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ABSTRACT: Mass spectrometry imaging (MSI) is a promising
technique to assess the spatial distribution of molecules in a tissue
sample. Nonlinear dimensionality reduction methods such as
Uniform Manifold Approximation and Projection (UMAP) can be
very valuable for the visualization of the massive data sets produced
by MSI. These visualizations can offer us good initial insights
regarding the heterogeneity and variety of molecular patterns
present in the data, but they do not discern which molecules might
be driving these observations. To prioritize the m/z-values
associated with these biochemical profiles, we apply a bidirectional
dimensionality reduction approach taking into account both the
spectral and spatial information. The results show that both sources
of information are instrumental to get a more comprehensive view
on the relevant m/z-values and can support the reliability of the results obtained using UMAP. We illustrate our approach on
heterogeneous pancreas tissues obtained from healthy mice.

Mass spectrometry imaging (MSI) enables the untargeted
measurement of biomolecular species and the visual-

ization of their spatial distribution in a variety of tissue
sections.1,2 The combination of these elements gives rise to a
powerful tool that allows us to dissect and characterize the
biological composition of tissues both in health and disease. To
discern the spatial pattern of molecules measured with MSI,
their distribution is typically visualized in the form of ion
images. These are visualizations that employ a pseudocolor
scale to the mass spectral intensities associated with a
particular m/z-value resulting in a heat map that is intuitive
to interpret. However, with the large number of features being
measured, visualizing thousands of ions or m/z-values makes it
infeasible to gain rapid insight into potential patterns present
in the data.
For this reason we can rely on a number of dimensionality

reduction and clustering techniques that improve the
interpretability of the data through a comprehensive
decomposition or visualization thereof. Methods such as
principal component analysis (PCA), probabilistic latent
semantic analysis (pLSA), and non-negative matrix factoriza-
tion (NMF) have been particularly useful in this regard.3 While
PCA seeks to determine the orthogonal eigenvectors
associated with the largest variance in the data,4 NMF tries
to resemble the original data matrix, X, as well as possible
through iterative minimization of the residual squared distance
between the products of the two factorized matrices, W and H

(X ≈ WH).5,6 Yet another approach is taken by pLSA, which
relies on a statistical mixture model to decompose the data of
underlying latent variables via the iterative expectation-
maximization (EM) method.7 A variety of applications have
also shown the value of a neural network approach in the form
of Self-Organizing Maps (SOMs).8−10

Nonlinear dimensionality reduction methods such as t-
distributed Stochastic Neighbor Embedding (t-SNE), on the
other hand, have gained popularity as they were shown to
outperform methods such as PCA and SOM due to their
strong visualization capabilities.11,12 Uniform Manifold Ap-
proximation and Projection (UMAP) is an example of a recent
nonlinear dimensionality reduction method that is comparable
to t-SNE but more scalable toward larger MSI data sets.12,13

Like t-SNE, UMAP does not impose the strong assumption of
a linear relationship between variables that is made by
techniques such as Principal Component Analysis (PCA),4

which is beneficial when working with biological models that
are inherently nonlinear.
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While we have already shown the value of UMAP for the
dimensionality reduction of MSI data in earlier work, we want

to stress the fact that this method captures all features in the
reduced space irrespectively of the number of components

Figure 1. Method overview. We start by reducing the dimensionality of the MSI feature space (m/z bins) to three dimensions (1). This three-
dimensional embedding is used for the hyperspectral visualization of the data which is then used to extract the different profiles according to their
color representing similar biochemical content (2). The binary representation of a selected profile is then used (3) to identify peaks driving this
profile in comparison to the overall tissue (spectral information). In parallel, this binary representation is used to match this pattern through
correlation with clusters of similar ion images (3′). These are obtained through clustering (2′) of the two-dimensional embedding of the pixel space
rather than the m/z space (1′). By ranking the identified peaks obtained through the spectral and spatial information, we are able to get a
comprehensive view on the peaks that are driving the hyperspectral visualization obtained using UMAP (4). The combined ranking is obtained by
combining the spectral and spatial ranking per tissue by giving a higher priority to those m/z-values that are (i) prioritized both in a spatial and
spectral manner within the same tissue and (ii) observed in the same profile across multiple tissues.
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selected.14. This is an important aspect when visualizing data in
two or three dimensions because the number of features
embedded in the reduced space is not restricted by these two
or three dimensions, even if more features are present in the
data. This characteristic empowers strong data visualizations
and is absent from methods such as PCA or clustering
approaches.
A downside of nonlinear methods however is their limited

explicability Although providing excellent and rapid insight
into the major patterns or trends present in a tissue, they do
not reveal which ions or m/z-values are driving these patterns
and observations. In the end, it is through the identification of
ions that are colocalized with certain regions of interest or
differ in expression between samples of different conditions
from which we can elucidate disease mechanisms or facilitate
biomarker discovery.15

It is with this idea in mind that we, as illustrated in Figure 1,
propose a workflow starting from the hyperspectral images
obtained using UMAP to identify those ions that are driving
the different profiles as visualized by a color gradient. We do
this by extracting these profiles according to their correspond-
ing color of interest, followed by a spectral and spatial-driven
prioritization of m/z-values. For the spectral part we extract the
median peak spectral intensities from the data associated with
the pattern of interest and apply peak picking to select those
peaks that differ the most from the background profile (i.e., the
residual tissue pixels). While the latter enables us to build a
spectral prioritization of m/z-values, we are also interested in a
spatial prioritization such that we can detect colocalized ions
that are specific for the extracted profile. For this spatial
prioritization we start from the two-dimensional embedded
pixel space, which we cluster using the Hierarchical Density-
based Spatial Clustering for Applications with Noise
(HDBSCAN) algorithm16 to group similar ion images. This
enables us to correlate the selected profile to the average
correlation per cluster and gain rapid insights into promising
colocalization patterns. We specifically aim to include both the
spectral and spatial information because this enables a more
comprehensive characterization of the information present in
the different profiles, which would not be possible when
considering these sources of information individually.
We demonstrate our method on MSI data collected from

healthy mouse pancreas samples, because this tissue is
heterogeneous while it contains endogenous peptides such as
insulin, which avoids the need for any on-tissue digestion
procedures. To the best of our knowledge, this is the first time
that an approach is suggested to prioritize the m/z-values
driving the embedded results obtained using UMAP.

■ EXPERIMENTAL SECTION
Mass Spectrometry Imaging (MSI) Data Acquisition

and Processing. MSI was performed on mouse pancreatic
tissue. For all samples, MSI was done on a Bruker rapifleX
MALDI-TOF mass spectrometer. Cryosections of 7 μm
thickness were prepared and mounted on ITO glass slides.
Sinapinic acid (SA) was used as a matrix and applied using a
Bruker ImagePrep. The pixel size was set to 50 μm, and the
recorded m/z range was 2−20 kDa in positive linear mode.
The acquisition speed was 9 pixels/s with 1000 lasershots/
pixel and a laser repetition rate of 10 kHz. The dimensionality
associated with the pancreas data sets is 10 606 (Sample 1), 14
791 (Sample 2), and 6937 (Sample 3) pixels by 14 000 m/z
bins.

Data Processing of Mouse Pancreas Data Sets. Data
Modeling and Visualization. All data was normalized using
total-ion count (TIC). The Python language was used for all
data analyses. UMAP was used for dimensionality reduction to
three dimensions, followed by hyperspectral visualization. By
hyperspectral visualization we mean that based on their
position in the obtained 3D embedding, the pixels were
translated to RGB color coding by varying the red, green, and
blue intensities linearly on the three independent axes, such
that the minimum value on an axis is represented by a color
intensity of 0, and the maximum value on an axis has an
intensity of 255, which can be normalized to a scale of 0 to 1.11

The UMAP mapping to three dimensions was performed using
the Python implementation (https://github.com/lmcinnes/
umap) with the default parameters (n_neighbors = 15, gamma
= 1.0, n_epochs = none, alpha = 1.0, init = ‘spectral’, spread =
1.0, min_dist = 0.1, a = none, b = none, random_state = none,
verbose = true) except for the cosine and Chebyshev distance
metric. An elaborate evaluation of the performance of UMAP
and different distance metrics can be found in our previous
work.14

Segmentation of Biochemical Profiles. Given that the
hyperspectral image obtained using UMAP contains three
channels (R, G, B), we can apply k-means clustering to this 3D
space such that the cluster centroids would represent the
dominant colors present in the image. Based on how many
biochemical profiles or dominant colors we want to extract
from the image we can determine k. For our experiments the
Python library OpenCV v4.1.0 was used with k = 10.17,18

Spectral Information. Based on the biochemical profiles
corresponding to certain colors, as selected using the k-means
procedure, we determine the location median peak intensities
of these profile-specific pixels. The peak finding and
prominence measures give insight into the difference between
profile-specific peaks in comparison to the other regions of the
tissue. For this purpose, the find_peaks and peak_prominences
functionality as provided in the Python SciPy package and
signal processing library were used.19 The prominence of a
peak measures how much a peak stands out from the
surrounding baseline of the signal and is defined as the vertical
distance between the peak and its lowest contour line, whereas
the find_peaks function finds all local maxima by simple
comparison of neighboring values.

Spatial Information. For the biochemical profiles corre-
sponding to certain color gradients, as selected using the k-
means procedure, we also construct a binary image for this
profile. This binary image is then used to rank all ion or m/z-
images according to their Spearman correlation to this specific
profile of interest. For this comparison, we first reduce the
pixel-space to a two-dimensional embedding with UMAP
(default parameters and cosine distance metric) which we then
subject to the HDBSCAN clustering algorithm16 to group
similar ion or m/z-images. For the clusters obtained we
calculate the average correlation value per cluster to the
selected profile, and we return the top N ranked ion images per
cluster.
HDBSCAN is as the name suggests a hierarchical clustering

variant of the DBSCAN algorithm.16,20 HDBSCAN aims to
identify the presence of dense regions by using sliding windows
that move toward the high density points. Important
advantages of HDBSCAN over other clustering algorithms
are (i) the ability to identify clusters of data with varying shape,
(ii) robustness to clusters of different densities, and (iii) the
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ability to perform density-based clustering, which eliminates
the need to specify the number of clusters desired. The only
hyperparameter that needs to be specified upfront is the
minimum cluster size. This parameter is the primary parameter
to effect the resulting clustering and intuitive to interpret since
it refers to the smallest size grouping that should be considered
as a cluster.16 Our intention here is to apply clustering such
that when correlating a certain profile or pattern of interest to
all available ion images, we can identify as many trends as
possible by grouping together similar ion images, for which
each cluster can still be evaluated in depth if desired. We
therefore prefer a small minimal cluster size over a large one.
To run the HDBSCAN algorithm we used the scikit-learn
implementation (https://github.com/scikit-learn-contrib/
hdbscan) using the default parameters and a minimal cluster
size of 5.
The combined ranking is obtained by combining the spectral

and spatial ranking per tissue by giving a higher priority to
those m/z-values that are (i) prioritized both in a spatial and

spectral manner within the same tissue and (ii) observed in the
same profile across multiple tissues

Histogram Equalization for Contrast Enhancement of Ion
or m/z-Images. An ion image represents the mass spectra
insensities for a particular m/z-value. These ion images are
typically visualized using a pseudocolor scale wherein gradually
changing colors are assigned to the intensities. Using this
approach can lead to hot spots of pixels with artificially high
intensities, distorting the pseudocolor scale such that other
pixels will lack contrast. As illustrated in previous work,21

advanced contrast-enhancing procedures like histogram equal-
ization are useful to alleviate this problem. We therefore
applied Contrast Limited Adaptive Histogram Equalization
(CLAHE)22 to the ion images prior to visualization for
contrast enhancement. To this end we relied on the CLAHE
implementation in the scikit-image library for Python (https://
scikit-image.org/).23

Figure 2. Overview of the hyperspectral visualizations for the three healthy pancreas tissue samples. From left to right are shown samples S1, S2,
and S3. The different colors in the image are a representation of each pixel’s location within the embedded space. As such similar colors or RGB
values represent similar spectra or biochemical patterns within one sample. This is however not necessarily the case for different tissues, hence the
green profile in S1 is completely independent from the green profile in S2 or S3.

Figure 3. In panels, D−F, a segmented profile associated with samples 1, 2, and 3, respectively, is shown. These (binary) segmentations correspond
to the pink, dark green, and light blue regions of the associated hyperspectral visualizations in Figure 2. This segmentation correlates with endocrine
tissue, more precisely the pancreatic islets, as indicated in the H&E stainings (panels A−C). The rankings presented below each segmentation are
obtained by combining the spectral and spatial ranking per tissue by giving a higher priority to those m/z-values that are (i) prioritized both in a
spatial and spectral manner within the same tissue and (ii) observed in the same profile across multiple tissues. The close similarity of the
prioritized m/z-values shows the value of this method to obtain intra- and intersample knowledge regarding the molecular composition supported
by the visualizations obtained using UMAP.
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■ RESULTS AND DISCUSSION

Spatial and Spectral Prioritization Based on the
Hyperspectral Visualization Obtained Using UMAP
Enables Quality Control and Molecular Insights. The
hyperspectral visualizations for these samples are the starting
point of our analysis and are shown in Figure 2. To illustrate
our approach, we show the results for two segmentations
obtained from these images. The first example, as shown in
Figure 3, correlates with endocrine tissue more specifically, the
anatomical location of the pancreatic islets or the Islets of
Langerhans. The (binary) segmentations in panels D−F
correspond to the pink, dark green, and light blue regions of

the hyperspectral visualizations of samples 1, 2, and 3,
respectively. These regions clearly overlap with the pancreatic
islets, which are annotated in the H&E stainings shown in
panels A−C. The combined rankings are presented below each
segmentation. These rankings are obtained by combining the
spectral and spatial ranking per tissue by giving a higher
priority to those m/z-values that are (i) prioritized both in a
spatial and spectral manner within the same tissue and (ii)
observed in the same profile across multiple tissues. The top
three m/z-values are the same for all samples, while the top
four are completely the same for samples 1 and 3. In all tissues
the highest ranked ion is the m/z-value around 5800 Da, which

Figure 4. m/z-value of 5805.85 Da, shown in panel A, likely corresponds to the full-length active insulin molecule after cleavage of the c-peptide
from pro-insulin. For m/z 5821.29 Da, a putative association could be suggested to ATP5E (ATP synthase subunit epsilon), which plays a role in
the oxidative phosphorylation process, and VIP (Vasoactive Intestinal Peptide), a known player regarding insulin metabolism, is suggested to be
associated with the m/z-value of 5836.73 Da. All prioritized ion images show a clear association with endocrine tissue and more specifically a
distribution around the pancreatic islets (Figure 2).

Figure 5. In panels D−F, a segmented profile associated with samples 1, 2, and 3, respectively, is shown. This profile corresponds to exocrine tissue
as indicated in the H&E stainings. The rankings are obtained by combining the spectral and spatial ranking per tissue by giving a higher priority to
those m/z-values that are (i) prioritized both in a spatial and spectral manner within the same tissue and (ii) observed in the same profile across
multiple tissues. The close similarity of the prioritized m/z-values shows the value of this method to obtain intra- and intersample knowledge
regarding the molecular composition supported by the visualizations obtained using UMAP. The particular ion images for sample 1 are shown in
Figure 5 and are available for all samples in the Supporting Information (S1−S25).
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likely corresponds to the full-length active insulin molecule
after cleavage of the c-peptide from pro-insulin. This peak with
a major abundance around 5800 Da is observed to lie within
the anticipated m/z-deviations, as can be expected from
MALDI measurements, across all tissues. Moreover, the
region-specific localization that corresponds to the islets of
Langerhans, as shown also in the H&E stainings, further
strenghtens this association (Figures 3 and 4). For the values
around 5840 and 5821 Da a putative association could be
made to ATP5E (ATP synthase subunit epsilon) and VIP
(Vasoactive Intestinal Peptide), respectively. Previous research
regarding the mouse pancreatic islet proteome has highlighted
the enrichment of proteins that play a role in oxidative
phosphorylation24 which might explain the detection of
ATP5E. In addition, the stimulatory effect of VIP on insulin
has previously been reported.25,26 The ubiquitously distributed
m/z-value of 6276.22 detected in the third sample is likely to
correspond to a part of the mouse kallikrein protein. This
protein is known to play a role in the pancreas metabolism and

Figure 6. Top three of spectral (left) and spatial (right) results ranked vertically from top to bottom. For the spectral results the particular ion
image corresponding to the highlighted peak is shown together with the median spectra intensities associated with the extracted profile (in blue)
against the median overall spectra intensities (orange). For the spatial results the particular ion images are shown together with their correlation
values for the highest ranked ion image per cluster which were also ranked according to their highest average correlation to the extracted profile. A
clear association is visible to the extracted pattern which is assumed to be exocrine tissue. The m/z-value around 6650 Da has previously been
associated with the acini.

Figure 7. On the left the hyperspectral visualization for sample 2
obtained from a healthy mouse pancreas is shown with the extracted
profile corresponding to the gray region shown on the right. This
hyperspectral visualization was obtained by using the Chebyshev
distance metric instead of the cosine distance metric.
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has been observed both in the endocrine and exocrine
pancreas.
Another key player involved in glucose metabolism is

glucagon which could putatively correspond to the m/z-values
around 3484. This molecule is observed in all samples with a
distribution around the pancreatic islets (Figure S27) and
ranked around position 15 for the three tissues which can be
well explained given its lower abundance. This indicates that
the results are likely to have a biological meaning in addition to
the confirmed spatial colocalization as shown in the
corresponding ion images. Moreover using this method a
good and robust correspondence between tissues is observed

as illustrated by the combined ranking. The particular ion
images associated with the top three m/z-values for sample 1
are shown in Figure 4 and are available for all samples in the
Supporting Information (S1−S25). Figure 4 shows additional
confirmation regarding the spatial colocalization of the
identified ions with the dark green segment, which is also
supported by the overlay between the H&E and hyperspectral
visualization. For a larger representation of the H&E stainings
we refer to the Supporting Information (Figures S28−S30).
For the second segmentation, which corresponds to the light

and dark blue regions of the hyperspectral visualizations, we
observe a similar prioritization across the different tissues

Figure 8. Top three of spectral (left) and spatial (right) results ranked vertically from top to bottom. For the spectral results the particular ion
image corresponding to the highlighted peak is shown together with the median spectra intensities associated with the extracted profile (in blue)
against the median overall spectra intensities (orange). For the spatial results the particular ion images are shown together with their correlation
values for the highest ranked ion image per cluster which were also ranked according to their highest average correlation to the extracted profile. In
comparison to the results obtained using the cosine distance metric, there is an additional gray region present for which we extracted the
corresponding profile shown on the left. We are not able to detect this region in the spectral and spatial results. We can therefore assume that the
observation of this region is probably a consequence of the distance metric rather than a reflection of the underlying data.
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corresponding to exocrine pancreas. As shown in Figure 5, the
top three of the m/z-values are almost identical for the
different tissue samples. The assumption that this profile
represents exocrine tissue is supported by the fact that the m/
z-value around 6651 Da has been associated with the acini in
earlier work.27 Moreover, the MASCOT engine identifies a
match with Selenocysteine lyase (6643 Da), a protein
associated with high expression in the exocrine pancreas
according to the Human Protein Atlas (HPA). For the value
around 6691 Da, we could identify a putative association to
single-pass membrane protein with coiled-coil domains 4
(SMCO4), a protein for which also a high expression in the
exocrine pancreas is noted in the HPA. In addition to the
biological relationship, the ion images also show a similar
spatial distribution to the segmentation obtained from the
hyperspectral visualizations, as shown in Figure 6 for sample 1
and in the Supporting Information for the other samples (S1−
S25).
These kinds of observations can be very insightful not only

to study similar molecular compositions across different
samples but also to assess the quality of the hyperspectral
visualizations obtained using UMAP. An example of the latter
use case is shown in Figures 7 and 8 where instead of the
cosine distance metric, the Chebyshev distance metric was
used for constructing the embeddings. In gray, we can discern
an additional profile within the blue region. Because we are not
able to detect any ion images corresponding to this gray
profile, we can assume that the cosine metric achieves a better
representation of the underlying data. Moreover using this
approach one can guide the level of detail that is desired in two
ways (i) by selecting the number of colors one wants to extract
and (ii) by selecting the number of ion images to be returned
per cluster. This not only is important to give us more
confidence in the visualizations obtained using UMAP but also
can strongly support us in finding biological meaning, in
particular when dealing with heterogeneous tissue samples.
To the best of our knowledge it is the first time this

approach is applied to the results obtained using UMAP. This
approach combines the strong visualization and dimensionality
reduction performance of UMAP with identifying m/z-values
for a specific spatial region. In earlier work, the limitation of
PCA in this regard has been highlighted. In particular it was
noted that ion images found using PCA differ sometimes from
the corresponding score images of the first principal
components. At the same time, the added value of spatial
segmentation maps with regard to clustering results to identify
colocalized m/z-values was noted.21,28 Pancreatic tissue
samples have the advantage that various endogenous peptides
with key metabolic functions are within the mass range of
MALDI-MS imaging experiments. For insulin, the proposed
identification is considered realistic because of its high
abundance and the striking match with the localization of
the pancreatic islets. This is a fine example underscoring the
importance to consider both spatial information and spectral
information in mass spectrometry imaging. The identity of the
other colocalized m/z-values is highly speculative, and more
advanced identification tools such as immunohistochemistry
are essential to further strengthen the proposed identifications;
but the fact that we can obtain a robust ranking across tissues
shows the value of our method for explorative analysis.
Furthermore, in our earlier work, we have shown the
enrichment of UMAP in comparison to methods such as for
example PCA because it can take the nonlinear nature of

biological phenomena into account. Moreover, methods such
as UMAP are able to capture the complete feature space into
two or three dimensions, an attribute that other methods such
as PCA and clustering methods lack and which facilitates
strong data visualizations.14 Interestingly, UMAP already
alleviated a big limitation inherent to nonlinear dimensionality
reduction methods being their computational speed. With
improvements at this level now being available through GPU
support for UMAP in the NVIDIA RAPIDS implementation,
we expect the application of UMAP in the analysis of large data
sets such as MSI data to gain even more importance.29

■ CONCLUSION
We have shown that it is possible to obtain insight into the
molecular patterns that are discernible in the hyperspectral
visualizations obtained using UMAP. Starting from a bidirec-
tional dimensionality reduction we are able to rank m/z-values
according to their profile taking into account both the available
spatial and spectral information. We believe that this is a
valuable approach not only to gain biological insight but also to
support the results obtained using UMAP. The recent
inclusion of the UMAP algorithm into the RAPIDS library
and the associated GPU acceleration makes this approach even
more attractive due to fast turnaround times. Moreover
combining insights based on strong visualizations and taking
into account both the spectral and spatial information will
enable us to construct a more comprehensive picture of the
underlying biological phenomena at play.
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