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Abstract— Random Fourier features (RFFs) have been success-
fully employed to kernel approximation in large-scale situations.
The rationale behind RFF relies on Bochner’s theorem, but the
condition is too strict and excludes many widely used kernels, e.g.,
dot-product kernels (violates the shift-invariant condition) and
indefinite kernels [violates the positive definite (PD) condition].
In this article, we present a unified RFF framework for indefinite
kernel approximation in the reproducing kernel Kreı̆n spaces
(RKKSs). Besides, our model is also suited to approximate a
dot-product kernel on the unit sphere, as it can be transformed
into a shift-invariant but indefinite kernel. By the Kolmogorov
decomposition scheme, an indefinite kernel in RKKS can be
decomposed into the difference of two unknown PD kernels.
The spectral distribution of each underlying PD kernel can
be formulated as a nonparametric Bayesian Gaussian mixtures
model. Based on this, we propose a double-infinite Gaussian
mixture model in RFF by placing the Dirichlet process prior.
It takes full advantage of high flexibility on the number of
components and has the capability of approximating indefinite
kernels on a wide scale. In model inference, we develop a
non-conjugate variational algorithm with a sub-sampling scheme
for the posterior inference. It allows for the non-conjugate case
in our model and is quite efficient due to the sub-sampling
strategy. Experimental results on several large classification data
sets demonstrate the effectiveness of our nonparametric Bayesian
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model for indefinite kernel approximation when compared to
other representative random feature-based methods.

Index Terms— Indefinite kernel, kernel approximation,
random Fourier features (RFFs), variational inference.

I. INTRODUCTION

KERNEL methods [19]–[21] have enjoyed tremendous
success in statistical machine learning with numerous

applications, such as classification [22], regression [23], and
dimensionality reduction [24], while a distinct bottleneck of
kernel methods is their limited scalability in large data sets,
i.e., the huge storage and significant computational cost of
the kernel matrix. Given N observations, storing the kernel
matrix often needs O(N2) space and takes about O(N2d)
operations, where d is the dimension. To make kernel methods
scalable, kernel approximation is a powerful technique by
mapping input features into a new space. With accurate kernel
approximation, an efficient linear learner can be well trained
in the transformed space while retaining the expressive power
of nonlinear methods.

To overcome poor scaling in N , several routes have been
explored. On the one hand, a straightforward way is employing
the divide-and-conquer approach [12], [13]. It decomposes the
full problem into several smaller easy-to-solve subproblems
to accelerate the solving process. On the other hand, random
projections are widely applicable and commonly used tactics
to seek for a low-rank approximation, either data-dependent
or data-independent. The data-dependent approaches approx-
imate the kernel matrix by the greedy basis selection
techniques [14], the incomplete Cholesky decomposition [15],
or the Nyström methods [16]. In data-independent techniques,
the kernel function is directly approximated by an explicit
map, which is sampled from a distribution independent of
training data. Most approaches that follow this idea are based
on the random Fourier features (RFFs) [17] and have attracted
significant attention to scale up kernel methods.

The theoretical foundation behind RFF is demonstrated by
Bochner’s theorem [30], i.e., any bounded, continuous, shift-
invariant, and positive definite (PD) function can be expressed
as the Fourier transform of a non-negative measure ρ(w).
However, Bochner’s theorem requires the kernel to exhibit two
properties: 1) shift-invariance, i.e., K(x, y) = K(x − y) and
2) positive definiteness. These two conditions exclude many
widely used kernels, such as dot-product kernels and indefinite

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KU Leuven Libraries. Downloaded on October 28,2020 at 10:14:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4133-7921
https://orcid.org/0000-0003-4285-6520
https://orcid.org/0000-0003-4801-7162
https://orcid.org/0000-0002-8846-6352


2966 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

kernels (real, symmetric, but not PD) [31]–[33]. For instance,
the polynomial kernel and the Hellinger’s kernel [34] are
two dot-product kernels that do not satisfy the shift-invariant
condition. Indefinite kernels include the hyperbolic tangent
kernel [35], the TL1 kernel [36], and the Gaussian kernels
with a geodesic distance on the manifold [37]. Moreover,
dot-product kernels are commonly used on �2-normalized
data to avoid the unboundedness [2], [38], so they can be
reformulated as shift-invariant but not always PD on the unit
sphere, i.e., �x, y� = 1 − 0.5�x − y�2.

Pennington et al. [3] theoretically demonstrate that the
Fourier transform of a polynomial kernel on the unit sphere
is not a non-negative function, which is the obstruction to
RFF. They empirically use ten Gaussians to approximate
the polynomial kernel with spherical random features and
employ a grid-search scheme for parameter tuning. This way
is similar to a Gaussian mixture model (GMM) [39] for
density estimation, but we need to carefully consider the
following two issues. First, the number of Gaussian com-
ponents is usually ad hoc pre-defined or manually speci-
fied. This is a real limitation as it significantly affects the
approximation performance of indefinite kernels. Actually,
it is difficult to argue that the number of Gaussian mixtures
eventually runs up against some finite bound and remains
fixed. We expect to infer the number of Gaussian compo-
nents needed from data instead of the ungrounded guesses.
Second, there are numerous parameters in GMM to be esti-
mated, including the mixture coefficients, the mean vector,
the covariance of each Gaussian model, and the number of
Gaussian components. An efficient parameter estimation tech-
nique without heuristic pruning should be developed for model
inference, especially when more Gaussians are taken into
consideration.

In this article, we propose a fully non-parametric Bayesian
model for approximating non-Bochner kernels (including the
dot-product kernel on the unit sphere and shift-invariant
indefinite kernel). In our framework, by the Kolmogorov
decomposition scheme, an indefinite kernel in the reproducing
kernel Kreı̆n spaces (RKKSs) [31], [40] can be decomposed
into the difference of two unknown PD kernels. The spectral
distribution of each underlying PD kernel is modeled by an
infinite GMM, resulting in a double-infinite GMM in RFF,
termed as RFF-DIGMM. To be specific, our model treats the
random frequency w as a latent parameter for each underlying
PD kernel and places a Dirichlet process (DP) prior on
it. This makes our random feature-based framework flexible
to the indefinite kernel approximation. In model inference,
we develop a non-conjugate variational inference method
to infer the posterior distribution due to the non-conjugate
random frequency w in RFF-DIGMM model. Furthermore,
a sub-sampling scheme is used to accelerate the inference
process.

Formally, the contributions are summarized as follows.
1) In light of the Kolmogorov decomposition scheme,

we propose a double-infinite GMM for shift-invariant
indefinite kernel approximation via random features.
As a non-parametric Bayesian model, our model takes
full advantage of high flexibility on the number of

components and has the capability of approximating
indefinite kernels in RKKS on a wide scale.

2) In the proposed RFF-DIGMM model, we design a
non-conjugate variational inference algorithm with a
sub-sampling scheme to infer the non-conjugate poste-
rior distribution. The developed inference algorithm is
feasible and efficient to accelerate the inference process
for our non-conjugate model.

3) Experimental results illustrate that our RFF-DIGMM
model is flexible to approximate indefinite kernels on
a wide scale. Furthermore, its application to classifica-
tion tasks on several large data sets demonstrates the
superiority of our RFF-DIGMM model when compared
to other representative random feature mapping-based
algorithms.

The remainder of this article is organized as follows.
Section II briefly introduces the preliminaries of RFFs and
the stick-breaking construction for DP. Section III presents
the proposed RFF-DIGMM model. The non-conjugate varia-
tional inference algorithm is given in Section IV. Section V
shows the evaluation results of the proposed RFF-DIGMM
model with other representative methods on several popular
benchmarks. Finally, the conclusion is drawn in Section VI.

II. PRELIMINARIES

This section briefly introduces the rationale of RFFs
[17], [41] and stick-breaking construction for DP [42], [43].
Reviewing these two approaches will help to understand
our double-infinite Gaussian mixtures model in RFF. Let
D = {xn}N

n=1 be the sample set with N training examples
with xn ∈ X ⊆ R

d . Let K(·, ·) be a PD kernel function
endowed in the reproducing kernel Hilbert space (RKHS)
H and K = [K(xi , x j )]N×N be the kernel matrix sampled
from D. The theoretical foundation of RFF relies on Bochner’s
celebrated characterization of PD functions.

Theorem 1 (Bochner’s Theorem [30]): A continuous and
shift-invariant function K : R

d → R is PD if and only if it
is the Fourier transform of a finite nonnegative Borel measure
ρ(w) on R

d .
A consequence of Bochner’s theorem is that any

shift-invariant and PD kernel can be interpreted by

K(x − y) =
�

Rd
p(w) exp(iw�(x − y))dw

= Ew∼ρ(w)[exp(iw�x) exp(iw� y)∗] (1)

where the symbol x∗ denotes the complex conjugate of x
and ρ(w) can be scaled to a normalized density by setting
K(0) = 1. By the Monte Carlo integration, the kernel K can
be approximated by

K(x − y) ≈ 1

M

M�
m=1

exp
�
iw�

m x
�

exp
�
iw�

m y
�∗ (2)

where wm is sampled i.i.d. from P with the density ρ(w).
In particular, since the kernel K is real-valued in most cases,
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the imaginary part of (2) can be discarded, that is

K(x − y)

≈ ϕ�(x)ϕ(y),with ϕ(x)

� 1√
M

�
cos

�
w�

1 x
�
,. . .,cos

�
w�

M x
�
,sin

�
w�

1 x
�
,. . .,sin

�
w�

M x
���
(3)

where ϕ(·) : R
d → R

M is the random feature mapping
and ϕ�(x)ϕ(y) is the unbiased estimation of K(x, y). Hence,
by random features, the storage and computational complexity
can be reduced to O(N M) and O(N Md), respectively. Recent
works on random features aim to improve the approxima-
tion quality by the Quasi-Monte Carlo sampling [44], ran-
dom orthogonal matrix [41], or decrease the time and space
complexity by Fastfood [45], quadrature-based features [46].
However, these algorithms mainly focus on shift-invariant and
PD kernels and cannot be directly applied to the non-Bochner
kernels. Only a few literature based on random features are
able to deal with a polynomial kernel by the Maclaurin’s
approximation [1] and tensor sketching [2] or indefinite kernel
approximation by the finite Gaussian mixtures [3].

Next, we briefly review the stick-breaking construction for
DP [47]. DP is a stochastic process over discrete probability
measures, i.e., atoms, with countably infinite support. It is
widely used in the Bayesian nonparametric models of data,
particularly in DP mixture models [48]. Mathematically, let
G be a distribution over the probability space �, α be a
positive real scalar, and H be a base measure over �. If any
r partitions (A1, A2, . . . , Ar ) of the corresponding probabil-
ity space obey a Dirichlet distribution, then the distribution
(G(A1),G(A2), . . . ,G(Ar )) is a DP

(G(A1),G(A2),. . .,G(Ar ))

∼ Dir(αH (A1),αH (A2),. . ., αH (Ar ))

where r is a natural number [43] and α is the concentration
parameter. We denote it as G ∼ DP(α, H ).

To build a DP, one representative strategy is stick-breaking
construction [8]. Given a unit-length stick (0, 1), we first draw
β1 ∼ Beta(1, α0), set θ1 � β1, and pick the fraction 1 − β1 as
the remainder of the stick, and then, we draw β2 ∼ Beta(1, α0)
and assign θ2 � β2(1−β1). Repeating this procedure, we have
DP mixtures with stick-braking representation, i.e., the random
measure G is associated with a DP DP(G0, α0) with respect
to the base distribution G0 and the concentration parameter
α0. Mathematically, the construction can be formulated as

G =
∞�

k=1

θk(β)δ
k , θk(β) = βk

k−1�
s=1

(1 − βs) (4)

with 
k ∼ G0 and βk |α0 ∼ Beta(1, α0). The notation δ
k

is the Kronecker delta function, of which the value is 1 at
location 
k and 0 elsewhere. It can be found that G is discrete
almost surely, i.e., the support of G consists of a countably
infinite set of atoms that are drawn independently of G0.
Since the distributions sampled from a DP are discrete almost
surely, data generated from a DP mixture can be partitioned
into different groups according to the distinct values of the

sampled distributions. As a result, the whole model serves as a
mixture model, in which the number of components is random
and grows as new data are observed. For more details on the
nonparametric Bayesian model and its construction, we refer
the reader to [43] and [49].

III. MODEL DESCRIPTION

In this section, we present the formulation of our
RFF-DIGMM model and its graphical model representation.

A. Kolmogorov Decomposition for Indefinite Kernels

In theory, a functional space spanned by indefinite kernels
does not belong to the RKHSs [19], [50]. To investigate the
indefinite kernels, we need Kreı̆n spaces defined as follows.

Definition 1 (Kreı̆n Space [40]): An inner product space is
a Kreı̆n space HK if there exist two Hilbert spaces H+ and
H−, such that the following holds.

1) All f ∈ HK can be decomposed into f = f + + f −,
where f + ∈ H+ and f − ∈ H−, respectively.

2) ∀ f, g ∈ HK, � f, g�HK = � f +, g+�H+ − � f −, g−�H− .

If H+ and H− are two RKHSs, the Kreı̆n space HK is
an RKKS associated with a unique indefinite reproducing
kernel K, such that the reproducing property holds, i.e., ∀ f ∈
HK, f (x) = � f, k(x, ·)�HK . To link indefinite kernels of
RKKS to RKHS, we present a useful proposition as follows.

Proposition 1 [51, Proposition 2.1]: An indefinite repro-
ducing kernel K associated with an RKKS admits a
Kolmogorov decomposition

K = K+ − K−

with two PD kernels K+ and K−.
Typical examples of indefinite kernels that admit the

Kolmogorov decomposition include a wide range of com-
monly used indefinite kernels, such as a linear combination of
PD kernels and conditional PD kernels. Hence, approximating
an indefinite kernel K in RKKS by random features can be
formulated as conducting random feature mappings for two
underlying PD kernels K+ and K−.

Although the above-mentioned proposition presents the
existence of a Kolmogorov decomposition for an indefinite
kernel in RKKS, it does not provide a specific decomposition
result for K+ and K−. In this case, what we only have is
the indefinite kernel K and its associated indefinite kernel
matrix K on the sample set D. An intuitive way is to
conduct an eigenvalue decomposition for K , i.e., K = U��U ,
where U is an orthogonal matrix and the diagonal matrix is
� = diag(λ1, λ2, . . . , λN ) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
0 ≥ · · · ≥ λN . Without loss of generality, we assume that
the first s eigenvalues are nonnegative and the remaining
N − s ones are negative. Hence, K can be decomposed as
K = K + − K − with the following formulation:	

K + = U�diag(λ1 + τ, . . . , λs + τ )U

K − = U�diag(τ − μN−s+1, . . . , τ − μN )U
(5)

where τ is to ensure that these two matrices K + and K −
are PD. Obviously, the decomposition for K + and K − is
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Fig. 1. Graphical model representation of RFF-DIGMM.

not unique due to the different choices of τ , and we will
experimentally verify the influence of different eigenvalue
decompositions in Section V-E. Furthermore, to speed up
the computational efficiency in large-scale situations, we only
consider a subset of training examples to conduct eigenvalue
decomposition. That is, given two sub-matrices from K + and
K −, our target is to obtain random feature mappings for K+
and K− by the proposed RFF-DIGMM model.

B. Graphical Model Representation for RFF-DIGMM

Bochner’s theorem shows that the characteristic function
(i.e., the inverse Fourier transformation) of a continuous distri-
bution P with its pdf ρ(w) is associated with a shift-invariant
and PD kernel [52]. For example, suppose that ρ(w) =
N (w|μ,�) is a Gaussian distribution with the mean vector
μ and the covariance matrix �, its characteristic function is
a shift-invariant kernel K() = exp(iμ� − 1

2
��) with

 := x − y. That is to say, a Gaussian distribution and its
characteristic function define a Gaussian kernel. Considering
that GMM is a universal approximator for any continuous
distribution [53] in density estimation, the spectral distribution
P can be well approximated by GMM. From the kernel
learning perspective, this mixture modeling is able to yield
a general PD kernel, which provides a justification to obtain
random feature mappings for K+ and K−, respectively.

For the underlying PD kernel K+, since the number of its
corresponding nonnegative Borel measure ρ(w) is not a prior
known, we posit it as infinite, namely

ρ(w) =
∞�

k=1

θkN
�
w|μk,�

−1
k

�
(6)

where μk and �k are the mean vector and precision matrix
of each Gaussian, respectively. According to Plancherel’s
theorem [18], the expression of ρ(w) with infinite components
in (6) is able to approximate any shift-invariant PD kernel.

It relates spectral accuracies to the original domain by the
following characteristic function:

K+(x− y)=
∞�

k=1

θkexp



iμ�

k (x− y)− 1

2
(x− y)��k(x− y)

�
.

In practical use, the kernel is often real-valued, so we consider
the real part of the above-presented equation

K+() =
∞�

k=1

θk exp



−1

2
��k

�
cos

�
μ�

k
�

with  := x − y. In this case, the PD kernel K+ can be
approximated by K+(x, y) ≈ ϕ�(x)ϕ(y), where ϕ(x) is as
in (3).

Likewise, for K−, its corresponding nonnegative Borel
measure ρ�(w�) is formulated as

ρ�(w�) =
∞�

k=1

θkN
�
w�|μ�

k,�
�−1
k

�
(7)

and its characteristic function is

K−(x− y)=
∞�

k=1

θ �
k exp



iμ��

k (x− y)− 1

2
(x− y)���

k(x− y)
�
.

In this case, the PD kernel K− can be approximated by

K−(x − y)

≈ ϕ��(x)ϕ�(y),with ϕ�(x)

� 1√
M

�
cos

�
w��

1 x
�
,. . .,cos

�
w��

M x
�
,sin

�
w��

1 x
�
,. . .,sin

�
w��

M x
���
.

(8)

Therefore, the expression of ρ(w) in (6) and ρ�(w�) in (7)
with infinite components provide adequate flexibility to find a
good approximation of K from a broad class.

The graphical model representation of our RFF-DIGMM
model is shown in Fig. 1. In our model, to speed up the
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computational efficiency and to reduce the memory storage,
we randomly select Ns examples from the training set D,
resulting in the sketch Ds . Similar to [9] and [10], our
model works between sub-sampling the training set and adjust-
ing the hidden structure for parameter estimation based on
the sketch Ds . Thereby, finding a good approximation to a
non-Bochner kernel over Ns observations can be represented
as

Kij = K +
i j − K −

i j =ϕ�(xi)ϕ(x j )−ϕ��(xi)ϕ
�(x j )+�,

∀xi , x j ∈ Ds and i �= j (9)

with � ∼ N (0, σ 2
� ). The two random feature mappings ϕ and

ϕ� satisfy K+(xi − x j ) ≈ ϕ�(xi)ϕ(x j ) and K−(xi − x j ) ≈
ϕ��(xi)ϕ

�(x j ), respectively. It is important to point out that,
on each trial, we randomly sample two examples xi and x j

(i �= j ) without replacement from Ds to construct Kij and
directly set Kii = 1. By doing so, we are able to avoid the
situation when the pair example (xi , x j , Kij ) is not mutually
pairwise independent [54].

In our RFF-DIGMM model, since the explicit feature map-
pings ϕ and ϕ� in (9) are determined by ρ(w) and ρ�(w�),
respectively, the distributions of K +

i j and K +
i j are

p
�
K +

i j |(xi , x j ), ϕ
� ∼ N

�
1

M

M�
m=1

cos
�
w�

m(xi − x j )
�
, σ 2
�



p
�
K −

i j |(xi , x j ), ϕ
�� ∼ N

�
1

M

M�
m=1

cos
�
w��

m (xi − x j )
�
, σ 2
�


.

The random frequencies wm and w�
m over the input space for

a mixture component are given by	
p(wm |zm = k,μk,�k) ∼ N �

wm |μk,�
−1
k

�
p(w�

m |z�
m = k,μ�

k,�
�
k) ∼ N �

w�
m |μ�

k,�
�−1
k

�
where zm and z�

m are two latent variables that assign the
indices of the parameter associated with wm and w�

m . The
mean vectors μk and μ�

k and the precision matrices �k and
��

k are further specified by the Gaussian distribution priors and
the normal-Wishart distribution priors with the same hyper-
parameters, respectively. To be specific, the corresponding
priors are

μk ,μ
�
k ∼ N �

m0, R−1
0

�
, �k,�

�
k ∼ W(W0, ν0) . (10)

Besides, the distribution of zm can be regarded as a multino-
mial distribution with parameters {θk}∞k=1 by the following
formulation:

p(zm |βk) =
∞�

k=1

(1 − βk)
1[zm>k]β1[zm=k]

k (11)

where βk is given by (4), determining the mixing pro-
portions {θk}∞k=1. The prior for {θk}∞k=1 is a DP prior
built by the stick-breaking construction, so we define it by
the stick-breaking distribution θ ∼ GEM(α0), where GEM
(Griffiths–Engen–McCloskey) is the stick breaking prior [8].
The mixing proportions {θk}∞k=1 can be regarded as a sequence
of sticks with lengths, satisfying

�∞
k=1 θk = 1. The product�k−1

s=1(1 − βs) denotes the previous remaining length of the

stick, and multiplication by βs gives the length of the stick
currently broken off. Hence, (11) can be formulated as

zm |{β1, β2, . . . , β∞} ∼ Mult
�
β
�

where Mult denotes the multinomial distribution. Similarly, z�
m

is subject to

p(z�
m |β �

k) =
∞�

k=1

�
1 − β �

k

�1
�

z�
m>k

�
β

�1
�

z�
m=k

�
k .

Finally, the complete generative process is given as follows.

1) Draw the mixing proportions {θi }∞i=1 : θ ∼ GEM(α0)
and {θ �

i }∞i=1 : θ � ∼ GEM(α0).
2) Draw the mixture components, for k = 1 : ∞

a) Draw μk,μ
�
k ∼ N (m0, R−1

0 ).
b) Draw �k,�

�
k ∼ W(W0, ν0).

3) For each random frequency index m = 1, 2, . . . ,M ,
carry out the following.

a) Draw the indicate labels zm |{β1, β2, . . . , β∞} ∼
Mult(θ(β)) and z�

m |{β �
1, β

�
2, . . . , β

�∞} ∼
Mult(θ �(β �)).

b) Draw the random feature vectors wm ∼
N (wm |zm = k,μk ,�

−1
k ) and w�

m ∼ N (w�
m |z�

m =
k,μ�

k,�
�−1
k ).

4) For any two selected training examples xi , x j ∈ Ds ,
carry out the following.

a) Compute ϕ(xi), ϕ(x j ), ϕ�(xi), and ϕ�(x j ) by (3).
b) Draw an observation Kij ∼ N (ϕ�(xi)ϕ(x j ) −

ϕ��(xi)ϕ
�(x j ), σ

2
� ).

After conducting the generative process of our
RFF-DIGMM model, we need to infer the associated
parameters with respect to ρ(w) and ρ�(w�). For ρ(w),
defining the parameter sets β̃ = {β1, β2, . . . , β∞},
μ̃ = {μ1,μ2, . . . ,μ∞}, and �̃ = {�1,�2, . . . ,�∞}
and the latent variable sets w̃ = {w1,w2, . . . ,wM } and
z̃ = {z1, z2, . . . , zM }, the hidden variable set is given by
� = {β̃, μ̃, �̃, z̃, w̃}. As illustrated by the graphical model
shown in Fig. 1, the joint distribution of all the random
variables with respect to ρ is given by

p(Ds ,�) = p(β̃)p(μ̃)p(�̃)
M�

m=1

p(zm |β̃)p(wm |zm, μ̃, �̃)

×
Ns�

i, j=1,i �= j

p
�
K +

i j |(xi , x j ), w̃
�

where the notations are p(β̃) = �∞
k=1 p(βk), p(μ̃) =�∞

k=1 p(μk), p(�̃) = �∞
k=1 p(�k), p( z̃) = �M

m=1 p(zm), and
p(w̃) = �M

m=1 p(wm). Accordingly, we have

p(Ds,�)

=
∞�

k=1

p(βk|α0)p(μk |m0, R0)p(�k|W0, ν0)

×
M�

m=1

p(zm |β̃)p(wm |zm, μ̃, �̃)

Ns�
i, j=1,i �= j

p
�
K +

i j |(xi , x j ), w̃
�
.
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Likewise, the joint distribution of all the random variables with
respect to ρ� is given by

p(Ds,�
�)

=
∞�

k=1

p
�
β �

k |α0
�

p
�
μ�

k |m0, R0
�

p
�
��

k |W0, ν0
�

×
M�

m=1

p
�
z�

m |β̃ ��p
�
w�

m |z�
m, μ̃

�, �̃�� Ns�
i, j=1,i �= j

p
�
K −

i j |(xi , x j ), w̃��

where the variable notations �� = {β̃ �, μ̃�, �̃�, z̃�, w̃�} for ρ�
share the similar formulation with the corresponding defini-
tions for ρ. Since the posteriors p(�|Ds) and p(��|Ds) are
often intractable, in Section IV, we will approximate them
using the mean-field variational inference.

IV. INFERENCE

In this section, we develop a variant of the mean-field
variational inference algorithm to tackle the non-conjugate
variable w in our model. Here, we take ρ(w) as an example to
illustrate the inference process. The inference for ρ�(w�) can
be obtained in a similar way.

A. Truncated DP in Mean-Field Approach

Variational inference [42], [55] aims to find a distribution in
a simple family that is close to the true posterior distribution
p(�|Ds) by a proxy q(�) with the following decomposition:

ln p(Ds) = L(q)+ KL(q||p) (12)

where the Kullback–Leibler (KL) divergence is defined as
KL(q||p) = �

q(�) ln{q(�)/p(�|Ds)}d� and L(q) is the
lower bound of ln p(Ds) with the expression L(q) =�

q(�) ln{p(Ds,�)/q(�)}d�. Variational inference can be
formulated as minimizing the KL divergence from the vari-
ational distribution to the posterior distribution, which is
equivalent to maximize the evidence lower bound (ELBO).

To formulate the variational posterior q(�), the pos-
terior DP is approximated by a truncated stick-breaking
representation [56]. That is, given a value T , we set
q(βT = 1) = 1 to guarantee that the mixture proportions θk are
zero for k > T . Note that the variational distribution is trun-
cated, but our model is a full DP and is not truncated. Based
on the truncated DP, we adopt the mean-field approximation
by the fully factorized variational distribution to approximate
p(�|Ds)

q(�|Ds) =
T −1�
t=1

q(βt)

T�
k=1

q(μk)q(�k)

M�
m=1

q(wm)q(zm) .

Using the above-mentioned full factorization formulation,
we can solve q(�|Ds) by maximizing the lower bound L(q) in
(12). The logarithm of the optimized factor q∗(ϑ) with ϑ ∈ �
is

ln q∗(ϑ) = E�\ϑ ln p(Ds,�)+ const (13)

where E�\ϑ is the expectation with respect to all other
latent variables and “const” (short for c) denotes a constant

that is independent of ϑ . Therefore, using the ELBO and
the mean-field family, the posterior approximate is cast as
an optimization problem. It can be efficiently solved by a
coordinate ascent variational inference [7], and we detail this
as follows.

B. Update Variational Factors

The optimization for each variational factor is conducted
by the coordinate ascent variational inference. It iteratively
optimizes each factor of the mean-field variational density
while holding the others fixed, which climbs the ELBO to
a local optimum. Here, we just state the results, and the
derivations can be found in the Appendix.

1) q(βt): We absorb terms in (13) that are independent of
βt into the additive normalization constant and then get
a Beta posterior approximating distribution

βt ∼ Beta

�
1 +

M�
m=1

q(zm = t), α0 +
M�

m=1

q(zm > t)


.

2) q(zm): Likewise, we do not consider irrelevant terms
of zm in (13). Defining � � Ewm ,μk,�k [(wm −
μk)

��k(wm − μk)] and ln h̄mk � E(ln βk) +�k−1
t=1 E[ln(1 − βt )] + (1/2)(E ln |�k| − d ln(2π) − �)

and scaling ˜̄hmk = (h̄mk/
�T

t=1 h̄mt ), we have q(zm =
k) = ˜̄hmk . It means that zm is chosen according to a
multinomial probability distribution.

3) q(μk): Keeping only the terms that have functional
dependence on μk , we get a Gaussian posterior approx-
imating distribution μk ∼ N (μk |mk , R−1

k ) with the
following mean vector and precision matrix:⎧⎪⎪⎨
⎪⎪⎩

mk = R−1
k



R0m0 + E(�k)

M�
m=1

q(zm = k)E(wm)

�

Rk = R0 + E(�k)
M�

m=1
q(zm = k) .

4) q(�k): We only retain some terms with respect to
�k in (13), the approximating distribution is �k ∼
W(�k|Wk, νk) with νk = ν0 + �M

m=1 q(zm = k), and
W−1

k is formulated by

W−1
k = W−1

0 +
M�

m=1

q(zm = k)E(wm −μk)(wm − μk)
� .

5) q(wm): The equation for solving wm is a little complex
because wm is involved in multiple variational factors.
Due to the fact that wm is a non-conjugate variable, here,
we use the second-order Taylor expansion for the cosine
function, i.e., cos[w�

m(xi − x j )] ≈ 1− (1/2)w�
m(xi − x j )

(xi − x j )
�wm . Accordingly, we inspect (13) and read

off those terms that involve wm . Defining

S �
T�

k=1

[q(zm = k)E(�k)]

+ 1

2σ 2
�

Ns�
i, j=1,i �= j

�
1 − K +

i j

�
(xi − x j )(xi − x j )

�

Authorized licensed use limited to: KU Leuven Libraries. Downloaded on October 28,2020 at 10:14:50 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DOUBLE-VARIATIONAL BAYESIAN FRAMEWORK IN RFFs FOR INDEFINITE KERNELS 2971

we get the posterior approximating distribution for wm

wm ∼ N
�

S−1

	
T�

k=1

[q(zm = k)E(�k)E(μk)]
�
, S−1


.

The variational distribution q(wm) is subject to a Gaussian
distribution. Its Gaussian form naturally stems from the Taylor
approximation of the cosine function. By Bochner’s theo-
rem, we have E[cos(w�

m x̄)] = exp(−�x̄�2/2) with x̄ :=
(xi − x j/σ). Hence, with a proper scale width σ , we can
guarantee that �wm , xi − x j � = 0 with high probability when
�x̄� approaches to zero, and accordingly, the Taylor approx-
imation condition is satisfied. This approximation technique
can also be found in the Laplace approximation variational
inference for non-conjugate models [11]. Unlike the Laplace
approximation, our variational inference algorithm does not
require the exponential family assumption but directly uses
the Taylor approximation of the cosine function.

Finally, by repeating the above-mentioned update steps,
we adjust the free variational parameters to approximate the
original distribution p(�|Ds) until convergence. Likewise,
the variational approximation for p(��|Ds) can be obtained
in a similar fashion. The variational inference algorithm for
model inference is summarized in Algorithm 1. The con-
vergence results of our model are similar to the Laplace
approximation method in [11], which converges to a local opti-
mum of the variational objective. Here, we assess convergence
by measuring the difference between the two consecutive
iterations for q(z). This is a common stopping criterion,
and we set the maximum iteration number IterMAX to 50.
We will experimentally verify the convergence of the proposed
inference algorithm in Section V-F.

Algorithm 1: Variational Inference for RFF-DIGMM

1 Construct Ds and the associated sub-kernel matrix K .
2 Obtain K + and K − by eigenvalue decomposition for K .
3 Set IterMAX= 50, iter = 0, initialize variational
4 distributions q(�|Ds) and q(��|Ds).
5 Repeat
6 iter = iter + 1;
7 for k = 1 to T do
8 Update q(βk), q(μk), q(�k), q(β �

k), q(μ�
k), q(��

k);
9 end

10 for m = 1 to M do
11 Update q(zm), q(wm), q(z�

m), and q(w�
m);

12 end
13 Until �q(ziter)− q(ziter-1)�F ≤ 1e−5 or iter=IterMAX;
14 return variational distributions q(�|Ds), q(��|Ds) and
15 random features {wm}M

m=1, {w�
m}M

m=1.

1) Complexity: Our inference algorithm involves simple
computations, such as matrix addition and matrix multipli-
cation, except that inferring w and � needs to conduct d × d
matrix inversion operations, leading to O((M + T )d3). Owing
to the sub-sampling scheme, based on Ds , the total runtime per
iteration is O((M + T )d3 + M Ns T + M Ns ). As a result, our

TABLE I

DATA SET STATISTICS

method is quite efficient because the inference is independent
of N , especially on large data sets with N � d .

2) Prediction: The main focus of our RFF-DIGMM model
is not limited to improve the quality of kernel approximation.
Instead, we aim to train a linear classifier in the feature space
endowed by the obtained random features for classification
tasks.

V. EXPERIMENTS

In this section, we experimentally evaluate the approxima-
tion performance of the proposed RFF-DIGMM model and
apply it to classification tasks. All the experiments imple-
mented in MATLAB are repeated over ten runs on a standard
PC with Intel i5-6500 CPU (3.20 GHz) and 16-GB RAM.
The source code of our implementation can be found in
http://www.lfhsgre.org.

A. Experiment Setup

1) Data Sets: We extensively study the proposed method
on five large classification benchmark data sets1 that are listed
in Table I. The data in these data sets are normalized to [0, 1]d

in advance, and we randomly pick half of the data for training
and the rest for test on skin, EEG, and spambase. For ijcnn1,
both training and test data have been divided. Following [12],
we use a random 80%-20% split on covtype. Besides, our
method is also evaluated on the MNIST data set [58]. It is
a 28 × 28 (the feature dimension is d = 784) grayscale
handwritten digits database with 50 000 images for training
and 10 000 for test.

2) Kernel Setting: Experiment results here are based on four
non-Bochner kernels, including two dot-product kernels on the
unit sphere and two indefinite kernels, as listed in Table II.
These four non-Bochner kernels can be transformed into
indefinite but shift-invariant kernels and approximated by our
RFF-DIGMM model.

3) Parameter Setting: In our experiment, the sketch size is
set to Ns = 5. The truncation parameter in DP is T = 5. The
order in the polynomial kernel Kp(x, y) is fixed with p = 10,
and the parameters in the TL1 kernel and tanh kernel are set
to τ = 0.7d and υ = 1/d as suggested.

4) Compared Methods: We choose the liblinear
classifier [59] as our fast solver and present a comparison of
our method (RFF-DIGMM) with the following algorithms.

1All the data sets can be downloaded from https://www.csie.ntu.
edu.tw/^cjlin/libsvmtools/datasets/ or the UCI Machine
Learning Repository [57].
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TABLE II

USED NON-BOCHNER KERNELS

Fig. 2. Comparison of RMSE on EEG with (a) polynomial kernel and
(b) TL1 kernel.

1) Liblinear [59]: It is an efficient solver for linear support
vector machine (SVM). It serves as a baseline for
comparison. The balance parameter C in liblinear is well
tuned by fivefold cross validation on a grid of points:
C = [2−5, 2−4, . . . , 25].

2) RM [1]: It adopts random Maclaurin feature maps to
approximate the polynomial kernels but is infeasible to
the Hellinger’s kernel. This is because the Maclaurin
expansion in RM requires the order of �x, y� not less
than 1. Note that RM is not suited to the indefinite kernel
as well.

3) SRF [3]: The polynomial kernel on the unit spherical is
approximated by a GMM with ten components. Parame-
ters in GMM are off-line optimized by the grid search
over [0, 2].

B. Quality of Kernel Approximation

One target of the experiment is to study the approxima-
tion quality of the non-Bochner kernels. In our experiment,
we choose the polynomial kernel on the unit sphere and
the TL1 kernel as examples. For them, we compute the
ground-truth kernel matrix K ∗ and the approximated kernel
matrix K on the EEG data set and validate the approx-
imation quality of competing methods. The used evalua-
tion metric here is the root mean square error (RMSE)
between K ∗ and K over N observations, i.e., RMSE =
((1/N(N − 1))

�N
i=1

�N
j=1, j �=i(K

∗
i j − Kij )

2)1/2.
Fig. 2 shows the kernel approximation performance of

the compared algorithms with the polynomial kernel and the
TL1 kernel on EEG. It can be observed that, in terms of poly-
nomial kernel approximation, under varying random feature
dimensionality, our method always provides less RMSE than
RM and SRF, especially when using the lower dimensional

random features. For the TL1 kernel approximation, along
with the number of random features increases, the approxima-
tion error provided by SRF and our method steadily declines.
Nevertheless, SRF yields a considerable approximation error
and relatively large variance. Unlike SRF, our method achieves
lower RMSE, which benefits from the high flexibility of
the proposed RFF-DIGMM model. Notice that, the obtained
RMSE on the TL1 kernel of both two methods is not as good
as those for the polynomial kernel. This is mainly due to
the non-smoothness of the TL1 kernel, which enhances the
approximation difficulty.

C. Classification Results for Approximating Indefinite Kernels

The main focus of this article is to train a classifier by
the obtained random features from RFF-DIGMM and then
evaluate its classification accuracy on various data sets.

1) Classification Results on the UCI Database: For the
polynomial kernel, we compare the performance of random
feature mappings (RM, SRF, and our method) with the poly-
nomial kernel and the liblinear method. For the Hellinger’s
kernel Kh(x, y) = (�x, y�)1/2, SRF and our RFF-DIGMM
method are taken into comparisons, but RM is not suited
to this kernel. This is because the Maclaurin expansion in
RM requires the order of �x, y� not less than 1. Table III
reports the classification accuracy and the approximation time
of all the competing methods for the polynomial kernel and
Hellinger’s kernel. As expected, the test accuracy improves
with higher dimensional feature maps. The kernel approx-
imation time linearly increases as the number of random
features dimensionality raises. Among all the five data sets,
our method achieves the best test accuracy. As a full Bayesian
model, our RFF-DIGMM achieves comparable computational
efficiency and accordingly decreases the computational cost
for hyper-parameter tuning and multiple trials for determining
a proper number of components by SRF.

Apart from the dot-product kernels, we also evaluate the
classification performance of our model with the TL1 kernel
and tanh kernel. The compared two algorithms include SRF
and liblinear. The experimental results with respect to the test
accuracy and training time are reported in Table IV. We can
find that the proposed RFF-DIGMM model is superior to SRF
in all the cases except for M = 2d on ijcnn1 and spambase.
For the TL1 kernel, the test accuracy of SRF is inferior
to our method, and it almost stays unchanged with nearly
indiscernible improvements on ijcnn1 and covtype even if M
varies from 2d to 32d . This phenomenon also appears to SRF
with the tanh kernel on spambase. Instead, our RFF-DIGMM
model flexibly exploits the infinite components that adapt to
data and accordingly achieving promising test accuracy on
these five data sets with varying M . The classification results
on two indefinite kernels demonstrate the superiority of our
RFF-DIGMM model.

2) Classification Results on Digit Recognition on
MNIST: Apart from the above-mentioned five relatively
low-dimensional data sets, here, we evaluate our RFF-DIGMM
model on a relative high-dimensional data set, e.g., the MNIST
data set [58]. Table V shows the recognition rates and time
costs for kernel approximation of various compared algorithms
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TABLE III

COMPARISON RESULTS OF VARIOUS ALGORITHMS WITH THE POLYNOMIAL KERNEL AND HELLINGER’S KERNEL FOR VARYING FEATURE MAP
DIMENSIONALITY (M ) IN TERMS OF CLASSIFICATION ACCURACY (MEAN ± STD. DEVIATION %) AND TRAINING TIME

(MEAN ± STD. DEVIATION SEC.). THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

with the polynomial kernel and the TL1 kernel. Since the
feature dimension of this database is quite high, we just report
the results under the setting of M = 2d . We can see that the
proposed RFF-DIGMM model achieves the best performance
on classification accuracy, which is narrowly followed by
RM and SRF. In terms of time cost, our RFF-DIGMM
model achieves an acceptable computational efficiency when
compared to RM and SRF.

D. Compared With Other Kernel Approximation Methods
With Bochner Kernels

As aforementioned, research works on approximating
non-Bochner kernels by random features appear to be quite
rare. Albeit this, we also compare the proposed RFF-DIGMM
model with other recent kernel approximation algorithms as
follows.

1) RF [4]: It is a nonparametric kernel learning framework
by learning from optimal random features.

2) Recursive-Nyström [5]: It is a Nyström method based
on recursive leverage score sampling.

3) CROiclassification [6]: A new concomitant rank
order (CRO) kernel is proposed to approximate the
Gaussian kernel on the unit sphere by random features.

The used kernel in Recursive-Nyström [5] and
CROiclassification [6] is a Gaussian kernel. Instead,

as a data-dependent method, RF considers the learned random
features for kernel learning and approximation. In the current
setting, our method, equipped with the polynomial kernel and
M = 32d , is taken into consideration. For the subsequent
classification, all of these three algorithms are combined
with the liblinear algorithm for a fair comparison. The
corresponding classification results are reported in Table VI.
We find that RF appears to obtain a not very promising
performance even if the kernel is learned instead of directly
specified. Compared to [5] and [6] equipped with the
Gaussian kernel, our method with the polynomial kernel
achieves a comparable classification performance and
computational cost. Actually, in this article, we do not want
to claim that our RFF-DIGMM model is better than these
two kernel approximation methods, as the scope of their
applications is not the same. Instead, our aim is to show that
the proposed RFF-DIGMM model provides a justification to
conduct random features for non-Bochner kernels.

E. Parametric Analysis

Here, we study the influence of different sizes of the
sketch, different truncation parameters, and different eigen-
value decompositions on the final results.

1) Size of the Sketch: In our RFF-DIGMM model, in each
iteration, we sample Ns data points from D for variational
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TABLE IV

COMPARISON RESULTS OF VARIOUS ALGORITHMS WITH THE TL1 KERNEL AND THE HYPERBOLIC TANGENT KERNEL FOR VARYING
FEATURE MAP DIMENSIONALITY (M ) IN TERMS OF CLASSIFICATION ACCURACY (MEAN ± STD. DEVIATION %) AND TRAINING

TIME (MEAN ± STD. DEVIATION SEC.). THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

TABLE V

COMPARISON RESULTS OF VARIOUS ALGORITHMS ON MNIST DATA SET. THE BEST SCORES ARE HIGHLIGHTED BY BOLDFACE

TABLE VI

COMPARISON RESULTS OF VARIOUS REPRESENTATIVE ALGORITHMS WITH BOCHNER KERNELS AND OUR RFF-DIGMM MODEL

WITH THE POLYNOMIAL KERNEL. THE BEST SCORES ARE HIGHLIGHTED BY BOLDFACE

inference. Here, we quantitatively study the influence of the
size of the sketch, i.e., Ns = 1, 5, 10, 50, 100 in our method
with the polynomial kernel and TL1 kernel on the ijcnn1 data
set.

Fig. 3 shows the kernel approximation error, test accuracy,
and time cost for the polynomial kernel approximation varying
with different sizes of the sketch. We can see that if more data
points are sampled, our method with the polynomial kernel
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Fig. 3. Comparison of (a) approximation error, (b) test accuracy, and (c) time cost for kernel approximation of varying Ns for the polynomial kernel on the
ijcnn1 data set. (a) Relative error. (b) Test accuracy. (c) Time cost.

Fig. 4. Comparison of (a) approximation error, (b) test accuracy, and (c) time cost for kernel approximation of varying Ns for the TL1 kernel on the ijcnn1
data set. (a) Relative error. (b) Test accuracy. (c) Time cost.

TABLE VII

COMPARISON RESULTS OF DIFFERENT TRUNCATION PARAMETER VALUES ON THE ijcnn1 DATA SET

achieves slight improvements on the kernel approximation
error and the test accuracy. However, in terms of computational
cost, the training time significantly increases along with more
sampled data taken into consideration, as shown in Fig. 3.
In addition, Fig. 4 shows that our model with the TL1 kernel
achieves the same tendencies with the polynomial kernel
setting, in terms of the approximation error, classification
accuracy, and time cost.

From the above-mentioned experimental results, although
the sketch with larger size would lead to better approximation
performance to some extent, this strategy cannot guarantee
better classification performance. This might be because the
original kernel might not be suitable for the task, as discussed
in [3] and [60].

2) Truncation Parameter: As aforementioned, the varia-
tional distribution is truncated, but our model is a full DP

and is not truncated. The truncation level T is a variational
parameter that can be freely set; it is not a part of the
prior model specification. Here, we evaluate the parametric
sensitivity of T on the ijcnn1 data set. Table VII reports
the classification accuracy and the time cost for computing
random features when T is chosen as 1, 5, and 10. It can be
observed that the test accuracy with a different T is exper-
imentally stable. However, the time cost gradually increases
as T rises. Hence, small T values are shown to achieve high
computational efficiency, which explains the reason why we
choose this parameter for our experiments.

3) Eigenvalue Decomposition Parameter: Here, we inves-
tigate how the eigenvalue decomposition parameter τ in (5)
does affect the final performance. We evaluate our model with
the TL1 kernel (M = 2d) on the ijcnn1 data set under a
different τ . In our experiment, τ is chosen as −1.1μN , −2μN ,
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TABLE VIII

COMPARISON RESULTS WITH DIFFERENT EIGENVALUE DECOMPOSITION PARAMETER τ ON THE ijcnn1 DATA SET

Fig. 5. Convergence plots on (a) ijcnn1, (b) covtype, (c) skin, (d) EEG, and (e) spambase.

−5μN , −10μN , and −20μN , where μN < 0 is the smallest
eigenvalue of the indefinite kernel matrix K . Table VIII shows
that different selections of τ do not have a significant influence
on the final classification accuracy and the time cost for kernel
approximation. Hence, the performance is insensitive to the
parameter τ , and thus, we experimentally set it to −1.1μN in
our model.

F. Illustration of Convergence

Here, we investigate the convergence of the used
non-conjugate variational inference algorithm. We take the
TL1 kernel with M = 2d as an example and plot �q(zt) −
q(z(t−1))�F versus iteration on the above-mentioned five data
sets in Fig. 5. It can be found that, in most cases, q(zt)
significantly decays in the first five iterations in our variational
inference algorithm, which leads to a quick convergence under
the stopping criterion �q(zt )− q(z(t−1))�F ≤ 1e−5. The total
iterations are less than ten in these five data sets except for skin
with about 13 iterations. Therefore, the maximum iteration
number fixed to 50 is reasonable and enough. Furthermore,
the convergence of the optimization process employed by our
non-conjugate variational inference is well demonstrated.

VI. CONCLUSION

We investigated a full non-parametric Bayesian method in
random feature mappings for indefinite kernels. It extends
the traditional Bochner kernel in RFF to several non-Bochner
kernels, including dot-product kernels and indefinite kernels.
By placing a DP prior to the components of Gaussian mixtures,
our RFF-DIGMM model is adaptive to the data with varying
components. The derived non-conjugate variational inference
algorithm with the sub-sampling scheme is efficient and effec-
tive for model inference. As a result, the superiority of our
method is demonstrated by experimental validation on several
classification data sets.

APPENDIX

UPDATE VARIATIONAL FACTORS

The optimization for each variational factor is conducted by
iteratively updating the latent variables in detail.

1) q(βt): We absorb terms in (13) that do not depend on
βt into the additive normalization constant, giving

ln q∗(βt ) = E�\βt ln p(Ds,�)+ const

= ln p(βt )+
M�

m=1

Eq [ln p(zm |β̃)] + c .

Following [56] and q(zm > T ) = 0, we have:

Eq [ln p(zm |β̃)] =
T�

k=1

{q(zm > k)Eq [ln(1 − βk)]

+ q(zm = k)E(ln βk)} .
As a result, the optimal variational distribution q∗(βt )
can be obtained by

ln q∗(βt ) = ln p(βt )+
M�

m=1

[q(zm > t) ln(1 − βt )

+ q(zm = t) ln βt ] + c

= ln p(βt )+
�

M�
m=1

q(zm > t)

�
ln(1 − βt )

+
�

M�
m=1

q(zm = t)

�
ln βt + c.

Since βk ∼ Beta(1, α0), we have p(βk) ∝ (1 −βk)
α0−1.

Finally, we have

βt ∼ Beta

�
1 +

M�
m=1

q(zm = t), α0 +
M�

m=1

q(zm > t)


.

2) q(zm): Likewise, we do not consider irrelevant terms of
zm in (13), that is

ln q∗(zm)

= E�\zm ln p(Ds,�)+ c

= Eq [ln p(zm |β̃)+ ln p(wm |zm, μ̃, �̃)] + c

=
T�

k=1

�
1[zm > k]E[ln(1 − βk)] + 1[zm = k]E(ln βk)

+1(zm =k)



1

2
E[ln|�k|]− d

2
ln(2π)− 1

2
�

��
+c
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with � � Ewm ,μk ,�k [(wm−μk)
��k(wm−μk)]. Defining

ln h̄mk =E(ln βk)+
k−1�
t=1

E[ln(1 − βt )]

+ 1

2
(E ln |�k | − d ln(2π)−�)

and scaling ˜̄hmk = (h̄mk/
�T

t=1 h̄mt ), we have q(zm =
k) = ˜̄hmk . It means that zm is chosen according to a
multinomial probability distribution.

3) q(μk): Keeping only terms that have a functional depen-
dence on μk , we have

ln q∗(μk)

= E�\μk ln p(Ds,�)+ c

= Eq

�
ln p(μk)+ ln

M�
m=1

p(wm|zm , μ̃, �̃)

�
+ c

= ln p(μk)+
M�

m=1

q(zm =k)E�\μk

�
lnN �

wm |μk,�
−1
k

��+c

= −1

2
μ�

k

�
R0 + E(�k)

M�
m=1

q(zm = k)


μk

+ μ�
k

�
R0m0 + E(�k)

M�
m=1

q(zm = k)E(wm)


.

After some algebraic manipulations, as we expect, μk is
subject to a Gaussian distribution μk ∼ N (μk |mk , R−1

k )
with the following mean vector and precision matrix:⎧⎪⎪⎨
⎪⎪⎩

mk = R−1
k



R0m0 + E(�k)

M�
m=1

q(zm = k)E(wm)

�

Rk = R0 + E(�k)
M�

m=1
q(zm = k) .

4) q(�k): We only retain some terms with respect to �k

in (13), namely

ln q∗(�k)

= E�\�k ln p(Ds,�)+ c

= ln p(�k)+
M�

m=1

q(zm =k)E�\�k

�
lnN �

wm |μk,�
−1
k

��+c

= −1

2
Tr

�
�k W−1

0

�+ ν0−d−1

2
ln|�k |

+1

2

�
M�

m=1

q(zm =k)


ln|�k|

− 1

2

M�
m=1

q(zm =k)Tr
�
�kE(wm −μk)(wm −μk)

��
+c.

Thus, we have �k ∼ W(�k|Wk, νk) with νk = ν0 +�M
m=1 q(zm = k), and W−1

k is formulated by

W−1
k = W−1

0 +
M�

m=1

q(zm = k)E(wm − μk)(wm − μk)
� .

5) q(wm): Inspecting (13) and reading off those terms that
involve only wm , we have

ln q∗(wm) = E�\wm ln p(Ds,�)+ c

= Eq [ln p(wm |zm, μ̃, �̃)]

+Eq

⎡
⎣ln

Ns�
i, j=1,i �= j

p
�
K +

i j |(xi , x j ),wm
�⎤⎦+c .

For the first term, we have

Eq [ln p(wm |zm, μ̃, �̃)]
= Eq [ln p(wm|μ̃, �̃)1[zm=k]]

= 1

2

T�
k=1

q(zm = k)(E[ln |�k |]

− Eμk ,�k [(wm −μk)
��k(wm −μk)])+c .

The second term can be expressed as

Eq

⎡
⎣ln

Ns�
i, j=1,i �= j

p
�
K +

i j |(xi , x j ),wm
�⎤⎦

= − 1

2σ 2
�

Ns�
i, j=1,i �= j

�
K +

i j − cos
�
w�

m(xi − x j )
��2 + c .

Since wm is not a conjugate variable, we conduct the
second-order Taylor expansion cos[w�

m(xi − x j )] ≈ 1 −
(1/2)w�

m(xi − x j )(xi − x j )
�wm and derive that

ln q∗(wm)≈−1

2
w�

m Swm +w�
m

T�
k=1

[q(zm =k)E(�k)E(μk)]+c .

where S is defined by

S =
T�

k=1

[q(zm = k)E(�k)]

+ 1

2σ 2
�

Ns�
i, j=1,i �= j

�
1 − K +

i j

�
(xi − x j )(xi − x j )

�.

Therefore, wm is subject to

wm ∼ N
�

S−1

	
T�

k=1

[q(zm = k)E(�k)E(μk)]
�
, S−1


.

In the variational update equations, we also need to cal-
culate the expectations with respect to the current variational
distributions. For example, E(μk) and E(�k) can be easily
obtained by their respective distributions. Here, we present
several intractable expectation computations. The expectation
E(ln |�k|) can be obtained by

E(ln |�k |) =
d�

i=1

ψ



νk + 1 − i

2

�
+ d ln 2 + ln |Wk |

where ψ(·) is the digamma function with
ψ(x) = (d/dx) ln�(x). Besides, the expectation
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Eμk ,�k [(wm − μk)
��k(wm − μk)] is given by

Eμk ,�k

�
(wm − μk)

��k(wm − μk)
�

=
�

μk

�
�k

Tr
�
�k(wm −μk)

�(wm −μk)
�
q∗(μk)q

∗(�k)dμkd�k

=
�

�k

�
μk

Tr
�
�k

�
w�

mwm −2w�
mμk +μ�

k μk
��

q∗(μk)dμkq∗(�k)d�k

=
�

�k

Tr
�
�k

�
w�

mwm − 2w�
m mk + m2

k + R−1
k

��
q∗(�k)d�k

= E(�k)
�
(wm − mk)

�(wm − mk)+ R−1
k

�
.

Similarly, the expectations Ewm ,μk ,�k [(wm − μk)
��k(wm −

μk)] and Ewm ,μk [(wm −μk)
��k(wm −μk)] can be calculated

by the above-mentioned way.
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