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Least squares optimal realisation of autonomous
LTI systems is an eigenvalue problem∗

Bart De Moor
†

We outline the solution of a long-standing open problem in sys-
tem identification, on how to find the best least squares realisation
of an autonomous linear time-invariant (LTI) dynamical system
from given data. The global optimum is found among all station-
ary points of a least squares objective function, which we show
to correspond to the eigen-tuples of a multi-parameter eigenvalue
problem (MEVP). Such an MEVP can be solved by applying For-
ward (multi-) Shift Recursions to the given set of multivariate
polynomial equations, generating so-called block Macaulay matri-
ces, the null space of which can be modelled as the observability
matrix of a multi-dimensional shift-invariant linear commutative
singular system. The state equations of this system can be found
from multi-dimensional realisation theory. From the corresponding
eigen-tuples, one can then find the optimal parameters of the best
LTI autonomous model. Our solution methodology uses ingredients
from algebraic geometry, operator theory, multi-dimensional sys-
tem theory and numerical linear algebra, and ultimately requires
as basic building blocks only the singular value decomposition and
eigen-solvers.

Surprisingly enough, the conclusion is that the globally opti-
mal model in 1D least squares realisation, can be found exactly
from multi-dimensional realisation. In addition, we describe several
new, previously unknown, properties that characterise the optimal
model and its behaviour.
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1. A tribute

This paper is dedicated to Thomas Kailath at the occasion of his 85th birth-
day. From our first encounter at a conference in Valencia, Spain in 1986 [20],
over my postdoc stay at Stanford in 1988-1989 with Tom in the Information
Systems Lab and with Gene Golub in the Computer Science department, to
the many other events and occasions where we met: all of them have had a
lasting impact on me as a scientist and an engineer. Our weekly meetings
often started with the introductory “There are 168 hours in a week. Bart,
what have you done this week?”. Thirty years later, I must admit that, with
my own PhD students, I use that line too! Tom’s broad and deep scientific
expertise in information theory, signal processing and system theory, with
an eye towards applications, has definitely inspired me to pursue a career in
what today is called mathematical engineering.

In this paper we will outline the exact solution to a long-standing open
mathematical engineering problem in system identification, how to find the
best linear time-invariant (LTI) model for a given set of data. In doing so we
will borrow results from (multi-)dimensional system theory, operator theory,
algebraic geometry and numerical linear algebra. For me as a PhD student,
Tom’s classic on Linear Systems [55] was a real eye-opener, and (not so)
surprisingly, it contained many seeds for the current paper. I have always
been fascinated by the discussion on Model reduction in Section 10.4, the
last page of the last Chapter 10 of the book, where Tom announces, almost
as a ‘a note added in proof’, the now famous result of Adamjan-Arov-Krein
[2], mathematicians who were working in operator theory, on how to best
approximate a rank deficient (double infinite) Hankel matrix with Markov
parameters of a high order system, by a Hankel matrix of a lower rank, where
‘best’ is measured in the Hankel norm. The answer is in terms of the singular
value decomposition (SVD) of the Hankel matrix. Later on these results were
elegantly rephrased by Glover in the state space formalism [47]. That the
data in rank deficient Hankel matrices can be ‘realised’ into a rational form,
is an old result of Kronecker [61], who investigated the conditions for a Taylor
series to be the expansion of a rational function. This is the case when the
Hankel matrix with the coefficients of the expansion is rank deficient. The
link with transfer functions is readily made, and the realisation into state
space models was described by Ho and Kalman [52] and many others, with
Kung [62] and Zeiger-McEwen [90] bringing in the SVD.

In Chapter 5 (pp. 322–325) of his book [55], Tom also hints at the prob-
lem of ‘noisy’ data, so that in practice one does not start from a Hankel
matrix that is rank deficient. The ‘noisy’ problem has been tackled in the
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past with a tsunami of papers (see Subsection 10.2 for some references),
by heuristically applying realisation algorithms that are ‘correct’ on exact
data, but that only deliver approximate results with ‘noisy’ data, where the
quality of the approximation is not quantified. One of them is the paper
we wrote at the occasion of Tom’s sixtieth birthday, where we describe a
nonlinear generalisation of the SVD, called the Riemannian SVD [34], to
tackle the said ‘noisy’ realisation problem.

An obvious relevant question is therefore how to optimally approximate,
in a least squares sense (so not in the Hankel norm), a given finite data
sequence by the output of an autonomous LTI system?

This is exactly the problem we will be solving here: how to modify the
given data in a least squares sense, so as to make the modified data com-
patible with an autonomous LTI system of a pre-specified given order.

We will use results from mathematical (sub-)disciplines that are also
close to Tom’s hart: System theory with Kalman [5] [57] [58] [59] as one of
its founding fathers, with numerous contributions by Tom, and many ap-
plications, including system identification (see e.g. [67]); Operator Theory,
comprising the study of operators and their algebras on infinite dimensional
spaces (see e.g. [44] [45]); Algebraic Geometry, since Descartes the happy
marriage between the classic geometry of the Greeks and the manipulations
of equations by the algebraists, its central ‘objects’ being multivariate poly-
nomial equations (ideals) and their sets of roots (varieties) (see e.g. [24] [25]
[83]); Last but not least Numerical Linear Algebra, matured since the advent
of advanced computing more than 60 years ago, dealing with finite precision
floating point numerical algorithms (see e.g. [18] [27] [49] [82]).

One of the main ingredients in Tom’s books [55] [56] is linear algebra,
with a special role for the EVP [88]. Indeed, in system theory, eigenval-
ues and -vectors characterise stability, controllability and observability of
LTI dynamical systems, but even so in optimal control the steady state
versions of the LQR problem and the Kalman filter derive from Algebraic
Riccati Equations, which are Hamiltonian eigenvalue problems in disguise.
Similarly, the solutions to their H∞ counterparts derive from symplectic
eigenvalue problems. This paper adds another explicit case to the list of
system and control problems that can be solved as a(n) (series of) EVP(s):
The explicit solution of the least squares realisation problem in terms of an
Multi-parameter Eigenvalue Problem (MEVP) and multi-dimensional reali-
sation theory, ultimately only requiring tools from numerical linear algebra,
such as the eigenvalue and singular value decompositions.

For all of these reasons, we deem our contributions here to be a more
than appropriate birthday present for Tom!
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This paper is organised as follows: In Section 2, we discuss the classi-
cal system identification loop. We introduce the notion of data misfit and
describe precisely what we mean by ‘solving ’ an identification problem. Sec-
tion 3 introduces the notions of kernel, image and state space model rep-
resentations of LTI systems, treats Forward Shift Recursions (FSRs) and
how they induce shift-invariant subspaces, which is the topic of Section 4.
In Section 5, we derive the first-order necessary conditions for a global min-
imum starting from a kernel model representation, which leads to a multi-
parameter eigenvalue problem (MEVP) that delivers the optimal model pa-
rameters. In Section 7 we turn to image model representations, which will
provide additional insights that characterise the optimal models and their
behaviour. In Section 8 we focus on the illuminating case of a first order
approximation. In Section 9, we discuss some new properties of the opti-
mal solution: A Beurling-Lax-Halmos (BLH) like property; The orthogo-
nal decomposition of the given data vector into ‘exact’ data and a misfit
while optimising a Riemannian metric; An optimality property, satisfied by
the misfit, reminiscent of Walsh’s Theorem but now for finite dimensional
data (to be interpreted as a ‘double’ BLH property); Last but not least,
the demonstration that the ambient data space can be partitioned in three
complementary shift-invariant subspaces, generated by the optimal model
poles. In Section 10 we discuss applications, briefly enumerate the heuristic
algorithms that have been proposed in the past and discuss some potential
extensions. Concluding remarks can be found in Section 11.

Space limits do not allow us to go into more detail on the numerical
linear algebra challenges of and potential algorithms for our approach, which
merit a full paper in their own right, nor can we demonstrate larger examples
here. We will restrict ourselves to some simple didactical examples. Yet we
hope that the steps we outline are sufficiently illuminating for the more
general cases as well. Our language will be informal and expository, without
providing formal proofs nor extensive derivations.

2. Challenges in the system identification loop

2.1. Steps in a typical modelling set-up

A typical mathematical modelling cycle or system identification loop pro-
ceeds by 1. Collecting and preprocessing data; 2. Selecting a pre-specified
model class parametrised by unknown parameters; 3. Choosing an appropri-
ate approximation criterion; 4. Numerically solving a nonlinear optimisation
problem that outputs optimal parameters; 5. Validating the resulting model;
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6. Re-iterating the whole loop as long as necessary with different models or
even model classes.

In this paper, we will exclusively focus1 on Steps 3 and 4. The model
class of Step 2 consists of causal, autonomous single-output LTI minimal
models, with a fixed predefined order (McMillan degree, number of poles),
but otherwise unknown model parameters and initial states. In a certain
sense, this is the simplest class of models for LTI systems, representing only
a small subset. We will show that for this specific model class and for a
least squares objective function (Step 3), the globally optimal solution can
be found among the eigen-tuples of an MEVP, which can be solved exactly
using multi-dimensional realisation theory.

2.2. Data misfit

If the model does not fit the data
Let the data fit the model

In general, it is not so difficult to decide whether a given data set is generated
by a model of some specified model class. As an example, if given scalar data
are effectively generated by an autonomous minimal LTI system of order n, a
sufficiently large Hankel matrix with the data, will be of rank n. If that would
be the case, we can derive the specific dynamical equations of that model,
in which we ‘realise’ the model from the data, via ‘realisation’ algorithms.
Realisation theory studies the transformation of one model representation
into another one that is equivalent. We call the data ‘exact’ when they are
generated by a model in the model class at hand. Phrased in Willems’s
behavioural framework [89]: They belong to the behaviour of that model.
For a given model class exact data represent a model exactly and there is a
bijective map from exact data to any of the equivalent model representations.
Said in other words, realisation is about exact modelling. As we will see, for
LTI systems, we can use either kernel, image or state representations for
the mappings and the (in-)compatibilities between models and behaviours.
Unfortunately, in most applications, the given data are inexact: they are
not compatible with the selected model class, i.e. they do not belong to
the behaviour of a model. So the basic ‘engineering’ approach to tackle this

1In particular, we assume that in Step 1 data have been properly collected and
preprocessed, e.g. they are equidistantly sampled, the requirements induced by
the Nyquist sampling theorem have been properly dealt with, etc. We will also
not elaborate any further on Steps 5 and 6 of the identification loop but refer to
standard books on system identification.
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paradox, is to modify the data so that the modified data belong to the

behaviour of the specified model class. The difference between the given

data and the modified data will be called the misfit. Obviously, there is

an infinite number of ways in which we could modify the observed data,

but the modification that we will pick is the one that minimises the 2-

norm (sum-of-squares) of the misfit. This will require a least squares optimal

minimisation over the model parameters and the misfit sequences. Obviously,

in this framework, exactness is a relative notion: the ‘non-exactness’ of the

given data (the misfit) and its distance from the behaviour of the optimal

model can be quantified, as we will see in Subsection 9.2 in a metric that is

induced by the optimal model. When the complexity of the model – in this

paper the order – is allowed to increase, we expect the misfit to decrease, and

the model’s sensitivity to perturbations in the data to increase, which is a

manifestation of the so-called bias-variance trade-off, which however we are

not going to consider here. We will assume the model’s order to be specified

and fixed.

2.3. What do we mean by a ‘solution’ of the least squares

realisation problem?

Typically, in order to minimise constrained non-linear least squares objective

functions as the ones that occur in Step 3 of the identification cycle, an itera-

tive optimisation algorithm is required, with all due challenges: the need for

appropriate initial guesses inducing issues of reproducibility, iteration step

choices (all kinds of variations and accelerations of steepest descent) with

potential (slow) convergences issues, and in most cases, the occurrence of lo-

cal minima and the impossibility of testing which one of them is global. As a

result, heuristics largely prevail, turning system identification (and machine

learning) more into an art (with a large ‘bag of tricks’) than a science. Even

for the identification of LTI dynamical models with ‘established’ approaches

(e.g. Subspace Identification [84], Prediction Error Methods [67] or Errors-

in-Variables [77]), one can not guarantee global optimality of the models.

We do not suggest at all that these ‘approximate’ methods are not success-

ful. On the contrary, they have been and continue to be hugely successful in

important industrial challenges of simulation, prediction, filtering, control,

monitoring, state estimation, soft-sensoring, fault detection, etc, and suc-

cessful software suites and even companies, have been built on them. Yet,

the ‘solution’ they provide, is at best approximative. Therefore, we need to

clarify more precisely what we mean by ‘solution’.
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For instance, algebraic problems, like rooting a polynomial up to degree

4, are solved by formulas in terms of radicals. In analysis, we can solve cer-

tain integrals exactly using formulas. In mathematical engineering, we can

consider a problem to be solved when it reduces to a set of linear equa-

tions, singular value decompositions (SVD) or eigenvalue problems (EVP),

to an optimisation problem that is convex [19] or to a sequence of such al-

gorithmic steps, from which we can guarantee global optimality. For each

of these numerical linear algebra ‘tools’, there are efficient and numerically

reliable algorithms that calculate all ‘solutions’ within a level of accuracy

that is guaranteed by numerical analysis research results (e.g. forward and

backward stability), on a machine with standardised floating point arith-

metic. We call these problems ‘solved’ as no heuristics are involved and

global optimality is guaranteed up to within machine precision. In this pa-

per, we reduce the least squares realisation problem to an MEVP, which

can be solved exactly, in the precise meaning as outlined above, via multi-

dimensional realisation theory. The optimal solutions will derive from the

spectra we calculate from several EVPs. Because the derivation that char-

acterises optimality only contains linear algebra (sets of linear equations,

eigenvalue and singular value problems), we consider the least squares real-

isation problem for autonomous single-output LTI models to be ‘solved’ in

the spirit described above.

3. The behaviour of autonomous LTI systems

The model class we consider is that of autonomous LTI single-output sys-

tems and their corresponding behaviour for ‘exact’ data, i.e. data that

are compatible with the models considered. We discuss kernel, state and

image representations of these exact data. Let the N scalar exact data

ŷk ∈ R, k = 0, 1, . . . , N − 1 satisfy an n-th order difference equation

(1) ŷk+n + α1ŷk+n−1 + . . .+ αn−1ŷk+1 + αnŷk = 0 ,

where αi ∈ R, i = 1, . . . , n are the model coefficients and k ∈ N are the dis-

crete time indices. Without loss of generality the leading coefficient α0 = 1.

The ‘hat’ refers to the fact that the data ŷk are exact, i.e. compatible with

the model: they are generated by the difference equation and therefore be-

long to the behaviour (the allowed trajectories) of the model. We assume

that the number N of data is ‘sufficiently large’ (see below). We can recur-

sively apply equation (1), a process that we call a Forward Shift Recursion
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(FSR) and write the result as Ta · ŷ = 0, where the vector ŷ ∈ RN contains
the consecutive data ŷk and Ta ∈ R(N−n)×N is a banded Toeplitz matrix

Ta ŷ =

⎛
⎜⎜⎜⎝

αn αn−1 . . . . . . α1 1 0 . . . 0
0 αn αn−1 . . . . . . α1 1 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 . . . αn αn−1 . . . . . . α1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ŷ0
ŷ1
...

ŷN−1

⎞
⎟⎟⎟⎠ = 0.

This banded Toeplitz matrix Ta contains the model information, while its
kernel contains all possible vectors ŷ that are compatible with the model, i.e.
the behaviour. Therefore, we call this a kernel representation of the (exact)
data. Because the leading coefficient of the difference equation α0 = 1,
obviously Ta is of full row rank: rank(Ta) = N − n. The nullity of Ta, i.e.
the dimension of its null space, is n, the order of the difference equation. So
the behaviour of the difference equation (1) is an n-dimensional subspace of
the ambient vector space RN and is the null space of the banded Toeplitz
matrix Ta. It is straightforward to show that the difference equation (1) can
also be modeled by a canonical state space model. Picking as a state vector
x̂obk = (ŷk ŷk+1 . . . ŷk+n−1)

T ∈ Rn, we easily find

x̂obk+1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

−αn −αn−1 . . . . . . −α1

⎞
⎟⎟⎟⎟⎟⎠

· x̂obk = Aob · xobk ,

ŷk = ( 1 0 . . . . . . 0 ) · x̂obk = Cob · x̂obk ,(2)

in which the super- or sub-script ‘ob’ refers to the fact that this state space
representation is in the observable canonical form. The recursiveness of the
state space model (2) implies that ŷk = Cob ·Ak

ob · x̂ob0 , so that

(3) ŷ =

⎛
⎜⎜⎜⎝

ŷ0
ŷ1
...

ŷN−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Cob

CobAob
...

CobA
N−1
ob

⎞
⎟⎟⎟⎠ · x̂ob0 = Γob

N · x̂ob0 .

Here, the behaviour is characterised as the image (range) of the (extended)
observability matrix Γob

N , reason why we call this model an image represen-
tation. All possible ‘compatible’ ‘exact’ data vectors ŷ can be generated for
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different choices of x̂ob0 . The dimension of the range (column space) of Γob
N

is n (provided that N ≥ n) as can easily be seen from the first n rows of
Γob
N being the identity matrix. Hence, the LTI system is observable.

4. Single-shift-invariant subspaces

4.1. Single-output observability matrices

The ‘cyclic’ structure of the observability matrix Γob
N , with the increasing

integer powers of Aob, induces a special so-called backward shift property :

(4) Γob
N ·Aob = Γob

N ,

where a ‘bar’ beneath (on top of) the matrix denotes a new matrix obtained
by omitting its last (first) row. The word backward shift comes from the

observation that the rows in Γob
N are the same as those of Γob

N shifted up

(i.e. backward in time) one position. If Γob
N were known, (4) is an overde-

termined but consistent set of linear equations in the unknown matrix Aob,
the solution of which is unique, provided that rank(Γob

N ) = n, a condition
that is called the partial realisation condition. Obviously, the model out-
put vector Cob is the first row of Γob

N . State space models are only unique
up to within a non-singular similarity transformation T : (Aob, Cob, x̂

ob
0 ) →

(T−1AobT,CobT, T
−1x̂ob0 ) = (A,C, x̂0), which will still generate the same

output data ŷk. This will also induce a change of basis for the column space:
Γob
N → ΓN = Γob

N · T . In the new basis, a modified set of linear equations
for the system matrix follows from ΓN · A = ΓN . This implies that back-
ward shift-invariance is essentially a property of a subspace (the column
space of ΓN ) and not of the specific choice of basis in that space. Sum-
marising, backward shift invariance is characterised by n = rank(ΓN ) =
rank(ΓN ) = rank(ΓN ΓN ). The first equality refers to observability, the
second one is the partial realisation condition to uniquely identify the un-
derlying system matrix A and the third equality expresses the fact that
R(ΓN ) ⊆ R(ΓN ), as follows from equation (4), with equality when A is
non-singular (R(.) denotes the range/column space). The fact that eigen-
values are invariants for a similarity transformations, seems to suggest that
the shift-invariance of a subspace is solely determined by the eigenvalues
and their multiplicity structure. We can show that this is true indeed. Us-
ing the forward shift operator z as z(yk) = yk+1, we can write equation
(1) as (zn + α1z

n−1 + . . . + αn−1z + αn)yk = p(z)yk = 0. Obviously, the
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zeros of p(z) are the eigenvalues of the companion matrix Aob, and there-
fore the eigenvalues of any transformed matrix T−1AobT . Assume that λ
is a root of p(z) = 0, then p(λ) = aT v where aT = (αn αn−1 . . . α1 1)
and vT = (1 λ . . . λn) is a ‘Vandermonde’ vector. When the algebraic
multiplicity of λ is μ, it is well known that λ will also be a root of the
‘derivative’ polynomials dkp(z)/dzk = 0, k = 1, . . . , μ − 1. We then find
that dkp(z)/dzk(λ) = aT (dkv/dλk). As an example, take n = 6 with three
eigenvalues λ1, λ2, λ3 with multiplicities 3, 1, 2. Then:

aT · V = (α6 α5 α4 α3 α2 α1 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0
λ1 1 0 λ2 λ3 1

λ2
1 2λ1 1 λ2

2 λ2
3 2λ3

λ3
1 3λ2

1 3λ1 λ3
2 λ3

3 3λ2
3

λ4
1 4λ3

1 6λ2
1 λ4

2 λ4
3 4λ3

3

λ5
1 5λ4

1 10λ3
1 λ5

2 λ5
3 5λ4

3

λ6
1 6λ5

1 15λ4
1 λ6

2 λ6
3 6λ5

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

V is called a ‘confluent Vandermonde’ matrix as some of its columns are
derivatives of Vandermonde vectors. We can now use p(λ) = aT v = 0 to
explicitly write out the eigenvalue decomposition of the companion matrix
for this example as

Aob · V =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−α6 −α5 −α4 −α3 −α2 −α1

⎞
⎟⎟⎟⎟⎟⎟⎠

V

= V · J = V ·

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0

0 0 0 λ2 0 0

0 0 0 0 λ3 1
0 0 0 0 0 λ3

⎞
⎟⎟⎟⎟⎟⎟⎠

,(5)

where J is in Jordan canonical form with 3 Jordan blocks of dimensions
given by the algebraic multiplicities. When we now in (3) change the state
space basis using the confluent Vandermonde matrix V , as (Aob, Cob, x̂

ob
0 ) →

(V −1AobV,CobV, V
−1x̂ob0 ) = (J,Cv, x̂

v
0), the corresponding observability
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matrix will transform as ΓN → (ΓN · V ) = Γv
N , where Cv = (1 0 0 1 1 0).

The extended observability matrix Γv
N will now be an ‘extended’ confluent

Vandermonde matrix (i.e. a rectangular extension of the square confluent
Vandermonde matrix V ). This demonstrates that a backward shift invari-
ant subspace is solely determined by the roots, and their multiplicities, of
the difference equation of the underlying linear model (1).

4.2. Shift-invariant spaces in operator theory

It is straightforward to derive that Ta · ΓN = 0. Since Ta is of full row and
ΓN of full column rank, this implies:

R(T T
a )⊕R(ΓN ) = R

N , R(T T
a ) ⊥ R(ΓN ) .

The ranges are perpendicular to one another and are complementary sub-
spaces. We have characterised the range of ΓN to be backward shift-invariant,
which is a finite dimensional translation of similar characterisations of back-
ward and forward shift invariance in infinite dimensional spaces,2 which have
been intensively studied in operator theory [23] [38] [44] [45] [72] [75]. So far
we assumed that there was only one single shift λ, and that the state space
model in (2) was single-output. In what follows, we will generalise these
single-shift scalar (= single-output) shift-invariant spaces towards multiple-
output multi-shift-invariant subspaces, which in the infinite dimensional set-
ting have been studied much less (see e.g. [11] [12] [13]).

5. Minimisation of a least squares misfit objective

5.1. Minimising the misfit

We now start from given, observed data y = (y0 y1 . . . yN−1)
T ∈ RN ,

which are not exact, i.e. they do not belong to the behaviour of the models

2The notion of shift is ubiquitous in mathematics. For a function with Taylor
series expansion f(z) = a0 + a1z + a2z

2 + . . . , the forward shift operator S can
be characterised as Sf(z) = zf(z) = a0z + a1z

2 + a2z
3 + . . . , and its backward

version as S∗f(z) = (f(z) − f(0))/z = a1 + a2z + a3z
2 + . . . . In system theory,

for a state sequence x(k) with z-transform X(z), we have for the forward shift in
time, q(x(k)) = x(k + 1) as z-transform Z(x(k + 1)) = zX(z), so shifting forward
in time correspond to a multiplication with the shift in the z-domain. In harmonic
analysis, a shift in time T tf(x) = f(x + t) generates a multiplication by exp(itx)
with its Fourier transform.
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we discussed in Section 3. We will modify them additively by a misfit vector3

ỹ ∈ RN so as to obtain the exact data ŷ ∈ RN : y = ŷ+ ỹ, where ŷ belongs to
the behaviour of the models of Section 3. For a pre-specified order n in (1),
we want to find the optimal parameters αi ∈ R, i = 1, . . . , n, that minimise
the 2-norm of the misfit vector ỹ.

(6) min
αi∈R , i=1,...,n

σ2 = ‖ỹ‖22 = ‖y − ŷ‖22 =
N−1∑
k=0

(yk − ŷk)
2 ,

where the exact data ŷk satisfy the difference equation (1). We will show
that the solution can be interpreted as a separable least squares problem: In
a first step, one could consider the model coefficients αi to be known, and
then obtain the optimal misfit vector ỹ by an orthogonal projection so that
the ‘exact’ data ŷ = y − ỹ belong to the behaviour of the model generated
by the αi. A second step then consists of a non-linear optimisation over the
αi, which turns out to be multivariate polynomial, and therefore, as we will
show, is in essence an MEVP. We will start from the kernel representation,
which immediately leads to Ta · y = Ta · ŷ+Ta · ỹ = Ta · ỹ. If Ta were known,
this would be an underdetermined set of linear equations in the unknown
misfit ỹ. The unique minimum norm solution follows from the pseudo-inverse
of Ta:

(7) ỹ = T †
aTay = T T

a (TaT
T
a )−1Tay .

The second equality follows from the fact that Ta is of full row rank, so that
TaT

T
a is nonsingular and T †

a = T T
a (TaT

T
a )−1. The matrix Πa =

T T
a (TaT

T
a )−1Ta is the orthogonal projector onto the row space of Ta. If Ta

were known, the given data vector y could be decomposed into two mutually
orthogonal vectors as y = ŷ + ỹ = (IN − Πa)y + Πay (see also Section 9),
where ŷ belongs to the behaviour of model (1).

5.2. Secular equations

The least squares objective function (6) can now be written as

(8) σ2 = ‖ỹ‖22 = ‖Πay‖22 = yTT T
a (TaT

T
a )−1Tay ,

3The misfit ỹ could be called ‘noise’ (e.g. as in ‘measurement noise’), suggesting
inaccuracies that corrupt an otherwise clean exact signal. Often, a priori unverifiable
additional assumptions (Kalman’s ‘prejudices’) are invoked, e.g. statistical ones like
Gaussianity, or whiteness, to ‘model’ these inaccuracies. In our framework however,
the misfit is simply the correction needed to orthogonally project the given data y
onto the behaviour of the model, without any further unverifiable priors.
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which is to be minimised over the coefficients αi, i = 1, . . . , n. Define the
matrix Da = TaT

T
a , which itself is a symmetric, positive definite, banded

Toeplitz matrix. The first order optimality conditions are:

(9)
∂σ2

∂αi
= 0 = 2yTT T

a D−1
a Tαi

a y − yTT T
a D−1

a Dαi

a D−1
a Tay , ∀i = 1, . . . , n,

where a superscript αi denotes the partial derivative with respect to αi. We
have used the fact that ∂D−1

a /∂αi = −D−1
a Dαi

a D−1
a . We will call equations

(9) the n secular equations. The observation that they are ‘nonlinear’ in
the coefficients αi, has led to a lot of heuristic algorithms in the past (see
Section 10). However, as D−1

a = adj(Da)/ det(Da), where adj(Da) is the
adjugate of the matrix Da (the transpose of the matrix with the cofactors
of all elements of Da), and because det(Da) �= 0, these n equations (9) are
equivalent to n multivariate polynomials in the n unknowns αi, after ‘mul-
tiplying out’ det(Da). Their common roots are all global and local minima
and maxima and saddle points of the objective function (8). So finding the
critical points of the least squares realisation objective function is an exercise
in rooting multivariate polynomials. The relation between common roots of
sets of multivariate polynomials on the one hand and the matrix EVP on
the other hand, is (not so) well known (see e.g. [24] [78]). In [40] we have
developed a framework to find all common roots of a set of multivariate
polynomials, based on Macaulay matrices, their null space being backward
multi-shift invariant, and multi-dimensional realisation theory, that takes
full advantage of powerful algorithms for the singular value and eigenvalue
decomposition. We could follow that framework to directly solve the set of
multivariate polynomials implicit in (9), but that would require the calcu-
lation of determinants for adj(Da), which we want to avoid. Instead, we
will rewrite (9) as an MEVP, that can also be tackled with insights from
multi-dimensional realisation theory (see also [36]).

5.3. Multi-parameter eigenvalue problem (MEVP)

Define the vector f = D−1
a Ta y ∈ RN−n and rewrite (8) as

(10)

(
Da Tay

yTT T
a σ2

)(
f

−1

)
= 0 .

Taking partial derivatives with respect to all variables αi, i = 1, . . . , n, and
using the derivative chain rule, results in, ∀i = 1, . . . , n:

(11)

(
Dαi

a Tαi
a y

yT (Tαi
a )T 0

)(
f

−1

)
+

(
Da Tay

yTT T
a σ2

)(
fαi

0

)
= 0 .
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Eqs. (10) and (11) contain (n+1)(N −n+1) equations, and the number of

unknowns is the same (namely (N−n) in f , 1 in σ, n(N−n) in all fαi and n

for all of the αi). Three observations can be made: 1. The unknown vectors

f and fαi , i = 1, . . . , n appear linearly in the equations. The variables αi

appear linearly in Ta and quadratically in Da. The matrices Tαi
a are constant

matrices. 2. The last equation in (10) is the only one involving σ, because the

last component of the last vector in (11) is 0. In what follows, we will omit the

variable σ, which is the value of the objective function and the corresponding

equation (but come back to this in Section 10). 3. One can easily recover

the secular eqs. (9) from (11) by eliminating fαi from the first block rows

in (11), plugging it in into the second block row and using f = D−1
a Tay

from (10). Let’s verify that these equations are equivalent to (9). We leave

out the equation for σ2. From (11), we find Dαi
a f − Tαi

a y +Daf
αi = 0 and

yT (Tαi
a )T f + yTT T

a fαi = 0. Hence fαi = −D−1
a Dαi

a f + D−1
a Tαi

a y. Using

from (10) f = D−1
a Tay, we then find yT (Tαi

a )TD−1
a Tay + yTT T

a D−1
a Tαi

a y −
yTT T

a D−1
a Dαi

a D−1
a Tay, i = 1, . . . , n, which is exactly the same as (9). Leaving

out the equation for σ2, we can also regroup equations (10) and (11) as

(12)

⎛
⎝ Dαi

a Da Tαi
a y

Da 0 Tay
yT ((Tαi

a )T yTT T
a 0

⎞
⎠

⎛
⎝ f

fαi

−1

⎞
⎠ = 0 , i = 1, . . . , n.

In this form, there is a nice symmetry, but the equations Daf = Tay are

repeated n times, so there is redundancy here. However, this form clearly

shows that we have to find the coefficients αi, i = 1, . . . , n so that the square

matrices between brackets are singular: Their determinants should be zero,

and using some well known lemma’s for the determinants of block matri-

ces, we would again find back the secular equations (9). This separation in

variables that appear linearly, and others that appear polynomially, is rem-

iniscent of a similar separation property for the algebraic EVP.4 We now

4For A ∈ R
n×n, both formulations Ax = xλ, x �= 0, and det(λIn − A) = 0 are

equivalent. The fact that the eigenvectors x appear linearly in the former allows

one to write (λIn − A)x = 0, which only has a nontrivial solution x �= 0 if and

only if the characteristic polynomial χ(A) = det(λIn − A) = 0. This effectively

separates out the unknown elements of x from the unknown variables λ. Therefore,

the secular equations (9) are the generalisations to n variables of the characteristic

equation in 1 variable, just like the MEVP is the generalisation to n variables of

the 1 parameter algebraic EVP.



Least squares optimal realisation of autonomous LTI systems 177

combine (10)–(12) to find

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N − n N − n N − n . . . N − n 1

N − n Da 0 0 . . . . . . Tay

N − n Dα1
a Da 0 . . . 0 Tα1

a y

N − n Dα2
a 0 Da . . . 0 Tα2

a y

...
...

...
...

. . .
...

...

N − n Dαn
a 0 . . . . . . Da Tαn

a y

1 yT (Tα1
a )T yTT T

a 0 . . . 0 0

...
...

...
. . .

...
...

...

1 yT (Tαn
a )T 0 0 . . . yTT T

a 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f
fα1

fα2

...
fαn

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0 .

(13)

The dimensions of the matrix are ((N−n)(n+1)+n)×((N−n)(n+1)+1),
so it has n − 1 more rows than columns. It is a function of the given
data y and the unknown coefficients αi, which appear quadratically in Da

and linearly in Dαi
a and Ta. We can collect the coefficients of all monomi-

als5 1, α1, α2, . . . , αn, α
2
1, α1α2, . . . , αn−1,n, α

2
n in matrices A(i1,i2,...,in), where

(i1, i2, . . . , in) ∈ Nn is a multi-index. To give an example, for n = 2, we can
write (13) as

(14) (A00 +A10α1 +A01α2 +A20α
2
1 +A11α1α2 +A02α

2
2) · w = 0 ,

with w = (fT (fα1)T (fα2)T − 1)T and Aij ∈ R(3N−4)×(3N−5), i = 0, 1, 2.
The pair (α1, α2) is called an eigenvalue-pair of the MEVP and z the cor-
responding eigenvector. For general n, the n-tuple (α1, . . . , αn) is called an
eigen-tuple. In what follows, we will show that finding all solution of MEVPs
as in (13) proceeds in several steps: Enlarge the number of equations using
Forward multi-Shift Recursions (FmSRs), calculate the null space of the
resulting block Macaulay matrix, which will be block backward multi-shift
invariant, and then exploit that property to set up a multi-dimensional re-
alisation problem that will result in n commuting system matrices Ai, the
eigenvalues of which will by the eigenvalues αi in the eigen-tuples.

5As for a monomial ordering, we use the degree negative lexicographic ordering,
by way of example shown here for 3 variables α, β, γ: 1 < α < β < γ < α2 < αβ <
αγ < β2 < βγ < γ2 < α3 < α2β < α2γ < αβ2 < αβγ < β3 < β2γ < βγ2 < γ3 <
α4 < . . . .
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6. Solving multi-parameter eigenvalue problems (MEVP)

Contrary to one-parameter EVPs (including the Jordan, Weierstrass and

Kronecker canonical forms, or EVPs polynomial or rational in one variable),

MEVPs have been studied much less intensively in the literature. Early ref-

erences include [7] [8] [9] [22] [87]. More recent papers include [53] [54] [70]

[71] [73] [74]. If algorithms are discussed at all, the MEVP is often just con-

sidered to be a nonlinear optimisation problem, looking for one or some,

but not all of the solutions, without exploiting its inherent structure that

we will reveal here. Indeed, there does not seem to exist a general, unifying

theoretical framework to tackle MEVPs. The approach we will outline here,

is a happy symbiosys between the Fundamental Theorem of Linear Alge-

bra, and the Fundamental Theorem of Algebra. The fundamental theorem of

linear algebra describes the 4 fundamental subspaces of a matrix: (column,

row, left and right null spaces) with their orthogonality and dimensional

rank-based properties, as revealed by the SVD [79] [80]. The fundamental

theorem of algebra states that a univariate polynomial of degree n with

complex coefficients has n complex roots, counting multiplicities (the field

of the complex numbers is algebraically closed) [14] [37] [66] [81]. For real

coefficients, the roots are symmetric with respect to the real axis. Hilbert’s

Nullstellensatz [24] [25] is its generalisation to sets of polynomial equations.

In our forthcoming paper [36], we elaborate extensively on this unifying

framework to tackle MEVPs (see also [29]), the ingredients of which stem

for linear algebra (FmSRs, SVD, EVP), algebraic geometry (Hilbert’s Null-

stellensatz), operator theory (forward and backward (multi-)shift invariant

spaces) and system theory (multi-dimensional realisation theory). In what

follows, we will only summarise the main insights based on the following

table:

Fund. Thm. EVP MEVP
Lin. Alg. Section 3 Subsection 6.1

Forward Shift Recursions Forward multi-Shift Recursions
Row space banded Toeplitz Row space block Macaulay

Algebra Section 4 Subsection 6.2 6.3 6.4
Scalar backward Block backward

shift-invariant null space multi-shift-invariant null space
1D observability matrix nD observability matrix

1D realisation multi-dimensional realisation
eigenvalues eigen-tuples
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6.1. Forward multi-Shift Recursions (FmSR)

For the sake of clarity of exposition, we take the case n = 2. Generalisations
for n > 2 are straightforward. First, we ‘enlarge’ the MEVP (14) by FmSRs
with all monomials in α1, α2 of increasing degree:

⎛
⎜⎜⎜⎜⎜⎝

A00 A10 A01 A20 A11 A02 0 . . .
0 A00 0 A10 A01 0 A20 . . .
0 0 A00 0 A10 A01 0 . . .
0 0 0 A00 0 0 A10 . . .
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
w · α1

w · α2

w · α2
1

w · α1α2

w · α2
2

w · α3
1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 .

The matrix to the left is called a block Macaulay matrix. Observe how Fm-
SRs force the vector(s) in its null space to adopt a generalised Vandermonde
structure, generalised for two reasons: w is a vector, and, instead of having
one parameter, we now have 2 of them (or n in the general case). The first
rows of these vectors in the null space, corresponding to the vectors w, will
be called the degree 0 block. The next ones, comprising the rows with w.α1

and w.α2 constitute the degree 1 block, etc. . .

6.2. Multi-output backward multi-shift invariant null space

Although the rank of the block Macaulay matrix keeps increasing as a func-
tion of the FmSRs, one can show that its nullity nM will stabilise whenever
the eigen-tuples are isolated. Said in other words, in that case the set of
eigen-tuples is zero dimensional. It will count the total number of roots in
projective space, nM = na

M + n∞
M , where na

M is the number of affine ones
and n∞

M the number at infinity.6 Next, one can show (see e.g. [36] [39] [40])
that this null space can be modelled as the observability matrix of a 2D-
shift-invariant system (in the general case an n-dimensional shift-invariant
system), generated by a 2-dimensional singular system:

xRk+1,l = A1x
R
k,l , xSk−1,l = E1x

S
k,l ,

6In projective space, for the roots of multivariate polynomials, zeros at infinity
originate in much the same way as, when in 2 dimensions, 2 parallel lines intersect
in the point at infinity.
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xRk,l+1 = A2x
R
k,l , xSk,l−1 = E2x

S
k,l ,

yk,l = CRx
R
k,l + CSx

S
k,l .(15)

Here, xRk,l ∈ Rna
M is the regular part of the state, governed by two discrete

indices k, l ∈ N
+
0 , where na

M is the number of affine (finite) eigen-pairs. The
2D-grid state propagation for increasing k is modelled by A1, while that
over increasing l is governed by A2. Together they generate the dynamics of
the regular state xRk,l as it moves causally over a 2D discrete grid, starting

in its origin. Here, A1, A2 ∈ Rna
M×na

M commute [10]: A1A2 = A2A1 (In-
tuitively, they should, as xRk+1,l+1 can be reached from xRk,l in 2 different

ways as xRk+1,l+1 = A1x
R
k,l+1 = A1A2x

R
k,l = A2x

R
k+1,l = A2A1x

R
k,l, which

should hold for arbitrary xRk,l). The singular part of the state is xSk,l ∈ Rn∞
M ,

which propagates backward – anti-causally- both in k and l via the matrices
E1, E2 ∈ Rn∞

M×n∞
M , where n∞

M is the number of eigen-pairs at infinity. The
sum na

M+n∞
M = nM is the nullity of the Macaulay matrix that stabilises from

a certain FmSR on. The matrices E1 and E2 also commute: E1E2 = E2E1

and in addition, E1 and E2 are nilpotent, i.e. when powered up, from a
certain power on, called the nilpotency index, we get a zero matrix.

So two of the state equations are causal, they describe how the regular
part of the state propagates ‘forward’ on a 2D discrete grid starting from a
regular initial state ‘in the past’. Two of them are anti-causal and describe
how the singular part of the state propagates ‘backward’ on a 2D discrete
grid, starting from a collection of initial states ‘in the future’. The output
is then a sum, via two output matrices CR and CS , of the regular and the
singular part of the state. Generalisations of such state space models to mD
commutative systems with m > 2 are straightforward.7

Let us now discuss the block multi-shift invariant structure of the null
space of the block Macaulay matrix, still for n = 2. We will depict the
situation when there have already been a sufficient number of FmSRs, so
that not only the nullity has stabilised, revealing the total number of isolated
solutions, but that also the threefold structure in the null space that we
explain below, appears. We use a special choice of basis in the null space
(which always exists, see below), so that the threefold structure is clearly
visualised in the following mixed causal – anti-causal nD observability matrix
Γ of full column rank nM = na

M+n∞
M . This matrix Γ is a concatenation of ΓR,

7These mD singular systems are a generalisation of the 1D case described e.g. in
[69], and one might conjecture that there exists a Weierstrass Canonical Form for
2D commutative systems (or even for mD, when we take the general case), which
seems plausible but definitely is an open problem.
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which is the observability matrix of the regular part of the state space model
(15) of order na

M and has na
M columns, and ΓS , which is the observability

matrix of the singular part of (15) of order n∞
M with n∞

M columns.

Γ =

( na
M n∞

M

ΓR ΓS

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CR 0

CRA1 0
CRA2 0

CRA
2
1 0

CRA1A2 0
CRA

2
2 0

...
...

CRA
δg−1
1 0

CRA
δg−2
1 A2 0
...

...

CRA
δg−1
2 0

CRA
δg
1 0

...
...

CRA
δg
2 0

...
...

CRA
δs
1 rTδs,0

...

CRA
δs
2 rT0,δs

CRA
δs+1
1 rTδs+1,0
...

CRA
δs+1
2 rT0,δs+1

CRA
δs+2
1 rT0,δs+2
...

...
...
... rT1,δs+1

CRA
δs+2
2 rT0,δs+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(16)
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There are three degree block rows in Γ, separated by double lines:

The regular (affine) zone: The column space of the first zone is only
generated by ΓR. All corresponding rows in ΓS are zero. In this zone, when
checking the linear independency of rows of ΓR from the top downwards, the
rank increases at least by 1 for every degree block that is added. One could
call the indices of the linear independent rows the observability indices.

The mind-the-gap-zone: The second zone starts when, for a certain de-
gree δg (subscript ‘g’ for ‘gap’), there is a degree block, with all of its rows
linear dependent on rows in the previous degree blocks. If the FmSRs are
progressed sufficiently far, there might be several of such degree blocks that
are completely linear dependent on the previous ones. When checking the
degree blocks from the top downwards, the rank has now stabilised to na

M ,
which is the number of affine eigen-tuples. One can see that the mind-the-gap
zone separates the regular zone from the singular zone. This observation will
allow us to deflate the eigen-tuples at infinity, with a column compression.

The singular or ‘A-bout-de-souffle’-zone: From a certain degree δs
(subscript ‘s’ for ‘singular’), the rank per degree block starts increasing again
at least by one per degree block, until we reach a degree block where the
total cumulative rank equals nM .

The null space of the block Macaulay matrix is seen to be the union of the
column space of a regular, causal observability matrix ΓR, with increasing
powers of the system matrices Ai, and a singular, anti-causal one, ΓS , the
structure of which we will explain a bit more in detail. Let’s assume, as in
Eq. (16), just by way of example, for n = 2, that at the degree δs block the
rank starts increasing again after the mind-the-gap zone, and that it keeps
increasing for two more degree blocks up to the degree (δs + 2) block. We
represent the rows in the highest degree block of ΓS by row vectors of the
form rT (i, j), where i and j are the degrees of the corresponding monomials.
For the degree (δs + 2) block, i + j = δs + 2, for the degree (δs + 1) block,
i+ j = δs+1 etc. . . . Just as in the regular case, there are relations between
the rows of the degree blocks, with powers of the two n∞

M × n∞
M commuting

matrices E1 and E2 of the singular part of the state space model:

rT (i, j) = rT (i+ 1, j)E1 = rT (i, j + 1)E2

= rT (i+ 2, j)E2
1 = rT (i+ 1, j + 1)E2E1

= rT (i+ 1, j + 1)E1E2 = rT (i, j + 2)E2
2 .
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These relations also induce algebraic constraints between the initial condi-

tions at infinity (in our example the rows in the degree (δs + 2) block). In

addition, there can be complicated multiplicity structures at infinity, as re-

vealed by the Jordan forms of the singular matrices Ei (which we will not

elaborate on here). So we clearly see that the singular part ΓS of Γ, grows

anti-causally with increasing powers of the singular matrices Ei, starting

from the bottom upwards. All of the matrices Ei are nilpotent, so after

some degree starting from the bottom upwards, all rows in the degree blocks

are zero. They run ‘out-of-breath’ (‘a-bout-de-souffle’). In the visualisation

above, there are 3 degree blocks over which the non-zero rows of ΓS develop

upwards, so in this case the nilpotency index is 3. Such a singular behaviour

only occurs when there are eigen-tuples at infinity (in the example there

would be 3 zeros at infinity).

In this paper, however, there is no need to explore the fine structure of

the zeros at infinity in more detail, as we will exploit the ‘mind-the-gap’-

zone to deflate them out. For more details about the behaviour at infinity,

we refer to [36] where we will deploy ‘singular perturbation’ approaches to

provide more insight.

6.3. Column compression for the affine zeros

When calculating the null space of the block Macaulay matrix, e.g. with

an SVD, the basis of the null space will not reveal directly the observability

structure as in (16). Instead, the numerical result will be a linear combination

of the columns of the multi-dimensional observability matrix (16), mixing up

the columns of ΓR and ΓS . However, these linear combinations of columns do

not modify the linear (in)-dependency of the rows of the null space matrix,

when checking linear (in-)dependency from the top downwards. Said in other

words, the observability indices are invariants, independent of the choice of

basis for the null space. This observation will allow us to deflate the roots

at infinity as explained in Figure 1.

6.4. Multi-dimensional realisation in the compressed null space

The column space of the regular observability matrix ΓR is a block backward

multi-shift-invariant subspace. Denote by Γ1 the sub-matrix of ΓR that con-

tains the first degree blocks up to and including the degree δg − 1 block (so

all degree blocks of the regular zone). One can now verify that (recall that
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Figure 1: The figure shows the null space (in some arbitrary numerical basis),
for increasing FmSRs represented by the long horizontal arrow for increasing
block degrees d. As the recursion proceeds, there will be linear independent
rows in certain degree blocks, indicated by arrows, when we start checking
linear (in-)dependency of rows from top to bottom. One does not have to
check row by row, but it can be verified degree block per degree block using
SVDs (only the singular values are needed), whether the rank increases
or not. When the set of eigen-tuples is zero dimensional, from a certain
recursion on, there will be a complete degree block, where all of its rows
will be linear dependent on previous ones. This indicates that we have found
‘the-mind-the-gap’-zone. It is possible that below that gap downwards, there
are still some rows that are linear independent, ‘caused’ by the eigen-tuples
at infinity. In any case, in the null space, the sub-matrix formed with the
degree blocks above the mind-the-gap zone has rank na

M . When na
M = nM ,

the nullity of the Macaulay matrix, nothing special needs to be done as there
are no roots at infinity in that case. When na

M < nM , one has to deflate the
eigen-tuples at infinity, which can be done by a so-called column compression
(with an SVD) to the whole null space matrix, applied to the right. Then,
all block rows, including those of the mind-the-gap zone, of the na

M columns
to the left, will exhibit the structure of a regular nD observability matrix as
in (16), up to within a similarity transformation.
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A1 and A2 commute):

(17) Γ1A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CR

CRA1

CRA2

CRA
2
1

CRA1A2

CRA
2
2

...

CRA
δg−1
1

CRA
δg−2
1 A2
...

CRA
δg−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CRA1

CRA
2
1

CRA1A2

CRA
3
1

CRA
2
1A2

CRA1A
2
2

...

CRA
δg
1

CRA
δg−1
1 A2
...

CRA1A
δg−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S1 · ΓR

where the selector matrix S1 selects the appropriate block rows of ΓR, that
are ‘hit’ by the shift matrix A1. A similar observation holds for the ‘shift’
matrix A2 with Γ1 · A2 = S2 · ΓR, where the selector matrix S2 selects the
appropriate block rows of ΓR ‘hit’ by the shift matrix A2. By construction,
Γ1 is of full column rank, so that we can now find A1 and A2 by exploiting
the multi-shift-invariance property (17), which is independent of the specific
choice of basis in the null space, using pseudo-inverses:

A1 = Γ†
1(S1ΓR) and A2 = Γ†

1(S2ΓR) .

The eigenvalue pairs (α1, α2) follow from the eigenvalues α1 of A1 and α2 of
A2, and have to be matched with each other (details omitted here).

For the sake of clarity, we did the case n = 2, but the generalisation
to the cases n > 2 is straightforward: Instead of having two commuting
matrices A1, A2 and E1, E2 in the state space model (15), in the general
case one has sets of pairwise commuting matrices {Ai, i = 1, . . . , n} and
{Ei, i = 1, . . . , n}, but basically all observations made above carry through.

Some final observations, which we do not treat in detail here, are:
1. Eigen-tuples with multiplicity larger than 1, in which case we have to deal
with generalised’ confluent Vandermonde matrices, generalised because of
the degree block structure, and because we have now multi-shifts, instead of
single-shift (see e.g. [26] [39] [40]). 2. Generalised Cayley-Hamilton: The fact
that there is a mind-the-gap zone, implies that products of higher powers of
the matrices Ai can be written as linear combinations of products of lower
power ones. This is a generalisation of the Theorem of Cayley-Hamilton to
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multiple commuting matrices, but we will refer for this to some forthcoming
publication. 3. The secular equations (9) will only contain the affine solu-
tions, not the ones at infinity. This is comparable to the algebraic generalised
EVP of the form Ax = Bxλ for A,B ∈ Rn×n. When B is singular, there
will be roots λ at infinity, however in that case the characteristic equation,
det(A − Bλ) = 0, will have a lower degree than n, because its roots do
not contain the ones at infinity. 4. Non-zero dimensional varieties: It may
happen that the affine variety, corresponding to the finite eigen-tuples, is
zero-dimensional, but that the variety of the eigen-tuples at infinity is non-
zero-dimensional. In this case, the nullity will not stabilise, but the ‘affine
nullity’ na

M will, so that we can still do a column compression to deflate the
roots at infinity. 5. Variations on the basic outline: There are many vari-
ations on the basic outline presented here and numerical implementations
that remain to be developed, one of which can already be found in [85]. Fast
algorithms that exploit the ‘quasi-Toeplitz’-structure of the block Macaulay
matrices, and their sparsity, need to be developed as well (see e.g. [15]).

7. Image representation with simple poles

So far, we have been using the kernel representation of the autonomous LTI
systems, but we can obtain complementary results by using an image pre-
sentation with the extended observability matrix in a state space basis that
reveals it as an extended Vandermonde matrix. For reasons of conciseness
and simplicity, we will assume that all roots of (1) are simple. The exact data
can now be modelled as ŷk =

∑n
i=1 λ

k−1
i ξi, where λi are the roots (i.e. the

poles of the autonomous LTI system) and ξi the components of the initial
state. With obvious definitions for Λv

N and x̂v0, we can write (‘v’ stands for
‘Vandermonde’):

ŷ = Λv
N · x̂v0 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λn

λ2
1 λ2

2 . . . λ2
n

...
...

...
...

λN−1
1 λN−1

2 . . . λN−1
n

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎝

ξ1
ξ2
. . .
ξn

⎞
⎟⎟⎠ .

The least squares objective function is

σ2 = ‖ỹ‖22 = ‖y−Λv
N x̂v0‖22 = yT y+(x̂v0)

∗(Λv
N )∗Λv

N x̂v0−yTΛv
N x̂v0−(x̂v0)

∗(Λv
N )∗y,

to be minimised over the λi and ξi. Obviously, this is an unconstrained
multivariate polynomial optimisation problem, and by putting all partial
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derivatives equal to zero we will obtain a set of multivariate polynomials that

is to be rooted.8 We have to be a bit careful when dealing with derivatives of

real functions (such as the objective function σ2), with respect to complex

variables like λi and ξi and their complex conjugates. Indeed, λi as a complex

number is ‘parametrised’ by two real numbers (its real and imaginary part)

and its complex conjugate λi by the same two real numbers. Let’s have

a look at the objective function for n = 2 and N = 3, with two distinct

complex conjugated roots λ and λ and conjugated components ξ and ξ of

x, which is an example that is sufficiently general to make some points.9 In

essence, we treat λ, λ, ξ, ξ as independent variables. We then find

∂σ2

∂x
= 0 = (Λv

3)
∗Λv

3x− (Λv
3)

∗y =
∂σ2

∂x∗
,

∂σ2

∂λ
= 0 = x∗(

∂(Λv
3)

∗

∂λ
Λv
3 + (Λv

3)
∗∂Λ

v
3

∂λ
)x− yT

∂Λv
3

∂λ
x− x∗

∂(Λv
3)

∗

∂λ
y ,

∂σ2

∂λ
= 0 = x∗(

∂(Λv
3)

∗

∂λ
Λv
3 + (Λv

3)
∗∂Λ

v
3

∂λ
)x− yT

∂Λv
3

∂λ
x− x∗

∂(Λv
3)

∗

∂λ
y .

With Ĩ2 the 2× 2 reverse identity matrix, we have the following relations:

Λv
3 =

⎛
⎝ 1 1

λ λ

λ2 λ
2

⎞
⎠ =⇒ ∂Λv

3

∂λ
=

⎛
⎝ 0 0

1 0
2λ 0

⎞
⎠ = (

∂Λv
3

∂λ
)·Ĩ2 = (

∂Λv
3

∂λ
)·Ĩ2 =

∂Λv
3

∂λ
.

We see that x occurs linearly in the ‘normal equations’. With xT = (ξ ξ)

and recalling that Λv
3x ∈ RN , we then find

∂σ2

∂λ
= 2 · ξ · (0 1 2λ) · (Λv

3x− y) = 0 ,
∂σ2

∂λ
= 2 · ξ · (0 1 2λ) · (Λv

3x− y) = 0 .

8Via Vieta’s Theorem, the map between the coefficients in (1) and the roots
λi is of course multivariate polynomial. So it should come as no surprise that the
optimisation problems in both model representations (the kernel and the image
one) are ‘equivalent’ in the sense that one can be turned into the other via a mul-
tivariate polynomial transformation. Of course, the MEVP that solves them, has a
different appearance. The set of multivariate polynomials is closed for many differ-
ent operations applied to the variables: partial derivatives, multivariate polynomial
transformations, etc.

9When C is a complex matrix, C is the matrix obtained by replacing every ele-
ment with its complex conjugate, CT is its transpose (without complex conjugation)
and C∗ = (C)T is its complex conjugate transpose
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We see that in principle, x = 0 could also be a solution of these equations,
which leads to (Λv

3)
T y = 0. In this case, λ1 and λ2 will be the roots of

y2λ
2 + y1λ + y0 = 0. Returning to the general case, for general n and N ,

solutions with x̂v0 = 0, correspond to the N − 1 roots of
∑N−1

k=0 ykλ
k = 0,

in which case σ2 = ‖y‖22 and ỹ = 0. All solutions here are maximising, not
minimising. So we can assume that x �= 0, and introduce the N × n matrix,

(Λv
N )λ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0
1 1 . . . 1

2λ1 2λ2 . . . 2λn
...

...
...

...

(N − 1)λN−2
1 (N − 1)λN−2

2 . . . (N − 1)λN−2
n

⎞
⎟⎟⎟⎟⎟⎠

.

Then we find
(

(Λv
N )TΛv

N (Λv
N )T y

((Λv
N )λ)T (Λv

N )λ ((Λv
N )λ)T y

)(
x

−1

)
= 0 .

These are 2n equations in 2n unknowns, and as x appears linearly, they
form an MEVP. One can also eliminate x all together by requiring that all
(n + 1) × (n + 1) minors are zero, hence generating n secular equations.
Observe also that the misfit vector ỹ = y − Λv

N x̂v0 is perpendicular to the
column spaces of both Λv

N and (Λv
N )λ, an observation to which we will return

in Section 9.

8. Order n = 1 least squares realization

Let us work out, for didactics sake, the case n = 1 in some detail, in which
case there is only 1 unknown α in the difference equation ŷk+1 + αŷk = 0,
and the root λ = −α.

8.1. Kernel and image representations

In this case, eqs. (13) reduce to a single parameter polynomial EVP. Group-
ing powers of α then results in (A0 +A1α+A2α

2)w = 0, where, for general
N , A0, A1, A2 ∈ R(2N−1)×(2N−1) and w = (fT (fα)T − 1)T .

There are now several ways to proceed. First, call w0 = w and w1 = w0α,
we can easily obtain the generalised EVP

(
0 I2N−1

−A0 −A1

)(
w0

w1

)
=

(
I2N−1 0

0 A2

)(
w0

w1

)
α.
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There might be eigenvalues at infinity, because typically A2 is singular. The

secular equations reduce here to one characteristic equation, given by

det

( (
0 I2N−1

−A0 −A1

)
−
(

I2N−1 0
0 A2

)
α

)
= 0 .

Another way to proceed, is to generate a block Toeplitz matrix with FSRs

with increasing powers of α to get

⎛
⎜⎜⎜⎝

A0 A1 A2 0 0 . . .
0 A0 A1 A2 0 . . .
0 0 A0 A1 A2 . . .
...

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

w0

w0α
w0α

2

w0α
3

...

⎞
⎟⎟⎟⎟⎟⎠

= 0.

The dimension of the null space will be the total number of projective roots,

including the ones at infinity. The null space is a block backward shift-

invariant subspace, in which we can first do a column compression as de-

scribed in Figure 1, and then perform 1D realisation. A third way to proceed

is to use the image representation with one pole:

σ2 = min
β,λ

N−1∑
k=0

(yk − βλk)2 =⇒
∂σ2

∂β = 2
∑N−1

k=0 (yk − βλk)λk = 0 ,
∂σ2

∂λ = 2β
∑N

k=1(yk − βλk)kλk−1 = 0 .

Defining the vectors yT = (y0 y1 . . . yN−1), ŷ
T = (β βλ . . . βλN−1) and

the misfit ỹ = y − ŷ, we can rewrite these two equations as ỹT ŷ = 0 and

ỹT ∂ŷ
∂λ = 0: The misfit is orthogonal to the least squares approximating signal

ŷ and its derivative. For β = 0, solutions are the roots of
∑N−1

k=0 ykλ
k = 0,

and are the maximising ones. When β �= 0, both equations are linear in β

so that

β =

∑N−1
k=0 ykλ

k∑N−1
k=0 λ2k

=

∑N−1
k=1 kykλ

k−1∑N−1
k=1 kλ2k−1

,

and (
∑N−1

k=0 ykλ
k)(

∑N−1
k=1 kλ2k−1) = (

∑N−1
k=1 kykλ

k−1)(
∑N−1

k=0 λ2k), which is

the secular equation. It can be verified that the degree of this polynomial in

λ is 3N − 5, with leading coefficient yN−2.



190 Bart De Moor

8.2. A small numerical example for n = 1 and N = 4

As an illustrative example, for N = 4 data points, eqs. (13) reduce to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2α 1 0 1 + α2 α 0 y0
1 2α 1 α 1 + α2 α y1
0 1 2α 0 α 1 + α2 y2

1 + α2 α 0 0 0 0 αy0 + y1
α 1 + α2 α 0 0 0 αy1 + y2
0 α 1 + α2 0 0 0 αy2 + y3
y0 y1 y2 αy0 + y1 αy1 + y2 αy2 + y3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

f
fα

−1

⎞
⎠ = 0.

The matrices A0, A1, A2 are:

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 y0
1 0 1 0 1 0 y1
0 1 0 0 0 1 y2
1 0 0 0 0 0 y1
0 1 0 0 0 0 y2
0 0 1 0 0 0 y3
y0 y1 y2 y1 y2 y3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 1 0 0
0 2 0 1 0 1 0
0 0 2 0 1 0 0

0 1 0 0 0 0 y0
1 0 1 0 0 0 y1
0 1 0 0 0 0 y2
0 0 0 y0 y1 y2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us take data y = (4 3 2 1)T . There will be 2(2N − 1) = 14 eigenvalues.

The secular equation is −4λ10 + 18λ9 − 56λ8 + 96λ7 − 128λ6 + 120λ5 −
32λ4 + 24λ3 + 36λ2 − 18λ + 24 = 0, so there are 10 affine roots and 4 at

infinity. The maximising roots are (rounded to 4 digits) 1.6506, 0.1747 ±
1.5469j and the ones corresponding to β �= 0 are 1.3216 ± 2.0058j, −0.6764,

−0.1589 ± 0.8080j, 0.4209 ± 0.6233j. The minimising root is λ = −0.6764

and correspondingly, σ2 = 1.4868e − 01 with x̂0 = 4.1155e + 00. The FSR

with the polynomial EVP results in the following table:

# size rank nullity linear independent monomials

0 7× 21 7 14 1, 2, 3, 4, 5, 6, 7|8, 9, 10, 11, 12, 14|21
1 14× 28 14 14 1, 2, 3, 4, 5, 6, 7|8, 9, 10, 11, 14|21, 28
2 21× 35 21 14 1, 2, 3, 4, 5, 6, 7|8, 9, 10, 14|21, 28, 35
3 28× 42 28 14 1, 2, 3, 4, 5, 6, 7|8, 9, 10|21, 28, 35, 42
4 35× 49 35 14 1, 2, 3, 4, 5, 6, 7|8, 9, 10|gap|28, 35, 42, 49
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In this table, the left column indicates the recursion number of the FSR.
For recursion number 0, the block Toeplitz matrix has size 7 × 21 and is
of rank 7, so has nullity 14, indicating that, when we look at a matrix
the columns of which form a basis of the null space, 14 rows are linear
independent. Their indices can be found in the right column. The little bar
between 7 and 8 separates the degree 0 block from the degree 1 block. As the
FSR proceeds, the nullity stabilises (actually for this example right from the
beginning) to 14. The indices of the first 7 rows in the degree 0 block also
stabilise right away, but in the degree 1 block, there are 5 linear independent
monomials (recursion 1), then 4 (recursion 2) and from recursion 3 on, the
indices in the degree 1 block stabilise to 8, 9, 10. From recursion 4 we see
for the first time in the recursion, the ‘mind-the-gap’-zone, as all rows in
the degree 2 block are linear dependent. There are now 4 linear independent
monomials in the degree 3 block. The 10 linear independent rows above the
gap are caused by the 10 affine roots, and the 4 below the gap, by the roots
at infinity. We can now do a column compression of the matrix consisting
of degree blocks 0 to 2, and then deploy 1D realisation to set up a 10 × 10
EVP, the eigenvalues of which will exactly correspond to the roots we have
enumerated above. For the global minimum, we find

y =

⎛
⎜⎜⎝

4
3
2
1

⎞
⎟⎟⎠ = ŷ + ỹ =

⎛
⎜⎜⎝

4.1155e+ 00
2.7835e+ 00
1.8827e+ 00
1.2734e+ 00

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

−1.1549e− 01
2.1645e− 01
1.1732e− 01

−2.7336e− 01

⎞
⎟⎟⎠ .

9. New system theoretic properties of the optimal solutions

In this Section, the optimal solutions of the least squares realisation program,
are characterised by four properties, which have not been described before
in the literature: 1. The fact that the misfit is structured; 2. Orthogonality
properties; 3. Optimal Riemannian metrics; 4. A canonical decomposition
of the ambient data space in complementary forward and backward shift
invariant subspaces, defined by the optimal eigen-tuples.

9.1. Beurling-Lax-Halmos: the misfit is structured

Assuming that the model coefficients αi are known, we can rephrase the
optimisation problem (6) using a vector of Lagrange multipliers l ∈ RN (we
add a factor 1/2 for convenience): minỹ

1
2‖ỹ‖22 subject to Ta(y − ỹ) = 0,

with the Langrangean function as L(ỹ, l) = 1
2‖ỹ‖22 + lTTa(y − ỹ). Equating
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all partial derivatives to zero, results in the set of equations: ỹ = T T
a l and

Tay = Taỹ. Hence Tay = TaT
T
a l, so that l = (TaT

T
a )−1Tay and

(18) ỹ = T T
a (TaT

T
a )−1Tay = Πay = ỹ = T T

a l .

We now also see from Subsection 5.3, that the vector f we introduced there
is the same as the vector l of Lagrange multipliers. The interpretation of
(18) is the following: the misfit signal ỹ is obtained by filtering the input
sequence contained in l through a finite impulse response (FIR) filter, the ze-
ros of which are the reciprocals of the roots (poles) of the difference equation
we started from: Eq. (1) can be written as a(z)ŷk where z is the forward
shift operator. This implies that ỹk = [(arev(z))/zn]fk, where the coeffi-
cients of arev(z) are those of a(z) in reversed order and driven with the
‘input’ sequence fk (appropriately padded with zeros). So we find that ỹ
itself is generated by a FIR linear system, the zeros of which are the re-
ciprocals of the roots that characterise the backward shift-invariant column
space of ΓN . Hence, the subspace of all vectors ỹ orthogonal to the back-
ward shift-invariant subspace determined by the roots of a(z), consists of
‘input’ vectors f that are filtered through the FIR filter arev(z)/zn, the ze-
ros of which are the reciprocals of the roots of a(z). This can be seen as a
finite-dimensional vector space version of the operator-theoretic Theorem of
Beurling-Lax-Halmos (see e.g. [44] [75]).10

9.2. Orthogonal decomposition à la Thales

From Ta · ŷ = 0 and ỹ = T T
a · f , we easily deduce that ŷ and ỹ are per-

pendicular to each other, as ŷ is orthogonal to the rows of Ta, and ỹ is

10The properties of the unilateral forward (right) and backward (left) shift op-
erator have been intensively studied the last 50 years in operator theory [23] [72].
Beurling [16] characterized all forward shift invariant subspaces of the Hardy space
H2 as having the form θ(z)f(z) with f ∈ H2 and θ(z) an inner function, the zeros
of which ‘characterise’ the shift-invariant subspace. Lax [63] extended this result to
finite-dimensional vector-valued functions (where the unit disc is replaced by the
right half-plane) and Halmos [51] later proved this for the infinite-dimensional case.
The orthogonal complement Kθ = (θ(z)H2)

⊥ of a forward shift invariant space is
invariant under the backward shift operator S∗ (adjoint of S), referred to as the
model space [23] [38] [45], because in this space very general classes of Hilbert space
contractions can be modelled by the backward shift operator S∗ acting on Kθ. Fa-
mous results include Sz.-Nagy’s Dilation Theorem (every contraction has a unitary
dilation (i.e. a ‘power preserving’ unitary lifting)) and the Commutant Lifting The-
orem (CLT) of the Sz.-Nagy Foias model space [44]. Backward multi-shift-invariant
subspaces on the polydisc are studied in [11] [12] [13].
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Figure 2: For every choice of model parameters αi (not necessary optimal),
there is an orthogonal decomposition of the given data vector y, in two or-
thogonal vectors: ŷ belonging to the behaviour of the model (the orthogonal
projection of the data vector y onto the backward shift-invariant subspace
generated by the roots of a(z)), and a vector ỹ orthogonal to it. We show
three such possible orthogonal decompositions.

a linear combination of these rows. So ŷT ỹ = 0. Furthermore, it follows

that ‖y‖22 = ‖ŷ‖22 + ‖ỹ‖22. Said in other words, if Ta would be known, ev-

ery data vector y can be decomposed orthogonally into two vectors ŷ and

ỹ as y = ŷ + ỹ = (IN − Πa)y + Πay where Πa = T T
a (TaT

T
a )−1Ta, where

the first term is the orthogonal projection of the data vector y into the null

space of Ta and the second term into the row space of Ta. But here, out

of this infinite set of orthogonal projectors, one for each thinkable choice

of the parameters αi, i = 1, . . . , n, we want to find that specific projec-

tor Πa = T T
a (TaT

T
a )−1Ta that minimises ‖ỹ‖22 over the coefficients of a(z).

Hence, we can interpret the objective function (8) as the problem of find-

ing the optimal metric, represented by the nonnegative definite symmetric

projection operator matrix Πa, in the following sense: The set of all row

spaces of Ta over all possible vectors a, is a manifold. The misfit ỹ be-

longs to its tangent space, while ŷ is orthogonal to it. We are looking for

an optimal choice of a, so that the orthogonal decomposition of the data

vector y as y = ŷ + ỹ is such that the norm of ỹ, as measured in the

non-negative definite metric induced by Πa, σ
2 = ‖ỹ‖2 = ỹTΠaỹ, is min-

imised. Another interpretation arises by swapping the role of y and a as

Tay = Y a = e, where e is an equation error and Y is a Hankel matrix

with the data, of appropriate dimensions. The objective function can now

be written as σ2 = yTT T
a (TaT

T
a )−1Tay = aTY (TaT

T
a )−1Y a = eT (TaT

T
a )−1e,
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so it is a weighted quadratic function of the equation error to be minimised
over the coefficients αi.

9.3. Walsh’s Theorem as double Beurling-Lax-Halmos

Let us now show that the optimal vector of Lagrange multipliers l itself is the
output of a FIR filter (actually the same as the one we already described).
Let’s focus on eqs. (11). From the first block row, we find fαi = −D−1

a Dαi
a f+

D−1
a Tαi

a y. Substitute this in the second block row yT (Tαi
a )T f+yTT T

a fαi = 0
and using f = D−1

a Tay, we find 2fTTαi
a y = fTDαi

a f . Now, we use Dαi
a =

(TaT
T
a )αi = Tαi

a T T
a + Ta(T

αi
a )T and (18) to find fTTαi

a (y − ỹ) = 0. Writing
this out for all αi, i = 1, . . . , n and using ŷ = y−ỹ, we then obtain (illustrated
here for N = 6 and n = 2):

fT

⎛
⎜⎜⎝

ŷ0 ŷ1
ŷ1 ŷ2
ŷ2 ŷ3
ŷ3 ŷ4

⎞
⎟⎟⎠ = 0 .

We deduce that f itself belongs to the left null space of an observability
matrix (coinciding with the column space of the Hankel matrix above), so
that similarly to (18) and the reasoning that follows, f itself must be the
output of a FIR filter driven by an unknown signal g. These conclusions hold
for general n and N : Let Sa ∈ R(N−2n)×(N−n) be the banded Toeplitz with
the model parameters αi. Then, there exists a vector g ∈ RN−2n so that

f = ST
a g and ỹ = T T

a f = (T T
a ST

a )g .

Said in other words, the misfit ỹ is generated by filtering an unknown signal
g twice through the same FIR filter, the zeros of which are the recipro-
cals of the roots that characterise the backward shift-invariant subspace
determined by the optimal roots: f = (arev(z)/zn)2g for some g. This is
a finite-dimensional vector space version of what in the H2-model reduc-
tion literature is known as Walsh’s Theorem (see e.g. [75]). So, in a certain
sense, Walsh’s Theorem, which is a characterisation of the optimal roots, is a
‘double’ Beurling-Lax-Halmos theorem that characterise the shift-invariant
subspace to which the optimal misfit ỹ belongs.

9.4. Structured decomposition of the ambient space

The previous results lead to a (new) canonical decomposition of the ambi-
ent space RN . The matrix SaTa is itself a (N − 2n) × N banded Toeplitz
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matrix of rank N−2n, that corresponds to a difference equation of the form

(aT p(z))2yk = 0. The polynomial equation (aT p(z))2 = 0 has the same roots

as aT p(z), but all multiplicities are doubled. For simplicity, we assume that

all roots of p(z) = 0 are simple, which implies that all multiplicities of the

roots of (aT p(z))2 = 0 are 2. Indeed, it is not so difficult to show that

(SaTa) ·
(
Λv
N (Λv

N )λ
)
= 0 ,

which basically expresses the fact that the following column spaces, pa-

rameterised by the optimal coefficients αi, are complementary and orthog-

onal:

R
N = R(T T

a ST
a )⊕R(Λv

N )⊕R((Λv
N )λ) and R(T T

a ST
a ) ⊥ R

(
Λv
N (Λv

N )λ
)
.

The column space of (Λv
N (Λv

N )λ) is backward shift-invariant, and only de-

pends on the original spectrum, the roots of aT p(z) = 0, but now with double

multiplicity. The corresponding shift matrix A ∈ R2n×2n will be similar to

a Jordan form, with for each root a 2 × 2 Jordan block. The orthogonal

complement of this backward shift-invariant subspace is the forward shift-

invariant model space, generated by the column space of the matrix T T
a ST

a .

Let is illustrate this with some examples. For n = 1 and N = 5, we have

α = −λ, so that the canonical decomposition of R5 becomes:

(
(SaTa)

T Λv
5 (Λv

5)
λ
)
=

⎛
⎜⎜⎜⎜⎝

α2 0 0 1 0
2α α2 0 λ 1
1 2α α2 λ2 2λ
0 1 2α λ3 3λ2

0 0 1 λ4 4λ3

⎞
⎟⎟⎟⎟⎠

One can readily verify that the columns of the first block column are or-

thogonal to the last two columns, and that the matrix is of full rank 5. For

n = 2 and N = 7, we find

(
(SaTa)

T Λv
7 (Λv

7)
λ
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2
2 0 0 1 1 0 0

2α2α1 α2
2 0 λ1 λ2 1 1

α2
1 + 2α2 2α1α2 α2

2 λ2
1 λ2

2 2λ1 2λ2

2α1 α2
1 + 2α2 2α1α2 λ3

1 λ3
2 3λ2

1 3λ2
2

1 2α1 α2
1 + 2α2 λ4 λ4

2 4λ3
1 4λ3

2

0 1 2α1 λ5
1 λ5

2 5λ4
1 5λ4

2

0 0 1 λ6
1 λ6

2 6λ5
1 6λ5

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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10. Applications, heuristics, extensions

10.1. Applications

Signals ŷk that can be modelled by the kernel, image and state represen-
tations of Section 3 are sometimes called Bohl functions, which, for dis-
crete time, are functions that are linear combinations of terms of the form
klexp(λk), where k, l ∈ N and λ ∈ C. These are basic signal modes that
appear in many fields of science and engineering as ‘eigenfunctions’ of linear
time-invariant difference equations. Interchanging the role of ŷ and a, we
find Ta ŷ = Ŷ a = 0, where Ŷ is a (N − n) × (n + 1) Hankel matrix gen-
erated from the sequence ŷk. This equation expresses the well-known fact
that a Hankel matrix, generated from a sequence ŷk generated by the differ-
ence equation (1), has rank n. Obviously, for the vector a to be essentially
unique, we require that the number of rows of Ŷ is strictly larger than n+1,
which implies that we require that N ≥ 2n + 1. The universality of Bohl
functions reveals itself in the hundreds (if not thousands) of papers that
deal with applications in which these functions appear, such as (we only
give a small sample of references): high resolution frequency estimation and
harmonic retrieval problems [1] [17] [21] [31], the shape from moments prob-
lem [41], direction-of-arrival problems [50] [76], realisation algorithms from
impulse response samples to state space models [52] [62] [90]. In addition,
there are many relations with classical moment and interpolation problems
(e.g. Caratheodory, Hamburger, Nevanlinna-Pick, etc.) [4] [60] that remain
to be explored.

10.2. Heuristic approaches

The results derived here for the globally optimal solution to the least squares
realisation problem, could be used to assess the effectiveness of the tens of
heuristic algorithms that have been described in the literature. Some, but
not all of them, can be shown to converge to a local minimum. An algorithm
that seems to converge is the following heuristic iteration [21], applied to the
(short) data sequence y = (4 3 2 1)T we discussed before. The 3× 2 Hankel
matrix H0 formed with it is of rank 2. The best least squares Frobenius
norm matrix approximation of rank 1 is given by the first singular triplet,
say the rank 1 matrix H1, but it will not be Hankel. The closest Hankel
matrix in Frobenius-norm can be found by ‘averaging’ the anti-diagonals.
Call it H2, which will be Hankel but not of rank 1. Use the SVD again
to calculate the best rank 1 approximation H3., which will not be Hankel.
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Average the anti-diagonals to obtain H4, etc. The even iterations in this
alternating projections algorithm will be Hankel, the odd ones will have
rank 1, but if this iteration converges, we have a rank 1 Hankel, which
unfortunately does not satisfy the necessary conditions (13) for a (global)
optimum:

H =

⎛
⎝ 4 3

3 2
2 1

⎞
⎠ → H1 → H2 → . . . H∞ =

⎛
⎝ 4.1593e+ 00 2.8441e+ 00

2.8441e+ 00 1.9448e+ 00
1.9448e+ 00 1.3299e+ 00

⎞
⎠ .

Obviously, this is an example of a heuristic alternating least squares al-
gorithm that seems to converge to some stationary point, that is not to
a (local, let alone global) minimum. Other heuristics start from the cor-
rect necessary conditions for a (local) minimum, but then have to resort to
plain non-linear optimisation algorithms. Examples are Iterative Quadratic
Maximum Likelihood (IQML, see e.g. [64]), Steiglitz-McBride (see e.g. [43]
[75]), plain numerical optimization (like in PEM in [67]), Constrained Total
Least Squares [1], the Riemannian SVD [30] [31] [33] [35] (which is actually
a heuristic method to find the minimising solution of (13)). A good sur-
vey is provided in the PhD thesis [46], which also provides another heuristic
method, called weighted null space fitting. We hope that our results will shed
some new light in understanding these heuristic approaches (e.g. the nature
of their ‘fixed points’ if and to which they converge). A special mentioning
deserves a ‘classic’ paper by Golub and Pereyra [48] on separable nonlin-
ear least squares problems, describing a heuristic called VARPRO (Variable
Projection), basically referring to the metric Πa that is updated in each step
of an iteratively re-weighted least squares iteration.

10.3. Extensions

Before concluding, let us mention some potential extensions:

Least squares: Since the times of Gauss and Legendre, least squares has
provided the basis for an uncountable number of estimation theories because
it is analytically tractable with simple linear algebra. A possible extension
could include weights in the objective function, that can be any positive real
number, the inverse of which reflects the a priori confidence one would have
concerning the relative size of the misfits on specific data points. Extreme
cases are an infinite weight for an ‘exact’ (not to be modified), and a zero
weight (modification does not matter, so a missing observation) data point.
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Another example is the Hilbert-Schmidt-Hankel norm, the Frobenius norm
of a Hankel matrix, which has also a very interesting system theoretical
interpretation as the surface under the Nyquist plot [28] and in operator
theory forms the definition of a Dirichlet space [42].

Minimisation: In (13), we omitted the equation for σ2, and we derived a
solution method to find all the coefficients of (1) or equivalently, the roots.
However, an alternative is to keep σ2 in the equations, and design iterative
algorithms that only find those roots that correspond to a globally minimal
σ2, for instance some version of the inverse power method [88]. We will show
how to do this in some future work.

Including a priori information: We did not invoke any statistical as-
sumptions here, but of course, under the appropriate conditions of Gaus-
sianity and whiteness, our approach could be interpreted in a maximum like-
lihood setting. However, the approach described here can never be asymp-
totically (as N → ∞) efficient in the statistical sense, as we also estimate
the complete misfit vector ỹ (implicitly or explicitly), variables which, in the
literature on errors-in-variables, are called the ‘incidental parameters’ (see
[77]). One could also start from (13) to consider the second order derivatives,
leading to Hessians, that might be useful in characterising sensitivities and
conditioning.

Recursiveness in n and N is also a problem to be looked into, both in
terms of recursive updating with respect to containing the computational
complexity, as in trying to find an optimal order n as a trade of between
bias and variance. When the number of data N → ∞, and the data y are
themselves generated by an autonomous LTI system of order m > n, the
problem described here becomes the H2 model reduction problem (see [6],
and as an MEVP [3]).

11. Concluding remarks

In this paper, we could only schematically sketch an outline of the ma-
jor results: Least squares optimal realisation of observed data is basically an
MEVP, and hence a sequence of SVDs and EVPs. It is surprising that a (dif-
ficult) nonlinear problem in a 1D system theoretic setting, can in principle
be solved exactly as a series of SVDs and EVPs, in an n-dimensional system
theoretic setting. The required steps involve writing the first order optimal-
ity conditions as an MEVP, next, using FmSRs to generate a block Macaulay
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matrix, finding in its null space the regular part that is multi-shift invariant.
Then use a n-dimensional realisation step to calculate the ‘shift’ matrices
A1, . . . , An, the eigenvalues of which will generate the n-tuples (α1, . . . , αn),
one of which corresponds to the global minimum. In doing so, we also pre-
sented a new solution method for MEVPs (see also [29] [36]). Of course,
many more details will be discussed elsewhere, but let’s make some final ob-
servations. This work is a fascinating combination of several disciplines, like
numerical linear algebra, system theory in one and more dimensions, (com-
mutative) algebraic geometry, operator theory, etc. The results presented
here are part of a larger system identification framework that was started
with the papers [32] [65], inspired by Willems’s behavioural framework [68]
[89], where we not only deal with misfits, but also with ‘latent’ unobserved
inputs). In [65] we have proposed the framework, but we did not have yet
the insights of the combination of MEVPs, multi-shift invariant subspaces,
multi-dimensional realisation theory that leads to the solution strategy de-
scribed in this paper, but that also applies to more general misfit-latency
models (see e.g. [86] for the ARMA case). All of these ideas will be pursued
in future work, that will focus in particular on large scale numerical linear
algebra algorithms.
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