

where c(n) = hM0(n)/ sin(ωc0n). At each frame, starting from the second, the
cut-off frequency is reduced, so that at tstop the final cut-off frequency fC is
reached. The complementary HP filter is simply obtained as

hHPc (n) =
{

1− hLPc (n) for n = 0
−hLPc (n) for 1 ≤ |n| ≤ (L−1)/2

. (7.42)

The cut-off frequency of the LP should not be less than half the transition
bandwidth, otherwise the LP filter does not reach unit level in the pass-band.
In the implementation described, the final cut-off frequency fC becomes slightly
smaller than the transition bandwidth, so that some low frequencies are included
in the reverberant uncertainty part. This can be seen in the left plot of Figure 7.3.
If this feature is not desirable, a prototype LP filter with shorter transition
bandwidth should be designed. Figure 7.4 shows the original frequency response
of one TF and the resulting nominal and reverberant parts. Notice that, for what
discussed above, the stochastic reverberant part includes some low frequencies.

The second step in the probabilistic model technique consists in the design of
the shaping filter H1 = B1A

−1
1 intended to model the spectral envelope of the

reverberant parts HRij for i = 1, . . . , p. For this purpose, for each loudspeaker
j, an FIR shaping filter H1j of order Ntr is constructed from HRij by using
their average periodogram Φ = 1

p

∑p
i=1HRij∗HRij . A triangular window of

length 2Ntr − 1 is applied symmetrically over the polynomial coefficients of
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Figure 7.4: Time and magnitude responses of the nominal and reverberant parts
of one TF (Listener 1, FL loudspeaker, L microphone).

Φ, yielding an average Blackman-Tukey spectral estimate Φ̂ (Welch method
for spectral estimation) [332]. The shaping filter H1j is then obtained as the
minimum-phase spectral factor of Φ̂ (e.g. using the cepstral method [45, 67] –
see rceps MATLAB function).

7.3.2 Virtual receivers

The probabilistic modeling technique described above has been used as a method
to generate a number of virtual receivers in order to compensate for the lack
of receivers in the listening region Ω. The idea is to start from the pr actual
measurements in Ω recorded for the jth loudspeaker, and for each of them
generate pv virtual measurements as variations of the actual measurements
using the probabilistic modeling technique, so to obtain p = pr(pv +1) receivers
inside Ω. After the probabilistic model has been computed from the pr actual
measurements Hij(q−1), thus obtaining pv nominal parts H0ij(q−1) (with i =
1, . . . , pr) and one shaping filter H1j(q−1), the recording H̆vj(q−1) at the vth
virtual receiver is generated by applying a random variation to the nominal
part and a temporal envelope to the uncertainty part, so to obtain H̆vj(q−1) =
H̆0vj(q−1) + ∆H̆vj(q−1).

The nominal part H̆0vj(q−1) of the TF H̆vj(q−1) of a virtual receiver starting
from the nominal part H0ij(q−1) of the ith real TF is obtained by applying a
low-passed random gaussian noise w̆(n) distributed as N ∼ (0, σv) (e.g. σv =
0.005), where the low-pass filter h̆LP(n) (e.g. with normalized cut-off frequency
ωc = 0.4) is intended to limit the variability at high frequency, which is later
introduced in the uncertainty part. The variance σv is scaled with respect to
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the norm of the TF, so that the nominal part for a virtual receiver becomes

H̆0vj(q−1) = H0ij(q−1)
{

1 +
[
h̆LP(q−1) · {w̆(n) · ||H0ij(q−1)||2}

]}
. (7.43)

The second step is to add a temporal envelope to the uncertainty part. The
probabilistic model uses a random sequence to obtain the coefficients of the
polynomials ∆Bij(q−1), which does not decay in time. In order to obtain a
realistic time-response, the temporal envelope henv

ij (q−1) of the reverberant part
HRij , calculated as the upper RMS envelope determined using a sliding window
(see MATLAB function envelope.m), is applied to a random polynomial
∆B̆vj(q−1), which is then filtered by the shaping filter H1j obtained from the
probabilistic modeling,

∆H̆vj(q−1) =
[
∆B̆vj(q−1)� henv

ij (q−1)
]
·H1j(q−1). (7.44)

7.3.3 Transfer function modeling (BU method)

Once the nominal and uncertainty parts of the TFs are obtained, the next step
consists in modeling the numerator and denominator polynomials of H0 =
B0A

−1
0 and H1 = B1A

−1
1 . We will start with H1 = B1A

−1
1 , by modeling the

elements of the polynomial matrices B1, and A1.

As described in previous sections, each FIR shaping filter H1j(q−1) is designed
as the average spectral envelope of the reverberant part of the TF at p receiver
positions for a given loudspeaker, so that one shaping filter H1j(q−1) per
loudspeaker has to be modeled. An output-error method for pole-zero modeling
of TFs was used, called the BU method [73], which outperforms better-known
methods, such as the Steiglitz-McBride method [70], in terms of stability and
efficiency of the resulting polynomials (i.e. the polynomials have lower degree).
The only limitation is that the degree of the numerator and denominator
polynomials has to be the same, and it has to be defined a priori. Regularization
is introduced to avoid ill-conditioning problems in the estimation of the model
parameters.

The BU method first estimates the denominator polynomial of the PZ model
as the denominator of an AP filter, while the numerator polynomial is obtained
in closed form. The objective of the BU method is to obtain a least squares
(LS) IIR approximation of an FIR filter. In this case, the aim is to obtain
an approximation of the FIR shaping filter H1j(q−1) with an IIR of the form
H1j(q−1) = B1j(q−1)/A1j(q−1). The cost function to be minimized is then the
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`2-norm of the approximation error E1j(q−1),

JBU = ||E1j(q−1)||22 = ||H1j(q−1)−H1j(q−1)||22 =
∣∣∣
∣∣∣H1j(q−1)− B1j(q−1)

A1j(q−1)

∣∣∣
∣∣∣
2

2
.

(7.45)
In other words, the LS approximation of the FIR TF H1j(q−1) =

∑K
λ=0 hλq

−λ

of order K by an IIR filter H1j(q−1) = B(q−1)/A(q−1) of order M < K, with
B1j(q−1) =

∑M
µ=0 bµq

−µ and A1j(q−1) =
∑M
µ=0 aµq

−µ (with a0 = 1), consists
in the estimation of M + 1 numerator coefficients bµ (µ = 0, 1, . . . ,M) and
M denominator coefficients aµ (µ = 1, 2, . . . ,M), such that the cost function
in (7.45) is minimized. In the rest of this section we will temporarily drop the
subscripts to be more general and improve readability.

The BU method relies on the Walsh theorem [75], which states that for a given
denominator polynomial A(q−1) with roots (poles) αµ, the best approximation
of B(q−1) in LS sense is given by the unique function that interpolates H(q−1)
at points 1/α∗µ and at infinity. This theorem tells us that the estimation
of the denominator coefficients aµ can be decoupled from the estimation of
the numerator coefficients bµ, so that once the coefficients aµ are found, the
coefficients bµ are obtained as the solution of an interpolation problem. Another
consequence is that the approximation error E(q−1) has M + 1 zeros located at
1/α∗µ and at infinity, so that it can be written as

E(q−1) = H(q−1)− B(q−1)
A(q−1) = q−(M+1)A(q)

A(q−1) R(q−1) = q−MA(q)
A(q−1) q−1R(q−1),

with R(q−1) = q−KH(q)q
−MA(q)
A(q−1) =

K−1∑

λ=0
rλq

−λ.

(7.46)
an unknown FIR TF of order K − 1. From the equation above, for known
polynomials A(q−1) and R(q−1), the numerator polynomial B(q−1) can be
obtained in closed form as

B(q−1) = H(q−1)A(q−1)− q−(M+1)A(q)R(q−1). (7.47)

The estimation of the denominator polynomial, instead, uses the concept
of ‘complementary’ signal [74], for which, if the reciprocal of H(q−1) (which
correspond to a time-reversal of the FIR coefficients hλ) is fed to an AP filter
A(q−1), the energy of the resulting polynomial U(q−1) = q−KH(q) · A(q−1) is
equal to the energy of H(q−1), but it is partitioned in the following way [29, 31]

∞∑

λ=0
|H(q−1)|2 =

∞∑

λ=0
|U(q−1)|2 =

K∑

λ=0
|U(q−1)|2 +

∞∑

λ=K+1
|U(q−1)|2, (7.48)
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where the first term of the RHS of the equation is the approximation error
energy, which is what the algorithm will try to minimize, whereas the second
term is the energy of the approximation. An outline (adapted from [31]) of the
algorithm is provided here (more details can be found in [73]):

• The algorithm is based on the approximation of an AP filter of order M

A(κ)(q−1) = q−MA(κ)(q)
A(κ−1)(q−1) (7.49)

where a new monic polynomial A(κ)(q−1) is estimated at each iteration κ
(with {1, A(1)(q−1), A(2)(q−1), . . . }), and is restricted to the form

A(κ)(q−1) = 1 +
M∑

µ=1
a(κ)
µ q−µ = 1 + Ã(κ)(q−1), κ = 1, 2, . . . . (7.50)

• The polynomial ratio A(q−1) converges to an AP function if ||A(κ)(q−1)−
A(κ−1)(q−1)||2 → 0.

• The objective is to minimize the energy of the error polynomial
U (κ)(q−1) = A(κ)(q−1)X(q−1), where X(q−1) = q−KH(q) is the reciprocal
of H(q−1).

• Define Y (κ)(q−1) = X(q−1)/A(κ−1)(q−1) =
∑K−1
λ=0 y

(κ)
λ q−λ, so that

U (κ)(q−1) = q−MA(κ)(q)Y (κ)(q−1) =
∑K−1
λ=0 u

(κ)
λ q−λ.

• Use (7.50) and rearrange, obtaining

Y (κ)(q−1)
[
q−(M−1)Ã(κ)(q)

]
= U (κ)(q−1)− q−MY (κ)(q−1). (7.51)

• Collect the coefficients of equal order on both sides of the equation above,
obtaining the following vectors

a(κ) = [a(κ)
M , a

(κ)
M−1, . . . , a

(κ)
1 ]T

u(κ) = [u(κ)
0 , u

(κ)
1 , . . . , u

(κ)
K−1]T

y(κ) = −[0, . . . , 0, y(κ)
0 , y

(κ)
1 , . . . , y

(κ)
K−M−1]T

(7.52)
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and the K ×M design matrix

Y (κ) =




y
(κ)
0 0 . . . 0

y
(κ)
1 y

(κ)
0

. . . ...
... . . . 0

y
(κ)
M−1 . . . y

(κ)
0

...
...

y
(κ)
K−1 . . . y

(κ)
K−M




(7.53)

which corresponds to an overdetermined set of linear equations Y (κ)a(κ) =
u(κ) + y(κ), with a(κ) and u(κ) unknown.

• At each iteration κ, the LS solution of Y (κ)a(κ) = y(κ), which minimizes
the energy of u(κ) = Y (κ)a(κ) − y(κ), is computed (e.g. using QR
decomposition), thus obtaining the coefficients a

(κ)
µ of Ã(κ)(q), and

consequently of A(q−1).

• The matrix Y (κ), as the number of iterations increases, can become rank
deficient. In order to avoid that, some regularization can be introduced,
with the set of equations becoming (Y T(κ)Y (κ) + λIM )a(κ) = Y T(κ)y(κ),
with λ a regularization parameter (e.g. λ = 10−8).

• After a number of iterations, or when a specified error threshold is reached,
an estimate of the numerator polynomial B(q−1) is computed as

B̂(q−1) = H(q−1)Â(q−1)− q−(M+1)Â(q)R(q−1), (7.54)

where Â(q−1) is the polynomial with minimum LS error among all the
estimates computed in the iterative procedure, and

R(q−1) = q−KH(q)q
−MÂ(q)
Â(q−1)

(7.55)

is the reciprocal of the polynomial Û(q−1) with minimum energy.

7.3.4 Common-denominator TF modeling (CD-BU method)

The next step is to model the numerator and denominator polynomials of
H0 = B0A

−1
0 , i.e. the elements of the polynomial matrices B0, and A0. As

mention already in Section 7.1, the polynomials Aij(q−1) (for i = 1, . . . , p)
do not depend on the spatial position of the receivers within Ω, based on
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the assumption that the modal resonances excited by the jth loudspeaker are
present, with different levels, at each receiver position (i.e. the poles of Aij(z−1)
are common to all p TFs). It follows that a common denominator Aj(q−1) to
model the TFs linked to the jth loudspeaker has to be found (A0 is a diagonal
polynomial matrix of dimensions l|l).
The BU method described above can be easily extended to the multi-channel
case3. The extension, called here Common-Denominator BU (CD-BU) method,
is quite trivial, but provides more accurate results than other methods, such
as the equation-error method in [103]. The cost function is just the sum of the
approximation errors of the p TFs (for the jth loudspeaker),

JCD-BU =
p∑

i=1
||E0ij(q−1)||22 =

p∑

i=1
||H0ij(q−1)−H0ij(q−1)||22

=
p∑

i=1

∣∣∣
∣∣∣H0ij(q−1)− B0ij(q−1)

A0j(q−1)

∣∣∣
∣∣∣
2

2

(7.56)

which has to be minimized w.r.t. p(M + 1) numerator coefficients bµ,i
(µ = 0, 1, . . . ,M and i = 1, . . . , p) and M denominator coefficients aµ (µ =
1, 2, . . . ,M).

The estimation of the denominator polynomial A0j(q−1) is performed by
minimizing the sum of the energy of the error polynomials U

(κ)
0ij (q−1) =

A0j(q−1)X0ij(q−1), where X0ij(q−1) = q−KH0ij(q) is the reciprocal of H0ij(q−1)
and A0j(q−1) is the AP filter built from A0j(q−1) defined as in (7.49), leading
to p equations of the type in (7.51),

Y
(κ)
0ij (q−1)

[
q−(M−1)Ã

(κ)
0j (q)

]
= U

(κ)
0ij (q−1)− q−MY (κ)

0ij (q−1). (7.57)

with Y (κ)
0ij (q−1) = q−KH0ij(q)/A(κ−1)

0j (q−1) and A(κ)
0j (q−1) = 1 +

∑M
µ=1 a

(κ)
µj q

−µ =
1 + Ã

(κ)
0j (q−1). These p equations can be put in vector form as

a
(κ)
0j = [a(κ)

Mj , a
(κ)
(M−1)j , . . . , a

(κ)
1j ]T

u
(κ)
0j = [u(κ)

01j ,u
(κ)
02j , . . . ,u

(κ)
0pj ]T

y
(κ)
0j = [y(κ)

01j ,y
(κ)
02j , . . . ,y

(κ)
0pj ]T

Y
(κ)

0j = [Y (κ)
01j ,Y

(κ)
02j , . . . ,Y

(κ)
0pj ]T

(7.58)

3this simple extension has been derived independently from the work published in 2017 [32].



232 MULTI-CHANNEL EQUALIZATION OF CAR CABIN ACOUSTICS

where the vectors u(κ)
0ij and y(κ)

0ij and the matrices Y (κ)
0ij (for 1 = 1, . . . , p) are

defined as in (7.52) and (7.53). Some regularization to the possibly rank-
deficient square matrix (Y T(κ)

0j Y
(κ)

0j ) can be applied also in this case to avoid
ill-conditioning in the LS solution of the overdetermined set of equations
Y

(κ)
0j a

(κ)
0j = y

(κ)
0j .

After a number of iterations, the estimated coefficients â(κ̂)
0j for which the energy

of u(κ̂)
j is the lowest are chosen as the coefficients of the polynomial Â0j(q−1).

The estimates B̂0ij(q−1) of the numerator polynomials are then readily obtained
as

B̂0ij(q−1) = H0ij(q−1)Â0j(q−1)− q−(M+1)Â0j(q)R0ij(q−1), (7.59)

with R0ij(q−1) defined as in (7.55).

7.3.5 Nearly-common excess-phase zeros modeling

The last step required is the modeling of the diagonal matrix F in (7.31),
whose elements are the AP functions built from excess-phase zeros common to
all (probabilistic) TFs H(:,j)(q−1) = B(q−1)A−1(q−1), for the jth loudspeaker.
The excess-phase zeros of a TF H(i,j)(z−1) = Bij(z−1)/Aj(z−1) are the zeros of the
AP excess-phase TF B̃ij(z−1) = Bij(z−1)/βij(z−1), with βij(z−1) the minimum-
phase spectral factor of Bij(z−1) which can be obtained using, e.g., the cepstral
method [45]; the vector containing the coefficients of Bij(q−1) has to be padded
with a large number of zeros in order to obtain a reliable factorization, with
βij(z−1) of the same order as Bij(z−1) and the excess-phase polynomial B̃ij(z−1)
truncated (for practical reasons) to a certain order.

Excess-phase zeros modeling (AP-BU method)

The zeros of each excess-phase TF B̃ij(q−1) = Bij(q−1)/βij(q−1) can be estimated
using a slightly modified version of the iterative part of the BU method (called
here AP-BU) and computing the roots of the numerator of the estimated AP
TF (or equivalently the reciprocal of the roots (poles) of the denominator). The
cost function for the proposed modification is given by

JAP-BU =
p∑

i=1
||Ẽij(q−1)||22 =

p∑

i=1
||B̃ij(q−1)− B̃ij(q−1)||22

=
p∑

i=1

∣∣∣
∣∣∣B̃ij(q−1)− q−M̃Qij(q)

Qij(q−1)

∣∣∣
∣∣∣
2

2
.

(7.60)
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The estimation of the denominator polynomialQij(q−1) of order M̃ is performed
as in the BU method, with the only difference that the set of linear equations
has a slightly different form, due to the fact that the numerator polynomial is
the reciprocal of Qij(q−1)

Y
(κ)
ij (q−1)

[
q−(M̃−1)Q̃

(κ)
ij (q)

]
= U

(κ)
ij (q−1)− q−M̃Y (κ)

0ij (q−1) + q−K , (7.61)

with Y (κ)
ij (q−1) = q−KB̃ij(q)/Q(κ−1)

ij (q−1) and Q(κ)
ij (q−1) = 1 +

∑M
µ=1 a

(κ)
µijq

−µ =
1 + Q̃

(κ)
ij (q−1).

The order M̃ can be estimated a priori by evaluating the unwrapped phase
response φB̃(ω) of the AP function B̃ij(q−1) at π as

M̃ = −φB̃(π)
π

(7.62)

This result comes from the properties of the sum of two AP functions [333], for
which the phase of an AP TF is given by the following relation

φB̃(ω) = −M̃ω − 2
∞∑

m=1

SB̃m sin(mω)
m

, (7.63)

with SB̃m the first-order root moments of B̃ij(q−1) (m ∈ Z), which gives the
model order of the AP TF in (7.62) when evaluated at π.

In practice, the AP model order is increased to M̃2 = M̃ + 2 to account for
real zeros at 0Hz and at the Nyquist frequency fs/2. A way to control how the
identification of the zeros performs, is to evaluate the equivalent modeling error
Ẽij(q−1) =

[
B̃ij(q−1)−1

]
−
[
B̃ij(q−1)−1

]
and compare the magnitude responses

of
[
B̃ij(q−1)−1

]
and

[
B̃ij(q−1)−1

]
, which have the same poles as B̃ij(q−1) and

B̃ij(q−1). An example is given in Figure 7.5. Notice that poles very close to the
origin, which comes from the fact that the order is increased w.r.t. to the actual
order, can be safely removed, since it would have almost no contribution to
the AP response. Also notice that, when limiting the equalization to LFs (e.g.
f ′S = 441Hz), the model order M̃ is usually quite small (e.g. between 0 and 5),
with the extreme case in which Bij(q−1) is minimum-phase (i.e. B̃ij(z−1) = 1).
To account for this case, when the energy of Ẽij(q−1) is above a certain threshold,
the AP-BU algorithm is run again with M̃2 ← M̃2 − 1.

Nearly-common excess-phase zeros clustering

When the zeros of each excess-phase TF B̃ij(q−1) are correctly identified, the
zeros that are common to all TFs have to be determined for each jth loudspeaker
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Figure 7.5: Magnitude responses of
[
B̃ij(q−1) − 1

]
and

[
B̃ij(q−1) − 1

]
(which

they perfectly overlap) and the corresponding poles (Listener 1-left, FL loud.,
f ′S = 881Hz).

(with i = 1, . . . , ps and ps the number of receivers selected for the design of
the compensator). In practice, there are no actual common zeros, so that the
excess-phase compensators have to be built from sets of nearly-common zeros.
The problem is that the compensator will introduce pre-ringing in the equalized
responses, with level depending on the distance between the zeros introduced
in the compensator and the actual excess-phase zeros of the TFs.

A strategy to cluster nearly-common zeros was introduced in [334, 224] in
which clusters are considered to be invertible if the level of preringing that is
introduced is kept below a predefined threshold. The center of the clusters,
i.e. the candidate zeros eligible to be included in F∗, are chosen to be the
excess-phase zeros zom = rome

jωom ∈ zo of the complex average B̃oj(q−1) of the
ps excess-phase TF (estimated as above), which were proved [224] to represent
the weighted average of the zeros zij of the individual excess-phase TF B̃ij(q−1).
It was also shown in [334, 224] how the preringing level introduced for each
equalized TF can be quantified based on the distance between each zero zom ∈ zo
(with m = 1, . . . , M̃o) and the actual zeros zim ∈ zi (with m = 1, . . . , M̃i ≥ M̃o)
belonging to the corresponding clusters Cm. The main result is that the level
of pre-ringing, introduced by a compensator built from an excess-phase zero
zom = rome

jωom ∈ zo at receiver position i (for loudspeaker j), measured at a
given time instant tr before the direct sound, can be quantified as

LmdB = 20 log10(Cimr−κrom ) (7.64)
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with κr = dtrfSe, and

Cim = |zom + ε|2 − |zom|2
|zom|2 cos Φ

with
Φ = arctan

( 2R(ε)|zom|2
|zom+ε|2−|zom|2 −R(zom)

I(zom)

)
,

ε = zom − zim .

(7.65)

A constraint on the admissible pre-ringing level at time t < tr can be easily
imposed by setting LmdB < Lmax.

The clustering algorithm proposed in [224] is reported in Appendix C.2.
The algorithm is run separately from the other modeling tasks, because the
common zeros should be determined based on the loudspeaker and microphone
selected for the desgin of the equalizer. What differentiate this algorithm from
conventional clustering algorithms is the fact that exactly one zero from each TF
should be included in each cluster. It was shown in [224], that the pre-ringing
constraint (with given κr and Lmax) defines a cluster Cm whose dimensions are
determined by the radius of its central zero zom; the cluster gets larger when
zom moves away from the unit circle. This means that is it more likely to find
‘invertible’ clusters not too close to the unit circle. Another method, alternative
to the clustering approach, would be to use a common-denominator AP-BU
method, possibly using different values for the model order M̃ , and then check
for the pre-ringing constraint on the estimated common zeros.

In practice, it is likely that the zeros in some of the clusters do not respect the
constraint, with the result of the cluster not being ‘invertible’. In order to obtain
a useful excess-phase compensator in this case, two options are contemplated.
The first option consists of increasing the radius rom of the zero at the center
of the cluster that does not respect the constraint in order to reduce the level
of pre-ringing in (7.64), as suggested in [335]. By doing so, the residual pre-
ringing is compressed in time, but amplified in level. In order to compensate for
this amplification, another AP has to be included in the compensator, where
the excess-phase zero has a larger radius than rom, but the same angle. The
radius can be optimized in such a way that the pre-ringing constraint is satisfied
(see [335]).

Here, a second option is suggested, which consists of relaxing the constraint and
making it frequency-dependent, according to perceptual consideration about
pre-ringing at different frequencies. The pre-ringing can be controlled defining
the parameters Lmax and tr, which determine the level of the pre-ringing at
a particular time before the desired component. This way, the pre-ringing



236 MULTI-CHANNEL EQUALIZATION OF CAR CABIN ACOUSTICS

Figure 7.6: Time and magnitude responses of the original and probabilistic TF.

introduced by the controller can be traded off against the equalization quality. It
follows that the audibility of the pre-ringing artifacts in the equalized responses
should be evaluated.

7.4 Simulation results

In this section some examples are provided to give an idea of the results that
can be expected in the modeling stage. Simulation results for the equalization
are described in the original report, not included here.

7.4.1 Modeling results

In the examples shown here, the modeling of the response for the front-left
loudspeaker and the right microphone of the dummy head at listening position
1 is considered.

Probabilistic modeling and virtual receivers

The probabilistic modeling uses a variable LP filter as described in Section 7.3.1,
using frames of 1ms, with the cut-off frequency reducing linearly from the
Nyquist frequency to fc = 800Hz in 7ms. The length of the spectral envelope
window was set to Ntr = 1500. Figure 7.6 shows an example of the result of
the probabilistic modeling, showing the variations in the time and magnitude
response. Notice that at LFs these variations are of the order of just a few
dBs, which seems reasonable to represent the spatial variations around the
microphone positions.
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Figure 7.7: Time and magnitude responses of the original TF and a virtual
receiver TF.

Figure 7.7 gives an example response of a virtual receiver. Here, a variation
σv = 0.003 applied to the nominal part of the actual TF was used. It is
quite difficult to assess how representative these virtual responses are of actual
responses at points close in space to the actual receivers. Ideally, the number of
measurement positions would be large enough not to require the use of virtual
receivers.

TF modeling

In the following, some examples of the resulting TF models are shown. The
model order used are M = 25 for the non-probabilistic modeling H = BA−1

(which is not being used in the design stage, but is put here for reference),
M0 = 18 for the modeling of the nominal part of the TF H0 = B0A

−1
0 ,

and M1 = 9 for the modeling of the spectral shaping filters H1 = B1A
−1
1 .

These model orders proved to be a good trade-off between model accuracy and
efficiency. The regularization parameter for the modeling algorithms was chosen
as λ = 10−12, that seems large enough to avoid rank deficiency problems of the
design matrix in the BU and CD-BU algorithms.

Figure 7.8 shows the common denominator modeling without the probabilistic
model Hij = Bij/Aj , showing almost perfect approximation of the TF. In
Figure 7.9, the corresponding nominal model H0ij = B0ij/A0j obtained with
the CD-BU method is given for M0 = 18; a lower model order was used in
order to facilitate the design stage, especially when multiple loudspeakers are
used. Some modeling error is present, which is however acceptable, especially
considering that a certain degree of variation was introduced in the nominal
part also at LF in the previous step. Figure 7.10 shows the modeling result of
the BU method for the shaping filter H1j = B1j/A1j with good approximation;
H1j(q−1) has degree depending on the length Ntr of the triangular window used
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Figure 7.8: Time and magnitude responses of the original resampled TF and
the (non probabilistic) modeled TF. Model order M = 25.

Figure 7.9: Time and magnitude responses of the nominal TF and the nominal
modeled TF. Model order M0 = 18.

in the probabilistic modeling, which is chosen to be lower than the degree of
H0ij(q−1). Also in this case, some modeling error is acceptable, so that the use
of a lower order M1 is possible. Notice the dynamic range in the magnitude
response of the nominal model and of the shaping filter. The difference is due
to the fact that the energy of the shaping filter at very LFs is very small (and
it would have been zero if an LP/HP filter with shorter transition bandwidth
would have been used). In practice, this mean that the contribution of the
shaping filter model H1j is rather limited at LFs.

Regarding the modeling of the excess-phase zeros, the AP-BU method is able
to provide perfect modeling of the AP TF B̃ij , when the latter is not truncated
to a too low degree, with the model order M̃ set as in (7.62). Being the number
of excess-phase zeros very small in the narrow-band range considered, using
high-order TFs (i.e. long polynomials B̃ij(q−1) after the minimum-phase/AP
decomposition) does not lead to computational issues in the AP-BU algorithm.
This is true especially in the LFs, where the TF are decimated to a very low
sample frequency. Zeros with very large radius, corresponding to poles close to
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Figure 7.10: Time and magnitude responses of the resampled shaping filter and
the modeled one. Model order M1 = 9.

Figure 7.11: Modeled primary loudspeaker AIR (left) and TF (right) at receiver
position 1 (top) and at receiver position 2 (bottom).

the origin, which are the result of the absence of zeros at the zero frequency
and/or at the Nyquist frequency, can be safely removed in the construction of
the AP TFs Fj . An example was already given in Figure 7.5.

7.4.2 Pre-ringing control

In order to illustrate the effect of controlling the pre-ringing, a simulation has
been carried out with two speakers and two microphones. The modeled TF of
the primary speaker is shown in Fig. 7.11. The equalizer is computed for two
different choices regarding the pre-ringing: first for tr = 50ms, and second for
tr = 5ms. The level Lmax is set to −60dB in both cases.
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Figure 7.12: Equalized primary loudspeaker AIR (left) and TF (right) at receiver
position 1 (top) and at receiver position 2 (bottom). One complex pair of nearly-
common zeros included in F(q−1).

Figure 7.13: Equalized primary loudspeaker AIR (left) and TF (right) at receiver
position 1 (top) and at receiver position 2 (bottom). No nearly-common zeros
included in F(q−1).

In the first case, the clustering algorithm finds one complex nearly-common
zero pair for the primary speaker, while in the second case, no nearly-common
zeros are found, such that F(q−1) reduces to an identity. The target TF of the
equalized system was set to be one. The equalized TFs and AIRs represented
byHeq ,HR are shown for both cases in Fig. 7.12 and Fig. 7.13, respectively.
As can be seen, the TF equalization works significantly better in the first case,
i.e. when nearly-common zeros are found, than in the second case, when no
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nearly-common zeros are found. From the analysis of the AIR in Figure 7.12,
however, it can be seen that some pre-ringing is introduced, whose effect should
be assessed from a perceptual point of view. The tuning of the parameters Lmax
and tr is therefore an important aspect to be considered.

7.5 Conclusion and future work

The focus of this chapter was on the equalization at LFs of a MIMO sound
reproduction system. The solution, mainly adopted from [225], is based on a
polynomial-based framework, which finds its roots in the control theory field.
A careful and comprehensive analysis of this solution to the design of a MSE-
optimal equalizer was the scope of this chapter, which comes together with a
working implementation of the equalization design procedure. The basic idea
of the adopted solution is to equalize the response of a primary loudspeaker
measured at different positions inside a given listening region. A given number
of loudspeakers are used in support of the primary loudspeaker in order to
reduce the deviations from the desired target response.

A summary of the theoretical solution to the equalization problem, both for
SIMO and MIMO systems, was provided, with insight of a more intuitive
interpretation of such solution. The final equalizer consists of three parts: a
minimum-phase part intended to equalize an average of the minimum-phase part
of the TF, an excess-phase part meant to compensate for nonminimum-phase
distortions common to all TFs (associated to one loudspeaker), and a residual
part intended to equalize an average of the residual unequalized, non-common
responses and to attain the desired target response.

One of the issues is the fact that the excess-phase part of the equalizer requires
a set of excess-phase zeros common to all TFs. Only nearly common zeros can
be found in practice, with the distance between zeros related to different TFs
determining the level of pre-ringing (or pre-echo) in the equalized response. A
nearly-common excess-phase zeros clustering algorithm based on a constraint of
maximum admissible level of pre-ringing was implemented, with the trade-off
between equalization performance and pre-ringing artifacts easily controllable
by means of a small number of intuitive parameters.

Another issue is robustness of the equalizer; the fact that the equalizer is
designed starting from a limited number of spatially sparse measurement points
may produce a solution which is not effective in all points inside the listening
region. A solution based on a probabilistic model was used to introduce a
certain level of variability in the TFs, especially at mid/high frequencies and
for late reverberation.
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Detailed instructions on how to model the TFs were given; algorithms
for efficient TF probabilistic modeling, both with individual or common
denominators, were presented, as well as an algorithm to accurately estimate
the excess-phase zeros of the TFs. A way of trading-off between the levels of pre-
ringing and equalization has been discussed. Practical aspects of the equalizer
design, such as the approximation of the minimum-phase spectral factor and
its inversion, or the design of the target response and the weighting matrices,
and simulation results pertaining the performance of the equalizer with varying
number of microphones and loudspeakers can be found in the original report.



Chapter 8

Conclusion

This thesis presented research spanning a wide range of topics in room acoustic
signal processing, from measuring and analyzing room impulse responses
(RIRs), through their modeling and identification, to the application of signal
enhancement algorithms aimed at improving the sound quality of acoustic
signals in rooms. Such a wide scope is the result of the belief that, to be able
to design effective algorithms for room acoustic signal enhancement (RASE)
applications, it is important to first analyze and understand the characteristics
of the acoustic response of a room, so that efficient models and identification
algorithms can be developed. The focus of our investigation has been directed
mainly, but not exclusively, to the low-frequency region in small rooms, where
strong modal resonances are sparse and unevenly distributed in space and
frequency, resulting in large variations of sound pressure level, which have a
detrimental effect on sound quality and represent one of the main problems to
be tackled by algorithms for RASE.

To summarize, the major objectives were the following: (i) to characterize
and analyze the room acoustics in the critical region of modal frequencies;
(ii) to develop efficient parametric models and the relative parameter estimation
algorithms for modeling room responses; (iii) to apply the developed models
and algorithms in a system identification framework using adaptive filters; and,
finally, (iv) to design and implement effective low-complexity solutions for some
of the problems encountered in RASE applications, with a special focus on
digital equalization.

243
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Room impulse response measurements and analysis at low frequencies

Concerning the first objective, a new database of RIRs has been introduced in
Chapter 2, measured in a rectangular room using subwoofers as sound sources.
The SUBRIR database aims to provide reliable acoustic measurements within
the frequency region of modal resonances, which are not offered by databases
available, and it is expected to find application in the testing of RASE algorithms
intended for music reproduction and in the validation of physical models for
room acoustics. The challenges in measuring RIRs at low frequencies (LFs),
related to high levels of ambient noise and the strongly nonlinear behavior of
the subwoofer, have been addressed. The exponential sine-sweep (ESS) method
was chosen for its desirable properties in terms of robustness to noise and room
transfer function (RTF) variations, and, most of all, for its ability to reject part
of the regular and irregular nonlinear artifacts. Unfortunately, the ESS method
is not immune to all kind of artifacts, as odd-order harmonic nonlinearities and
impulsive distortions partially overlap with the causal response of the room. A
careful calibration of the measuring equipment is then necessary to prevent these
artifacts to occur in the first place. Limiting the loudspeaker level, however,
results in poor signal-to-noise ratio (SNR) in the recorded signals. Even though
the SNR can be improved in postprocessing by synchronous averaging of
multiple RIRs, the level of the so-called noise floor is likely to be too high
to be able to obtain reliable estimates of the frequency-dependent reverberation
time (RT) at very LFs using standard procedures. Thus, a procedure has been
suggested which uses a fixed-bandwidth cosine-modulated filterbank to reduce
the influence of the band-pass filters, and estimates the RT from a noiseless
approximation of the RIRs obtained with the models and algorithms described
in Part II. The analysis of the retrieved RIRs and of the estimated RT revealed
the presence of strong room modes, with modal frequencies in good accordance
with their theoretical values. Of particular interest is the very energetic first
axial mode with a decay of almost 1.5 s, which is almost three times the RT at
other frequencies, and the partial presence of the cavity mode response, even
though the latter may not be excited by commercial subwoofers with a high-pass
filter built in.

Our contributions in the context of room acoustic measurements can be
summarized as follows:

• A novel database of RIRs measured in the modal frequency region.

• Best practice recommendations for acoustic measurements at very LFs.

• A reliable procedure for estimating reverberation time at very LFs.
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Parametric modeling of room acoustics using OBF models

The second major objective regarded room acoustic modeling by means of
parametric models. A consistent part of thesis has been dedicated to the
investigation of parametric models based on orthonormal basis functions (OBFs)
and to the development of identification algorithms for the estimation of the
model parameters. These scalable iterative algorithms are based on the desirable
properties of OBF models and on their previously unexplored interpretation as
an approximation of the RTF resulting from a superposition of a finite number
of resonant responses. The main idea of employing OBF models is that a good
approximation of the RTF can be obtained by reducing the distance between
the model poles and the true poles of the room acoustic system.

In Chapter 3, the main properties of OBF models have been discussed,
the most important being orthogonality, which provides a numerically well-
conditioned estimation problem, with estimates less prone to numerical
inaccuracies. The nonlinear problem of estimating the pole parameters was
overcome by using a matching pursuit (MP) approach, which performs an
iterative grid search on a set of complex-conjugate pairs of stable poles
distributed on the unit disc in a way that favors the modeling of sharp resonances
at LFs. Orthogonality assures that the pole estimation is numerically well-
conditioned. The OBF-MP algorithm developed has been compared to the
state-of-the-art method, the warped BU (wBU) method, to all-zero (AZ) and
pole-zero (PZ) models in terms of their modeling performance. Simulation
results have shown that OBF models, with parameters estimated either with
OBF-MP or wBU, are able to achieve a reduction in the approximation error
compared to AZ and PZ models, even when the increase in the filter complexity
is taken into account, and without the instability problems encountered with
PZ models. The same modeling accuracy achieved with conventional models
can be provided by OBF models with a reduction in the number of model
parameters of roughly 50% in full-band and up to 75% in the low and mid
frequencies. The features of the OBF-MP algorithm that offer an advantage
compared to the wBU method are the following: (i) scalability, given by the
iterative pole selection, (ii) stability, enforced by the fixed pole grid, which
also avoids polynomial factorizations, (iii) flexibility in the allocation of the
spectral resolution, provided by the freedom of positioning poles on the unit
disc based on a desired resolution or prior knowledge, only limited in number
by considerations concerning the algorithmic complexity.

In Chapter 4, the OBF-MP algorithm has been extended to the common-
denominator estimation of multiple RTFs. The simple modification that
leads to the OBF-GMP algorithm is intended to reduce the number of
parameters required to model the RTFs by estimating a set of poles common



246 CONCLUSION

to all source/receiver positions, with position-dependent linear coefficients.
Simulation results performed on the SUBRIR database have shown that a
further reduction up to 50% in the total number of model parameters can be
obtained for the same modeling accuracy achieved with the OBF-MP algorithm.

Our contributions in the context of parametric modeling of room acoustics can
be summarized as follows:

• A flexible algorithm delivering efficient, scalable, and stable OBF model
estimates from one or multiple RTFs.

• A means of allocating frequency resolution arbitrarily based on a desired
resolution or prior knowledge, not available in state-of-the-art methods.

• A reduction in the number of model parameters of 50% compared to AZ
and PZ models in full-band, and up to 75% in the low and mid frequencies.

• A further reduction up to 50% in the total number of model parameters
in the modeling of multiple RTFs at LFs when a common set of poles is
estimated.

Identification of room acoustic systems with OBF adaptive filters

The third major objective was to investigate the applicability of the developed
models and algorithms for the identification of room acoustic systems from
input-output data. The identification of RIRs, as required by most RASE
algorithms, is typically performed using adaptive filters.

Chapter 5, which has been structured to serve as a tutorial on the topic,
provides a review of the most important properties of OBF adaptive filters in
terms of their error performance and the dynamic behavior of the adaptation.
Orthogonality, indeed, allows to develop analysis tools enabling a comparison
between the performance of OBF filters, other fixed-poles adaptive filters
(FPAFs), and finite impulse response (FIR) filters. In short, orthogonality
provides a well-conditioned identification problem under a wide range of
conditions, which translates to faster convergence and lower variability compared
to FPAFs with the same pole set. Regarding the comparison with FIR filters,
the difference in performance is regulated to a large extent by the position of
the poles in the OBF filter, which determines not only the estimation accuracy
based on the distance from the true poles of the system, but also the rate of
convergence and the variability of the adaptive coefficients with respect to the
spectral characteristics of the noise and of the input signal.
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An iterative scalable algorithm has been introduced. The stage-based SB-OBF-
GMP algorithm, which exploits the grid-search idea of the OBF-GMP algorithm,
identifies a common set of poles of a multiple-input/multiple-output (MIMO)
room acoustic system, both from white noise and speech signals. The filter
coefficients of the multi-channel OBF filter are adapted with a modified version
of the NLMS algorithm, meant to deal with issues at very low model orders,
whereas the standard NLMS is used to track the instantaneous correlation
between the current residual signals and the output of candidate new sections
of the OBF filter, built from poles in the grid. The algorithm has been
used to identify the RTFs at LFs in different scenarios for real and simulated
rooms. Experimental results have shown that a significant improvement in
terms of accuracy and convergence compared to FIR filters and good robustness
with respect to position changes within a relatively large area are achieved
especially in small or damped rooms, as OBF filters are particularly efficient
in approximating room responses with either isolated resonances or highly
overlapping ones. The potential reduction in the filter order and the use of
a common set of poles may not only bring computational savings, but also
help in addressing some of the problems encountered in RASE applications.
An example in an acoustic echo cancellation scenario has shown that OBF
filters can provide good identification and cancellation performances already
for small model orders, for which FIR filters may encounter problems related
to undermodeling. Moreover, the possibility of fixing the poles in the filter
allows to achieve a desired frequency resolution, either by fixed configurations
of the poles or by estimation algorithms, which is a feature not available in
standard FIR filters. An example in this regard was given in the context of
digital equalization, showing how the poles of the inverse filter can be estimated
directly from input-output data, thus allocating resolution where needed, while
keeping the order of the equalizer as low as possible.

Our contributions in the context of identification of room acoustic systems can
be summarized as follows:

• A review of OBF adaptive filters and of the properties of the most common
adaptation algorithms.

• A scalable algorithm capable of identifying a common set of poles of a
multi-channel room acoustic system, both from white noise and speech
signals.

• An analysis of identification results in different scenarios at LFs with
respect to the characteristics of the room, both real and simulated.
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• Improvements in terms of identification accuracy and convergence
compared to FIR filters, as well as robustness with respect to changes in
the microphone positions, especially in small or damped rooms.

• A discussion on the applicability of OBF adaptive filters to RASE
applications, not only in terms of efficiency, but also with respect to
the possibility of addressing some of the most common problems.

• An example in the context of acoustic echo cancellation (AEC) at LFs,
showing good identification and cancellation performances already for
small model orders, for which FIR filters may encounter problems related
to undermodeling.

• An example in the context of room response equalization (RRE)
exemplifying how the poles of a low-order equalizer can be estimated
directly from input-output data using an OBF adaptive filter, thus
allocating resolution where needed.

Equalization of loudspeaker, room and car cabin responses

The fourth and last main objective of this thesis was that of designing
and implementing effective low-complexity solutions for digital equalization
applications.

Chapter 6 introduces an iterative procedure for designing a low-order equalizer
using parametric infinite impulse response (IIR) filters, specifically peaking
and shelving filters, to be used in the compensation of loudspeaker and room
magnitude responses. Despite the fact that these filters can only perform a
minimum-phase equalization, the proposed procedure minimizes the sum of
square errors between the system and the target complex responses. Moreover,
the previously unexplored orthogonality property of a particular implementation
form of these parametric filters allows to compute the least squares optimal
value for the gain parameter in closed-form. This property has been exploited in
the initialization of the filter parameters, which are then refined by a line search
optimization. Other advantages of this procedure, compared to state-of-the-art
methods, are an improved mathematical tractability of the equalization problem,
with the possibility of computing analytical expressions of the gradients, an
improved initialization of the parameters, including the global gain of the
equalizer, the incorporation of shelving filters in the optimization procedure,
robustness to local minima, and a more accentuated focus on the equalization
of the more perceptually relevant spectral peaks. Examples of loudspeaker and
room response equalization have proved that an effective low-order equalizer
can be designed, with good performances with respect to the state-of-the-art
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methods for a number of different error functions and perceptual objective
measures. Moreover, the proposed design procedure can be easily extended
to multi-point equalization, by means of a prototype average response, and to
minimum-phase transfer function modeling.

Chapter 7 describes the practical implementation of an existing solution for
the design of a robust MIMO equalizer meant to correct for nonminimum-phase
distortions in low-frequency acoustic responses of a car cabin. The approach
aims at equalizing the response of a primary loudspeaker in the listening area
by partial response inversion and by sound field superposition provided by a
number of support loudspeakers. The implementation of the adopted solution,
which is based on a polynomial-based control system framework, requires to
model different aspects of the acoustic transfer functions (ATFs). Most of
the details regarding modeling were not described in the original work, which
required further investigation into modeling techniques. In order to improve
robustness to ATF variations within the listening area, a probabilistic modeling
approach is applied, which uses a variable low-pass filter to decompose an ATF
into a deterministic low-frequency component, and a stochastic high-frequency
component. The same idea has been also used to generate ‘virtual’ ATFs to
compensate for the limited number of measurements available in the listening
area. The common-denominator modeling of the ATFs was also recommended.
For this purpose, the common-denominator BU method has been derived, with
the inclusion of a regularization parameter to mitigate rank deficiency problems.
Another requirement is the estimation of approximately common excess-phase
zeros for the design of a stable noncausal all-pass (AP) filter, whose role is to
remove phase distortions common to all positions in the listening area. The
idea is to first carry out a minimum-phase/all-pass decomposition of the ATFs,
and then model the AP components. A modified version of the BU method
has been suggested to find the zeros of the AP responses, which can then be
clustered together. It has been found that the model order can be estimated
a priori from the unwrapped phase response of the AP responses. It turns out
that the order of the AP responses is rather low, typically between 0 and 5,
suggesting that the ATF at LFs is indeed approximately minimum-phase. The
modified algorithm proved to be able to model the AP responses with high
accuracy.

Our contributions in the context of equalization can be summarized as follows:

• A novel low-order equalizer automatic design procedure using parametric
IIR filters, specifically peaking and shelving filters.

• An improved mathematical tractability of the minimum-phase equaliza-
tion problem using IIR parametric filters.
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• An improved automatic initialization of the filter parameters and a
stronger focus on the equalization of spectral peaks.

• An interpretation and implementation guidelines of an existing solution
for the equalization of nonminimum-phase distortions in low-frequency
acoustic responses of a car cabin.

• Efficient methods for common-poles PZ modeling and AP modeling for
nonminimum-phase equalization.

Industrial relevance of the research work

Most RASE applications, such as equalization, dereverberation, acoustic echo
and feedback cancellation among others, are nowadays commonly found in most
communication devices, such as teleconference systems, and audio equipment.
In all these applications, the desired signal enhancement task has to be
performed in real-time, which imposes limitations in terms of computational
complexity and latency. Thus, the efficiency of the digital filters employed in
RASE applications is an important aspect to consider. The wide-spread use of
FIR filters is motivated by their simplicity and the large availability of effective
solutions, but it may not be the best choice in terms of efficiency.

The core topic of this thesis, namely room acoustic modeling and identification
using OBF models and OBF adaptive filters (Chapters 3 to 5), presented an
alternative to FIR filters. Especially when its poles are fixed, an OBF filter
possesses similar characteristics to an FIR filter, with the added benefits of
having an IIR and the possibility of arbitrarily allocating spectral resolution,
potentially yielding higher accuracy with lower complexity. The actual
advantage of using OBF adaptive filters is however conditional to the position
of the poles and their distance from the actual poles of the RTF (or its inverse).
This means that in practical RASE applications, a calibration phase would
be necessary to first estimate a set of, possibly common, poles from input-
output data, which can than be kept fixed during the signal processing task,
or slowly adapted to keep track of variations in time of the room acoustics (if
computational requirements allow). A calibration phase is already employed
in existing teleconference applications, such as Skype™, suggesting that the
pre-estimation of the poles is a viable idea. Therefore, we believe that our work
could encourage the adoption of fixed-poles IIR filters in a number of audio
signal processing applications.

As a remark, we also believe that the room acoustic modeling algorithms
developed in this thesis could find application in the context of artificial
reverberation. Methods for synthesizing reverberation by means of a parallel
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of resonating filters have recently come on the market1, which could benefit
from our estimation algorithms to parametrize and then synthesize the acoustic
response of real rooms.

The rest of this thesis (Chapters 2, 6, and 7) dealt with different aspects of
loudspeaker and room equalization, and is the result of a collaboration with three
different companies operating in the field of high-tech communication systems
and consumer audio products, namely Bang & Olufsen A/S (Denmark), Televic
N.V. (Belgium), and Premium Sound Solutions N.V. (Belgium).

In recent years, digital room correction (DRC) solutions appeared as a
complementary tool to many high-end sound reproduction systems. The aim
of DRC is to equalize the loudspeaker/room response when two or more
loudspeakers are placed inside a listening room. The idea of DRC is first
to perform a series of RIR measurements at different microphone positions for
fixed loudspeaker positions, e.g. using the ESS method, and then automatically
design an equalizer capable of compensating for the deviations of the measured
responses from a desired response. An example of such automatic equalizer
design for magnitude response equalization was given in Chapter 6. The
proposed procedure uses possibly the most common type of equalizer found
in commercial products, such that the estimated parameters for the equalizer
could be directly used in practice. A possible refinement of the proposed design
procedure could consist in the inclusion of psychoacoustical criteria in the
optimization process, so as to obtain a perceptually better equalization. An
equalizer also able to correct for nonminimum-phase distortions can be designed
when multiple loudspeakers are available, e.g. when listening to stereophonic
content from a 5.1 surround system. An analysis and guidelines were presented
in Chapter 7 for the implementation of an existing solution for the automatic
design of such an equalizer, which is already used in commercial DRC systems
by Dirac Research AB (Sweden).

Another requirement of DRC systems is the availability of measured RIRs.
The recommendations for performing acoustic measurements and the reliable
procedure for estimating reverberation time at LFs presented in Chapter 2 could
be put into practice as analysis tools in this context. Possible improvements
to make the measurement procedure fully automatic concern the calibration of
the loudspeaker output level to mitigate the effects of the nonlinear behavior of
the loudspeaker, which could also be complemented by a method for modeling
and possibly control these nonlinearities.

1for instance, the Moodal© spectral resonator plugin developed by Tritik (France) consists,
most likely, of a parallel of resonators.
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Suggestions for future research

A consistent part of this thesis has been devoted to modeling and identification
of room acoustics using OBF models and their related adaptive filters. Even
though the theory of OBF models has been largely treated in the system
identification literature and previously applied in the field of audio and acoustic
signal processing, our work, to the best of our knowledge, is the first investigation
of the applicability of multi-pole OBF adaptive filters to RASE applications.
We believe, indeed, that the properties of OBF adaptive filters, described in
Chapter 5, and the fact that most algorithms developed for FIR filters are easy
to extend to OBF filters, make them good candidates to tackle past and future
issues in room acoustic signal processing.

The most important problem, which remains partially unsolved, is the
identification of the pole parameters from input-output data, especially in
the case of non-stationary and non-white signals. Indeed, the advantages of
adopting OBF filters are conditional to the fact that the poles of the filter
are close enough to the system poles. Regarding the approach adopted in
this work, some issues are still to be solved, mostly related to the algorithmic
computational complexity and the suboptimal solution given by the discrete
nature of the set of candidate poles. Although useful to avoid the use of nonlinear
optimization algorithms and to arbitrarily allocate frequency resolution, the use
of a grid search may prevent to fully exploit the modeling capabilities of OBF
models. One option would be to use the proposed algorithms employing a coarse
grid as a way of initializing the values of the pole parameters, which can be
then refined by nonlinear optimization techniques or recursive algorithms [170].
Simplified expressions for the gradients, as suggested in [171], could be used,
although possible convergence to local minima has to be considered.

An alternative would be to combine FIR and OBF filters together, similarly to
what has been proposed in [265] for the parallel filter model. The difference,
in this case, is that the resulting combined filter will have an infinite impulse
response (IIR) and will be orthonormal, thus keeping the desirable numerical
properties of OBF filters2. Different strategies could be adopted in this case.
For instance, an FIR filter with order equal to the maximum expected acoustic
delay could be placed in front of an OBF filter; this way, the FIR filter would
take care of modeling the acoustic delay and, possibly, the early reflections of
the RIR, whereas the OBF filter, with fixed or adaptive poles, would model the
reverberation tail efficiently.

The computational issues could be addressed by means of approaches in the
frequency domain [336] and/or by subband techniques [337]. For instance, a

2after all, an FIR filter can be interpreted as an OBF filter with poles in the origin.
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subband modeling algorithm could be developed using the so-called frequency
zooming (FZ) ARMA method [207], where the complex-valued subband
responses could be then modeled using OBF models with complex poles
only, with the real-valued responses obtained only at synthesis by complex-
conjugation. Subband modeling would be useful also to investigate the modeling
and identification capabilities of OBF models in different regions of the spectrum.
It can be expected that the increased modal density and the increased absorption
would result in favorable conditions for the applicability of OBF filters. More
absorption also implies shorter responses, such that the actual advantage over
FIR filters should be assessed also at higher frequencies.

Another open question, only partially addressed in this work, is related to
the identification of common poles. Although the idea proved to be useful to
reduce the total number of parameters, we did not address the issue related to
spatial sampling [338], i. e. related to the minimum number of microphones and
their relative distance necessary to accurately estimate the room modes at LFs.
Providing an answer to this question would open new possibilities, enabling
the development of RASE algorithms robust to RTF variations, and possibly
interpolation methods of RTFs at LFs [197]. Results in this direction would
be also useful for other applications, such as for simulating moving sources
or microphones in artificial reverberation, especially in the case of the modal
reverberator [83] described in the introduction of this thesis.

One of the assumptions commonly made in room acoustic signal processing,
including our work, is the linearity of the room acoustic system. However,
as discussed in Chapter 2, nonlinearities may appear in the acoustic response
when a loudspeaker is driven at high levels, as often happens with subwoofers
or loudspeakers in small devices. Modeling nonlinearities, such as the
harmonic distortions in a loudspeaker, may then provide ways to control or
cancel them. Nonlinear OBF filters, specifically those derived from Legendre
polynomials [339], have been suggested for nonlinear modeling of loudspeaker
responses, showing improved performances with respect to the better-known
Hammerstein and Volterra models [340]. These filters are also orthoghonal and
linear in the filter coefficients, such that adaptive filters can be applied similarly
to other linear OBF filters. An alternative, suggested very recently [341], is to
estimate the Volterra kernels through regularized single-pole OBF models. The
combination of a filter of this kind with a linear OBF filter, and possibly an FIR
filter, would generate an orthonormal filter with whom to model and identify
both the linear and nonlinear components of a loudspeaker/room acoustic
system.
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Appendix to Chapter 5

A.1 Gradient expressions for the poles

Here the full and approximated expressions for the gradients with respect to
the kth pole pair defined as pk = [ζk, ηk] = [−2ρk cosϑk, ρ2

k] are given. After
simple calculations and some reordering (and omitting the time index n and
the q operator, s.t. Dk ≡ Dk(n, q) and χk ≡ χk(n) = {ζk, ηk}), the partial
derivatives appearing in the second and third terms of equation (5.35) are given
by

∂ỹk(n)
∂χk

=
(
θ+
k

∂N+
k

∂χk
+ θ−k

∂N−k
∂χk

)
xk(n)− 1

Dk

∂Dk

∂χk
ỹk(n) , (A.1)

∂ỹi(n)
∂χk

=
(
θ+
i N

+
i + θ−i N

−
i

)∏i−1
j=k+1Aj

Di

∂D̄k

∂χk
xk(n)− 1

Dk

∂Dk

∂χk
ỹi(n) , (A.2)

where xk(n) = Pk
∏k−1
j=1 Aju(n) (the output of the kth resonator) and ỹi(n),∀i,

are readily available signals. By noticing in (5.3) that |1± pk| =
√

1∓ ζk + ηk,
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the partial derivatives in (A.1) and (A.2) with respect to ζk are given as

∂N+
k

∂ζk
= −

√
c

2
√
a

(z−1 − 1) ,

∂N−k
∂ζk

=
√
c

2
√
b
(z−1 + 1) ,

∂Dk

∂ζk
= z−1 ,

∂D̄k

∂ζk
= z−1 , (A.3)

with a = 1 − ζk + ηk, b = 1 + ζk + ηk and c = (1−ηk)/2, whereas the same
expressions with respect to ηk are given as

∂N+
k

∂ηk
= 1

2

[√
c√
a
−
√
a

2
√
c

]
(z−1 − 1) ,

∂N−k
∂ηk

= 1
2

[√
c√
b
−
√
b

2
√
c

]
(z−1 + 1) ,

∂Dk

∂ηk
= z−2 ,

∂D̄k

∂ηk
= 1 . (A.4)

The first term of expression (A.2), however, can be computationally expensive,
especially for small k. For this reason, a simplification has been proposed
in [171] assuming slow convergence of the parameters and poles close to the
unit circle, which allows to approximate the gradient only by the term in (A.1).

A.2 The BB-OBF-GMP identification algorithm

Here, the BB-OBF-GMP identification algorithm, introduced in [154], is
described. Similarly to the SB-OBF-GMP algorithm, the purpose of the BB-
OBF-GMP algorithm is to estimate the poles of a multi-channel OBF adaptive
filter from single-input/multiple-output (SIMO) data. The algorithm aims to
build a SIMO adaptive OBF filter including one common pole pair in the set
of active poles pAm at a time, so that the sum of instantaneous squared errors
of the R acoustic channels in (5.38) is minimized. The algorithm is designed
for stationary white noise input signals, and, for this reason, it uses the LMS
algorithm for adapting the linear coefficients of the multi-channel OBF adaptive
filter, according to

Θ̂M (n+ 1) = Θ̂M (n) + µκ(n,pAm)εm(n) . (A.5)
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u(n)
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m← m+ 1

while m ≤ mmax do

Figure A.1: The schematics of the BB-OBF-GMP identification algorithm.
Inbound dashed lines represent initial conditions and inputs, while outbound
dashed lines represent outputs.

Also in this algorithm, the poles of the adaptive OBF filter are estimated
using a grid-based matching pursuit algorithm, which is depicted in Figure A.1
with a slightly simplified notation. The main difference compared to the SB-
OBF-GMP algorithm is that the correlation coefficients between the candidate
intermediate signals and the prediction error signals are not tracked in time,
but obtained by least squares (LS) estimation on blocks of data of length Nb
samples. In each block (i.e. every Nb samples), one pole pair is selected from
the grid of L candidate poles pairs pl ∈ Ωg as the one that produces the pair
of candidate intermediate signals κm+1(n,pl) = [κ+

m+1(n,pl), κ−m+1(n,pl)] that
is mostly correlated with the last Nb samples of the prediction error signal
produced in each acoustic channel considered. The vector κm+1(n,Ωg) =
[κm+1(n,p1), . . . ,κm+1(n,pL)]T of the intermediate signals computed for all
the pole pairs pl ∈ Ωg is then collected for Nb samples and stacked to build
the dictionary Dm+1, which is a Nb × 2L matrix, whose columns d±m+1(pl) are
the last Nb samples of the L pairs of intermediate signals κm+1(n,pl). At each
block, a pole pair is selected based on the correlation of the pairs of intermediate
signal vectors d±m+1(pl) with the last Nb samples of the prediction error vector
εm(n), stacked to form the Nb×R matrix Em , whose columns εrm contain the
last Nb samples of the prediction error signals εrm(n). The correlation of each
pair of intermediate signal vectors d±m+1(pl) with the vector εrm for the r-th
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channel is computed as

αrm+1(pl) =
√[

αr+m+1(pl)
]2 +

[
αr−m+1(pl)

]2

=
√([

d+
m+1(pl)

]T
εrm

)2
+
([
d−m+1(pl)

]T
εrm

)2
, (A.6)

where the correlation coefficients αr±m+1(pl) can be obtained as the elements of
the 2L×R matrix Λm+1 = DT

m+1Em.

The pair of candidate intermediate signal vectors in the dictionary having
maximum correlation with the prediction error matrix Em is selected according
to c = arg maxl

∑R
r=1 α

r
m+1(pl) and the corresponding pole pair pc ∈ Ωg is

added to the active pole set pAm+1 and included in the multi-channel OBF
adaptive filter. The linear filter coefficients θ̂rm+1(n) = [θ̂r+m+1(n), θ̂r−m+1(n)] are
set equal to the correlation coefficients α̂rm+1(pc) = [α̂r+m+1(pc), α̂r−m+1(pc)] (with
r = 1, . . . , R), normalized w.r.t. the norm of d±m+1(pc). In this way, the linear
filter parameters are already close to their optimal value, so that a small value
for µ can be used in order to achieve better accuracy with the LMS algorithm.
Finally, the algorithm moves to the next block (m ← m + 1) where another
pole pair is estimated from the last Nb samples of the prediction error signals
and of the (m+ 1)-th candidate intermediate signals as described above, until
a desired number of pole pairs mmax has been reached or some other stopping
criterion based on the error in (5.38) is satisfied.

Notice that the pole selection criterion, based on the maximum of the average
correlation over the R channels, is only valid under the assumption that
the input signal has a flat spectrum. In case of a non-white input signal,
the correlation coefficients should be extracted from the matrix Λm+1 =
(DT

m+1Dm+1)−1DT
m+1Em. However, the matrix inversion, or alternatively the

computation of the pseudo-inverse, increases the computational complexity and
is prone to numerical inaccuracies, which is one of the reasons that led to the
SB-OBF-GMP algorithm.
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Appendix to Chapter 6

B.1 SSE minimum-phase cost function

Here the sum of squared errors (SSE) cost function in (6.4) for the minimum-
phase equalization problem is analyzed, using the relation by which the
frequency response of a minimum-phase transfer function H(k) can be written
as

H(k) = |H(k)|e−jH{ln |H(k)|} (B.1)

For simplicity, the weighting matrix in (6.4) is set toW (k) = 1 and the notation
is simplified. The cost function in (6.4) can be elaborated in terms of magnitude
and phase of the frequency responses involved, as shown in (B.2), where the
Euler’s rule and the linear property of the Hilbert transform have been used ({·}∗
indicates complex conjugation). It can be noticed that the optimal equalizer,
for which E2(k) = 0, is defined as F (k) = T (k)

H(k) = |T (k)|
|H(k)|e

j(φT (k)−φH(k)).

This cost function has a quadratic form, which assumes large values whenever
the power of the equalized magnitude response is significantly larger than
the power of the target response, and whenever the difference between their
magnitude responses on a natural logarithmic scale is large (i.e. when the value
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of cos is far from one).

E2(k) =(H(k)F (k)− T (k))∗(H(k)F (k)− T (k))

=(F ∗(k)H∗(k)− T ∗(k))(H(k)F (k)− T (k))

=|F (k)H(k)|2 + |T (k)|2

− |F (k)H(k)T (k)|
(
e−j(φF (k)+φH(k)−φT (k)) − ej(φF (k)+φH(k)−φT (k)))

=|F (k)H(k)|2 + |T (k)|2 − 2|F (k)H(k)T (k)| cos(φF (k) + φH(k)− φT (k))

=|F (k)H(k)|2 + |T (k)|2 − 2|F (k)H(k)T (k)|

cos(−jH{ln |F (k)|} − jH{ln |H(k)|+ jH{ln |T (k)|})

=|F (k)H(k)|2 + |T (k)|2

− 2|F (k)H(k)T (k)| cos(−jH{ln |F (k)|+ ln |H(k)| − ln |T (k)|})

=|H̃(k)|2 + |T (k)|2 − 2|H̃(k)T (k)| cos(−jH{ln |H̃(k)| − ln |T (k)|})
(B.2)

To simplify the analysis even further, a zero-phase, flat target response (T (k) =
1) is considered, for which the cost function assumes the form

E2(k) = |H̃(k)|2 + 1− 2|H̃(k)| cos(−jH{ln |H̃(k)|}) (B.3)

In this case, it is easy to see that the error is larger when the equalized magnitude
response of H̃(k) has values larger than one, with the error increasing more than
linearly for increasing magnitude, which explains the focus on the equalization
of strong peaks.

B.2 The orthogonality property of the Regalia-
Mitra parametric filters

A brief explanation of the property introduced in Section 6.4 is provided here.
Define a vector x containing N samples of the input signal x(n) and the vector
z containing N samples of the output signal z(n) of the all-pass filter Am(z).
A known property of an all-pass filter is the preservation of the energy, such
that the energy of the input signal is equal to the energy of the output signal

∞∑

n=−∞
|z(n)|2 =

∞∑

n=−∞
|x(n)|2 (B.4)
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or, in terms of vector inner products, 〈z, z〉 = 〈x,x〉. With reference to
Figure 6.3b, the output of the filter ym(n) is formed from the weighted
summation of two signals, yη(n) = x(n) + z(n) and yβ(n) = x(n) − z(n).
The orthogonality of these two signals can be assessed from their inner product,

〈yn,yr〉 = 〈x+ z,x− z〉 (B.5)

= 〈x,x〉 − 〈x, z〉+ 〈z,x〉 − 〈z, z〉 = 0, (B.6)
which follows from the equality stated above, 〈z, z〉 = 〈x,x〉, and from 〈x, z〉 =
〈z,x〉.

B.3 Gain LS estimation

The first-order partial derivative of the cost function in (6.19) w.r.t. the gain
parameter V is given by equation (B.7).

∂εSSE
m

∂V
= 1
N
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k

(1
2W (k)Hs(k)F βm(k)

)∗(
W (k)
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2W (k)Hs(k)F ηm

)

+ 1
N

∑

k
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)(V
2 W (k)Hs(k)F βm
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(B.7)

− 1
N

∑

k

(1
2F

β∗
m (k)H∗s (k)W ∗(k)

)(
W (k)T (k)

)
.

Since orthogonality in the time domain (see Appendix B.2) implies orthogonality
also in the frequency domain, the first summation in the equation equals zero
(F ηm(k) and F βm(k) are orthogonal). By setting ∂εSSE

m /∂V = 0, the following
equation is obtained

V
∑

k

(1
2F

β∗
m (k)H∗s (k)W ∗(k)

)(1
2W (k)Hs(k)F βm

)

=
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W (k)T (k)

)
.

(B.8)

which provides an estimate for the gain as

V̂ =
∑
k

[
F β∗m (k)H∗s (k)W ∗(k)

][
W (k)T (k)

]
∑
k

[
F β∗m (k)H∗s (k)W ∗(k)

][
W (k)Hs(k)F βm(k)

] (B.9)
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which is equivalent to the expression in (6.17).

B.4 Gradients and Jacobians expressions

Based on the method chosen to perform the line search at each stage, the search
direction pi requires the computation of the gradients ∇F (i)

s = ∂F(i)
s /∂θ(i)

s (in
the SD and quasi-Newton methods) or of the Jacobians ∇e(i)

s = ∂e(i)
s /∂θ(i)

s (in
the GN method), where1

F (i)
s = 1

N

∑

k

e(k,θ(i)
s , V (i)

s )2 = 1
N
e(i)H
s e(i)

s (B.10)

The gradient of the cost function can be written as

∇F (i)
s = 2

N

∑

k

∂e
(i)
s (k)
∂θ

(i)
s

e(i)
s (k) = 2

N
∇e(i)H

s e(i)
s , (B.11)

where the Jacobian is given by, for k = 1, . . . , N ,

∂e
(i)
s (k)
∂θ

(i)
s

= 1
2W (k)Hs−1(k)∂Fms(k,θ

(i)
s , V

(i)
s )

∂θ
(i)
s

, (B.12)

so that the partial derivatives ∂F (i)
ms

(k)
∂θ

(i)
s

for peaking and shelving filters are

required. In order to use the Newton method, the exact Hessian ∇2F (i)
s =

∂2F(i)
s /∂θ(i)2

s should be computed. Analytic expressions for the second-order
partial derivatives can be obtained, but the advantages of using the Newton
method are outweighed by a higher complexity.

Peaking filters

The frequency response of peaking filters in the linear-in-the-gain (LIG) form
can be written, substituting (6.13) in (6.9), as

F2(k) = (1 + a)(1 + 2dk + k2) + V (1− a)(1− k2)
2(1 + d(1 + a)k + ak2) , (B.13)

1For convenience here k stands for e−jωk/fs , so that the transfer functions are evaluated
at z = ejωk/fs , and z−1 can be substituted by k. {·}H indicates Hermitian transpose.
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and its first-order partial derivatives w.r.t. the parameters a and σ = cos−1(−d)
as

∂F2(k)
∂a

= (1− V )(1− k2)(1 + 2dk + k2)
2(1 + d(1 + a)k + ak2)2 (B.14)

∂F2(k)
∂σ

= sin(σ)(1− V )(1− k2)(1− a2)k
2(1 + d(1 + a)k + ak2)2 . (B.15)

Shelving and high-pass (HP)/low-pass (LP) filters

The frequency response of LF and high frequency (HF) shelving filters in the
LIG form can be written, substituting (6.10) in (6.9), respectively as

FLF
1 (k) = (1 + a)(1− k) + V (1− a)(1 + k)

2(1− ak) (B.16)

FHF
1 (k) = (1 + a)(1 + k) + V (1− a)(1− k)

2(1 + ak) , (B.17)

and its partial derivatives w.r.t. the parameter a as

∂FLF
1 (k)
∂a

= (1− V )(1− k2)
2(1− ak)2 (B.18)

∂FHF
1 (k)
∂a

= (1− V )(1− k2)
2(1 + ak)2 . (B.19)

The frequency response for HP and LP filters is obtained by setting V = 0
in (B.16) and (B.17), respectively, and their partial derivatives w.r.t. a by
setting V = 0 in (B.18) and (B.19).
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Appendix to Chapter 7

C.1 SIMO MSE-optimal equalizer

Here more details about the interpretation of the simplified expression in (7.13)
for the SIMO MSE-optimal equalizer, reported here for convenience,

R = q−d0F∗
A

β

{
qd0F B∗

β∗

D

E

}
+
,

are provided. The polynomial matrix B of the model numerator polynomials
Bi can be approximated as a combination of two parts, one common to all Bi’s,
here called Bc and a non-common part Bn, so that each numerator polynomial
can be written as Bi ≈ BcBni . Also, the RMS average can be divided in a
common and a non-common part as β ≈ βcβn, where βc is the minimum-phase
equivalent of Bc, which together define the all-pass filter F = Bc/βc in (7.8).
The expression above can then be written as

R ≈ q−d0
Bc∗
βc∗

A

βcβn

{
qd0

Bc

βc
Bc∗B

n
∗

βc∗βn∗

D

E

}
+
,

And simplified further, noticing that Bc∗Bc = βc∗β
c,

R ≈ q−d0
Bc∗
βc∗

A

βcβn

{
qd0
Bn
∗

βn∗

D

E

}
+
.

If now the same decomposition is used, the modeled TFs can be written as

H ≈ BcBn

A
.
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We first apply the average minimum-phase equalizer A/β, thus obtaining

Ĥ = HA
β
≈ BcBn

A

A

βcβn
= BcBn

βcβn
.

Then we apply the time-reversed and delayed all-pass response q−d0F∗ =
q−d0Bc∗/β

c
∗, obtaining the non-common excess-phase all-pass TFs

H̀ = Ĥq−d0F∗ ≈
BcBn

βcβn
q−d0

Bc∗
βc∗

= q−d0
Bn

βn
.

The previous equation holds exactly if the decomposition Bi = BcBni actually
exists, while pre-ringing is introduced in any other case (i.e. if F uses nearly-
common excess phase zeros instead of truly common excess phase zeros). It
is clear now that the argument of the causal operator {·}+ has the purpose of
implicitly equalizing the non-common excess-phase part of the TFs by means
of their average, weighted by the target TFs

H́ = H̀
{
qd0
Bn
∗

βn∗

D

E

}
+

= q−d0
Bn

βn

{
qd0
Bn
∗

βn∗

D

E

}
+

= q−d0
Bn

βn

{Bn
∗

βn∗

D̃

E

}
+
,

where D = q−d0D̃ was used in the RHS of the last equation. Note that any
acoustic delay in Bn

∗ is compensated for by the delays in the target D, whereas
the delay in the first term of the RHS of the equation is the equalization delay.
Also notice that, in the SISO case, the non-common terms Bn and βn are equal
to one, so that the compensator has the form (7.14) and the equalized response
is given by

H́ = HR = B

A
q−d0

B∗
β∗

A

β

D̃

E
= q−d0

B

β

B∗
β∗

D̃

E
= D

E
, (C.1)

i.e. in theory we perform perfect equalization up to the delay d0. However,
note that d0 is theoretically infinitely long, since it is defined as the length of
the all-pass impulse response of F (i.e. truly perfect equalization requires an
acausal filter, which is not possible in practice).

The above interpretation can be extended to the case in which the probabilistic
model is used and to the MIMO case. However, the introduction of the
probabilistic model and the inclusion of the matrices V andW in the definition
of the spectral factor (see e.g. (7.28)), make the interpretation more involved.

C.2 Zero-clustering algorithm

Here, the zero clustering algorithm suggested in [224] is reported, with a slightly
different notation. The scope of the algorithm is to classify the excess-phase
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zeros of B1j , . . . , Bpsj , identified using the AP-BU method, into separated
clusters centered around the excess phase zeros of the complex average TF Boj .
The requirement is that each cluster must contain exactly one zero from each
TF Bij .

Suppose that Boj contains M̃o zeros zom (with m = 1, . . . , M̃o) outside the unit
circle in the upper half plane, and that each Bij contains M̃i zeros zim ∈ zi
(with m = 1, . . . , M̃i and i = 1, . . . , ps). In [224], it was assumed that M̃o ≤ M̃i;
the case in which M̃o > M̃i can be included anyway, with the difference that
not every zom ∈ zo will be the center of a cluster. The idea is that each
zero zom ∈ zo is associated with one zero zim ∈ zi for each ith TF, so that
M̂ = min{M̃o,mini{M̃i}} clusters Cm are being formed, defined as

Cm = {z1k1
m
, z2k2

m
, . . . , zpskpsm } (C.2)

where the indexes kim determine which of the zeros zi1, . . . , ziM̃i
∈ zi is to be

associated with a certain nominal zero zom ∈ zo. Another set Zo is being used,
along with an index set µ, defined as

µ = {µ1, . . . , µM̄} ⊂ {1, . . . ,Mo} (C.3)

Zo = {zoµ1 , . . . , zoµM̄ } ⊂ {zo1, . . . , zoM̃o
} (C.4)

where µ is always ordered, i.e., µj < µj+1, j = 1, ..., M̄ − 1.

Note that M̄ is the number of elements in µ and Zo, which varies between
different passes through the algorithm. The algorithm is greedy in the sense
that, by a principle of ‘mutually nearest neighbors’, it prioritizes dense and well
separated clusters instead of minimizing a global criterion based on average
distances, as is often the case with other clustering algorithms. The algorithm
is described in pseudo code below.
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Algorithm 4 Zero-clustering algorithm [224]

for m = 1 to M̃o do
Cm ← ∅

end for
for i = 1 to ps do
Zo ← zo; X0 ← ∅; µ← {1, . . . , M̃o}; ξ ← ∅;
repeat

for j=1 to M̄ do
m← µj
Let zikim be the zero ∈ zi closest to zom;
Let zokim be the zero ∈ Zo closest to zikim ;
if zokim = zom then

Add zikim to Cm: Cm ← Cm ∪ {zikim};
Remove zikim from zi: zi \ {zikim};

else if
thenAdd zom to X0: X0 ← X0 ∪ {zom};
Add m to ξ: ξ ← ξ ∪ {m};

end if
end for
Zo ← X0;
µ← ξ;

until Zo = ∅ or M̄ < M̃o − M̃i

end for
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