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Abstract

By using the framework of Determinantal Point
Processes (DPPs), some theoretical results con-
cerning the interplay between diversity and regu-
larization can be obtained. In this paper we show
that sampling subsets with kKDPPs results in im-
plicit regularization in the context of ridgeless
Kernel Regression. Furthermore, we leverage the
common setup of state-of-the-art DPP algorithms
to sample multiple small subsets and use them in
an ensemble of ridgeless regressions. Our first em-
pirical results indicate that ensemble of ridgeless
regressors can be interesting to use for datasets
including redundant information.

1. Introduction

Recent work has shown numerous insightful connections
between Determinantal Point Processes (DPPs) and implicit
regularization which lead to new guarantees and improved
algorithms. The so-called DPPs are probabilistic models
of repulsion inspired from physics, which are capable of
sampling diverse subsets. An extensive overview of the
use of DPPs in randomized linear algebra can be found
in (Derezifiski & Mahoney, 2020). By utilizing DPPs, exact
expressions for implicit regularization as well as connec-
tions to the double descent curve (Belkin et al., 2019) were
derived in (Fanuel et al., 2020; Derezinski et al., 2019; 2020).
The nice theoretical properties of DPPs sparked the search
for efficient sampling algorithms. This resulted in many
alternative algorithms for DPPs to reduce the computational
cost of preprocessing and/or sampling, including many ap-
proximate and heuristic approaches. Some examples are the
exact sampler without eigendecomposition of (Desolneux
et al., 2018; Poulson, 2020), coreDPP of (Li et al., 2016) or
the DPP-VFX algorithm of (Derezifiski et al., 2019). The
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computational cost is often split in two parts: an initial pre-
processing cost and subsequent sampling cost. The latter
is typically smaller, which makes the previously mentioned
algorithms especially useful for sampling multiple small
subsets from a large dataset.

We extend the work of (Fanuel et al., 2020), where the
role of diversity within kernel methods was investigated.
Namely, a more diverse subset results in implicit regulariza-
tion, which in turn improves the performance of different
kernel applicationsMore specifically we generalize the im-
plicit regularization of DPPs to kDPPs, which are DPPs con-
ditioned on a fixed subset size k£ (Kulesza & Taskar, 2011).
Furthermore, we leverage the common setup of state of
the art DPP sampling algorithms, to sample multiple small
subsets and use them in an ensemble approach. One can
loosely characterize these ensemble approaches as methods
wherein the data points are divided into smaller subsets, and
estimators are trained on the divisions. Their use has shown
to improve performance in Nystrom approximation (Kumar
et al., 2009) and kernel ridge regression (Zhang et al., 2013;
Hsieh et al., 2014; Lin et al., 2017). Experiments show a
reduction in error when combining multiple diverse subsets.

Nystrom Approximation. Let k(z,y) > 0 be a contin-
uous and strictly positive definite kernel. Examples are
the Gaussian kernel k(z,y) = exp(—||z — y||3/20?) or
Laplace Kernel k(x,y) = exp(—|lz — y||2/c). Given data
{z; € R%},¢}n), kernel methods rely on the entries of the
Gram matrix K = [k(z;, z;)]; ;. By assumption, this Gram
matrix is invertible. However, to avoid inverting the full
Gram matrix, one often samples a subset of landmarks
C C [n] with n x |C| a sampling matrix C obtained by
selecting the columns of the identity matrix indexed by C.
Next we define: K¢ = KC and Kg¢ = CTKC. Then,
the n x n kernel matrix K is approximated by a low rank
Nystrém approximation L(K,C) = KcKg; K/, which
involves inverting the smaller Kc¢c.

Ridgeless Kernel Regression. Given input-output pairs
{(zs,y:) € R4 x R};epn), We propose to solve

fe= arg;niﬁ I £113,, st yi = f(z;) foralli € C, (1)
€
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Figure 1. Ensemble KRR on the Abalone and Wine Quality dataset (from left to right).The SMAPE on the bulk and tail of the dataset is

given in function of the number of ensembles.

where C C [n] is sampled by using a DPP. Here, H is the
reproducing kernel Hibert space associated with k. The ex-
pression of the solution is f%(z) = k] CK;p C Ty, where
k, = [k(x,z1),...,k(z,7,)]". This approximation as-
sumes that some data points can be omitted, contrary to
Nystrom approximation to Kernel Ridge Regression (KRR)
which uses all data points. We show in this paper that av-
eraging ridgeless regressors yield the solution of a regular-
ized Kernel Ridge Regression calculated over the complete
dataset. For C ~ DPP(K/a), the expectation of the rigde-
less predictors (cfr. Theorem 1) gives the function

Eclfé(z)] =k, (K+ol) 'y =: f*(z) (2

which is the solution of Kernel Ridge Regression with a
ridge parameter associated to o, namely

[ =arg If?[él% ;(yz — f(@:))* + all 13-

Typically, a large o > 0 yields a small expected subset size
for DPP(K/a). In light of the expectation result of (2),
we propose to sample multiple subsets using a DPP and
average the ridgeless predictors in an ensemble approach:
f= % Dy J¢, with m the number of ensembles.

Determinantal Point Processes A more extensive
overview of DPPs is given in (Kulesza & Taskar, 2012).
Let L be a n X n positive definite symmetric matrix, called
L-ensemble. The probability of sampling a subset C C [n]
is defined as follows Pr(Y = C) = det(L¢c)/ det(I+ L).
Where we define L = K/o with @ > 0 and denote the
associated process DPPr,(K/«). The inclusion proba-
bilities are given by Pr(C C Y) = det(Pcc), where
P = K(K +al)™1, is the marginal kernel associated to the
L-ensemble L = K/« The diagonal of this soft projector
matrix P gives the Ridge Leverage Scores (RLS) of the
data points: £; = P;; fori € [n], which have been used
to sample landmarks points in various works (Bach, 2013;
El Alaoui & Mahoney, 2015; Musco & Musco, 2017) in
the context of Nystrom approximations. The RLS can be
viewed as the importance or uniqueness of a data point. Con-
nections between RLS, DPPs and Christoffel functions were

explored in (Fanuel et al., 2019). Note that guarantees for
DPP sampling for coresets have been derived in (Tremblay
et al., 2019).

2. Main results
2.1. DPP and implicit regularization

Theorem 1 can be found in (Fanuel et al., 2020) and (Mutny
et al., 2020) in the context of kernel methods and stochastic
optimization respectively. It relates the average of pseudo-
inverse of kernel submatrices to a regularization inverse of
the full kernel matrix.

Theorem 1 (Implicit regularization). Let C be a subset sam-
pled according to DPP(K /) with K > 0. Then, we have
the identity Ec[C Ky CT] = (K + al) L.

Interestingly, a large regularization parmeter « > 0
corresponds to small expected subset size E[|C]] =
Tr (K(K + oI)~'). We now discuss an analogous result
in the case of kDPPs, for which the implicit regularization
effect can be observed.

2.2. Analogous result for KDPP sampling

The elementary symmetric polynomial ey (K') is propor-
tional to the (n — k)-th coefficients of the characteristic
polynomial det(tI— K) = Y"}'_ (—1)*ex(K)t"~*. Those
polynomials are defined on the vector A of eigenvalues of
K. There are explicitly given by the formula ey (A) =
Zl§i1<m<ik5n Aiy - - - Aij, - The kDPPs(K) are defined by
the subset probabilities Pr(Y = C) = det(K¢e)/er(K),
and corresponds to DPPs conditioned to a fixed subset size
k. Now, we state a result analogous to Theorem 1.

Lemma 1. LetC ~ kDPP(K) and u,w € R". We have

the identities

en(K) —ep(K —wul)
ex(K)

(—1)F+1 q R Ty T adj(tl — K)w

T -k denk en(K) o

Eclu'CKyiCTw] =

where adj is the adjugate of a matrix.
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Proof. Firstly, we use the matrix determinant lemma:

det(ch) - det(ch - CT’U)’U,TC)

det(Kce)

u CK;CTw =

By taking the expectation over C ~ kDPP(K), we find

en(K) —ep(K —wul)

er (K) =:£.

Elu' CKg 2 CTw] =

where we used that ). _, det Acc = ey(A) for any
square matrix A. Next, we use the identity ey (K) =

((n 1]);;, ‘Cil(; kk) [det(t] — K)]t=o to obtain the correspond-
ing coefficient of the polynomial det(tl — K) =
> h_o(=1)key(K)t"*. Then, we use once more the ma-
trix determinant lemma with the matrix (¢I — K) this time.

This gives

(=1)k=1 q»=h) u' (11 — K) " tw
&= det(tl — K
(n— k)l den—* ex(K) et( ) o
Finally, we recall that adj(A4) = det(A)A~!, which com-
pletes the proof. O

The implicit regularization due to the diverse sampling is
not explicit in Lemma 1. In order to clarify this formula,
we write first an equivalent expression for it. Let the eigen-
decomposition of K be K = Y_,_, Ajvyv,. Denote by
A € R” the vector containing the eigenvalues of K, sorted
such that Ay > --- > \,. Let >‘fc € R™! be the same
vector with Ay missing.

Corollary 1. LetC ~ kDPP(K). We have the identity:

£=1 er— 1()\ )

Ec[CK;CT] =

Proof. To begin with, we expand the adjugate in Lemma 1
in the basis of eigenvectors of K. This gives

adj (¢l Vv,

ZH@/ ) -
Ae

Then, by the definition of the polynomials e; and by noting
thatn —k=n—1— (k—1), we find

_1)k—1 gk
((n)k)!dtnk I1¢- )

v#L t=0

= ep—1(A;),

where X; € R™™! is the vector A € R™ with A, missing.

n er_1(A;
This yields E¢[CK;2CT] = Y7, ’;k(&_)ﬂwu;. The
final identity is obtained by using the following recurrence

relation ek()\) = )\eek,1()\2) + €k(>\l7). O]

It is now possible to illustrate the connection between Corol-
lary 1 and implicit regularization. We give a lower bound
for the identity in Corollary 1.

Proposition 1. With the notations defined above, we have
n T
Vv,

- —_— 4

- ; ot o )

where oo = Y1, \; and C ~ kDPP(K).

Ec[CKqCT

The above bound matches the expectation formula for DPPs
for this specific a. Also, notice that it was remarked
in (Derezinski et al., 2020) that if & = Y.~ , \; then
Ec~ppp(i/a)l|C]] < k. The inequality (4) is obtained
thanks to the following Lemma with [ = k.

Lemma 2 (Eqn 1.3 in (Guruswami & Sinop, 2012)). Let
o € R" be a vector with entries o1 > -+ > o, > 0. Let

k and | be integers such that k > | > 0. Then, we have
ert1(o)
e:éﬂ)

1 n
< T 2ainig O

With the help of Lemma 2, we can prove (4).

Proof of Proposition 1. Let k > 1. We can lower bound

Gk,1(>\2)

the ratio ) in (3) by using Lemma 2. Namely let o
-k 4

be the vector A; € R”~! with entries sorted in decreasing
order, and let / = k. Then, it holds that eff (1"(’;) < Z?;kl ;.
By using the definition of o, we find that, if & < ¢, we have
Sl os = =+ 31, . Otherwise, if k > £, we have
Sl =30, 41 Ai- Hence, we find the upper bound

€k(O') n—1 - n
1

since A > 0. Finally, the statement is proved by using the
latter inequality and the identity (3). O

Remark 1 (Upper bound). Consider the term £ = n in (3).
Then, the additional term at the denominator can be lower
bounded as follows:

ex(Ma) _ n—k, 1<An1>’“>0
ek._l()\ﬁ) - k e A1 =

where we used that ey (X) includes (") terms. This

bound is pessimistic although it instructs that a small k
benefits to the regularization.

As we have observed, the formulae of Theorem 1 or Corol-
lary 1 show that the expectation over diverse subsets im-
plicitly regularize the inverse of the kernel matrix. The
improvement of this bound is worth further investigation.
A related work (Mutny et al., 2020) uses the same formula
given in Theorem 1 to study the convergence of a random
block coordinate optimization method for Kernel Ridge
Regression, but does not study the ridgeless limit.
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Figure 2. Ensemble KRR on the Bikesharing and CASP dataset (from left to right). The SMAPE on the bulk and tail of the dataset is

given in function of the number of ensembles.

3. Experimental results

Sampling a more diverse subset improves the performance
of Nystrom approximation and KRR (Fanuel et al., 2020).
In these experiments, we discuss ensemble approaches
for the ridgeless case. The following datasets' are used:
Adult, Abalone, Wine Quality, Bike Sharing
and CASP. We use 3 sampling algorithms with increasing
diversity: uniform sampling, exact ridge leverage score
sampling (RLS) (El Alaoui & Mahoney, 2015) and kDPP
sampling (Kulesza & Taskar, 2011). For larger datasets
the BLESS algorithm (Rudi et al., 2018) is used instead of
RLS and DPP-VFX(Derezifiski et al., 2019) to speed up
the sampling of a kKDPP. These algorithms have a relativity
small re-sampling cost that motivates their use for ensemble
approaches. RLS can be seen as a cheaper proxy for DPP
sampling as done in (Derezinski et al., 2020). The different
parameters and sample sizes are given in the Supplementary
Material. A Gaussian kernel with bandwidth o is used after
standardizing the data. All the simulations are repeated 10
times, the averaged is displayed and the errorbars show the
0.25 and 0.75 quantile.

Ensemble Nystrom. The accuracy of the approxima-
tion is evaluated by calculating ||K — K|z/||K|r
with the ensemble Nystrom approximation K =
LS KCi(Keye, + €l)'C K with e = 1072 for
numerical stability. We illustrate the use of diverse ensem-
bles on Figure 3. Averaging multiple Nystrom approxima-
tions improves the accuracy. The gain is the most apparent
for the more diverse sampling algorithms. Similarly to the
experiments in (Kumar et al., 2009), we see that uniform
sampling combined with equal mixture weights does not
improve performance. This is not the case when using more
sophisticated sampling algorithms.

Ensemble KRR. Following the implicit regularization of
DPP samplings, we asses the performance of averaging
ridgeless predictors trained on DPP subsets. Prediction is
done by averaging the ridgeless predictors in an ensemble

"https://archive.ics.uci.edu/ml/index.php
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Figure 3. Ensemble Nystrom approximation on the Adult dataset.
The relative Forbenius norm of the approximation is given in
function of the number of ensembles.

approach: f = L 37" f* We evaluate by the same pro-
cedure as in (Fanuel et al., 2020). The dataset is split in 50%
training data and 50% test data, so to make sure the train and
test set have similar RLS distributions. To evaluate the per-
formance, the dataset is stratified, i.e., the test set is divided
into "bulk’ and ’tail” as follows: the bulk corresponds to test
points where the RLS with regularization & = 10™% X N yain
are smaller than or equal to the 70% quantile, while the tail
of the data corresponds to test points where the ridge lever-
age score is larger than the 70% quantile. This stratification
of the dataset allows to visualize how the regressor performs
in dense (small RLS) and sparser (large RLS) groups of
the dataset. We calculate the symmetric mean absolute per-
centage error (SMAPE): - 37 m of each group.
The results for exact sampling algorithms are visualised on
Figure 1, approximate algorithms are given on Figure 2.
Combining multiple subsets shows a reduction in error. Fol-
lowing (Fanuel et al., 2020), sampling a more diverse subset
improves the performance of the KRR. Particularly diverse
sampling has comparable performance for the bulk data,
while performing much better in the tail of the data. Impor-
tantly, all the methods reach a stable performance before the
number of points used by all interpolators exceeds the total
number of training points.
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A. Parameters and dataset descriptions

The parameters and datasets used in the simulations can be
found in Table 1. The dataset dimensions are given by n
and d, o is the bandwidth of the Gaussian kernel, k the size
of the subset. The regularization parameter of the RLS is
equal to Agrs. The parameters for DPP-VFX correspond
t0 Gxdpp and Qpless. These are the oversampling parameters
for internal Nystrom approximation of BLESS and DPP-
VFX used to guarantee that everything terminates. Tuning
parameters of the BLESS algorithm are g, cg, ¢1, C2-
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Table 1. Datasets and parameters used in the experiments.

Dataset n d o k AMRLS Qxdpp Qbless g0 Co €1 C2

Adult 48842 110 5 250 1073 3 3 2 2 3 3
Abalone 4177 8 3 50 10°* / / / / / /

Wine Quality 6497 11 5 100 10~¢ / / / / / /
Bike Sharing 17389 16 3 250 10-3 3 3 2 2 3 3
CASP 45730 9 2 250 1073 3 3 2 2 3 3




