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ABSTRACT
BackgroundOver the past decades, an international group of experts iteratively developed a consensus
classification of kidney transplant rejection phenotypes, known as the Banff classification. Data-driven
clustering of kidney transplant histologic data could simplify the complex and discretionary rules of the
Banff classification, while improving the association with graft failure.

Methods The data consisted of a training set of 3510 kidney-transplant biopsies from an observational
cohort of 936 recipients. Independent validation of the results was performed on an external set of 3835
biopsies from 1989 patients. On the basis of acute histologic lesion scores and the presence of donor-
specific HLA antibodies, stable clustering was achieved on the basis of a consensus of 400 different
clustering partitions. Additional information on kidney-transplant failure was introduced with a weighted
Euclidean distance.

Results Based on the proportion of ambiguous clustering, six clinically meaningful cluster phenotypes
were identified. There was significant overlap with the existing Banff classification (adjusted rand index,
0.48). However, the data-driven approach eliminated intermediate and mixed phenotypes and created
acute rejection clusters that are each significantly associatedwith graft failure. Finally, a novel visualization
tool presents disease phenotypes and severity in a continuous manner, as a complement to the discrete
clusters.

Conclusions A semisupervised clustering approach for the identification of clinically meaningful novel
phenotypes of kidney transplant rejection has been developed and validated. The approach has the
potential to offer a more quantitative evaluation of rejection subtypes and severity, especially
in situations in which the current histologic categorization is ambiguous.

doi: https://doi.org/10.1681/ASN.2020101418

Kidney transplant biopsies are crucial in the follow-
up of patients after transplantation. Both at the
time of graft dysfunction (indication biopsies)
and the time of stable graft function (protocol bi-
opsies), the histologic evaluation of these biopsies
enables one to distinguish rejection mechanisms
from other injury processes and orient the appro-
priate therapeutic interventions. Over the past
decades, an international group of experts has
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developed a consensus classification of kidney transplant re-
jection phenotypes, known as the Banff classification.1–3

The Banff classification relies on the histologic evaluation
of a set of well-defined lesions, further translated into
semiquantitative, ordinal lesion scores.4 The diagnostic clas-
sification process consists of a set of if-then rules that map
conditional clauses on the basis of lesion scores to a diagnosis
category. Currently, the Banff classification encompasses five
main categories3: (1) normal biopsy or nonspecific changes;
(2) antibody-mediated rejection (ABMR); (3) borderline
changes; (4) T cell–mediated rejection (TCMR); and (5) poly-
omavirus nephropathy. Several of these categories are further
divided into subtypes. This classification was developed iter-
atively, on the basis of studies that examine the associations
between lesions and risk factors such as donor-specific HLA
antibodies, between lesions and graft failure, and among le-
sions themselves.5–7 Banff diagnostic categories are not mu-
tually exclusive and Banff lesions are not specific for disease
processes, which leads to overlapping diagnoses and mixed
rejection phenotypes. Although this reflects a histologic real-
ity, the clinical interpretation of this complex categorization
process is difficult, leading to unstable clinical decisions.

Instead of this iterative consensus process for disease clas-
sification, data-driven mathematic modeling of the multidi-
mensional histologic data could be appropriate. Such an
approach could refine the thresholds for the diagnostic phe-
notypes, simplify the complex and discretionary if-then rules,
avoid the issue of mixed phenotypes, and yield new pheno-
types and disease reclassification. Categorizing data into
groups without pre-existing labels is commonly referred as
unsupervised clustering.8 Although the resulting clusters
(reclassified disease phenotypes) might be valid from a math-
ematic perspective, there is no guarantee they will show rele-
vant associationwith external outcome variables. To overcome
this, introducing information on outcome in the clustering
process could be of interest.9–11 Whether such a mathematic
modeling approach would also be applicable to the classifica-
tion of kidney transplant rejection has not been evaluated yet.

On the basis of these considerations, we built and externally
validated amodel for mathematic reclassification of acute kid-
ney transplant rejection, on the basis of the integration of the
set of inflammatory lesions in kidney transplant biopsies, in-
formed by graft failure, in a retrospective observational
cohort study.

METHODS

Data
Patients and Biopsies
For the training cohort, all consecutive adult recipients of a
kidney transplant at the Leuven University Hospitals between
March 2004, the start of the protocol biopsy program, and
February 2013 were eligible for this study (n51137). A min-
imum of 5 years follow-up at time of data extraction (March

2018) was required. Recipients of combined transplantation
(n5113) or kidney transplantation after another solid organ
transplantation (n524) were excluded. All transplants were
performed with negative complement-dependent cytotoxicity
crossmatches. The clinical data were collected during routine
clinical follow-up in electronic medical records, which were
used for clinical patientmanagement and directly linked to the
SAS database from which the research database was extracted.
The standard immunosuppressive maintenance regimen con-
sisted of tacrolimus, mycophenolate, and corticosteroids.12

The histologic data consisted of all 3622 kidney transplant
biopsies performed at the Leuven University Hospitals be-
tween April 2004 and February 2015 in 949 patients. Biopsies
were performed on medical indication (indication biopsies at
time of graft dysfunction) or as part of an established follow-
up protocol (protocol biopsies).13 Biopsies withmissing lesion
scores were excluded (n5112), due to missing HLA–donor
specific anti-HLA antibodies (DSA) (n573) and/or missing
the score of C4d deposition in peritubular capillaries (n540).
A total of 3510 biopsies from 936 recipients remained available
for analysis. This study was approved by the Ethical Commit-
tee of the University Hospitals Leuven (S64006).

For the validation cohort, the electronic database of Lyon
University Hospitals (registration AC-2016–2706) and the
Paris Transplant Group were screened with the same selection
criteria as detailed above. Between January 2007 and Decem-
ber 2015 for the Lyon dataset, and between March 2009 and
October 2019 for the Paris dataset, 1356 (from 726 trans-
plants) and 2479 biopsies (from 1304 transplants), respec-
tively, were included as an independent validation set,
performed either for indication or as part of the routine
follow-up at 3 and 12months after transplantation. Only com-
plete data were included. Clinical, histologic, and immuno-
logic data were extracted from these databases, anonymized,
and transmitted to Leuven to be used as an external indepen-
dent validation cohort.

Histologic Scoring
In the training cohort, all post-transplant kidney allograft biop-
sies performed in this cohort, until the time of data extraction in

Significance Statement

The current Banff classification of kidney transplant rejection is on
the basis of complex and discretionary combinations of histologic
scores. As a purely empiric classification, it was not primarily de-
veloped to reflect clinically meaningful outcomes such as graft
failure, and allows ambiguous phenotypes to overlap. This paper
describes the use of data-driven clustering methods to produce a
phenotypic reclassification of kidney transplant rejection that is
both histologically and clinically relevant. Six novel cluster pheno-
types are validated on external data. Each of these new phenotypes
is significantly associated with graft failure and overcomes the
current limitations of intermediate and mixed phenotypes. The
data-driven phenotypic reclassification of kidney transplant re-
jection is a proof of concept, opening future research directions.
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December 2018, were included. One pathologist (EL) reviewed
all biopsies, independent of clinical information to avoid bias.
The severity of the histologic lesions was semiquantitatively
scored, according to the Banff categories with a small deviation
for C4d thresholds.12 The set of individual Banff lesions (n514)
represents either acute or chronic injury processes. We focused
on the following seven acute Banff lesions, with semiquantitative
scores reflecting disease activity, in concordance with the Banff
guidelines4: tubulitis (t; score 0–3), interstitial inflammation (i;
score 0–3), glomerulitis (g; score 0–3), intimal arteritis (v; score
0–3), C4d deposition in peritubular capillaries (C4d; score 0–3),
peritubular capillaritis (ptc; score 0–3), and thrombotic micro-
angiopathy (TMA; present versus absent). We considered trans-
plant glomerulopathy (cg; score 0–3), interstitial fibrosis (ci;
score 0–3), tubular atrophy (ct; score 0–3), vascular intimal
thickening (cv; score 0–3), mesangial matrix increase (mm;
score 0–3), arteriolar hyalinosis (ah; score 0–3), and glomerulo-
sclerosis (gs; score 0–3) as chronic lesions and did not take them
into account in the classification of acute rejection phenotypes.
As the presence of HLA-DSA is a defining feature in the Banff
diagnosis of ABMR, HLA-DSAwas also considered in the clus-
tering process (present versus absent), as defined previously for
this cohort.14

The biopsies were classified into acute rejection categories,
on the basis of the criteria as defined by the most recent Banff
2019 consensus.3 Overall, each biopsy was assigned to one of
the six following categories on the basis of the Banff acute
rejection phenotype: (1) no rejection, (2) borderline changes,
(3) TCMR, (4) ABMR, (5) mixed borderline rejection, and (6)
mixed rejection. Borderline changes were diagnosed as foci of
tubulitis (t .0) with minor interstitial inflammation (i1) or
moderate to severe interstitial inflammation (i2 or i3) with
mild (t1) tubulitis. ABMR was diagnosed by the presence of
the three Banff criteria for either acute or chronic active
ABMR, according to the Banff 2019 classification, but not
taking into account potential non-HLA antibodies or gene
expression changes. Due to lack of information on i-IFTA
and total-i scores, chronic TCMR was not considered sepa-
rately.We labeled biopsies presenting an overlap of ABMR and
TCMR as mixed rejection, and the biopsies with an overlap of
ABMR and borderline changes as mixed borderline rejection.

Data Analysis
Semisupervised Clustering Strategy
We scaled each histologic lesion score (feature) into the unit
interval. We adapted semisupervised learning from10 where
additional information was used to facilitate the creation of
clinically meaningful clusters. Specifically, Bair and Tibshir-
ani10 used the Cox scores from univariate models to perform a
feature selection before clustering, whereas we used the Cox
score to weigh the features. We chose k-means as the core
algorithm for the clustering process because of its straightfor-
ward implementation, its efficiency, its ability to accommo-
date the weighting of features, and the possibility to classify
new biopsies into nonoverlapping clusters. The information

from the death-censored kidney transplant survival outcome
was introduced with a weighted Euclidean distance to provide
additional guidance during the clustering process. Each fea-
ture was weighted with the normalized coefficient’s z score of
univariate Cox models, adjusted for clustered data, namely,
repeated biopsies from the same patients, using a sandwich
variance estimate. Features with a higher weight contribute
more heavily to the notion of dissimilarity between clusters
than low-weight features, which will be less relevant to the
definition of a cluster. Although guided by external survival
information, the clustering task remains mostly unsupervised
as the lesion scores patterns are the most influential driving
force in the final clusters.

Consensus Clustering
We used consensus clustering15 on the basis of 400 clustering
partitions of the data, with different random initializations of
the k-means algorithm seed and a different subsampling
(80%) of the original data, similar to the approach used by
Monti.16 For the clustering process, all biopsies were consid-
ered independent. We used the nearest centroid method to
assign a cluster label to the remaining 20% of out-of-bag bi-
opsies for each partition. The final consensus clustering was
achieved through majority voting along the 400 partitions. To
avoid introducing biases in the clustering process by the over-
representation of protocol biopsies, we adopted a scheme
where indication biopsies and protocol biopsies were
weighted on the basis of the inverse of their total proportion
in the dataset. Cluster profiles were reported using the nor-
malized mean value of lesions, or for binary features the per-
centage of biopsies with the feature present. We also report the
proportion of each original lesion score. Where appropriate,
individual lesion scores were compared between a pair of clus-
ters with a chi-squared test. The degree of similarity between
two different partitions of the data were evaluated with the
adjusted rand index (ARI). This index accounts for overlap-
ping partitions due to chance. It varies from21 to 1, an ARI of
0 meaning random partitioning. A decision tree was trained
on the cluster-labeled data to mimic the internal clustering
process. The tree was generated using the Gini criterion, with a
minimum of ten biopsies per leaf.

Tuning of Parameters
To define the optimal number of clusters, we used the pro-
portion of ambiguous clustering (PAC)17 to assess the stability
of our results at different values of k, namely, the number of
clusters, with thresholds set at 10% and 90% of consensual
clustering. Intuitively, PAC measures the proportion of all
possible pairs of biopsies from the whole dataset that demon-
strate inconsistent cluster attributions over the 400 partitions.
The lower the PAC, the more stable the clustering across dif-
ferent conditions. We discarded very low values of k, because
they only create a restricted number of clusters (typically no
rejection versus any rejection with k52), which is not helpful
to describe different phenotypes.
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Biopsy Stability
To identify biopsies that are part of pairs with an unstable
cluster assignment over the set of clustering partitions, we
developed an empirical individual stability score on the basis
of the consensus matrix. The consensus matrix C is a n 3 n
matrix, where n is the total number of biopsies and entries Ci,

represent the proportion of times biopsies i and j are clus-
tered in the same cluster over the whole set of different parti-
tions. The stability score s for biopsy i was defined as

si 5 1
ðN=2Þ ∑

N

j51
jci;j-0:5j, where ci,j represented the value from

the consensus matrix at the ith row and jth column, and N
the total number of biopsies. Intuitively, a theoretic score of 1
reflects that the biopsy was consistently part of biopsy pairs that
are either clustered together in the same cluster, or clustered in
different clusters. A theoretic score of 0 would reflect a biopsy
that forms ambiguous pairs with any other biopsy.

Survival Analysis
Graft survival times are reported as the number of days until
graft failure, calculated from each biopsy date. Patients were
administratively censored at the of last follow-up date or at
time of death. Survival curves are plotted with Kaplan-Meier
estimators along with the 95% confidence interval (95% CI).
To avoid artificially increasing the incidence of transplant fail-
ure events due to repeated biopsies in a given individual, sur-
vival times from repeated biopsies in a given cluster were
averaged for each patient. Pairwise comparison of survival
curves was performed using Cox modeling and hazard ratio
(HR) with 95% CI. Because potentially, proportional hazard as-
sumption violations might bias the HR, we also report the re-
stricted mean survival times (RMST)18 at 5 and 10 years, and its
95% CI. This measure can be interpreted as the mean survival
time without event within a predefined time range, representing
the area under the survival curve up to a predefined time point.
We also report the differences in RMST (DRMST)with a baseline
category, which estimates the difference in average event-free sur-
vival, in years, between a given category and the baseline group.

Visualization
Principal component analysis (PCA) was performed on the
Cox score weighted acute lesions scores, and the first two
components were used for two-dimensional visualization
purposes. To better visualize the heterogeneity in the acute
lesion scores, we developed a two-dimensional plot using po-
lar coordinates, with the radius calculated as the sum of re-
weighted acute lesions scores, scaled to the unit interval (from
0 to 1), and the theta angle is a scaled version (for visual pur-
poses) of the second component of the PCA, which is directly
related to the main rejection phenotype. Because the sum of
lesions is directly related to graft failure due to the individual
weighting of lesions scores, this approach combines the sever-
ity and the phenotype trend in one single plot.

All analyses have been performed with Python 3.6.19 Aweb
application where others can upload their own patient data

and derive the clusters from the individual Banff lesion scores
is available at https://rejectclass.pythonanywhere.com.

RESULTS

Patient and Biopsy Characteristics
Descriptive patient (n5936) and biopsy (n53510) data of the
training cohort are shown in Table 1. On average, 3.75 biopsies
(range 1–11) were performed per patient. Of the 773 indica-
tion biopsies, 644 (83.3%) were performed within the first
year of transplantation (median at 22 days post-transplanta-
tion), and 129 (16.7%) after 1 year. HLA-DSAwere present at
the time of 468 (13.3%) biopsies.

Semisupervised Clustering of Rejection Phenotypes
Fully unsupervised clustering of our biopsy cohort (n53510)
yielded an optimum of four different clusters, on the basis of
the PAC (Supplemental Figure 1). Compared with cluster 1
(essentially normal biopsies), the three other clusters associ-
ated significantly with impaired graft survival. However, their
histologic and clinical relevance were less clear, as none of
these three clusters were defined on the basis of microcircu-
lation inflammation and antibody activity (glomerulitis, peri-
tubular capillaritis, and C4d), suggesting the number of clus-
ters was insufficient to reflect the clinical reality and previous
knowledge on the relevance of these lesions and ABMR. In-
creasing the number of clusters created clusters that were no
longer associated with impaired graft survival compared with
cluster 1 (Supplemental Table 1).

To optimize the clinical significance of the clusters, we
applied a semisupervised clustering approach, weighing the
histologic features with survival information. The optimal
number of clusters (k) was six, on the basis of the PAC
(Supplemental Table 1). We labeled the six identified clusters
from 1 to 6, according to the overall association with graft
failure (Figure 1, Supplemental Table 2). Biopsies in cluster
1 were dominated by 0 scores for the lesions, in cluster 2 by
high g scores, and in cluster 3 by t and i. Clusters 1–3 were
HLA-DSA negative, whereas all biopsies included in clusters
4–6 were in patients with HLA-DSA.

Biopsies in cluster 1 had no or very limited inflammation, a
good outcome, and could be considered as no rejection. In
cluster 2, all patients had moderate to severe glomerulitis in
the absence of HLA-DSA, sometimes accompanied by tubulo-
interstitial inflammation and peritubular capillaritis. These
cases of glomerulitis in the absence of HLA-DSA are not fully
understood and not reflected in the current Banff classifica-
tion, yet associate with impaired graft outcome. Cluster 3 is
characterized by moderate to severe degrees of tubulo-
interstitial inflammation, reminiscent of acute TCMR in the
Banff classification. In cluster 4, no or only very limited in-
flammation is noted, sometimes C4d deposition in peritubu-
lar capillaries. All patients in cluster 4 were HLA-DSA positive,
which appeared to be a risk factor for graft failure in comparison
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to cluster 1, even in the absence of extensive inflammation. Bi-
opsies in cluster 5wereHLA-DSApositivewith high g scores and
could be considered to reflect active ABMR. Biopsies in cluster 6
wereHLA-DSApositive with high t and i scores, often combined
with g and ptc, and could suggest mixed rejection. Biopsies in
cluster 1 and 4 were most often protocol biopsies, whereas clus-
ters 2, 3, and 5 were similarly distributed between protocol and
indication biopsies (Supplemental Table 3). Cluster 6 was

observed most often in indication biopsies and had worst
eGFR and highest proteinuria.

Although we focused on acute histologic lesions, they often
co-occurred with chronic lesions (Supplemental Figure 2).
With k , or . six, we observed larger PAC (Supplemental
Table 1). Increasing k did not drastically reshape previously
found clusters, but rather added new clusters and conserved
the similar centroids of the clusters derived at lower k. With
k57, we observed the separation of cluster 1 in two clusters on
the basis of the t lesion (and, to a lesser extent, i). However, the
survival curves from those two subclusters were largely over-
lapping (log-rank test P value50.97), illustrating that also
from clinical perspective, the optimal number of clusters
was k56. The ARI was similar between the various k values
and the minimal distance between two centroids also de-
creased with a greater k.

On the basis of the consensus matrix, the average stability
scores per cluster were 0.98, 0.98, 0.99, 0.98, and 0.99 for
clusters 1, 3, 4, 5, and 6, respectively. In comparison with the
other clusters, cluster 2, characterized by glomerulitis in the
absence of HLA-DSA, was less stable, with an average stability
score of 0.75. Overall, 44 biopsies had a low stability score
(,0.5): 30 biopsies from cluster 2 (29.7%) and 14 biopsies
from cluster 1 (0.5%). Because k-mean is a distance-based algo-
rithm, it is possible to compute relative distances to the closest
cluster’s boundary. If a biopsy is nearer to a cluster centroid than
it is from the second closest centroid, the relative distance will be
small. In contrast, a biopsy that is near the cluster’s boundary
will have a relative distance approaching 1, translating to an
almost equidistant position (Supplemental Figure 3). Biopsies
with low stability scores were mostly found on the cluster edges.

Comparison of Disease Clusters with Banff 2019 Rules
There was important overlap between the clusters and the
Banff categories with an ARI of 0.48 (Supplemental Results,
Table 2). Due to its distance-based approach, the clustering
algorithm led to better separation of the biopsies than the
Banff 2019 classification, as also illustrated in the plots of
PCA applied on the weighted acute lesion scores
(Figure 2A). Although all lesions were taken into account si-
multaneously to assign each biopsy to a cluster, a decision tree
could be derived, on the basis of the four main driving forces,
g, HLA-DSA, i, and t (Supplemental Figure 4). This decision
tree assigned the correct cluster with 97% of balanced accu-
racy, which confirmed the dominance of these four lesions in
the phenotype reclassification. The 3% misclassified patients
related to 24 biopsies.

Quantitative Visual Presentation of Disease Clusters
As expected, the superposition of the six disease clusters on the
two-dimensional polar plot aligned better visually with the
mathematic disease reclassification than with the different
Banff 2019 phenotypes (Figure 2B). Biopsies projected with
a negative angle were mostly associated with Banff TCMR,
whereas those with a positive angle represented Banff

Table 1. Demographic, clinical, and histologic
characteristics of the patients and biopsies included

Cohort Characteristics Total (n5936)

Donor demographics
Donor type, N (%)
Donation after brain death 726 (77.6)
Donation after cardiac death 153 (16.3)

Living donation, N (%) 57 (6.1)
Age (yr), mean6SD 47.7614.7
Male, N (%) 497 (53.1)
Diabetes, N (%) 24 (2.6)

Recipient demographics
Age (yr), mean6SD 53.5613.3
Male, N (%) 572 (61.1)
Ethnicity, N (%)
Caucasian 920 (92.3)
African 12 (1.3)
Asian 3 (0.3)
Hispanic 1 (0.1)

BMI (kg/m2), mean (range) 25.4 (4.5)
Pre-transplant donor-specific HLA antibodies, N

(%)
408 (11.6%)

Repeat transplantation, N (%) 141 (15)
Cold ischemia time (h), mean6SD 14.265.7
Total number of HLA A/B/DRmismatches, mean6SD 2.8 (1.3)
Biopsy characteristics Total (n53510)
Banff 2019 diagnosis, N (%)
No rejection 2671 (76.1)
Borderline changes 333 (9.5)
TCMR 314 (8.9)
ABMR 110 (3.1)
Mixed rejection (ABMR 1 TCMR) 61 (1.7)
Mixed borderline rejection (ABMR 1 borderline

changes)
21 (0.6)

Indication biopsies, N (%) n5773 (22.0)
Days since transplantation, median (interquartile

range)
22 (8–96)

eGFR at d of biopsy, median (interquartile range) 19.8
(10.9–29.0)

Protocol biopsies, N (%) n52737 (78.0)
3 mo 823 (30.1)
12 mo 759 (27.7)
24 mo 639 (23.3)
36 mo 205 (7.5)
48 mo 22 (0.8)
60 mo 289 (7.6)
Days since transplant, median (interquartile range) 377 (100–752)
eGFR at d of biopsy, median (interquartile range) 46.4

(36.5–57.8)
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ABMR. Biopsies with mixed rejection phenotypes were pro-
jected around 0°. When plotting individual lesions, and com-
binations of those (g1ptc5 microcirculation inflammation)
and (i1t 5 tubulo-interstitial inflammation) (Supplemental
Figure 5), the PCA and the theta values associated with these
two major components (microcirculation inflammation versus
tubulo-interstitial inflammation), driving the disease reclassifi-
cation. The radius on the plot was higher in indication biopsies
compared with protocol biopsies (mean6SD: 0.2260.23 versus
0.0860.13 respectively, t test P,0.0001), illustrating more in-
flamed biopsies at time of graft dysfunction than at time of stable
graft function (Supplemental Figure 6).

Association Between Disease Clusters and Graft
Failure
During follow-up, 125 grafts failed, at a median of 3.67 years
(1 day to 12 years) after transplantation. Of grafts, 9.1%,

22.4%, 25.0%, 30.0%, 37.7% and 50.0% failed within the first
5 years after the biopsy in cluster 1–6, respectively. The disease
clusters 2–6 all associated with an increased risk of graft failure
in comparison with cluster 1 (Figure 1, Table 3). Although
Banff rejection categories had significant associationwith graft
failure, except for borderline changes, the clusters’ weighted
average in DRMST at 5 and 10 years were higher than the
weighted average DRMST from the Banff classification (re-
spectively 0.46 and 1.25 years for the clusters versus 0.29
and 0.72 years for the Banff categories), illustrating an overall
better discrimination in terms of graft failure (Table 3). Fur-
thermore, we observed an asymmetry between the first three
and last three clusters, on the basis of HLA-DSA status. HRs on
the HLA-DSA–negative/HLA-DSA–positive pair of clusters
reported the following values: cluster 1 versus cluster 4: HR,
2.84; 95% CI, 1.80 to 4.30; P,0.0001; cluster 2 versus cluster
5: HR, 2.02; 95% CI, 1.00–4.12; P50.051; and cluster 3 versus
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Figure 1. Distribution of the individual acute lesion scores in the different clusters, and postbiopsy Kaplan-Meier graft survival curves
relative to cluster 1 of the derivation cohort (n53510 biopsies). Biopsies included in cluster 1 were dominated by 0 scores (more than
90% have 0 score in all lesions, except for t [t0 in 72.9%] and C4d [C4d0 in 89.0%]). High g scores drove cluster 2 (56.4% g2 and 43.6%
g3; no biopsies with g0 or g1). Compared with cluster 1, biopsies in cluster 2 had a higher proportion of score 1 or 2 acute lesions other
than g. High t and i scores dominated cluster 3 biopsies (48.9% t2, 29.9% t3; 49.4% i2; and 48.5% i3). Biopsies in cluster 3 also had a
higher proportion of score 1 and 2 acute lesion scores compared with cluster 1, but no g score 2 or higher. Cluster 4 was similar to
cluster 1 and was dominated by low acute lesion scores. The main differences besides the presence of DSA was the higher proportion
of g (g1 in 16.3% in cluster 4 versus 6.6% in cluster 1; g2 4.9% in cluster 4 versus 0.0% in cluster 1; P#0.0001), a higher proportion of ptc
(ptc1 in 11.4% in cluster 4 versus 4.2% in cluster 1; ptc2 in 8.5% in cluster 4 versus 1.2% in cluster 1; ptc3 in 0.3% in cluster 4 versus 0.1%
in cluster 1; P#0.0001), and a higher proportion of C4d (C4d1 in 13.4% in cluster 4 versus 9.5% in cluster 1; C4d2 in 3.3% in cluster 4
versus 0.5% in cluster 1; C4d3 in 11.1% in cluster 4 versus 1.0% in cluster 1, P#0.0001). Cluster 5, similarly to cluster 2, was dominated
by high g scores (27.4% g2 and 70.5% g3) and did not contain biopsies without g. As in cluster 2, we noted a higher proportion of score
1 and 2 acute lesions (ptc, t, i, v) compared with the cluster 1. Finally, in the presence of DSA, high t and i scores determined cluster 6
(42.4% t2, 22.7% t3; 40.9% i2; and 56.1% i3), and frequent presence of g and ptc. P values refer to HR from the Cox models. C4d_ptc,
C4d deposition in peritubular capillaries; thrombi, thrombotic microangiopathy.
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cluster 6: HR, 2.41; 95% CI, 1.35 to 4.30; P50.003
(Supplemental Figure 7). The survival outcome of each cluster
did not depend on the adjustment method for repeated bi-
opsies per patient (Supplemental Figure 8). The clustering of
biopsies led to improved prediction of graft failure, compared
with the Banff classification (Supplemental Results).

The radius on the polar plot of each biopsy associated in-
dependently with graft failure, with an Area Under the Curve

of the Receiver Operating Characteristic for 2- and 5-year
postbiopsy graft survival of respectively 0.70 (95% CI, 0.66
to 0.73) and 0.69 (95% CI, 0.67 to 0.72), respectively. Biopsies
projected on the outer ranges of the radius had higher inflam-
matory lesion scores, and significantly worse survival com-
pared with biopsies near the center of the polar plot
(Figure 3A). Similar associationwith graft failure was obtained
when we predicted graft failure for each biopsy separately,

Table 2. Contingency tables comparing the Banff 2019 diagnosis and the six clusters derived from semi-supervised learning.
Proportions represent the distribution in the clusters per Banff category (n53510 biopsies)

Banff 2019 Diagnosis N Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%) Cluster 5 (%) Cluster 6 (%)

No rejection 2659 2387 (89.8) 53 (2.0) 4 (0.2) 215 (8.1) 0 (0.0) 0 (0.0)
Borderline changes 327 261 (79.8) 9 (2.8) 26 (8.0) 23 (7.0) 0 (0.0) 8 (2.4)
TCMR 285 48 (16.8) 25 (8.8) 184 (64.6) 5 (1.8) 0 (0.0) 23 (8.1)
ABMR 122 8 (6.6) 4 (3.3) 0 (0.0) 56 (45.9) 53 (43.4) 1 (0.8)
Mixed borderline rejection 27 1 (3.7) 3(11.1) 1 (3.7) 3 (11.1) 15 (55.6) 4 (14.8)
Mixed rejection 90 5 (5.6) 7 (7.8) 16 (17.8) 5 (5.6) 27 (30.0) 30 (33.3)
Total 3510 2710 (77.2) 101 (2.9) 231 (6.6) 307 (8.7) 95 (2.7) 66 (1.9)
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Figure 2. Visualization of the Banff classification and the six clusters on the whole set of kidney transplant biopsies. (A) PCA of the 3510
derivation cohort biopsies calculated from the acute lesion scores and DSA status, overlaid with the six clusters obtained from the
semisupervised reclassification pipeline (left panel) and according to the Banff 2019 classification (right panel). Due to the distance-
based approach of k-mean, the clusters obtained have a visually better separation than the Banff classification on two-dimensional
plots. (B) Polar plot of the 3510 biopsies, with the radius representing the sum of re-weighted acute lesions scores, scaled to the unit
interval (from 0 to 1), and the theta angle being directly related to the phenotype using the second semisupervised principal com-
ponent, namely, the second component of PCA after weighting the lesions scores, overlaid with the six clusters obtained from the
semisupervised reclassification pipeline (left panel) and according to the Banff 2019 classification (right panel).
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from the information available on the nearest neighborhood,
calculated using the weighted Euclidean distance. For exam-
ple, Figure 3B displays the survival probability at 5 years post-
biopsy, estimated from local Kaplan-Meier estimates on the
basis of 40 nearest neighbors. With this local approach, solely
on the basis of the lesion scores and HLA-DSA status and not
taking into account graft functional data or post-transplant
time, the Area Under the Curve of the Receiver Operating
Characteristic of the probability for graft failure were 0.72
(95% CI, 0.68 to 0.74) and 0.70 (95% CI, 0.67 to 0.73), re-
spectively at 2 and 5 years postbiopsy.

External Validation
Using the features weights and the cluster centroids obtained
from the consensus clustering process, we are able to classify
any new biopsy into one of the six previously described clus-
ters. We applied this algorithm, starting from the lesion scores
and HLA-DSA status only, without information on graft sur-
vival, to an external dataset of 3835 biopsies from Lyon Uni-
versity Hospital (n51356) and the Paris Transplant Group
(n52479) (Supplemental Table 4). Note that this dataset did
not include thrombotic microangiopathy in its variables. We
therefore imputed this feature from the mean value of our
training data. A comparison of the final clusters proportions
between the two centers is presented in Supplemental Figure 9.
Similar to the training set, biopsies from the external validation
set were largely dominated by noninflamed cluster 1. The main
difference in cluster distribution was a higher proportion of
cluster 4 biopsies in the external dataset compared with the
Leuven dataset (26.0% versus 8.7%, P,0.0001), explained by
a larger prevalence ofHLA-DSA–positive biopsies in the external
data. Logically, the proportion of lesions within each clusters of
the external validation set were very similar to the clusters ob-
tained from the original data. There was also a similar associa-
tion of the clusters with graft failure (Supplemental Figure 10).

A polar plot illustrates the full overlap in the histologic
presentations between the training and validation cohorts
(Supplemental Figure 11). Although the proportion of biop-
sies performed on indication was notably higher in the vali-
dation cohort (22.0% versus 37.7%, chi-squared test
P,0.0001), the overall distribution of inflammation, esti-
mated using the radius on the polar plot and the association
with graft survival, was comparable between the training and
validation datasets (Supplemental Figures 12 and 13). Com-
paring the clusters obtained on the validation dataset with the
Banff categories, we obtained an ARI of 0.35. While maintain-
ing a large overlap between the clustering method and the
Banff classification (Supplemental Table 5), it demonstrates
a higher reclassification rate in the validation dataset.

DISCUSSION

Using a semisupervised and data-driven approach on
7345 post-transplant kidney biopsies with reweighting of

acute histologic lesions, we derived and validated six distinct,
clinically meaningful, phenotypic clusters. This mathematic
clustering approach was fundamentally different from the it-
erative Banff classification process, which relies on a set of
clinically derived if-then rules. Nevertheless, both in the train-
ing and the validation cohort, the novel phenotypes for kidney
transplant rejection had a good degree of similarity with the
Banff rejection categories, while redistributing intermediate
and mixed phenotypes and maintaining the association with
graft failure. The novel rejection phenotypes led to improved
prediction of graft failure compared with the Banff classifica-
tion. For integration of the novel phenotypic clustering with
disease severity, and to move away from the black-and-white
disease categorization, we proposed and validated a method
for easily interpretable two-dimensional visual and quantita-
tive presentation of the multidimensional histologic data.

Despite the similarity between the novel clusters and the
Banff categories, we showed statistically improved prediction
of graft failure with the clustering approach than using the
Banff categories, especially in ambiguous situations, such as
borderline changes or mixed rejection phenotypes. The asso-
ciation between (non)-inflamed clusters and graft survival
remained present, even when the biopsies were stratified ac-
cording to the rejection or nonrejection categories defined by
Banff. An example of the clinical effect of this is, for example,
the lack of cluster reflecting Banff borderline changes. Border-
line changes are not reflected in a separate cluster, but most
often (79.8%) classified to noninflamed cluster 1, with best
post-transplant graft survival. Using this clustering approach
therefore may solve the clinically difficult issue of how to deal
with minimal tubulo-interstitial inflammation, below the cur-
rent thresholds for TCMR. Also, the clustering algorithm pro-
posed a novel phenotype, which is driven by glomerulitis in
the absence of HLA-DSA. Although the causes of this pheno-
type are unknown, this resembles the phenotype described in
recent publications on HLA-DSA–negative microcirculation
inflammation.12,20–22 This phenotype is not recognized in the
Banff classification6 and should be worked out in greater detail
with respect to pathophysiology, risk factors, and clinical pre-
sentation. Finally, cluster 6 represents patients with mixed re-
jection phenotypes (ABMR with TCMR or borderline
changes), which is not recognized as separate category in the
Banff classification, but representing a clinical dilemma.23

Our clustering method directly relies on distance compu-
tation and provides a clinically relevant similarity metric to
compare biopsies without concomitant clinical data besides
HLA-DSA. For instance, we demonstrated and validated that
local survival prediction on the basis of the nearest biopsies
exhibited prognostic value solely on the basis of the histologic
lesions and HLA-DSA status, thus not taking into account
graft functional parameters or demographic factors relevant
for outcome.24 Relying on this ad-hoc distance metric and to
move beyond the black-and-white clustering approach, we
developed an intuitive two-dimensional visualization tool, en-
abling the plotting of newly performed post-transplant
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biopsies and rapid assessment of the disease severity along
with the dominant phenotype of neighboring biopsies. Be-
cause the k-mean algorithm is a hard-clustering algorithm,
biopsies near the clusters’ boundaries are strictly allocated to
one of the two neighbor clusters, preventing an overlap of
diagnoses. This explains, for instance, that the mixed rejection
biopsies are now split into one of the major clusters on the
basis of their dominant lesions. However, contrasting with the
Banff categorization, our clustering system can provide some
degree of certainty regarding the classification, as expressed in
terms of the relative distance to the closest cluster prototype
(centroid). As a time-independent approach, our method is
intended solely for reclassification of rejection (clustering al-
gorithm and theta angle on the polar plot) and assessment of
disease severity (radius on the polar plot). Our analysis on the
accuracy of the local survival prediction needs to be seen as

support for the clinical validity of the location of each sample
on the polar plot, and does not suggest clinical utility of the
local survival prediction as a prognostic tool on its own. For
prognostication, more granular tools are becoming available,
such as the iBox prediction score,24 which also integrate time
post-transplantation and graft functional parameters into the
models. Finally, diagnosis of other relevant disease pheno-
types, such as GN or polyomavirus nephropathy, are on the
basis of other parameters that are not included in the algo-
rithm. These diseases should not be evaluated with our system
solely intended for reclassification of rejection phenotypes.

As chronic histologic lesions in kidney transplant biopsies
are nonspecific,4 we focused solely on acute inflammatory
lesions to derive the novel rejection phenotypes. The evolution
from active/early-stage disease, to chronic active, and finally
chronic inactive forms of the same disease, was therefore not
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Figure 3. Association with graft survival in the polar plot visualization tool. (A) Association of the polar plot radius with graft survival in
the derivation cohort. We stratified the 3510 biopsies along the radius axis in five strata and plotted the corresponding Kaplan-Meier
survival curves. This demonstrates that the radius of the polar plot, which represents the extent of inflammation (the sum of the re-
weighted acute lesions scores, scaled to the unit interval from 0 to 1) is positively associated with the risk of graft failure. The different
levels of inflammation correspond to the following radius: “No inflammation”: radius 0.00–0.04; “Minimal inflammation”: radius
0.04–0.10; “Mild inflammation”: radius 0.10–0.24; “Moderate to severe inflammation”: radius 0.24–42; and “Very severe in-
flammation”: radius 0.42–1.00. (B) Estimated graft survival probability at 5 years postbiopsy, calculated from the nearest neighborhood
with k540 (left panel) with corresponding calibration curve (right panel).
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assessed and can be considered for future developments re-
classification system. In addition, our approach fully depends
on the quality of the histologic assessment, which is patholo-
gist dependent and therefore not fully reproducible.25,26 More
objective data, such as computerized imaging data or molec-
ular expression data, or information on, for example, non-
HLA antibodies and other immune risk factors, could further
improve the reproducibility and accuracy of our system. Next,
although the clusters described are sound biologically/clini-
cally, whether treatment decisions on the basis of clusters in-
stead of on the basis of Banff diagnosis will yield better out-
come cannot be tested in this retrospective study. Similarly,
data-driven algorithms do not assess pathophysiological
mechanisms, hence no causal relations can be deducted
from any cluster. Besides these clinical aspects, some technical
limitations also warrant discussion. In concordance to the
method described earlier,10 we used the whole dataset to com-
pute the lesion score weights. The more data available to com-
pute the weights, the more precise their estimation will be. In
this semisupervised setting, weight overfitting is less detri-
mental than in a purely supervised approach. Despite its
good performance, the k-mean algorithm remains simplistic.
More elaborated core clustering algorithms, such as model-
based or fuzzy clustering methods, could benefit the current
approach and warrant additional studies.

Although we described a meaningful data-driven alterna-
tive to classify kidney transplant biopsies, and although our
system has benefits over the current Banff categories, we do
not suggest replacing the existing Banff classification with this
algorithm, but use it in addition to Banff categorization, es-
pecially in patients that are difficult to categorize according to
Banff. The clinical or scientific utility of our approach needs to
be shown in further studies that validate the improved clinical
decision making with regards to rejection treatment. Clinical
implementation will depend on further external validation
and detailed discussion at future Banff meetings and interna-
tional consensus. The underlying risk factors and clinical pre-
sentations of each of the clusters still needs to be evaluated in
greater depth, including information on HLA-DSA subtypes
and profiles, non-HLA antibodies, etc. Inference on treatment
decisions could not be made on our cohort, given the fact that
patients with Banff rejection were treated with high-dose cor-
ticosteroids, and that patients with ABMR were treated with
antibody-targeted therapies only very rarely.12 Nevertheless,
this study highlights the potential of using the full scale of
lesion grades for classification of kidney transplant biopsies,
rather than using discretionary cutoff values. In the era of
increasing availability of morphometric27 or molecular2

data, advanced statistical analysis and machine learning,
with many resources to handle high-dimensional continuous
variables,28 the existing expert-based consensus of if-then
rules could be further improved using our approaches. We
have developed and validated a semisupervised clustering ap-
proach for the identification of clinically meaningful novel
phenotypes for kidney transplant rejection, on the basis of

individual lesion scores. This approach has the potential to
offer a more quantitative evaluation of rejection subtypes
and severity, especially in situations where the current histo-
logic categorization is ambiguous.
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