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Abstract—Long Short-Term Memory (LSTM) has shown sig-
nificant performance on many real-world applications due to its
ability to capture long-term dependencies. In this paper, we utilize
LLSTM to obtain a data-driven forecasting model for an applica-
tion of weather forecasting. Morcover, we propose Transductive
LSTM (T-LSTM) which exploits the local information in time-
scries prediction. In transductive learning, the samples in the
test point vicinity are considered to have higher impact on fitting
the model. In this study, a quadratic cost function is considered
for the regression problem. Localizing the objective function is
done by considering a weighted quadratic cost function at which
point the samples in the neighborhood of the test point have
larger weights. We investigate two weighting schemes based on
the cosine similarity between the training samples and the test
point. In order to assess the performance of the proposed method
in different weather conditions, the experiments are conducted
on two different time periods of a year. The results show that
T-LSTM results in better performance in the prediction task.

Index Terms—Transductive Learning, Long Short-Term Mem-
ory, Weather Forecasting.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) [1] are one of the most
popular data-driven approaches used for time-series prediction.
Having information in a sequential form, the input of the RNN
in each time step includes the information of the correspond-
ing time step in the sequence and the previous information
provided by a feedback loop. This feedback loop makes the
output of RNN in the previous time step to be seen as an input
in the current one. Despite the power of RNNs to understand
the short-term dependencies, they have problems in capturing
long-term ones due to the vanishing gradient problem [2]. The
vanishing gradient problem expresses that using a gradient-
based optimization in RNNs, the error gradients vanish in
the earlier inputs after propagating through several steps.
Consequently, the information of earlier steps are neglected
in prediction or classification task. To avoid the vanishing
gradients problem in RNNs, Hochreiter & Schmidhuber pro-
posed Long Short-Term Memory (LSTM) (3] which is able
to capturc long-term dependencies by utilizing a memory
cell and gating method. LSTMs have been widely used and
shown significant performance on different sequence learning
problems such as video classification, machine translation
and speech recognition [4], [5], [6]. Recently, there has been
an increasing interest towards using LSTMs for time-series
prediction such as air pollution forecasting, diagnosing based
clinical data and traffic flow prediction [7], [8], [9].

Mostly, learning methods are based on inductive learning,
where it is assumed that there is a function that maps the input
to the output and the aim is to approximate the function in an

optimal way. Learning based on induction indicates a global
model based on all training data points and the model can
be used to predict or classify an unscen data point regardless
of its position in the feature space. The idea of locality was
first introduced by Vapnik in [10] where he discussed the
trade off between the capacity of learning and the number
of data points. Due to the possible differences in distribution
of data in various regions of the feature space, it is meaningful
to consider different learning capacities and properties for
different areas in the feature space [11].

In transductive learning (also known as local learning),
the learning objective is more focused on obtaining good
performance in the vicinity of the unseen data point. Note that
to classify or predict an unseen test point, the label is assumed
to be unknown while the feature vector is known. Based on
the idea of transduclive learning, the models are created such
that their performance in the neighborhood of the test point in
the feature space is optimized {12]. One intuitive approach is a
weighting scheme that considers weights for the data points in
the training set based on their distance from the test point: the
data points in the neighborhood of the test point obtain higher
weights. As shown in [11], these weights can be binary or
real. If the weights are binary, one may utilize a k-Nearest
Neighbor (k-NN) approach to select part of the data points
and create the model based on these samples. Nevertheless, in
case of real values, each data point receives a weight based on
its similarity with the test point. The closest sample gets the
highest weight and the furthest one receives the lowest one.
Such weighting scheme was used in the framework of Moving
Least Squares by Levin [13].

Transductive learning has been used in different types of
problems. Do & Poulet proposed a parallel ensemble learning
algorithm of random local Support Vector Machines which
can help in dealing with some of the issues related to big data
problems [14]. Gilardi & Bengio utilized transductive learning
for spatial data analysis [15]. Zhai et al. deployed transductive
learning in a multi-view approach [16]. In several applications,
transductive learning outperforms inductive learning in terms
of accuracy [17], [18], [19].

The weather system is known as a challenging complex
system, and reliable weather forecasting has been the subject
of many studies. State-of-the-art methods utilized Numerical
Weather Prediction (NWP) which is a computationally intense
method and demands thousands of processing units to have
reliable forecasting models [20]. Recently, to avoid the short-
comings of NWP, data-driven approaches have become a major
interest of the researchers to predict the future behavior of
the weather system. In our previous studies, we investigated



transductive learning as a data-driven approach for weather
prediction in the frameworks of feature selection and function
approximation [21], [22]. The results of these studies suggest
that deploying transductive learning can improve the predic-
tions performance.

In this study, we deploy LSTM for temperature prediction
and proposc Transductive LSTM (T-LSTM) by altering the
cost function in the regression problem. In the proposed
method, the impact of the training samples on the cost function
is determined by their similarity to the test point. In this study,
the weights of the training data points are defined based on
their cosine similarity with the test point.

The remaining of this paper is as follows: first, in section
II we discuss LSTM architecture and how they can be used
for regression problems. Then, in section IV we explain the
proposed T-LSTM approach. Afterwards, the experimental
results on an application of weather forecasting is shown in
section V. Finally, the conclusion is provided.

II. LONG SHORT-TERM MEMORY

The original idea of LSTM was initially proposcd by
Hochreiter & Schmidhuber [3] and since then different ap-
proaches have been proposed to improve the performance of
LSTM [23], [24], [25], [26]. In this study, we describe and
deploy the popular architecture proposed by Gers ct al. [27]
and used in many other studies such as [28], [29], [6].

LSTM utilizes a gating mechanism to control the informa-
tion that has to be kept over time, the duration it has to be
kept and the time that it can be read through the memory cell
[30]. In this paper we consider the LSTM cell as described in
the paper of Graves [29]. To process the information, LSTM
benefits from three gates. Assuming %, f;, o, ¢ and hy
lo indicate the values of the input gate, forget gate, output
gate, memory cell and hidden state at time ¢ in the sequence
respectively and z; be the input of the system at time ¢, the
architecture of the LSTM cell can be defined as follows [29]:

iy = o(Wyizy + Wiih 1 + Weci_1 + by) ()]

ft = O(H/-Lf.l't = I’V,l,,fh,‘;_L o i'ch‘Ct—l st bj) (2)

¢ = fi @ cemq + 0 © tanh(Woexy + Wichi—y +b:)  (3)
0 = U(onl‘: + [’Vhah’tAl + M/’coct ¥ ba) (4)

hy = 0, ® tanh(cy). (3)

Note that o(-) represents the sigmoid as the activation func-
tion. Both logistic sigmoid and hyperbolic tangent are applied
element-wise. The full weight matrices W, for j € {2, f, 0,6}
are the weights for the input z; in input, forget and output
gates and the memory cell. The weight matrices W, for
J € {i, f,o} are diagonal matrices that are related to the
connection of the cell memory to different gates. Note that
the number of neurons for all gates is a predefined parameter
and the equations (1) to (5) are applied for each neuron.

Denoting n as the number of neurons, then {i;, fi, ct, 00, hi } €
R™"*!. For simplicity, in the rest of the paper to refer to
the weights and biases in the LSTM model, we use column
VECLOTS Wisym and bigm which include all the elements in
{V[';.mﬁu M’;ct'! M’fm‘f: th: ch: [/V.Tc; Wh(:s l/V:!:rl-, H/hm Wr.n} and
{bi,dg, be, by} respectively. The LSTM equations can be
briefly written as follows

Ct = f((-'t-—ls h‘t—l: g Wistm, bistm}
(6)

hy = g(he-1, ce—1, ¢; Wistm, bistm)

where ¢(-) and f(-) can be derived from equations (1) to (3).

ITIT. TRAINING LSTM FOR TIME-SERIES PREDICTION

Given a uni-variate or a multi-variate time-series, one may
consider the whole time-series as a sample and train the
LSTM network. For systems with complex dynamics, such
as chaotic systems, it was shown by Suykens et al. [31] how
one can improve trajectory learning by training on packets
of increasing size. In order to improve the learning process
and performance, we define smaller sub-samples from the
original time-series. As shown in Fig. 1, we deploy a moving
window to sample from the original time-scerics. Note that the
illustrations are done for a uni-variate time-series, and it can
be extended to a multi-variate casc.
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Fig. 1: Sampling from the original time-series

Considering T the sequence length, the sequence z(*) =
[T Ter1; - 3 xegr—1) € RT and y® = 247 14, € R are
the t-th input and output of the LSTM network, respectively.
Note that ¢ is a positive integer that indicates the number of
steps ahcad to be predicted. Also, N is the total number of
subsamples and it depends on the length of the original time-
series and the sequence length 7.

Fig. 2 depicts how LSTM models process sequential data.
The values of gates, memory cell and hidden states are updated
in a recurrent way. As shown in the unfolded scheme, in each
time step, the input of the LSTM cell includes the input of the
corresponding time step and the previous hidden state values.
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Fig. 2: Unfolded LSTM model

To predict the future behavior of the system, one may use
a dense layer as follows

?}“) . w:{ensehc#r—x + bdense, t=1,---,V, (7)



where Wyanse € B! and bgense € R are the weights and bias
term in the dense layer. Note that the dimension of the hidden
state is equal to the predefined number of neurons. Clearly, in
the last step, the hidden state values include the information
of all previous inputs as it is a function of cell memory and
the output gate (3).

In this paper, we use a quadratic loss function to train
the network for the regression problem and deploy Lg-norm
regularization to avoid overfitting. By denoting w and b all the
parameters of the LSTM layer (wisen, and big,,) and the dense
layer (Waense and bgense), the objective function is defined as
follow

(u}lstma Weense bistm: bdensv) = (IL b) = arg minJ
w,b

N , (®)
= % Z @ - y)? + ywlw

t=1
where v € R" is the regularization parameter that has to be
tuned and §‘%) is the estimated value for the output of the
system when z{*) is the input sequence. Given an unseen data
point z( with length T and zf,") representing the ¢'-th element
in the sequence, the hidden state values can be evaluated as
follows

hy = glhy -1, 00 -1, ZL(F); Wistm Blstm): ®
where t' =1, --- ,ip+ T — 1. Then, the prediction is done as
follows

:,:,(77) _

- "fﬂ;nsc”'nﬂd + bdense- (10)

1V. TRANSDUCTIVE LSTM FOR TIME SERIES PREDICTION

A. Optimization problem

Mostly, LSTM is deployed for regression as explained in
the previous section. In the corresponding model, all subsam-
ples have the same impact on the model parameters (w, b).
However, in the proposed Transductive LSTM (T-1.STM), the
influence of each training data point on the parameters depends
on the similarity of the test data point, which is a new sequence
with length 7', to the corresponding data point. Therefore, the
emphasis of the training phase is to obtain a better performance
in the vicinity of the test point, and higher importance is given
to the performance of the model for estimating the training
samples that are in the neighborhood of the test point. As a
result, all model parameters depend on the test point.

Assuming z(7) being an unseen sequence, the state space
model of the T-LSTM can be written as follows

Ctin = f(ctfl‘n: . 1,75 Lt; Wistm,n» blstm,n)
(an
ht:n = Q(ht—l,n: Ci—1,nm, Lt Wistm,n» blstm,n)-

We use 7 as a subscript is to indicate that the model param-
eters depend on the new given data point 2. Afterwards, the
prediction using the dense layer can be written as follows

~(t)

Y = w(};nse‘nh£+7‘—l.n + bdcnsc‘q: t=1,.--,N, (12

where Waense,y € R™*! and bgense,y € R are the weights and
bias term in the dense layer.

To specify the dependencies on the new unseen data point,
assume s, being the similarity between length 7" sequences
z() and 2z, and w, and b, denoting all the parameters
in (Wistm,n; Wdense,;) aNd (Distm,n; Bdense,n) respectively. The
objective function can be written as follows

(’wlstm.rp @dense,n‘ blstm,rp bdense‘?]) = (wrp b-r,v) = arg min -]r,
Wy by

N
Z ﬁe,n(?}g) = .11("'))2 + 'y,,'wg Uy
t=1

2

Iy =
(13)

where s;, € R7T. Note that the main difference between
(8) and (13) is the fact that in the latter, all thc modcl
parameters depend on the new point 200, Thus, for each
unseen subsample the model has to be retrained. This means
that all the parameters i, and by, can be different for cach test
point. Therefore, the main drawback of the proposed method
is its high time complexity.

The similarity function s, can take binary or positive real
values. In case of a binary value, k-Nearest Neighbors of z(")
are selected as training data and the rest of the samples are
discarded. In this case, s; , for all selected samples are equal
to one. Hence, their impact on the training phase is the same.
In addition, one may deploy a clustering approach to select the
samples similar to the test point. Bandara et al. [30] utilized
clustering to group the data and then trained a separate LSTM
model per cluster. Note that in this case the number of data
points to train the model is reduced.

On the other hand. in case s;, are real-valued, all sub-
samples are taken into account in the training phase, while
their impact on the training phase is different. In this case s; 5
can be calculated using a similarity function, e.g. Gaussian
or cosine similarity. In this study we use cosine similarity to
weight the g}jaining samples. Cosine similarity is defined as
Kip = ”—z”é;)ﬂﬁl}ﬂ and it takes a value between -1 and 1. To
achieve a non-negative similarity value, we perform two trans-
formations on the cosine similarity: 1) linear transformation at
which point s;., = s, + 1 such that the similarity is between
0 and 2, and 2) non-linear sigmoid transformation at which
point siy = 0(Kt,y) = Trapimy Such that the similarity
is between 0 and 1. Note that, other similarity functions such
as the Gaussian similarity can be used to specify the weights;
however, in this study we deploy cosine similarity to avoid
additional tuning parameters.

For a given point 2\ the updates of the hidden state are

done as follows

hi’,?} = g(h‘t’wl,n: Ct'—1,m» zi(fn); ﬁ"lstm,m Blstm.n) (14)
where t' = 7.+ ,n+ T — 1. Afterwards, the final prediction
can be obtained as follows

(15)

" T o
y'n(;n) = wdense,nhf.‘{*T*lﬂl i bdense,n-

Note that (9), (10), (14) and (15) refer to the prediction of
the system when 2" is the input. However, the hidden state
updates and the prediction model in the T-LSTM depend also
implicitly on the new point z{") as the model parameters are
optimized based on the similarity between the training points



and z("). This is indicated by 1 subscript in Ay, and §7 i

(14) and (15).

n

B. Tuning parameters

Similar to (8), <y, is a tuning parameter in (13). In addition,
the number of neurons in LSTM gates is a tuning paramecter
both in inductive and transductive approaches.

Since the emphasis of the T-LSTM is to achieve a good
performance in the vicinity of the test point, one may select
the most similar samples to the test point as the validation
set. However, in this scenario the model cannot exploit the
information of most similar data points in the training phase.
In this study, we assume that there is no sudden change in
the pattern of the original series; thus, the distance between
two consecutive samples in the feature space is not large.
Therefore, the last samples of the training period, which
include the samples prior to the test set, should be in the
neighborhood of the test point in the feature space. Hence,
these samples are selected as the validation set.

V. EXPERIMENTS
A. Dataset

In this study, data have been collected from the Weather Un-
derground website and include real measurements of weather
variables such as minimum and maximum temperature, dew
point, and wind speed for 5 cities including Brussels, Antwerp,
Liege, Amsterdam and Eindhoven, as shown in Fig. 3.
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Fig. 3: Weather stations (picture from Google maps)

The data cover a time period from the beginning of 2007 to
mid-2014 and contain 18 measured weather variables for each
day per city. To exploit all available information, the number
of training data points is different for each test set, and it is
equal to the number of days from the beginning of 2007 until
the day before the test set.

To evaluate the performance of the proposed methods in
various weather conditions, two test sets are defined: (i) from
mid-November 2013 to mid-December 2013 (Nov/Dec) and
(ii) from mid-April 2014 to mid-May 2014 (Apr/May).

B. Model Selection

As the difference between weather variables in two days in
a Tow is not significant, in this study we use the last samples
of the training period as validation set. For each test set, two
months prior to the test set is considered as the validation sel.
Hence, for the Nov/Dec test set, the validation set includes
the period from mid-September 2013 to mid-November 2013

and for the Apr/May test set. it includes the period from mid-
February 2014 to mid-April 2014. The samples that are left
for training the models are shuffled.

In this study the implementation of the LSTM models are
in TensorFlow, which is based on the model described by
Zaremba & Vinyals [28]. Note that this model is slightly
different from the one discussed by Graves [29]. The tuning
parameters are the number of neurons and the regularization
parameter. For the number of neurons in the LSTM, we try
the values: {16,32,64,128,256}, and for the regularization
parameter « the values {0.1,0.2,1,2, 10} are considered. For
the inner state, mostly tanh is used as the activation function,
In addition to that, in section V-C we discuss the performance
while sigmoid is chosen as the activation function. The ADAM
optimizer is used in this paper to optimize the objective
function,

C. Results

In Fig. 4 the cosine similarity of the training data points to
the prototypes of both tests sets is depicted. As can be seen the
similarity values have a temporal meaning; i.e. the samples in
a specific period of the year are similar. In addition, it can be
concluded that there are no significant changes in the weather
variables for two temporally close samples.
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Fig. 4: Similarity of the training samples to both test sets

The performance of the proposed method is evaluated on an
application of maximum and minimum temperature prediction
in Brussels, Belgium. The forecasting is done for one to
six days ahead. To avoid local minima problems in LSTMs,
we did the experiments five times. Tables I and II present
the median Mean Absolute Error (MAE) and Mean Squared
Error (MSE) of the inductive and transductive approaches
on the test sets for different internal activation function and
sequence length. The bold one shows the best performance
for the corresponding setting. The results for the transductive
approaches are presented for both linear (k. + 1) and non-
linear (o(ky,,)) transformation of the cosine similarity.

As is shown, the transductive approaches outperform the
inductive approach in the case that the transfer function is
a sigmoid. In case of a hyperbolic tangent transfer function,
there are a few cases that the inductive approach has better
performance than the transductive approach. In addition, there
is no significant difference between the linear and non-linear
transformation of the cosine distance.

The comparison between the MAE of the best models of
inductive and transductive approaches is made in Figures 5



TABLE I: MAE and MSE of minimum and maximum temperature prediction for LSTM, T-LSTM with both linear and non-lingar
transformation of cosine similarily, for sequence length 10 and 20, and for 1 to 6 days ahead for Nov/Dec test set

Activation function: Tanh Aclivation function: Sigmoid
Mean Absolute Error Mean Squared Error Mean Absolute Error Mean Squared Error
Seq. | Steps| Temp| LSTM T-LSTM | T-LSTM || LSTM T-LSTM | T-LSTM LSTM T-LSTM | T-LSTM || LSTM T-LSTM | T-LSTM
Len. | ahead (k+1) (o(k)) (k+1) (a(x)) (k+1) (e(k)) (x+1) {a(K))
I Min | 1.54 1.54 1.50 3.84 3.74 3.74 1.72 1.61 1.606 4.61 4.10 4.20
Max [ 188 1.32 1.30 4.58 2.92 1.82 1.52 1.41 1.37 330 3.49 332
N Min | 1.74 1.83 1.74 4.32 470 4.47 1.89 1.75 1.76 548 437 5.33
Max | 2.16 1.88 1.94 6.47 5.13 5.10 1.61 1.55 1.59 441 3.87 3.59
3 Min | 1.74 1.77 1.74 4.40 4.46 4.35 2.08 1.95 1.91 6.97 533 5.29
10 ) Max | 1.95 1.99 1.95 4,73 495 »19 2.10 1.79 T.81 7.51 6.26 5.90
4 Min | 1.56 1.67 1.57 3.73 4.31 3.80 2.02 1.85 .70 6.36 5.50 4.60
Max | 1.94 1.59 1.86 4.45 3.96 4.34 1.07 1.90 1.92 6.46 579 5.89
5 Min | 1.67 1.81 1.67 4.47 4.90 4.30 2.01 1.92 1.76 5.84 540 4.47
Max | T.95 1.86 1.59 5.44 4.42 3.93 1.89 1.81 1.91 5.79 5.40 5.99
6 Min | 1.96 1212 1.87 5.81 5.18 5235 2.02 1.00 1.73 5.50 4.80 4.28
Max [ 1.90 1.83 1.76 5.08 5.90 5.13 2.09 1.73 1.83 6.96 5.24 5.49
| Min | 1.76 1.58 1.49 5.40 4.07 3.67 1.74 1.65 1.69 4.53 4.19 4.40
Max | 148 1.39 1.34 3.32 3.10 2.85 1.43 1.43 1.35 3.49 3.59 338
2 Min [ 177 1.80 1.71 4.40 4.51 4.28 1.83 1.74 1.74 5.63 5.06 4.92
Max | 1.83 1.74 1.51 4.55 .09 426 1.60 1.48 1.49 4.15 3.53 3.62
3 Min | 1.77 1.80 1.75 4.46 4.01 4.60 203 1.96 1.94 6.26 553 5.43
20 5 Max | 1.73 2.09 1.84 3.90 5.60 451 1.92 1.73 1.76 5.67 5.76 5.57
4 Min | 1.62 1.62 1.60 3.92 3.68 3.86 1.97 1.69 1.72 6.04 4.50 474
Max [ 1.99 1.99 1.91 470 5.04 4.43 1.94 1.86 1.80 498 5.10 4.65
5 Min | 1.68 1.68 1.69 4.48 4.38 4.31 2,00 1.68 1.76 515 4.81 478
Max | 1.54 2.09 1.57 3.37 5.65 3.68 2.01 1.75 1.76 4.99 4.25 4.30
5 Min | 1.85 1.87 1.90 5.28 531 5.42 1.98 1.76 1.77 5.30 4.46 4.28
Max | 1.85 1.79 1.76 6.94 6.26 5.46 1.94 1.77 1.71 0.19 540 512

TABLE II: MAE

and MSE of minimum and maximum temperature prediction for LSTM, T-LSTM with both linear and non-linear
transformation of cosine similarity, for sequence length 10 and 20, and for 1 to 6 days ahead for Apr/May test sel

Activation function: Tanh

Activation function: Sigmoid

Mean Absolute Error Mean Squared Error Mean Absolute Error Mean Squared Error
Seq. | Steps| Temp| LSTM T-LSTM | T-LSTM || LSTM T-LSTM | T-LSTM LST™M T-LSTM | T-LSTM | LSTM T-LSTM | T-L.STM
Len. | ahead (x+1) (oK) (k+1) (o(K)) (k+1) (o(x)) (k+1) (o(k))
1 Min 1.74 1.52 1.68 4.08 3.94 4.41 1.63 1.59 1.56 4.04 3.73 3.88
Max | 2,15 2.10 2.04 7.44 6.78 7.44 221 2,12 2.16 7.14 7.07 7.36
2 Min 2.05 1.99 1.95 742 7.69 8.86 2.33 1.96 1.91 7.95 7.30 7.02
Max | 2.33 1723 2.19 8.24 8.16 8.09 2.68 233 247 9.91 8.23 8.74
3 Min 2.07 1.98 2.02 8.54 7.59 7.54 2.08 1.96 1.95 122 7.07 7.22
10 i Max | 2.71 2.18 17 12.77 7.30 7.50 2.55 2.37 2.36 9.10 7.89 8.20
4 Min 2.16 1.93 2.14 8.47 6.42 6.60 2.07 1.92 2,19 6.63 6.29 7.04
Max | 2.87 222 2,22 1341 7.97 7.86 2.36 2.30 228 9.04 8.65 7.96
5 Min 2.05 2.02 2.01 6.91 7.17 7.30 235 2.11 122 7.84 6.94 7.18
i Max | 2.85 2.52 2.26 13.31 10.59 8.32 253 2.28 2.19 10.59 8.86 8.33
6 Min | 2.66 2.20 2.28 13.80 835 7.48 2.52 2.35 2.54 8.58 7.95 8.61
Max | 2.95 2.58 272 14.40 11.38 1270 244 2.36 243 10.38 8.54 10.38
1 Min | 1.62 1.52 1.58 4.25 4.08 4.42 1.57 1.50 1.67 4.03 3.80 4.03
Max [ 2,20 2.10 2.13 7.60 7.03 1.33 2.16 2,11 2.13 7.56 7.43 7.89
N Min | 2.00 1.92 1.91 7.54 7.90 7.17 2.03 1.94 1.50 7.93 7.38 7.56
Max | 2.38 231 1,15 833 7.81 8.00 2,61 257 2.50 9.60 0.36 8.99
3 Min 2.17 1.93 2.05 8.32 6.21 7.54 2.00 1.97 1.98 8.39 177 7.39
20 = Max | 2.66 2.39 2.20 9.50 8.8 7.37 2.33 2.23 2.33 112 7.30 7.73
4 Min | 2.21 2.14 2.06 7.58 7.05 6 .37 2.18 2.02 1.95 7.10 6.41 6.92
Max | 2.88 .39 249 13.44 8.85 8.88 222 2,15 220 748 7.35 7.56
5 Min | 237 2.23 2.18 G570 940 6.94 278 2.05 232 7.53 7.32 7.65
Max | 2.54 252 178 12.26 10.57 10.40 2.73 2.54 2.30 12.49 9.01 8.64
6 Min 2.37 2.28 2.28 9.65 8.10 9.70 2.45 231 243 8.28 7.84 8.15
Max | 276 2.07 2.62 10.61 979 0.82 279 251 223 1112 10.73 8.30

and 6. In many cases the transductive approach outperforms
the inductive approach or provides equally good performance.
In the Apr/May test set in all cases the transductive approach
shows better performance than the global one, whereas in the
Nov/Dec test set the inductive and the transductive methods
are more competitive,

In addition, in Figures 5 and 6, the performance of
the LSTM models, as data-driven approaches, are com-
pared with the performance of Weather Underground
(www.wunderground.com) which is a well-known company
for weather forecasting. The results reveal that while the
information that is used in the data-driven approaches is
limited, the performance is competitive with the state-of-the-

art models used by Weather Underground.

VI. CONCLUSION

In this study, we deployed an LSTM model for an appli-
cation of temperature prediction. We proposed the T-LSTM
model to exploit transductive learning in time-series predic-
tion. In this case, the model can be achieved by altering
the cost function of the LSTM model such that the samples
in the neighborhood of the test point have a higher impact
on the objective function. We tested two weighting schemes
which are based on the cosine similarity between the training
data points and the test point. The experiments are done for
two different periods in a year to evaluate the performance
of the proposed method in different weather conditions. We
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Fig. 5: Comparing MAE of minimum and maximum temperature
prediction for Weather Underground, LSTM, and T-LSTM for 1 to

6 days ahead for Nov/Dec test set

6

Diays aheod

Fig. 6: Comparing MAE of minimum and maximum temperature
prediction for Weather Underground, LSTM, and T-LSTM for 1 to

6 days ahead for Apr/May test set

examined different sequence length and transfer functions and
the results suggest that transductive LSTM outperforms LSTM

in many cases. Moreover, it is shown that the performance of

the inductive and transductive LSTM models as data-driven
approaches are competitive with the state-of the-art methods

in weather forecasting.
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