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ABSTRACT: In this work, uniform manifold approximation
and projection (UMAP) is applied for nonlinear dimension-
ality reduction and visualization of mass spectrometry imaging
(MSI) data. We evaluate the performance of the UMAP
algorithm on MSI data sets acquired in mouse pancreas and
human lymphoma samples and compare it to those of
principal component analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE), and the Barnes−Hut (BH)
approximation of t-SNE. Furthermore, we compare different
distance metrics in (BH) t-SNE and UMAP and propose the
use of spatial autocorrelation as a means of comparing the
resulting low-dimensional embeddings. The results indicate
that UMAP is competitive with t-SNE in terms of visualization
and is well-suited for the dimensionality reduction of large
(>100 000 pixels) MSI data sets. With an almost fourfold decrease in runtime, it is more scalable in comparison with the current
state-of-the-art: t-SNE or the Barnes−Hut approximation of t-SNE. In what seems to be the first application of UMAP to MSI
data, we assess the value of applying alternative distance metrics, such as the correlation, cosine, and the Chebyshev metric, in
contrast to the traditionally used Euclidean distance metric. Furthermore, we propose “histomatch” as an additional custom
distance metric for the analysis of MSI data.

Mass spectrometry imaging (MSI) is a molecular-imaging
technology that enables the direct study of the spatial

distribution of biomolecular species in a tissue section.1,2 MSI
provides a very rich biochemical characterization of a sample;
however, a single MSI experiment can lead to gigabytes of
complex data. Furthermore, the number of pixels collected in
an experiment, as well as the number of m/z bins measured, is
ever-increasing with improving technology.
Because of the sheer volume and complexity of MSI data,

there is a growing need for scalable dimensionality reduction
techniques to extract the underlying trends from these data, in
order to (i) facilitate human interpretation; (ii) reduce data
size and complexity for additional data-analysis steps, such as
clustering; and (iii) allow for visualization of these data.
Dimensionality reduction techniques such as principal

component analysis (PCA), non-negative matrix factorization
(NMF), and probabilistic latent semantic analysis (pLSA)3−7

have been successfully used to this end, with PCA probably
being the most widely used technique. PCA relies on the
determination of orthogonal eigenvectors along which the
largest variances in the data are to be found. PCA works very
well to approximate data by a low-dimensional subspace, which
is equivalent to the existence of many linear relations among
the projected data points.8 In NMF, a data matrix, X, is
factored into two matrices, W and H, such that by iteratively
minimizing the residual squared distance between the products
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of these two factorized matrices, W and H, the resulting
product resembles the original data matrix, X, as well as
possible (X ≈ WH).9 pLSA, on the other hand, relies on a
statistical mixture model and aims to decompose the original
data into the underlying latent variables via the iterative
expectation-maximization (EM) procedure, resulting in a set of
probability distributions for these discovered latent variables.10

A common issue in these methods is the selection of the
number of components to be retained for dimensionality
reduction. Each of the resulting components contains a part of
the total information in the data, and the inclusion of an
insufficient number of components will result in a loss of
information and data features. This is especially relevant when
trying to visualize the data in 2 or 3 dimensions. Another
limitation specific to PCA is related to the fact that the
interpretation is hampered by the possible presence of negative
peaks in the pseudospectra, particularly in the context of MSI
data, where negative values are not expected in the
measurements. This disadvantage is alleviated in NMF and
pLSA through the enforcement of non-negative constraints.
Although linear dimensionality reduction techniques, of

which PCA, NMF, and pLSA are prominent examples, have
shown satisfactory results in the past and have been
instrumental in extracting information from MSI data, these
models assume that there exist linear relationships among the
variables. This is, however, a very strong assumption that most
often cannot be imposed as many biological models are
inherently nonlinear.
These linear methods thus face a limitation with regard to

nonlinear pattern recognition, resulting in an incomplete
capture of the underlying structure. As a result, nonlinear
dimensionality reduction (NLDR) techniques have gained
increasing popularity for the analysis of biological data,
including MSI, with t-distributed stochastic neighbor embed-
ding (t-SNE) being the leading example.11,12

t-SNE has been shown to be very valuable for MSI data
analysis, not only for dimensionality reduction in itself but also
for visualization purposes.11,12 This is due to the fact that t-
SNE is strong at maintaining the local distances among data
points, and the number of features that can be captured in the
reduced space is not restricted by the number of dimensions
selected. Because t-SNE is able to embed all features into two
or three dimensions, even if more than two or three features
are present, the visualization of the data is greatly facilitated.
This is an important advantage of t-SNE and similar nonlinear
methods that is absent from methods such as PCA, NMF,
pLSA, and clustering in general.
A major drawback of most NLDR methods, on the other

hand, is their high computational cost. In t-SNE, the pairwise
distance matrix needs to be calculated between pixels, which
makes the method computationally hard and not suitable for
large (>100 000 pixels) MSI data sets. The Barnes−Hut
approach therefore seeks to approximate these calculations by
using a nearest-neighbors approach but is nevertheless
confronted with long runtimes for larger data sets.13 To
mitigate these computational constraints, Thomas et al.14 have
presented the application of autoencoders for unsupervised
NLDR. This approach treats every pixel as a training example,
such that the complete data set is not loaded in memory at
once, and as long as the number of hidden neurons is smaller
than the number of channels in the mass spectrum, this
method will be computationally less expensive than t-SNE.
Although greatly improving on standard t-SNE, the computa-

tion time of the weight matrix is still very large (20 h for a data
set containing 409 × 404 pixels and 7036 m/z bins or 8 Gb in
size).14

In this paper, we show the utility of uniform manifold
approximation (UMAP) for the analysis of MSI data.15 The
UMAP algorithm seeks to find an embedding by searching for
a low-dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure (see also the
UMAP outline in Algorithm 1). The method can therefore be
used in a similar fashion as t-SNE (i.e., for visualization
purposes) but also for general NLDR. In order to make a
comparison to the current state-of-the-art used for nonlinear
dimensionality reduction and visualization, t-SNE, and linear
dimensionality reduction using standard PCA, we propose the
use of spatial autocorrelation. Spatial autocorrelation has
previously been studied in the context of MSI by Cassese et
al.16 and refers to the observation that neighboring pixels in an
MSI experiment generally more closely resemble each other
than pixels that are far away from each other and are thus more
likely to have a higher correlation between them. This is due to
the fact that neighboring pixels are often located in the same
tissue type and have a higher chance of having a similar
function and thus chemical content.
One of the first steps in the application of NLDR algorithms

is the calculation of distances or similarities between the pixels
in the original high-dimensional space. This distance metric
aims to describe how similar or dissimilar the spectra of each
pixel and thus its chemical content are to those of the other
pixels. In MSI research and many other fields, the Euclidean
distance is very often used as the de facto distance metric;
however, the choice of this distance measure can have a
considerable impact on the results, as meaningful patterns
might be lost due to the high-dimensionality of the data, and
noise or outliers can become amplified.17 In this work, we
therefore compare the effects of different distance metrics,
namely, the traditional Euclidean distance, the cosine distance,
the Chebyshev distance, and the Pearson correlation
coefficient between pixels. Furthermore, we highlight “histo-
match” as an additional custom distance metric for the analysis
of MSI data.18,19

To the best of our knowledge, this is the first time that
spatial autocorrelation has been used for the relative
comparison of the embeddings obtained through different
dimensionality reduction methods, using a variety of distance
metrics instead of relying on the widely applied Euclidean
distance metric.
We demonstrate our method on MSI data collected from

mouse pancreas and human lymph-node tissue (Table 1),
comparing the resulting embeddings through spatial autocor-
relation. Moreover, we evaluate the application of different
distance metrics, including the proposed histomatch metric.

Table 1. Overview of Dimensionality Associated with the
Used Datasets

sample pixels m/z bins

Pancreas M1 10 606 14 000
Pancreas M2 14 791 14 000
Lymphoma P1 572 173 8000
Lymphoma P2 552 701 8000
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■ EXPERIMENTAL SECTION

Mass Spectrometry Imaging (MSI)-Data Acquisition
and Processing. MSI was performed on mouse pancreatic
tissue and on human-lymph-node samples. For all samples,
MSI was done on a Bruker rapifleX MALDI-TOF mass
spectrometer. For the mouse pancreatic tissue, cryosections of
7 μm thickness were prepared and mounted on ITO glass
slides. Sinapinic acid (SA) was used as matrix and applied
using a Bruker ImagePrep. The pixel size was set to 50 μm, and
the recorded m/z range was 2−20 kDa in positive linear mode.
The acquisition speed was 9 pixels/s with 1000 lasershots/
pixel and a laser repetition rate of 10 kHz.
For the human-lymph-node samples, cryosections of 5 μm

thickness were prepared and mounted on ITO glass slides. 2,5-
Dihydroxybenzoic acid (2,5-DHB) was used as the matrix and
applied using sublimation. The pixel size was set to 10 μm, and
the recorded m/z range was 620−1200 Da in positive reflector
mode. The acquisition was performed with 200 lasershots/
pixel and a laser repetition rate of 10 kHz, resulting in an
acquisition speed of 32 pixels/s.
Data Processing of Mouse-Pancreas and Human-

Lymphoma Data Sets. Data Modeling. All data was
normalized using total-ion count (TIC). Manifold learning
approaches were used to embed high-dimensional data in a
low-dimensional space for data visualization and investigation
of nonlinear relations in the data; in addition, PCA was used
for comparative reasons. The following three methods were
used to map the data to three dimensions: (1) PCA, (2) t-SNE
and the Barnes−Hut (BH) approximation thereof, and (3)
UMAP. The t-SNE mapping to three dimensions was done
using the default settings, as discussed by van der Maaten et
al.,12 apart from the different distance metrics that were
evaluated. The UMAP mapping to three dimensions was
performed using the Python implementation as provided by
the paper’s author, L. McInnes, according to the default
settings (n_neighbors = 15, gamma = 1.0, n_epochs = None,
alpha = 1.0, init = ‘spectral’, spread = 1.0, min_dist = 0.1, a =
None, b = None, random_state = None, metric_kwds = ,
verbose = True; see https://github.com/lmcinnes/umap),
except for the different distance metrics, which were evaluated.
The distance metrics used here are Euclidean, correlation,
cosine, and Chebyshev, for which the detailed formulas are
shown in Figure S1. For UMAP, one additional distance metric
was evaluated: histomatch. The cosine and histomatch distance
metrics rely on the assumption that MSI data contain no
negative values. Because of the high computational burden
associated with the larger lymphoma data sets, the comparison
of distance metrics was mainly carried out using the UMAP
algorithm for this data. For the analyses where a t-SNE
implementation was used on these large data sets an initial
dimensionality-reduction step (n = 100) with PCA was
required to make these analyses feasible. A more extensive
comparison with regard to the distance metrics in t-SNE
implementations has therefore been done using the smaller
pancreas samples.
To run standard t-SNE, we relied on the Python code

provided by L. van der Maaten (https://lvdmaaten.github.io/
software/), and for the Barnes−Hut approximation of t-SNE,
we relied on the Scikit-learn implementation, which uses the
Barnes−Hut approximation by default. This implementation,
as provided in Scikit-learn, was used for all analyses, unless it is
explicitly stated that t-SNE was used (i.e., when a comparison

is made for the standard t-SNE implementation, the Barnes−
Hut approximation, and UMAP). All experiments were run on
an Intel Xeon CPU E5-2660 v2 2.20 GHz machine with 10
cores and 128 Gb RAM.

UMAP Outline. From a general outline, UMAP uses local
manifold approximations and assembles together their local
fuzzy-simplicial-set representations to form a topological
representation of the high-dimensional data. Given some
low-dimensional representation of the data, a similar process
can be used to form an equivalent topological representation.
The layout of the data representation in the low-dimensional
space is then optimized through the minimization of the cross-
entropy between the two topological representations.15 The
general outline of the algorithm, as specified by McInnes et al.,
goes as follows:

For the detailed functions related to the construction of the
local fuzzy simplicial sets, the determination of the spectral
embedding, and the optimization of the embedding with
regard to fuzzy-set cross-entropy, we refer to the original article
by McInnes et al. from which this general outline has been
adopted.15

An important component of the algorithm is the cost
function for the optimization of the embedding through
minimization of the fuzzy-set cross-entropy:
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There is some resemblance to the Kullback−Leibler
divergence (t-SNE cost function, eq 2) in the first part of
the equation; however, it is important to note here that UMAP
does not use the same definitions for vij and wij, wherein i and j
refer to two objects in the high-dimensional (vij) and low-
dimensional (wij) space.
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where vij refers to the local fuzzy-simplicial-set memberships
defined in the high-dimensional space on the basis of the
smooth nearest-neighbors distances, whereas wij refers to the
low-dimensional similarities between i and j. The t-SNE cost
function (eq 2), on the other hand, seeks to minimize the
Kullback−Leibler divergence between the joint probability
distribution in the high-dimensional space, pij, and the joint
probability distribution in the low-dimensional space, qij. The
fact that both pij and qij require calculations over all pairs of
points imposes a high computational burden on t-SNE.
Therefore, improvements in the efficiency of methods, such
as the Barnes−Hut approximation and UMAP, focus on
approximating these quantities. UMAP achieves an efficient
approximate k-nearest-neighbor computation via the nearest-
neighbor-descent algorithm20 for which an empirical complex-
ity of O(p1.14) was reported, in comparison with the t-SNE of
O(p2) and the BH t-SNE of O(p log p), wherein p refers to the
number of pixels. Although the aforementioned time complex-
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ities indicate better asymptotic scaling for BH t-SNE in
comparison with UMAP, it is important to remind the reader
that these complexities do not reflect the different constant
time multipliers between BH t-SNE and UMAP. We thus want
to emphasize that for any contemporary data set of common
size (i.e., <5 M pixels), UMAP exhibits significantly shorter run
times than BH t-SNE using the implementations we
benchmarked. For a detailed outline of the complete
mathematical foundations of the algorithm, we would like to
refer the interested reader to the original manuscript and in
particular to Appendix C for a detailed comparison between
UMAP and t-SNE.12,15

Autocorrelation. Given the spatial nature of MSI data, a
certain degree of spatial correlation is expected to occur. This
means that neighboring pixels are more likely to be correlated
to each other than pixels located at a further distance.16 As
shown in Figure 1, we have evaluated the obtained embeddings
by subjecting them to a spatial-autocorrelation function. By
diagonally shifting each embedding over a number of pixels
(ranges of 1−15 and 1−50 pixels), we can determine the
correlation of pixels to their neighbors according to
incremental distance. Technically, the autocorrelation function
is used to compute the dot product of the original image
(hyperspectral visualization of tissue embedding in 3D), with
the image shifted for increasing numbers of shifts in pixels. For

each shift from the original image, the RGB autocorrelation
index was calculated according to the following formula:

r r rRGB ( ) ( ) ( )index R
2

G
2

B
2= + + (3)

The correlation vector, r, represents the correlation between
the shifted and original image for the red (R), green (G), and
blue (B) color components. Autocorrelation was performed
using Python, and all results were normalized using min−max
normalization.

Custom Distance Metric. The histomatch distance metric is
inspired by the histogram matching algorithm, which forces the
intensity distribution of an image to match the intensity
distribution of a target.18,19 The histomatch distance metric is
specified according to the following formula:

x y x yd( , ) 1 max(0, min( , ))
i

i i∑= −
(4)

where x and y are spectra from different pixels. A schematic
illustration is given in Figure 1B.

Data Visualization. For all manifold learning approaches,
the locations of pixels were translated to RGB color coding by
varying the red, green, and blue intensities linearly on the three
independent axes, such that the minimum value on an axis is
represented by a color intensity of 0, and the maximum value

Figure 1. (A) Spatial autocorrelation. The resulting 3D embeddings, wherein each dimension corresponds to a color channel, obtained via
dimensionality reduction are shifted diagonally according to a number of pixels in order to spatially correlate each pixel given its neighborhood. An
example is given of a perfect positive autocorrelation consistent with a clear binary pattern. In the absence of such a pattern, as shown in the other
example, zero autocorrelation is observed. Given the nature of our embeddings, the correlation is calculated according to each color channel using
the RGB index, as shown by the given formula. (B) Process of histogram matching. The high-dimensional data are modified such that their
histogram matches the histogram of the reference data.

Figure 2. Comparison of t-SNE (a,d), Barnes−Hut (b,e), and UMAP (c,f) embeddings of two different pancreas-tissue samples, M1 (a−c) and M2
(d−f). Shown on top are the 3D embeddings of the tissues using hyperspectral visualization, with the corresponding scatter plots underneath. The
Euclidean distance metric was used for all embeddings.
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on an axis has an intensity of 255, which can be normalized to
a scale of 0 to 1; this visualization is referred to as
hyperspectral visualization.11

Spectral-Similarity or Chemical-Distance Information. To
visualize the relationship between the spatial autocorrelation of
the embedding and the chemical data, we followed a similar
approach as above. This was done by calculating the mean
distance between the MSI spectral or intensity data (according
to the relevant distance metric used) rather than correlating
the pixels of the resulting embeddings. Here, we assume that
for pixels that are located closer to each other, the spectral
similarity or chemical relatedness is more likely to be larger for
these pixels than for the ones located further from each other.
We use this assumption to support the relative comparison of
the embeddings obtained on the same tissue section but via

different algorithms (e.g., t-SNE versus UMAP) and in
particular as a benchmark for the introduced autocorrelation
measure. From here on, we will refer to this measure as
spectral similarity.

■ RESULTS AND DISCUSSION

Enabling the Analysis of Large MSI Data Sets with
UMAP. We compare the performance of the UMAP algorithm
for the analysis of pancreas and lymph-node samples with the
performances of t-SNE, the Barnes−Hut (BH) approximation,
and PCA (Figures 2 and 3). The embeddings obtained via the
different manifold learning approaches are visualized using the
RGB color scheme such that the colors in the image depend on
each pixel’s location in the model space. Hence, similar colors

Figure 3. Comparison of PCA (a,d), Barnes−Hut (b,e), and UMAP (c,f) embeddings of two lymphoma-tissue samples, P1 (a−c) and P2 (d−f).
Shown on top are the 3D embeddings of the tissues using hyperspectral visualization, with the corresponding scatter plots underneath. The
Euclidean distance metric was used for all embeddings.

Figure 4. Spatial autocorrelation of the M2 pancreas embeddings shown as the correlation in the function of increasing distance or incremental
number of pixels shifted. As expected, the correlation values are maximal for a zero shift and decrease as a function of the distance. Shown are the
results for one region in the tissue when the Euclidean distance metric was used in the BH t-SNE (orange) and UMAP (blue) algorithms. Each
graph also includes the spectral similarity between pixels according to the Euclidean distance metric (green), which serves as a benchmark indicator
for the spatial autocorrelation. The same approach is shown in Figure S3a for a larger region. The graphs show clearly that in every case the spatial
autocorrelation behaves similarly for both BH t-SNE and UMAP, which supports the fact that UMAP delivers embeddings of at least the same
quality as BH t-SNE.
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or RGB values represent similar spectra or biochemical
patterns.
UMAP strongly outperforms t-SNE as well as its faster

counterpart, BH t-SNE, with almost a fourfold decrease in
runtime. A comparison of the runtimes obtained by the
different algorithms is given in Figure S2. Besides being
computationally more efficient, UMAP is also capable of
delivering embeddings with at least the same quality as t-SNE,
as can be seen in Figures 2 and 3.
Figure 2 shows the hyperspectral visualization of the two

analyzed pancreas samples for the 3D embeddings obtained
using t-SNE, BH t-SNE, and UMAP. For this comparative
analysis, all implementations were used with standard
parameters. The original t-SNE implementation is not
intended to be used with alternative distance metrics, which
is why we used the Euclidean distance metric to make a cross-
comparison possible. In Figures 3 and 4, an overview is given
of the analyzed lymphoma samples. For the lymphoma data
sets used in this paper (552 701 and 572 173 pixels × 8000 m/
z bins, respectively), BH t-SNE required more than 2 weeks of
computational time when another dimensionality reduction
technique was not used in advance. In an ideal world, using
PCA (or similar dimensionality reduction algorithms) in
advance should not be necessary, because these methods are
strong at preserving the global distance structure within the
data, whereas methods such as t-SNE focus on the preservation
of the local distance. In our case, the composition of biological
tissue is very heterogeneous; hence, we are interested in
preserving the local distances as well as possible. Ideally,
however, we get the best of both worlds, and the global
structure is preserved as well. The UMAP algorithm is said to
be competitive with t-SNE in terms of visualization and to
preserve more of the global structure in the data, while being
more scalable toward large data sets.15 We have indeed
observed that for our larger data sets, UMAP is able to reduce
8000 dimensions for over 500 000 data points to 2 or 3
dimensions in approximately 6 h. In terms of memory usage
for UMAP, the median measured across five runs was 1.7 Gb
for the pancreas-tissue sample and 25 Gb for the lymphoma-
tissue sample. This is comparable to the observed median (n =
5) memory usage for BH t-SNE (1.4 Gb) for the pancreas
samples. Because of the high computational burden associated

with BH t-SNE for the large lymphoma samples, an initial
dimensionality reduction to 100 dimensions using PCA was
needed. Therefore a fair comparison with UMAP in this regard
was not possible.
Overall, UMAP shows good performance, and in compar-

ison to PCA using NLDR techniques, as shown in Figure 3, has
the major advantage of compressing the spatial and molecular
information into three dimensions, resulting in detailed
visualization.

Toward a Relative Comparison of the Embeddings
Obtained by UMAP and t-SNE via Spatial Autocorrela-
tion. Because it is difficult to compare the embeddings
obtained through UMAP versus the other methods solely by
visual inspection, we propose the use of spatial autocorrelation.
This approach reflects the correlation between the values of a
single variable strictly due to the proximity of these values in a
geographical space by introducing a deviation from the
assumption of independent observations of classical statistics.21

For MSI data, it is commonly assumed that close neighboring
pixels are likely to be more correlated to each other than to
their more distant neighbors.16 Our experiments empirically
corroborate this assumption, because the correlation between a
pixel and its neighboring pixels is more likely to decrease with
increasing distance. Likewise, we assume that for pixels that are
located closer to each other, the spectral similarity or chemical
relatedness is more likely to be larger for these pixels than for
ones located further from each other. We therefore use this
assumption as a benchmark indicator for the autocorrelation
measured.
In Figure 4, a comparison is given for the spatial

autocorrelation of embeddings obtained on the basis of the
pancreas M2 sample using UMAP and BH t-SNE. Shown is
the graph for a selected region using the Euclidean distance
metric. As expected, the correlation values are maximal for a
zero shift and decrease as a function of the distance. In
addition to the spatial autocorrelation, the spectral similarity is
also shown as a benchmark indicator. The fact that the spatial
autocorrelation shows similar behaviors for both BH t-SNE
and UMAP further supports the fact that UMAP delivers
embeddings of at least the same quality as BH t-SNE. This is
also reflected in the additional results regarding the spatial
autocorrelation as shown in Figures S3−S6.

Figure 5. Comparison of the Chebyshev, correlation, and cosine distance metrics using BH t-SNE (a−c) and UMAP (d−f) for the M2 pancreas
samples. Shown on top are the 3D embeddings of the tissues using hyperspectral visualization, with the corresponding scatter plots underneath.
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Underestimated Importance of the Distance Metric.
Besides the value of NLDR methods for the analysis of MSI
data, we can also question the suitability of the Euclidean
distance measure in these analyses. As Aggarwal et al.22 have
noted previously, the choice of a particular distance metric may
significantly improve the results of standard algorithms. Given
that in the high-dimensional space, the data becomes sparse,
and the concept of proximity or distance becomes less
meaningful, the authors have shown that the Euclidean
distance metric is not an ideal metric to be used in the high-
dimensional space. Taking this information into account, we
have evaluated the effect of using different distance metrics
when applying BH t-SNE and UMAP to our data.
In Figure 5, a comparison is made between UMAP and BH

t-SNE using the Chebyshev, correlation, and cosine distance
metrics.
Figure 6 shows the embeddings for the lymphoma samples

using the Chebyshev, correlation, and cosine distance metrics.
For the P2 sample, it is clear to see how using the cosine
metric strongly increases the level of detail observable in the

resulting embedding. Moreover, as shown in Figure 6e,f, using
the correlation and cosine metrics facilitates the detection of
outliers, which take up a major part of the available colorspace.
Therefore, their removal strongly improves the hyperspectral
visualization because it enables the utilization of the complete
colorspace. This is visualized in Figure 7, where the outliers
detected by using the correlation distance metric were
removed as an example.
It is important to note here that all data were TIC-

normalized before the application of the dimensionality
reduction methods because this step is commonly applied
within the MSI field. However, to ensure that this normal-
ization does not affect our observations, we have also included
a comparison of the different distance metrics applied to the
data without TIC normalization. These results are shown in
Figures S9−S14. Overall, we can conclude the cosine distance
metric, independently of whether the data was TIC-normalized
or not, delivers good results across the different methods and
tissues. This is in agreement with previous research by
Winderbaum et al., who observed that k-means clustering of

Figure 6. Comparison of the Chebyshev, correlation, and cosine distance metrics using UMAP for the P2 (a−c) and P1 (d−f) lymphoma samples.
Shown on top are the 3D embeddings of the tissue using hyperspectral visualization, with the corresponding scatter plots underneath. (e,f)
Importance of choosing a good distance metric. Using the correlation and cosine distance metrics, a series of outliers could be detected. Figure 7
shows the impact of removing these outliers on the hyperspectral visualization as a result of the improved colorspace utilization.

Figure 7. Hyperspectral visualization of the lymphoma P1 sample with the corresponding scatterplot. The improved visualization is due to the
removal of outliers detected by using the correlation distance metric in the UMAP algorithm, as shown in Figure 6e. The removal of these outliers
makes the utilization of the complete colorspace possible for the remaining points, resulting in an enhanced hyperspectral visualization of the data.
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MSI data using the cosine distance led to superior results as
opposed to the results from the Euclidean distance metric.23

Custom Distance-Metric-Histogram Matching. As
shown above, the choice of a specific distance metric may
significantly alter the resulting embeddings. We have therefore
evaluated the performance of an additional distance metric
called histomatch. Histogram matching is a method that is
often used in computer vision and forms an approximation of
correlation, making it an interesting candidate for the analysis
of MSI data.
The resulting embeddings for a lymphoma sample obtained

according to the histomatch metric, in comparison with those
from the cosine metric, are shown in Figure 8; in Figure S15,
the results are shown for the pancreas sample. As shown in
Figure 8, the hyperspectral visualization of the P2 lymphoma
sample is very similar to the one obtained using the cosine
metric. This is also reflected in the spatial-autocorrelation
results for regions 1 and 2. Therefore histomatch can be a
valuable alternative distance metric for the analysis of MSI
data. Our observations show that for different data sets,
divergent distance metrics can shed alternative light on the
same data, which makes experimenting with these metrics
worthwhile.

■ CONCLUSION
We have shown that UMAP yields superior runtimes
compared with t-SNE and Barnes−Hut t-SNE for the analysis
of MSI data, while obtaining embeddings that are of at least the
same quality as those obtained by (BH) t-SNE. In addition, we
have demonstrated that spatial autocorrelation can be used for
the relative comparison of the results obtained by different
NLDR methods. Moreover, we have highlighted the
importance of using different distance metrics for performing

NLDR. Overall, we can conclude that for the analysis of MSI
data, the correlation and cosine distance metrics achieve the
best results, and going for the Euclidean distance metric as the
standard might not be the best idea. Furthermore, we have
presented histomatch as an additional distance metric for the
analysis of MSI data. In conclusion, we have shown the value
that UMAP, spatial autocorrelation, and different distance
metrics can bring to the analysis of MSI data, which we hope
will pave the way for future research in this area.
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Figure 8. Hyperspectral visualization of P2-lymphoma-sample UMAP embedding using a custom distance metric called histomatch, with the
corresponding scatterplot underneath, compared with the results obtained using the cosine distance metric. The graphs show the behaviors of the
embeddings in terms of spatial autocorrelation for the two selected regions according to histomatch (blue) and the cosine distance metric (orange).
The spatial autocorrelation is supported by the spectral similarity, which is shown in green for the histomatch distance and in red for the cosine
metric. The spectral similarities measured according to the cosine and histogram metrics overlap completely, which is supported by Figure S16.
Both the hyperspectral visualization and the spatial-autocorrelation plots resemble the results obtained with the cosine distance metric.
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