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A B S T R A C T

Designers rely on performance predictions to direct the design toward appropriate requirements. Machine
learning (ML) models exhibit the potential for rapid and accurate predictions. Developing conventional ML
models that can be generalized well in unseen design cases requires an effective feature engineering and se-
lection. Identifying generalizable features calls for good domain knowledge by the ML model developer.
Therefore, developing ML models for all design performance parameters with conventional ML will be a time-
consuming and expensive process. Automation in terms of feature engineering and selection will accelerate the
use of ML models in design.
Deep learning models extract features from data, which aid in model generalization. In this study, we (1)

evaluate the deep learning model’s capability to predict the heating and cooling demand on unseen design cases
and (2) obtain an understanding of extracted features. Results indicate that deep learning model generalization is
similar to or better than that of a simple neural network with appropriate features. The reason for the satisfactory
generalization using the deep learning model is its ability to identify similar design options within the data
distribution. The results also indicate that deep learning models can filter out irrelevant features, reducing the
need for feature selection.

1. Introduction

Conventionally, simulations are used to guide the design toward the
required building performance. A few building performance metrics are
energy efficiency, daylighting, and thermal comfort. Designers rely on
rule-of-thumb knowledge when simulation models cannot provide in-
stant design performance feedback [1,2]. However, rule-of-thumb
knowledge could potentially lead the design toward a wrong direction.
Hence, having models that can provide rapid and accurate results is
necessary. Furthermore, 20% of design decisions taken at the early
design stage affect 80% of the subsequent design decisions [3].
Therefore, it is important to take the right decisions at the early design
stages. In this study, we utilize an energy analysis as an exemplary
performance criterion. The inferences from the energy analysis can be
relevant to other performance analyses as well.

Early design energy analysis simulation models in practice utilize
simplified thermal representations along with technical specifications,
e.g., based on American Society of Heating, Refrigerating and Air-
Conditioning Engineers standards [4]. As the design progresses, more
detailed information is added to the simulation model. Typical

simulation tools used for energy analysis are EnergyPlus, TRNSYS, IES-
VE, DesignBuilder, jEPlus, and Sefaira [3–5]. For two different building
designs, Shiel et al. [4] showed that the variations of early energy de-
mand prediction compared to actual energy consumption were −39%
and −22%. Upon addition of actual design information, the variations
were reduced to 5% and −2%, respectively. Furthermore, the effort
required to develop simulation models varies depending on the com-
plexity of the information and design [4]. Therefore, the challenge for
an efficient early design energy analysis is to obtain a model that bal-
ances accuracy, development effort, and computation time for ana-
lyzing design alternatives.

Simplified models developed from complex simulation data have
high potential to act as a surrogate model. Machine learning (ML) offers
the possibility of developing surrogate models that provide rapid and
accurate building performance predictions [6–8]. Quick ML predictions
make ML models ideal for early design stage performance analysis be-
cause they allow for more design options to be evaluated at the early
design stages. Moreover, a high computation speed reduces the de-
signer’s reliance on rule-of-thumb knowledge and enables quantita-
tively well-justified decisions. However, ML models generalize within
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the data distribution, which is determined by the input parameter/
features and training data. The challenge to overcome is the develop-
ment of ML models that work robustly on unseen design cases. An
unseen design case is defined as a design option, which is not present in
the training data. It is critical to overcome this challenge because the
evaluated design need not be captured within the training design cases.
Therefore, identifying methods for overcoming this challenge will in-
crease the utilization of ML models in design, enabling rapid, accurate,
and reliable early design stage predictions.

Deep learning, a sub-domain of ML, has successfully been shown in
many other domains such as image recognition to automatically extract
good features resulting in model generalization [9]. The objectives of
this study are to propose a deep learning architecture that generalizes
well in unseen design cases and obtain an initial understanding of the
features extracted by the deep learning model. The research questions
addressed in this study are as follows: (1) Which deep learning archi-
tecture results in a satisfactory model generalization? (2) How im-
portant is feature engineering and selection for deep learning methods?
(3) What are the underlying characteristics of the features learned by
deep learning models? Future research will focus on the complexity of
the data used for training. Nevertheless, the utilized data are obtained
from simulation models representative of early design stages. More
information on the utilized data is presented in Section 3.1.

The evaluation of deep learning architectures is performed by
benchmarking two types of deep learning model architectures with a
simple neural network (NN) architecture. The deep learning model
architectures evaluated are multilayered NN and convolutional NN
(CNN). To the authors' knowledge, the CNN has not been applied for
design stage energy prediction, making this contribution significant.
Upon benchmarking of deep learning models with a simple NN, hidden
layer outputs are analyzed using kernel-principal component analysis
(PCA) to understand the features learned by the deep learning model.
Kernel-PCA analysis provides an interpretation of the characteristics of
features extracted by a deep learning model. This paper is organized as
follows: (1) the theory on utilized deep learning model architectures,
(2) the methodology to evaluate deep learning, and (3) the results,
discussion, and conclusion.

1.1. Background and motivation for deep learning

The generalization of an ML model in design refers to the validity of
the model beyond training design cases, assuming the evaluated design
case falls within the underlying data distribution. Artificial NNs1

(ANNs) [10–19] and support vector machines (SVMs) [20–23] are the
most popular ML algorithms used to model building energy data.
Generalizable ML models through ANNs and SVMs can be developed
through appropriate feature engineering and selection.

Good features provide selectivity invariance, which means that the
features are selective/relevant to the prediction problem but removes
irrelevant features [9]. Feature selection is the process of selecting re-
levant input parameters for model development [24,25]. Feature en-
gineering is an approach that identifies input parameters, which ac-
count for the interaction between a building and its environment [26].
Examples of feature engineered inputs found in the literature are
building shape factor, window to floor area ratio, and heat flow (HF)
[27,28]. The outcome of feature engineering and selection is that ML
models can identify similar design options within the data distribution
resulting in model generalization. However, the current research has
typically focused on validating ML models with test cases that resemble
training design cases. Hence, it is not clear how to increase the ap-
plicability of ML methods in unseen design cases.

Developing ML models through feature engineering and selection
will be a time-consuming process as it requires domain knowledge in

both ML and simulation methods. ML knowledge allows the model
developer to identify suitable algorithms and training conditions, which
results in a general model. On the other hand, knowledge in simulations
allows the modeler to identify and select appropriate input features.
Finding an engineer with such expertise is difficult. This challenge is
amplified when ML models have to be developed for many design
performance metrics as well. Hence, automation in feature engineering
and selection will accelerate the use of ML methods for an early design
stage performance analysis.

Within deep learning, the input features are transformed hier-
archically using non-linear layers before making the final prediction.
Training of the hierarchical non-linear layer enables automatic ex-
traction of good features from data by promoting selectivity invariance
[9]. Furthermore, the hierarchical structure of deep learning exploits
the compositional hierarchies of signals/data [9]. Compositional hier-
archies are the observation of a high-level feature, which is the result of
low-level features. In the case of building design’s energy demand, the
high-level feature is the energy demand and some low-level features are
HFs and heat gains. The data used in this study are obtained from si-
mulation models, which generate energy demand based on hierarchical
interactions. Therefore, analyzing the features learned by the deep
learning model could provide an impression on the similarities between
deep learning and simulation models. Finally, utilizing features ex-
tracted to make the final prediction allows deep learning models to
generalize effectively. CNNs have been shown to be easier to train and
generalize better compared to multilayer NNs [9]. In Section 2, the
technical details of the utilized model architectures are provided.

The similarities between deep learning and simulation models in
terms of hierarchical representation make deep learning an interesting
ML method to explore further. However, the application of deep
learning in the domain of building energy prediction is limited [29]
because it requires a huge amount of data in the training process. Given
the increasing computational power, it would be possible to generate
such data with multiple design options. However, before generating a
lot of data, it will be beneficial to obtain insights into the deep learning
model for design.

Typical applications of deep learning for predicting building energy
found in the literature are for load prediction/forecasting [30–33] and
design stage predictions [8]. In certain cases, deep learning models
have similar performances as conventional ML methods [30,31]. In
other cases, they outperform conventional ML methods [8,32,33]. The
deep learning model architectures for predicting energy are stacked
auto-encoders, recurrent NNs, and Boltzmann machines. CNNs have
been used for building quality classification [34], fault detection [35],
mitigation of fall [36], and people detection [37]. The data types used
for current applications of CNNs are text and images. Utilization of
CNNs with design information has not been reported, making the cur-
rent research significant.

Limited works on deep learning models for building design energy
performance analysis call for more research. Finally, an upcoming trend
in ML is to understand the patterns learned by the black-box model
[38], which helps the community to move toward interpretable artifi-
cial intelligence (AI). Analyzing the extracted features is a step toward
interpretable AI. This study extends our understanding for model gen-
eralization in unseen design and model interpretability.

2. Theory on deep learning neural network architecture

Deep learning models are evaluated based on their ability to predict
heating and cooling demands on test design options. Each model, i.e.,
heating or cooling demand model, has two response variables, namely
the peak and annual energy demand (see Fig. 1 and Fig. 2). Training of
models with more than one response variable related to different tasks
is called multitask learning (MTL). More information on MTL for energy
models can be found in [8].

In this study, a simple NN, multilayer NN, and CNN are evaluated.1 In this paper, ANNs are also referred to as simple neural networks.
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Because the peak and annual energy demand of a design is directly
predicted (i.e., not considered as a sequence) and training is performed
end to end (i.e., in a single step), model architectures using recurrent
and auto-encoder layers are not applicable. If the nature of data and the
training process change, these architectures can be evaluated as well.
This section introduces the utilized model architectures, the description
of hidden layers, and the activation functions.

2.1. Model architectures

2.1.1. Simple and multilayered neural networks
The simple NN (or ANN) has been successfully applied in predicting

building energy demand. Furthermore, current deep learning methods
are extensions of simple NNs. Therefore, simple NNs are selected as a
reference ML algorithm. Observations made on simple NNs should be
applicable for other non-linear ML algorithms. Previous research in-
dicated that through other conventional ML algorithms, a similar per-
formance can be achieved provided appropriate model tuning is per-
formed [39]. Multilayer NN is also evaluated as it is an easy extension
of a simple NN to form a deep learning model.

Fig. 1 shows the architecture of simple and multilayer NNs. A simple
NN has one fully connected (FC) layer (see Section 2.2.1) with a rec-
tified linear unit (ReLU) activation (see Section 2.2.4). A multilayer NN
has more than one hidden layer. The number of hidden units in each
hidden layer is manually determined by cross-validation (CV) during
the training process. In this study, the multilayer NN has two, three, and
four FC layers with a ReLU activation.

2.1.2. Convolutional neural network
Fig. 2 shows the architecture of the CNN with 1 to n convolutional

layers, max pooling, and an FC layer. The number of convolutional
operations and hidden units in each layer is manually determined
through CV during the training process. The convolutional layer utilizes
parametric ReLU (PReLU) activation instead of a ReLU activation. The
use of PReLU activation provided better model performance than ReLU
activation. The CNN with one, two, and three convolutional layers are
evaluated in this study.

A CNN expects inputs in a matrix format. In this study, the input
matrix is referred to as a design matrix (DM) as it contains all in-
formation pertaining to the design. The DM has a size of M×N, where
M is the number of parameter groups and N is the maximum number of
features within all parameter groups. Section 2.2.2 describes the basic
principle used to construct the DM. In Section 3.2.2, the method used to
develop the DM is described.

2.2. Description of hidden layers

2.2.1. Fully connected layer
An FC layer is the most commonly used hidden layer or output layer

in any NN model. It comprises several hidden units that have to be
tuned during the training process. Fig. 3 shows the working of a hidden
unit. The hidden unit obtains an input feature vector of length N. Each
input feature in the vector is assigned a trainable weight. In Fig. 3,
features 1, 2, and 3 have a weight of −0.4548, 0.4118, and 0.6452,
respectively. The weighted sum is the output of the hidden unit, which
is referred to as the hidden feature.

Fig. 1. Illustration of simple and multilayer neural network architectures.

Fig. 2. Illustration of convolutional neural network architecture.
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2.2.2. Convolutional layer
The use of a convolutional layer in NN models with images and

time-series input data has provided state-of-the-art performance.
However, a convolutional layer has not been used with design in-
formation. In this section, the working principle of a convolutional
layer for design information is presented.

A convolutional layer obtains design inputs in the form of a DM
instead of a vector; DM building design and performance related fea-
tures/parameters. The DM is generated by grouping similar features re-
ferred to as parameter groups, which range from 1 to M. An example of
a parameter group with similar features is wall thermal conductivity
and wall HF. Each parameter group consists of 1 to N similar features.
In the above example, the parameter group consists of two similar
features. The result of grouping is a DM with M×N dimension.

The convolutional layer consists of convolutional operations. The
number of convolutional operations in a convolutional layer is de-
termined during the training process. A convolutional operation is
characterized by an M× K matrix, where K is the length of trainable
weight vector per parameter group (K is also referred to as filter size). K
is less than or equal to the number of features N in a parameter group.
The output of a convolutional layer is referred to as a “feature map”
(note that the DM is the input to the first convolutional layer only.
Subsequent convolutional layers will receive feature maps as inputs).

Fig. 4 shows how a convolutional operation is performed for a 2× 2
DM, i.e., a design with a two-parameter group and two features per
group. The convolutional operation has a filter size (K) of 1, resulting in
a convolutional operation with a matrix size of 2× 1. In this example,
parameter group 1 has a weight of −0.4548 and parameter group 2 has
a weight of 0.4118. Features in column 1 and 2 are convoluted (through
Eq. (1)) to obtain a feature map consisting of two features: −0.0597
and 3.7621. The first feature, −0.0597, is the weighted sum of values
in feature column 1 together with the parameter group weight (PGW),
followed by the addition of a bias term (i.e., (0.2×−0.4548
+ 0.5× 0.4118)− 0.1746). Similarly, the second feature, 3.7621,
is the weighted sum of values in feature column 2 (i.e.,

(100× −0.4548+120×0.4118)− 0.1746).

× +
=

Feature i PGW Bias
i

N

1 (1)

Fig. 4 highlights the following characteristics [40] of a convolu-
tional layer, which results in the extraction of generalizable features
[9]:

1. Parameter (or weight) sharing: Features within a parameter group
have shared trainable weights. Parameter sharing also reduces the
trainable weights compared to an FC layer with no shared weights.

2. Sparse interaction: Interactions captured by the convolutional op-
eration are limited by shared parameters defined by the filter size.
Fig. 4 shows that the interactions observed by the model are limited
to feature column 1 and 2 and not the entire matrix.

3. Equivalent representation: Parameter sharing results in a PGW that is
equivalent to the entire parameter group, rather than each feature
defined with a weight.

In this study, only the number of convolutional operations is tuned
during the training process. Other hyperparameters such as the filter
size are fixed. Evaluating the effect of other hyperparameters on model
generalization is out-of-scope of the current study, as this study only
evaluates the feature extraction capability of deep learning models for
generalization. Future research will be performed to analyze the effects
of other hyperparameters on model generalization.

2.2.3. Max pooling layer
Pooling layers are typically present in a CNN. This study utilizes a

max pooling layer. The effectiveness of such layer compared with other
types of pooling layers need to be evaluated in future research. A max
pooling layer (see Fig. 5) reduces the feature map by retaining only
dominant (or high value) features. This layer promotes invariance (or
insensitivity) through bottlenecks, as the dimension of the feature
vector after max pooling is less before max pooling [41].

Fig. 3. Illustration of a hidden unit.

Fig. 4. Illustration of a convolutional operation.
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The hidden layer after max pooling learns to represent the predic-
tion task with a smaller feature vector. If the models utilizing a max
pooling layer generalize well, it indicates that the max pooling layer
removes features that are not relevant for the particular task (in this
case prediction of energy). Reducing the size of the feature vector by
max pooling makes the deep learning model invariant to irrelevant
features. However, understanding the induced invariance with respect
to the building design input features is limited. Examples of such un-
derstanding are spatial invariance in images [42] and phase invariance
for time-series data [43]. More research needs to be done to understand
the type of invariance created by the pooling layer.

In this study, the CNN utilized has only one max pooling layer. The
reason for this limitation is due to the small size of the feature maps
generated by the utilized DM. The convolutional layer receives the DM
of size M× 2 and outputs a feature map of size C× 2, where C is the
number of convolutional operations in a layer and 2 is the number of
similar features within a parameter group. The max pooling layer re-
ceives this feature map and outputs a reduced feature map to a size of
C× 1. Hence, adding more max pooling layers will not have any effect
on the model. If the size of the feature map increases, the number of
pooling layers could be increased. Identifying other DM configurations
will be conducted in future research.

2.2.4. Description of activation functions
Suitable activation functions for an NN model varies for different

data types. Some examples of activation functions are sigmoid, hyper-
bolic tangent, and ReLU. In this study, the ReLU activation is used to-
gether with an FC layer. The convolutional layer utilizes the PReLU
activation as it offers a better performance than the ReLU activation.
Eq. (2) shows the ReLU activation, where negative values are made
zero. Eq. (3) shows the PReLU activation, where the negative values are
multiplied by alpha (ɑ), which is learned during the training process.

=ReLU X max X( ) (0, ) (2)

= + ×PReLU X max X a min X( ) (0, ) (0, ) (3)

3. Methodology for evaluating deep learning for design stage
energy predictions

The following methodology is applied to evaluate the feature ex-
traction capability of deep learning methods for a satisfactory model
generalization and to obtain an initial understanding of features learned
by the deep learning model:

1. Benchmarking the performance of deep learning models against a
simple NN on test design cases.

2. Kernel-PCA is utilized to analyze the characteristics of the features
that results in model generalization.

3. Evaluating early design decisions using building performance si-
mulation (BPS) and ML models.

This section starts by describing the generated data, which is fol-
lowed by the methods for developing and evaluating deep learning
models.

3.1. Description of training and test data

3.1.1. Design context
The early design stage decision support could be in the form of a

what-if analysis [44,45]. Some potential questions are “What if we in-
crease the window area?”, “What if we reduce the efficiency of the
HVAC system but increase the insulation level?”, and “What if we re-
duce the floor area per story and add an additional floor?”. To perform
such analysis effectively, the utilized ML model provides predictions,
which ensure that the decision taken on its predictions are valid as the
design progresses. Therefore, test cases are created to analyze the re-
liability of design decisions taken from ML models on unseen designs.
Furthermore, the training data provide the possibility of performing
early what-if analyses and capture enough non-linearity to evaluate the
robustness of the model on unseen test cases. Model generalization on
more complex data will be performed in the future.

3.1.2. Parametric simulation model
The training data are design cases, which a model developer an-

ticipate as potential design options evaluated by the designer. In con-
trast, the test data can be considered as design options evaluated by the
designer. Training and test data are generated through parametric si-
mulations in EnergyPlus version 8.7. The training data (gray blocks in
Fig. 6) come from design options of a 3-, 5-, and 7-story buildings. The
test data (blue blocks in Fig. 6) are obtained from the design options of
2-, 4-, 8-, 9-, 10-, 11-, 12-, and 13-story buildings, respectively. Building
design options with 2 and 13 stories are later referred to as extreme test
cases as they are in the boundaries of the test cases. From the generated
data, the peak and annual energy demand data are extracted.

The models simulate an office building design located in Brussels.
Assumptions in the models are (1) a fixed HVAC system, which is a
variable air volume system with chillers and a gas boiler; (2) 100%
occupancy and lighting and equipment gains between 9:00 and 17:00;
(3) 50% occupancy at opening (8:00) and closing (18:00) hours; (4)
50% lighting usage after opening hours (8:00–18:00); and (3) room
heating and cooling set points of 20/25 during opening hours and 16/
28 after opening hours. Because the main objective of this study is to
evaluate the deep learning model’s ability to extract general features for
better generalization, the assumptions in the models should not have an
impact on the conclusions.

Table 1 presents the design parameters and sampling ranges utilized
in the parametric simulation. The samples are generated using the
Sobol sequence method, which is a quasi-random low-discrepancy se-
quence method. For the 3-, 5-, and 7-story buildings, 1500 design op-
tions are generated, resulting in a total training sample size of 4500.
Similarly, for each test design case (see Fig. 6), 1500 design options are
generated. It can be noted from Fig. 6 that only the 4-story building falls
in the interpolation region of training design space. Other test design
cases are outside the training design space.

3.2. Training and testing of deep learning architectures

Different ML model architectures with different input parameter
configurations are trained and tested to identify conditions for con-
ventional ML and deep learning model generalization. This section
describes (1) the different input parameter configurations utilized in
model development, (2) input parameter configurations assigned to
each ML model architecture, and (3) ML model selection and evaluation
process.

3.2.1. Model input parameter configurations
Table 2 indicates three configurations of model input parameters

utilized in the evaluation process. These three input parameter con-
figurations are designed to show the importance of feature engineering
and selection for conventional ML model generalization and to under-
stand conditions under which deep learning extracts generalizable

Fig. 5. Illustration of max pooling.
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features from data.
Table 3 summarizes the formulas used to transform design para-

meters (i.e., feature engineering). In the feature engineering process,
features/input parameters, which interact with other design parameter
or other environmental factors, are identified. The building area is a

feature that captures the interaction between building length (l) and
width (w). On the other hand, transformations such as HFs capture the
interaction between the building and its environment. For example, HFs
through the wall capture the interaction between wall area, insulation
level, and outdoor weather conditions (To) of the building’s environ-
ment and indoor temperature (Ti). Weather conditions utilized to per-
form these transformations are average summer and winter conditions
for the cooling and heating models. The indoor temperature is assumed
to be 25 °C for the cooling model and 20 °C for the heating model.

3.2.2. Model architectures and corresponding input configuration
The global model architecture is presented in this section, and hy-

perparameters in each layer are tuned during the training process.
Table 4 indicates the trained model architectures and their input con-
figuration. A simple NN is the reference ML model architecture for the
deep learning model architectures. Therefore, the simple NN is trained

Fig. 6. Training and test design cases.

Table 1
Design parameter ranges in the parametric simulation.

Units Minimum Maximum

Length (l) m 20 80
Width (w) m 20 80
Height (h) m 3 6
Overhang length (loh)a m 0 6
Window to wall ratio

(WWR)a
0.01 0.95

Orientation (α) Degree −180 180
Wall U-value (Uwall) W/(m2·K) 0.41 0.78
Window U-value (Uwin) W/(m2·K) 0.5 2
Ground floor U-value

(Ufloor)
W/(m2·K) 0.41 0.86

Roof U-value (Uroof) W/(m2·K) 0.19 0.43
Window g-value (gwin) 0.1 0.9
Floor heat capacity (cfloor) J/(kg·K) 900 1200
Infiltration air change rate

(nair)
h−1 0.2 1

Number of floors (nfloor) 3, 5, 7
Lighting heat gain (Q′light) W/m2 5 11
Equipment heat gain

(Q′equip)
W/m2 10 15

Chiller coefficient of
performance (COP)

3 6

Boiler efficiency (ηBoiler) 0.7 1
Chiller type Electric

reciprocating chiller
Electric screw
chiller

Boiler pump type Constant flow Variable flow

a Varies differently in all orientations.

Table 2
Model input parameter configurations.

Configuration number Description of group Reference in text as

1 Design inputs are listed in Table 1. Actual inputs (Act ip)
2 Certain design inputs from Table 1 are transformed using formulas given in Table 3. Non-transformed parameters

are utilized as in category 1.
Feature engineered inputs (FE ip)

3 All design inputs together with feature engineered inputs. Act+ FE ip

Table 3
Formulas for feature engineering.

Design parameters (Actual
inputs)

Transformed inputs (Feature engineered
inputs)

Units

Length (l) Building area (BA)
l×w× nfloors

m2

Width (w)
Height (h) Building volume (BV)

l×w× h× nfloors
m3

Number of floors (nfloors)
U-value
of wall, window, floor, roof

Heat flow (HF)
U-value×Area× (To – Ti)

W

Window g-value Solar gain (SG)
Area× gwin×average solar radiation

W

Infiltration air change rate Infiltration gain (IG)
Air specific heat capacity× density× air
volume× (To – Ti)

W
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with all input configurations. Benchmarking of deep learning models
against simple NNs with actual inputs is performed to examine if the
deep learning model can extract good features. Additionally, bench-
marking against a simple NN with feature engineered inputs is per-
formed to determine the quality of the extracted features.

The multilayer NN is evaluated to understand the feature extraction
capability of the deep learning model. Hence, input configuration 1,
i.e., actual input, is provided. The CNN is evaluated to understand its
ability to extract good features from similar input parameters. Hence,
input configuration 3 (Act+ FE inputs) is provided.

Simple and multilayer NNs require the inputs to be in a vector form.
However, a CNN requires a matrix input. Table 5 presents the DM
structure used for the CNN. Each design parameter (also referred to as
actual inputs), wherever possible, is paired with its equivalent trans-
formation or a design parameter. The objective of the grouping is to
bring similar parameters together, which allows the convolutional layer
to learn an equivalent parameter weight (see Fig. 4). Equivalent
transformations capture the effect of changes in one over another
parameter. Examples of equivalent transformation are building length
(l) to building area (BA) and U-values to HF. Similar design parameters
are parameters that have similar effects on the energy consumption.
Examples are lighting gain (Q′light) and equipment gain (Q′equip). Within
the current feature space, if a parameter does not have an equivalent
transformation or a similar design parameter, it is not paired with any
other parameter (i.e., Feature 2 is zero). Orientation (α) is an example
of a parameter that is not paired with any other parameter. Other po-
tential arrangements of the data structure need to be researched fur-
ther.

3.2.3. Computational environment
The simple NN and deep learning model are developed using the

PyTorch library in Python [46]. Models are trained on NVIDIA Quadro

M1000M, which has 512 CUDA cores and 2 GB memory. The training
time2 in Intel Core i7 processors takes approximately 5.3min. In con-
trast, the training time in a graphical processing unit (GPU) is ap-
proximately 2min. Training the deep learning model in this GPU is ~3
times faster than in a central processing unit.

3.2.4. Model selection and evaluation
All model architectures are trained using the ADAM optimization

algorithm. The learning rate to update the model weights is 1e−4.
Model overfitting is addressed through an L2 regularization penalty of
0.01. The optimization algorithm needs 10,000 epochs for obtaining
satisfactory convergence.

During the training process, the model performance is evaluated
through the coefficient of determination (R2) and mean absolute per-
centage error (MAPE) on the CV data. The CV data are a subset of
training data, which has not been used in the training process. In this
study, 20% of the training data are randomly selected to form the CV
data. Model hyperparameters such as the number of hidden units are
tuned until the CV error is low. The hyperparameter combination that
resulted in a low CV error is used to train the final model.

The model generalization is evaluated based on the prediction ac-
curacy in test design cases (see Fig. 6). A model architecture is con-
sidered to have generalized when the R2 is higher than 0.9 and MAPE is
lower than 15%. Models meeting the abovementioned evaluation cri-
teria are considered to have a satisfactory performance. Similarly,
models that do not meet the above criteria are considered to have a
poor performance.

3.3. Kernel-PCA for analyzing the effect of features

Using kernel-PCA, the effects of actual inputs, feature engineered
inputs, and features extracted by deep learning models on model gen-
eralization are analyzed. To make the features extracted by deep
learning model comparable with features received by a simple NN, the
features from the n− 1 hidden layer are analyzed. Kernel-PCA reduces
the high-dimensional input/features to a two-dimensional input space.
Dimensionality reduction makes input features with different dimen-
sions comparable. For instance, models with actual inputs have 24 in-
puts, while models with feature engineered inputs only have 14 inputs.

The reduced two-dimensions from kernel-PCA are the 1st and 2nd
principal components. The 1st principal component represents the
highest variance in the input/feature space. The 2nd principal compo-
nent is orthogonal to the 1st principal component and represents the
second highest variance in the feature space. The following metho-
dology is utilized to analyze the effect of features on model general-
ization:

Table 4
Model architecture and input configuration.

Model architecture Number of hidden layers Model input configuration Reference in text

Simple NN 1 FC layer Act ip Simple NN – Act ip
FE ip Simple NN – FE ip
Act+ FE ip Simple NN – Act+ FE ip

Multilayer NN 2 FC layers Act ip Multilayer NN – 2 layers
3 FC layers Multilayer NN – 3 layers
4 FC layers Multilayer NN – 4 layers

CNN 1 Convolution layer
1 FC layer

Act+ FE ip CNN – 1+1 layers

2 Convolution layers
1 FC layer

CNN – 2+1 layers

3 Convolution layers
1 FC layer

CNN – 3+1 layers

Table 5
Input data structure (i.e., DM) of a design option for CNN.

Parameter group Feature 1 Feature 2

1 Length (l) Building area (BA)
2 Width (w) Building area (BA)
3 Height (h) Building volume (BV)
4 Number of floors (nfloors) 0
5 Orientation (α) 0
6 Overhang length (loh) Window to wall ratio (WWR)
7 Window g-value Solar gain
8 U-value Heat flow (HF)
9 Floor heat capacity 0
10 Infiltration air change rate

(nair)
Infiltration gain

11 Lighting heat gain (Q′light) Equipment heat gain
(Q′equip)

12 Chiller COP/Boiler efficiency Chiller type/Boiler pump
type

2 Training time estimated for CNN – 2+1 layers.
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1. The kernel for kernel-PCA is selected based on its ability to re-
construct actual design inputs. To obtain comparable low-dimen-
sional reductions, both feature engineered inputs and features ex-
tracted by deep learning models utilize the same kernel as actual
design inputs. In this study, the radial basis function kernel is se-
lected, as it has the lowest reconstruction error.

2. A training design case represented by different input configurations,
i.e., actual inputs, feature engineered inputs, and features extracted
by deep learning models, are reduced into two dimensions.

3. Test design cases represented by different input configurations are
reduced to two dimensions using eigenvectors determined for
training design case with different inputs.

4. Visualizing the principal components of training and test design
cases along with information on floor area and energy provides us
with insights on the characteristics of features for generalization.

3.4. Evaluating early design decisions using building performance
simulation (BPS) and ML models

The objective of this section is to illustrate the evaluation of an early
design case using the ML model and BPS. The evaluation is performed
for an 8-story building design located in Brussels. The design process
(reflection of what-if analysis) illustrated in this study has three stages.
In each stage, the following are conducted:

Stage 1: Initial estimate of energy.
Stage 2: Decision on south and north window to wall ratio (WWR) is

made.
Stage 3: Designers decide whether to change the window g-value or

insulation level.
The methodology used to evaluate the ML models and BPS for the

early design process takes the following criteria into consideration:

1. Estimate energy demands from the BPS and ML models with best
test data performance. Comparing the energy demand estimates
from the BPS and ML models shows the reliability of decisions taken
from both approaches.

2. Estimate the time required to make a prediction from each model.
The time required to estimate energy allows quantifying the suit-
ability or effort required for steering early stage design through BPS
and ML.

3. Visualize the principal components of the evaluated design to un-
derstand the reason for a prediction. The principal components are
estimated using the same eigenvectors determined in Section 3.3.

4. Results

4.1. Performance of model architectures

In this section, the performance of heating and cooling models with
different architectures on CV and test data is presented. The CV data are
used to tune the number of hidden units/convolution operations in each
layer, while the test data show the generalization of model architecture.
Generalization refers to the validity of models beyond the training de-
sign cases, assuming that test design cases are within the data dis-
tribution.

4.1.1. CV data performance
Table 6 lists the heating model’s hyperparameters obtained after

manual tuning while Table 7 provides the corresponding CV errors. For
peak heating predictions, the R2 and MAPE range between 0.98 and
0.99 and 7.07% and 9.87%, respectively, indicating that all archi-
tectures have a satisfactory performance on the CV data. For total
heating predictions, the R2 and MAPE range between 0.94 and 0.97 and
15.65 and 26.48%, respectively. The deep learning architecture has a
better CV data performance compared to the simple NN.

The data indicated that the simulated design cases are cooling

dominated, which is the result of the utilized HVAC system configura-
tion and internal gains. The cooling dominance, in turn, made a lot of
similar designs to have significantly different energy demands caused
by complex interactions within the building. Hence, the utilized fea-
tures (in simple NNs) are not able to segregate similar design options
effectively, resulting in the poor prediction quality from simple NNs on
total heating predictions. The good performance of deep learning
models indicates that the extracted features can segregate similar de-
sign options effectively.

Table 8 presents the cooling model hyperparameters obtained after
manual tuning while Table 9 indicates the CV errors. The R2 and MAPE
for peak cooling predictions range between 0.97 and 0.99 and 5.77 and
14.15%, respectively. For total cooling predictions, the R2 and MAPE
range between 0.97 and 0.99 and 5.78 and 13.21%, respectively, in-
dicating that all architectures have a satisfactory performance on the
CV data.

4.1.2. Performance of ML models on test design cases
Fig. 7 shows the performance of the heating models on the test

design cases. As defined in Section 3.2.4, the performance of a model is
satisfactory when R2 and MAPE are higher than 0.9 and lower than
15%, respectively. Models that do not meet these performance criteria
are considered to have poor performance. It can be noted from Fig. 7
that the performance of the different architectures is not consistent in
the different test cases.

The 4-story building falls within the interpolation zone of the
training design cases. It can be noted from Fig. 7 that in general, all
model architectures perform well for the 4-story building. As the test
cases move far away from the training design cases, the performance
starts to reduce. The amount of performance reduction depends on the
model architecture. The reason for performance reduction is due to the
difference is thermal behavior captured in the training design cases
when compared to test design cases. However, results show that utili-
zation of appropriate ML model features and model architecture re-
duces the prediction error (i.e. increase in ML model performance).
Finally, the 2-story building cases have a poorer performance than the
8-story building cases. However, both cases are close to the training
design case. The reason for the poorer performance on the 2-story
building is the absence of an intermediate floor, which influences both
the top and bottom floor’s thermal behavior independently.

For peak heating energy prediction, the performance of all model
architectures is satisfactory for the 4- and 8-story buildings. In addition,
the performance of specific model architectures is satisfactory in the
other design cases. For the other design cases, the following archi-
tectures have satisfactory performances:

• Simple NN with FE inputs and Act+ FE input,
• Multilayer NN with 4 hidden layers, and
• All CNN architectures.

It can also be noted that models with FE input parameters (both
simple NNs and CNNs) consistently have better performances than
models with only actual design inputs, indicating the significance of
having features engineering with physical equations. Finally, the sa-
tisfactory performance of the selected deep learning architectures in-
dicates that they can automatically extract generalizable features from
data.

For total heating energy prediction, most of the models have an R2

above 0.9. However, the overall error in predictions is higher, which is
reflected in high MAPE values. The multilayer NN with 4 hidden layers
and CNN with 2 convolutional layers have better performances com-
pared to other architectures. The reason for the poorer performance of
the other architectures is due to the complexity of data. The complexity
is caused by similar design options having different total heating energy
consumptions, which is the result of interactions within the building.
The satisfactory performance of deep learning models indicates that the
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extracted features can segregate design options effectively.
Fig. 8 shows the performance of cooling models on the test design

cases. For peak cooling energy prediction, all model architectures have
satisfactory performances on the 4-, 8-, and 9-story buildings. For other
test design cases, the selected model architectures also performed well.
The selected architectures are the simple NN with FE inputs and all
CNN architectures. The satisfactory performance of the CNN on all
design cases indicates that convolutional layers can extract good fea-
tures from data. It should also be noted that the simple NN with actual
and FE inputs has a poor performance in extreme test cases, high-
lighting the importance of feature selection. A similar trend is observed
for the total cooling energy predictions.

In general, the CNN generalizes better than the simple NN with
actual inputs. Depending on the architecture of the CNN, the reduction
in MAPE varies. For peak heating demand predictions, the average re-
duction in MAPE ranged between 7.1% and 8%. Similarly, the average
reduction in MAPE for the total heating predictions ranged between
1.4% and 9%. For cooling energy demand predictions, the reduction in
MAPE for peak predictions ranged between 10.9% and 13.7%, and for
the total demand predictions, the reduction in MAPE ranged between
10.8% and 15%. However, when comparing the CNN with the simple
NN with feature engineered inputs, the overall reduction in MAPE

ranged between 0% and 8%.
For the simple NN, manual feature engineering and selection play a

crucial role in model generalization. Deep-learning model architectures
can extract good features that extend the reusability of the model in
complex datasets. Within the evaluated deep learning architectures, the
proposed CNN architecture results in a better model generalization.

4.2. Effect of features on model generalization

In supervised learning, the models learn to identify the relationship
between input and output variables. Input features determine the data
distribution for a simple NN while for deep learning, the model de-
termines the data distribution by hierarchically extracting features from
input features. In this section, the effects of actual inputs, feature en-
gineered inputs, and features extracted by the deep learning models on
model generalization are analyzed. The data distributions generated by
training and test design cases are referred to as training and test design
spaces.

High input dimensional features are reduced to two dimensions
using the kernel-PCA. The total heating demand and total floor area

Table 6
Heating model hyperparameters.

Model architecture Number of input parameters Hidden unit per layer Number of output parameters

Simple NN with actual inputs 24 40 2
Simple NN with feature engineered inputs 14 40
Simple NN with actual and feature engineered inputs 30 40
Multilayer NN − 2 layers 24 30, 25
Multilayer NN − 3 layers 24 30, 30, 20
Multilayer NN (4 layers) 24 30, 30, 25, 20
CNN − 1+1 layers 30 30, 25
CNN − 2+1 layers 30 30, 30, 20
CNN − 3+1 layers 30 30, 30, 25, 20

Table 7
Heating model hyperparameters and CV errors on heating demand predictions.

Model architecture Coefficient of
determination (R2)

Cross-validation
MAPE (%)

Peak Total Peak Total

Simple NN with actual inputs 0.98 0.95 9.87 23.83
Simple NN with feature

engineered inputs
0.98 0.94 7.94 25.54

Simple NN with actual and
feature engineered inputs

0.99 0.95 7.47 23.31

Multilayer NN − 2 layers 0.99 0.97 7.56 17.98
Multilayer NN − 3 layers 0.98 0.96 9.16 18.95
Multilayer NN − 4 layers 0.99 0.97 7.37 15.65
CNN − 1+1 layers 0.98 0.94 7.89 26.48
CNN − 2+1 layers 0.99 0.97 7.07 17.31
CNN − 3+1 layers 0.98 0.97 7.61 19.13

Table 8
Cooling model hyperparameters.

Model architecture Number of input parameters Hidden unit per layer Number of output parameters

Simple NN with actual inputs 24 25 2
Simple NN with feature engineered inputs 14 25
Simple NN with actual and feature engineered inputs 30 25
Multilayer NN − 2 layers 24 30, 20
Multilayer NN − 3 layers 24 30, 25, 20
Multilayer NN − 4 layers 24 30, 25, 20, 20
CNN − 1+1 layers 30 30, 25
CNN − 2+1 layers 30 30, 30, 20
CNN − 3+1 layers 30 30, 25, 20, 20

Table 9
Cooling model hyperparameters and CV errors on cooling demand predictions.

Model architecture Coefficient of
determination (R2)

Cross-validation
MAPE (%)

Peak Total Peak Total

Simple NN with actual inputs (Act
ip)

0.97 0.98 14.15 13.21

Simple NN with feature
engineered inputs (FE ip)

0.98 0.98 8.15 7.8

Simple NN with actual and feature
engineered inputs (Act+ FE
ip)

0.97 0.97 12.59 13.21

Multilayer NN (2 layers) 0.98 0.97 11.42 12.52
Multilayer NN (3 layers) 0.98 0.99 8.75 8.21
Multilayer NN (4 layers) 0.99 0.99 5.77 5.78
CNN (1+1 layers) 0.98 0.99 8.68 7.52
CNN (2+1 layers) 0.99 0.98 7.41 7.50
CNN (3+1 layers) 0.99 0.99 6.74 6.22
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information are overlaid on the principal components from the kernel-
PCA. The total heating demand is used to show the effect of features on
model generalization, as simple NNs with all input configurations have
a higher test data error compared to deep learning models. The total
floor area captures information on increasing the number of floors.
Only the 2- and 13-story buildings are presented in this section as the
effects of features on the other test cases lie between these design cases.

4.2.1. Kernel-PCA on training design space
Fig. 9 shows the 1st and 2nd principal components from the kernel-

PCA of the training design space obtained through actual inputs, feature
engineered inputs, and features extracted by the deep learning models.
In Fig. 9, information of the total heating demand is represented
through purple to yellow gradient, and the total floor area is re-
presented through black to white gradient. Models with actual and
feature engineered inputs have equivalent features. Example of
equivalent feature is the use of building area instead of building length
and width as model input. Fig. 9a shows six clusters: they represent
buildings with 3, 5, and 7 stories with two types of boiler pumps. From

Fig. 9b, it can be noted that feature engineering has transformed six
clusters into two clusters. The two clusters represent the type of boiler
pump. For each cluster in Fig. 9b, the building area and energy con-
sumption increase as we move from the bottom to the top of the graph.
The deep learning models have also learned to group similar designs
together as the conventional feature engineering method. The multi-
layer NN features have buildings with area and energy gradients that
move from right to left. Similarly, the CNN features have a gradient that
moves from the right to the left.

Fig. 7 shows that deep learning models generalize better in pre-
dicting total heating energy demand than simple NNs with feature en-
gineering. The reason for the poorer performance of the simple NN is
the poor segregation of the total heating energy clusters by feature
engineered inputs (see Fig. 9b) compared with feature learning by deep
learning models (see Fig. 9c and d). For other response variables such as
cooling energy (not included in this study), feature engineered inputs
resulted in satisfactory segregation of energy clusters, resulting in a
satisfactory performance.

Fig. 7. Performance of heating models on test design cases.
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4.2.2. Kernel-PCA of training and test design space
In this section, two test design cases are analyzed. The analyzed test

design spaces are from the 2- and 13-story buildings, which are at the
extremes of the test cases. Fig. 10 shows the kernel-PCA of the 2-story
building compared to the training design space whereas Fig. 11 shows
the kernel-PCA of the 13-story building compared to the training design
space. The top row graphs have the test cases in orange and overlaid
with the energy gradient of the training design space. The bottom row
graphs have test cases with the floor area gradient, and the training
design space is in blue.

For simple NNs with actual inputs, it can be noted from Fig. 10a and
Fig. 11a that the test design cases fall outside the training design space.
Feature engineering helps the simple NN (see Fig. 10b and Fig. 11b) to
identify similar design options within the training design space. The
multilayer NN extracts features that can identify similar designs within
the training design space. Furthermore, in Fig. 11c, it can also be noted
that certain design cases from the 13-story building fall outside the
training design space. For CNNs, in Fig. 11d, the 13-story building
mostly falls outside the training design space. However, the

generalization of the CNN is similar to the multilayer NN (see Fig. 7
bottom), indicating that features that locate the design space in the
appropriate region of the data distribution result in a satisfactory model
generalization.

From Fig. 10 and Fig. 11 it can also be noted that general ML models
for design can be developed when features provided or learned can
identify similar design options within the data distribution. The fea-
tures can be either provided through manual feature engineering/se-
lection or extracted through a deep learning model. Hence, the char-
acteristics of features extracted automatically or provided manually for
model generalization are as follows:

• can identify similar design options within the data distribution, and
• identified similar design is mapped to appropriate response vari-
ables.

More research should be conducted to identify the training process
that can incorporate these conditions during training, thereby resulting
in general and reliable ML models.

Fig. 8. Performance of cooling model in test design cases.
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4.3. Evaluation of design cases with BPS and ML models

In this section, energy estimates from BPS and ML models are
evaluated for a design case to understand the reliability of decisions
taken based on each approach and the effort required to obtain the
energy estimates. Fig. 12 shows the design process utilized in this study.
The design decision process is for an 8-story building located in Brus-
sels. The length and width of the 8-story building are 50m and 60m,
respectively. The design decision process is covered in three stages. In
each stage, the following action or decision is taken:

• Stage 1: The initial estimate of energy is obtained for the 8-story
building with a length and width of 50m and 60m, respectively. All

other technical specifications are assigned randomly (see Table 10),
as the main object of this section is to evaluate a design process with
ML models.
• Stage 2: The decision on the south and north WWR is taken. The
south WWR has been decided as 0.5 and that of the north as 0.9.
• Stage 3: Designers are thinking whether to change the window g-
value or insulation level. As a first option, designers evaluate a
window with a g-value of 0.5 (U-value is 1.4W/(m2·K)). In the
second option, designers evaluate a window with U-value of 0.9W/
(m2·K) (g-value is 0.78).

The ML models used are simple NN with FE inputs and CNN, as
these methods have a better generalization. With the CNN architecture,

Fig. 9. Principal component from kernel-PCA of training design space for actual inputs, multilayer NN feature, feature engineered inputs, and CNN features: (top)
overlay with information of total heating demand (W); (bottom) overlay with information of total floor area (m2).

Fig. 10. Principal component from kernel-PCA of training and 2-story test design space for actual inputs, multilayer NN feature, feature engineered inputs, and CNN
features. (top) Orange cluster is the 2-story design space and training design space overlay with information of total heating demand (W). (bottom) Blue cluster is the
training design space and 2-story design space overlay with information of total floor area (m2). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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heating demand predictions are performed using CNN with 2 con-
volutional layers, and cooling demand predictions are performed using
CNN with 3 convolutional layers. Fig. 13 and Fig. 14 show the heating
and cooling demands estimated through the BPS and ML models. For
heating demand predictions, the simple NN has an error range of −4%
to 8% for peak predictions and 3% to 10% for total demand predictions,
while the CNN has an error range of −2% to 8% for peak predictions
and −5% to −14% for total demand predictions. Similarly, for cooling
demand predictions, the simple NN has an error range of −4% to
−12% for peak predictions and 1% to −8% for total demand predic-
tions. The CNN has an error range of −5% to −12% for peak predic-
tions and −4% to 4% for total demand predictions. It can be noted from

Fig. 13 and Fig. 14 that both simple NN and CNN have similar per-
formances. However, the advantage of CNN is the elimination of feature
selection during model development, which saves time.

It can be observed from the peak heating predictions in Fig. 13 (left)
that the relationship learned by the ML model is not similar to that of
the BPS. Therefore, taking decision on the size of heating system may
not be accurate. However, by observing the total heating demand
predictions from Fig. 13 (right), the designer can choose Option 2 as it
offers the lowest total heating demand compared with Option 1. The
decision to choose Option 2 taken through ML predictions is consistent
with the decision taken with BPS. Fig. 14 shows the cooling demand
predictions. It can be noted from Fig. 14 that the changes observed in

Fig. 11. Principal component from kernel-PCA of training and 13-story test design space for actual inputs, multilayer NN feature, feature engineered inputs, and CNN
features. (top) Orange cluster is the 13-story design space and training design space overlay with information of total heating demand (W). (bottom) Blue cluster is
the training design space and 13-story design space overlay with information of total floor area (m2). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Case for illustrating design decisions with ML model and BPS.
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the cooling energy demand from the ML models and BPS are similar.
Looking at Fig. 14, the designer can select Option 1. By comparing the
total heating and cooling demands, it can be observed that the design is
cooling dominated and Option 1 can be chosen as it offers greater en-
ergy savings. This design decision is consistent with the use of BPS or
ML models.

The advantage of ML models over BPS is the computation time re-
quired to obtain the heating and cooling energy demand. Performing
one simulation using BPS takes ~2min. Similar results can be obtained
from ML models in less than 1 s. The high computation speed of the ML
models together with their ability to take similar design decisions make
them suitable for early design stage predictions.

Fig. 15 shows the location of the evaluated design options in the
heating data distribution. Fig. 15 (top) is overlaid with information of
total heating demand within the data distribution, whereas Fig. 15
(bottom) is overlaid with information of peak heating demand within
the data distribution. Fig. 15a shows the data distribution, which is the
result of feature engineering and selection for a simple NN and Fig. 15b
shows the data distribution determined by the features extracted by the
CNN. The location of design options within the cooling model is similar

to observations present within the heating model; hence, they are not
shown in this study. The red point in Fig. 15 (top, b) shows the initial
design option that falls in the data distribution region of 200 MWh to
400 MWh. The CNN predicts a total heating demand of 395 MWh. Si-
milarly, Decision 1, i.e., the green point (approximately on top of red
point) in Fig. 15 (top, b) falls in the data range of 200 MWh to 400
MWh. The CNN predicts a total heating demand of 398 MWh. The
movement of design options with the simple NN with feature en-
gineered inputs (see Fig. 15a) shows a similar pattern as observed in the
CNN. Finally, such visualizations enables justification of a prediction.

5. Discussion

Developing an ML model with a satisfactory generalization perfor-
mance is crucial for the effective utilization of ML models in the design
stage performance analysis. Results indicate that manual feature en-
gineering and selection play a vital role in extending the model reu-
sability of simple NNs. In addition, deep learning model architectures
could extract features from data, which extends their reusability in
design. Irrespective of the use of simple or more advanced ML methods,
for an ML model to generalize in unseen design, it should be able to
identify similar design options within the data distribution.

Although most resulting ML models support decisions well as shown
in Fig. 13, there are some models that represent relationships that are
not in alignment with the BPS simulation and lead to deviations in the
decision process (see Fig. 13 (left)). Nonetheless, the prediction error in
specific design options are within acceptable ranges. Hence, such de-
viations can be mitigated by introducing prediction intervals within the
ML prediction process. Prediction intervals provide information on
uncertainties present within an ML model prediction, allowing for
predictions with high uncertainty to be viewed critically. Except for
some deviations in peak heating predictions, evaluations of specific
design options show that other parameters have learned appropriate
relationships. Incorporating prediction intervals for these parameters
can improve the reliability of decisions made using the ML models.
More research on methods of incorporating design stage prediction
intervals needs to be done.

The evaluated design cases are limited to typical design cases. The
reason for this limitation is that the primary objective of the paper is to
propose and obtain an initial understanding of deep convolutional
learning methods for early building design performance evaluation.
Furthermore, by limiting to typical design cases, intuition on the
working of deep learning methods for building design evaluation is
obtained (see Fig. 15). Based on this intuition, appropriate DM to

Table 10
Design parameters used to make the initial estimation.

Units Stage 1: Initial estimation

Length (l) m 50
Width (w) m 60
Height (h) m 4
Overhang length (loh) 2 m 0
Window to wall ratio (WWR)a S= 0.9, N=0.3, E= 0.6,

W=0.9
Orientation (α) Degree 0
Wall U-value (Uwall) W/(m2·K) 0.55
Window U-value (Uwin) W/(m2·K) 1.4
Ground floor U-value (Ufloor) W/(m2·K) 0.44
Roof U-value (Uroof) W/(m2·K) 0.32
Window g-value (gwin) 0.78
Floor heat capacity (cfloor) J/(kg·K) 1107
Infiltration air change rate (nair) h−1 0.8
Number of floors (nfloor) 8
Lighting heat gain (Q′light) W/m2 6
Equipment heat gain (Q′equip) W/m2 12
Chiller COP 3.9
Boiler efficiency (ηBoiler) 0.95
Chiller type Electric reciprocating chiller
Boiler pump type Constant flow

a Varies differently in all orientations.
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Fig. 13. Estimation of heating demand from BPS and ML models: (left) peak heating demand and (right) total heating demand.
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extract features from data for more complex design cases can be de-
rived. Further research on extending the current models to more com-
plex early design case will be performed.

Nevertheless, the proposed ML models are reliable for typical early
design options. Hence, for evaluating complex building designs, archi-
tects and engineers can use the (rough) predictions from the current
models along with their experience to make an appropriate design de-
cision. Even though the prediction for complex design is rough, the high
computational speed of the deep learning model facilities the discussion
between engineers and architects; reducing the need for rule-of-thumb
knowledge.

The current ML models are reliable for typical early design stage
decisions. Further research will be necessary to extend the current
models to different design stage performance predictions. Research to
extend ML models to other design stages can incorporate two different
strategies. The first strategy will be to develop flexible components
(based on component-based ML approaches presented in [7]) using a
deep learning architecture to emulate data from a more detailed BPS.
The advantages would be that all information required for training can
be obtained from parametric simulation models and domain knowledge
allowing for the development of ML models for quick design stage
feedback. The drawback of using BPS data is the occurrence of model
errors present within the collected data. Model error is the result of
model simplification made by simulation tool like EnergyPlus and as-
sumptions of a model developer. Such errors in data reduce the effec-
tiveness of ML models. Therefore, methods to collect data from BPS for
ML needs to be researched further. The second strategy can be the
development of deep learning models from smart city data with real
building energy consumption. Such models can potentially lower the
performance gap for the design stage energy evaluation. One challenge
to overcome with real building consumption data is missing informa-
tion from key factors such as building occupancy.

In this study, feature engineering is performed using physical
equations of HF. Simple NNs learning on features with physical sig-
nificance generalize better than simple NNs with only design informa-
tion. Within the deep learning model, CNNs generalize better than
multilayered NNs, where CNN requires both design and physical in-
formation, indicating that feature engineering is still a relevant step in
the model development process. However, the feature selection process
can be eliminated, as the convolutional layer filters out irrelevant fea-
tures, improving the model development process for multiple design
performance indicators, because identifying and selecting such features
for multiple response variables could be a time-consuming and ex-
pensive process.

For total heating demand prediction, deep learning models gen-
eralized better than simple NNs. This indicates that for complex data,
deep learning methods can identify better features than manual feature
engineering and selection. Within the deep learning architecture, the
CNN architecture performed consistently better than multilayer NNs.
Further research will be required to further understand CNNs for design
stage predictions.

The DM utilized in this study resulted in a satisfactory model gen-
eralization. However, it is possible to derive other DMs with better
generalization, for example, the use of hourly HF information instead of
static HF information. Further research will be performed to explore
other potential DMs.

CNNs utilize max pooling to reduce the size of the feature map (i.e.,
output of a convolutional layer). The current research results show that
reducing the size of the feature map does not influence the model
generalization. This indicates that max pooling removes features that
are not related to the response variable (i.e., energy prediction).
Furthermore, reducing the size of the feature map through max pooling
creates an information bottleneck that induces invariance (i.e., in-
sensitivity to irrelevant features) within a model. Based on the current
results, it is not clear which aspect of input features is contributing to
the generation of unrelated features. Identification of such character-
istics of max pooling will provide an idea on non-relevant input fea-
tures.

The kernel-PCA shows that the extracted features identify similar
design options within the data distribution and mapping the similar
design option to the right response variable. These characteristics of
extracted features allow the deep learning model to generalize well in
unseen design cases. Furthermore, methods such as kernel-PCA can be
utilized for (1) steering the feature engineering and selection process
even before the training process and (2) diagnosing features extracted
by the deep learning model, potentially increasing the efficiency of
model development. Further research will be necessary to understand
the deep learning model process.

6. Conclusion

General ML models enable reliable and quick predictions, which aid
in the effective design decision-making process. General ML models are
ones that generalize in all possible unseen design cases. Developing
such models using conventional methods requires considerable
knowledge in both building performance analysis and ML. Knowledge
on building performance analysis is required for manual feature en-
gineering and selection, while knowledge on ML enables an effective
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Fig. 14. Estimation of cooling demand from BPS and ML models: (left) peak cooling demand and (right) total cooling demand.
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development of ML models. The study shows that deep learning
methods can indeed automatically learn features that results in the
general model, thereby reducing the need for feature selection. Feature
extraction capability of deep learning makes it easier to develop ML
models for a wide range of design performance parameters.

The ML model generalization through conventional ML methods
rely on manual feature engineering and selection, while deep learning
models extract features automatically from data resulting in a similar or
better generalization. In both cases, model generalization is dependent
on the feature's ability to identify similar design options within the data
distribution. The need for ML to identify similarity within the data
distribution makes ML model predictions top-down. For example, en-
ergy demand predictions from ML is based on energy demand of a si-
milar design option. In contrast, BPS models make predictions based on
a bottom-up approach, in which energy demand prediction results from
hierarchical interactions (such as HFs) within the model. However, both
approaches are prone to biases, which can mislead the designer. The
quality of BPS prediction depends on the quality of inputs and model
complexity. The quality of ML model prediction depends on the quality
of the data utilized in the model development and quality of input

features engineered, indicating that making decision from both the BPS
and ML models can remove potential model-based biases. Hence, an
ensemble of BPS and ML models can be a potential direction for model
development, making BPS and ML methods complimentary technolo-
gies rather than competing ones. However, the computational efforts
required to make predictions from ML and BPS are different. Hence,
intelligent ensemble methods that can exploit the strengths of ML are
necessary. Finally, based on the current research results, the designer
can rely on the ML models for a quick assessment of the design and
design strategy and moves toward BPS for a more detailed analysis. This
will enable a model-driven design decision-making process, rather than
reliance on rule-of-thumb knowledge.
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