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ABSTRACT: High-dimensional molecular measurements are transforming the field of pathology into a data-driven discipline.
While hematoxylin and eosin (H&E) stainings are still the gold standard to diagnose diseases, the integration of microscopic and
molecular information is becoming crucial to advance our understanding of tissue heterogeneity. To this end, we propose a data
fusion method that integrates spatial omics and microscopic data obtained from the same tissue slide. Through correspondence-
aware manifold learning, we can visualize the biological trends observed in the high-dimensional omics data at microscopic
resolution. While data fusion enables the detection of elements that would not be detected taking into account the separate data
modalities individually, out-of-sample prediction makes it possible to predict molecular trends outside of the measured tissue area.
The proposed dimensionality reduction-based data fusion paradigm will therefore be helpful in deciphering molecular heterogeneity
by bringing molecular measurements such as mass spectrometry imaging (MSI) to the cellular resolution.

■ INTRODUCTION

Pathologists have been relying on morphology-based methods
for decades to study and diagnose diseases. While such staining
approaches enable the assessment of one or two markers in a
single tissue slide, spatial transcriptomic and proteomic studies
make it possible to evaluate many thousands of molecules
simultaneously. The number of studies gathering high-
dimensional omics measurements keeps growing in an effort
to understand the complex interactions taking place in
biological systems. These studies have moved from focusing
on single components (e.g., gene) to encompassing the entire
genome, and even evaluating complementary omics measure-
ments in parallel (e.g., transcriptomics, proteomics, etc.).1,2

Increasingly, these components are being evaluated in terms
of their spatial organization as well. A prominent example is the
field of mass spectrometry imaging (MSI), which is capable of
detecting thousands of endogenous (small metabolites, lipids,
peptides, and proteins) or exogenous (drugs and drug
metabolites) species in their spatial context.3 Another
important example is the spatial transcriptomics field that

spatially resolves the distribution of gene expression profiles to
improve our molecular understanding of tissues.4

Often, alongside these molecular measurements other
imaging modalities, such as high-resolution microscopy images,
are being collected as well. Different modalities obtained from
the same sample can provide relevant complementary
information that cannot be obtained from a single modality.5

Typically, histological or microscopic images (e.g., haematox-
ylin and eosin (H&E) stainings) are overlaid with the
molecular profiles obtained by MSI. These microscopy images
give insight into the correlation between the structure and
(pathological) function of cells and tissues that is comple-
mentary to the molecular information obtained using
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molecular imaging. Creating these overlays, however, is
challenging because it is difficult to register two images
obtained at different spatial resolutions. It is therefore
important to overcome these challenges and truly integrate
these heterogeneous data sources, a concept referred to as data
fusion. By generating a single view or image from a set of
source images, we can get a more complete picture of the
complex interdependencies present in biological phenomena.
In this article, we present a novel data fusion method called
“correspondence-aware manifold learning” (CAML) that
builds on recent developments in the dimensionality reduction
field.
Nonlinear dimensionality reduction methods such as t-

distributed stochastic neighbor embedding (t-SNE)6 are often
used for the visualization of high-dimensional biological data.7

Not only are these methods capable of detecting nonlinear
trends, they can also capture the complete feature space when
reducing data to two or three components, which is not always
the case for methods such as, for example, principal
component analysis (PCA).8 Recently, uniform manifold
approximation and projection (UMAP)9 was introduced to
this family of methods with major improvements in terms of
scalability, enabling the analysis of large spatial omics data such
as MSI.
In an earlier work, we have shown how the hyperspectral

visualizations obtained using UMAP can reflect the molecular
trends present in an entire tissue sample.10 Connecting these
molecular trends to histological information is essential to
support clinical settings. These images, obtained from the same
subject or tissue sample but acquired in different ways, are
expected to show some level of correspondence. The same
anatomical structures can be displayed in the microscopic
image and can also be reflected by the molecular trends. Where
the microscopic information will typically have a lower
“chemical resolution” but a very high spatial resolution, the
molecular trends are complementary in this regard, as they
offer very rich chemical information but at a lower spatial
resolution. With correspondence-aware manifold learning we
are now able to visualize these molecular trends at a higher
spatial resolution by fusing the molecular and microscopic data
(Figure 1). Moreover, using out-of-sample prediction we can
predict the distribution of these molecules for regions not
measured by the molecular measurements such that we can
enrich a complete microscopy slide with the biological signals
available. We demonstrate our approach for the fusion of
representative spatial omics and optical microscopy data.

■ METHODS

UMAP Outline. UMAP creates a topological structure that
represents the high-dimensional data by assembling approx-
imations of local manifolds and assembles an equivalent
topological structure for a low-dimensional representation of
the data. It then optimizes the low-dimensional representation
to the high-dimensional data by minimizing the cross-entropy
between the two topological structures.9 The algorithm
innovates by its mathematical foundations to make some
assumptions about the data. An important assumption often
used in manifold approximation is a uniform distribution of the
data on the manifold.11 For real world data, this is usually not
the case. UMAP addresses this problem by creating local
Riemannian manifold approximations on which the data is
assumed to be uniformly distributed and patching them
together into a fuzzy simplicial set representation of the data.
UMAP uses the fuzzy set cross-entropy to compare the two

fuzzy simplicial set representations, (X,v) for the high-
dimensional data and (X,w) for the low-dimensional data, for
which X is the carrier set and v and w are membership
functions upon X. A low-dimensional embedding can be
optimized with respect to the cross-entropy loss with v and w
as catalysts for attraction and repulsion, respectively

∑
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(1)

For more information, we refer to Section 2.3 Definition 10 in
the original UMAP paper.9

In general UMAP fits well within the family of algorithms
such as t-SNE6 or LargeVis.12 These algorithms rely on
different mathematical principles although their implementa-
tions have lots of common ground. Like t-SNE and LargeVis,
manifold approximations are implemented as weighted k-
neighbor graphs. It is explained in detail in ref 9 that the main
equations from these algorithms also share similarities. Any of
these algorithms would suit the data fusion method explained
here.
In an earlier work, we have shown the strong visualization

capabilities of UMAP for MSI data, making it an excellent
choice as a general purpose algorithm for high-dimensional
omics data.10 UMAP is therefore used and extended to fit the
desired data fusion goals. We use UMAP as a dimensionality

Figure 1. Conceptual overview. Correspondence-aware manifold learning is able to fuse the complete molecular feature space of high-dimensional
omics data with their corresponding microscopy image. An example is shown for MSI data where the data set is first reduced to three dimensions
and this representation is fused with the microscopy data such that all molecular trends are visualized at a much higher resolution.
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reduction algorithm for high-dimensional omics data and adapt
UMAP to fuse the resulting low-dimensional representation
with high-resolution imaging.
Capturing Correspondence. Our goal is to capture

spatial correspondence between high-resolution and high-
dimensional data and leverage this information into the
manifold learning process. Let us use the matrix An×p to
denote the flattened high-resolution data and Bm×q for the low-
resolution spectral data. The correspondence between these
two data sets is recorded in the matrix Cn×m such that

=C
A B1 if corresponds to

0 otherwise
ij

i j
l
moo
n
oo (2)

Finding matching pairs can be achieved with registration
techniques. Geometric transformation algorithms can estimate
a projection between the two coordinate spaces using only a
small set of matching pixel pairs. The output is a trans-
formation matrix that can be applied to warp all other pixels
from one image to the other. In this work, we relied on the
Python Scikit-image library for image processing to perform
registration and obtain a transformation matrix through affine
transformation. More specifically, we identified only four
landmark points in both images to estimate the transformation
matrix. We have observed that CAML is robust against small
registration deviations.
Correspondence-Aware Manifold Learning (CAML).

Correspondence-aware manifold learning (CAML) creates a
fused representation of two data sets such that its
corresponding instances lie close to each other in the fused
representation. Specifically, CAML models the fusion task as
an optimization problem that aims to (1) preserve local
distances within the first data set and to (2) minimize distances
of the corresponding instances with the second data set.
Consider the task of fusing the high-resolution data matrix

An×p and high-dimensional data matrix Bm×q based on a
correspondence matrix Cn×m. In this case, n > m such that
multiple instances in A correspond to a single instance in B.
The information of the correspondence matrix Cn×m is
reconstructed as a mapping γ between the index sets of both
data sets.
Definition 1. Define γ: I → J ∪ {0}, the correspondence

map for matrices An×p and Bm×q and their respective index sets
I = {1, 2, ..., n} and J = {1, 2, ..., m}, as

γ =i
j A B

( )
if corresponds to

0 otherwise

i j
l
moo
n
oo

As a consequence, γ(i) = 0 when there are no corresponding
instances for Ai in B.
We capture the concept of distance between the

corresponding points as an interplay of attraction and
repulsion. CAML aims to minimize the repulsion between
the corresponding points. We formally define the repulsion
between A and B:
Definition 2. Consider matrices An×d and Bm×d. Let γ be the

correspondence map between the index sets of A and B. Define
Ψ → : d , the repulsive strength between these matrices, as

γΨ = − · { }γA A B i( ) min 1, ( )i i i( ) 2

Note that when no corresponding instance is found, then γ(i)
= 0 and also Ψ(Ai) = 0.

Definition 2 defines repulsion by comparing instances of the
two data sets, which is done by choosing a shared dimension d
for both data sets. In our case, d = p = 3, similar to the RGB
color space. The second data set can then be reduced to d
dimensions using any dimensionality reduction algorithm,
resulting in the two data sets An×d and Bm×d.
Given the two data sets An×d and Bm×d and their

correspondence map γ, CAML can be formulated as a
constrained optimization problem for a manifold learning
cost function CMAN.

Ψ = ∈ { }C A A i nmin ( )subject to ( ) 0, 1, 2, ...,
A

iMAN (3)

This equality-constrained problem can be transformed into the
following quadratic penalty function, which concludes the
CAML cost function

∑μ μ= + Ψ
=

Q A C A A( ; ) ( )
2

( )
i

n

iMAN
1

2

(4)

The first term in eq 4 focuses on preserving local distances
within the data. In our case, we use UMAP to optimize A with
respect to the fuzzy set cross-entropy defined in eq 1. The
mapping to fuzzy set representations is done by UMAP. The
second term penalizes the repulsion between the correspond-
ing instances in the two data sets. Because the penalty term in
Q(A; μ) is smooth, we can use unconstrained optimization
methods to find a solution.
The penalty parameter μ controls the balance between the

two terms. A high value for μ increases the importance of the
correspondence information while a low value for μ focuses on
the manifold projection of A. Figure S1 provides an overview
of running the algorithm using different values for μ.
The optimal value for μ can also be learned using iterative

methods, however, optimizing Q(A; μ) is costly depending on
the underlying manifold learning algorithm. Better means of
evaluating low-dimensional embeddings have been published
instead of calculating Q(A; μ) directly. We used the following
as an alternative

∑μ = − − + Ψ
=

E A T A( ; ) 1 (1 ) ( )
i

n

i
2

1

2
i

k
jjjjjj

y

{
zzzzzz (5)

We want to capture both the quality of the manifold
embedding An×d and the similarity between the low-resolution
image Bm×d. The first concept can be tackled using the measure
of trustworthiness.13,14 Trustworthiness evaluates to what
extent the local structure within the data is retained in a
manifold embedding. For the second concept, we already
defined repulsion to calculate the similarity between the
corresponding points of images. Equation 5 thus expresses the
trade-off between the trustworthiness T of the embedding and
the repulsion Ψ of the corresponding points in a value between
0 and 1. A represents the fused result after solving the
optimization problem from eq 3. A high value for E(A; μ)
corresponds to a high trustworthiness and a low repulsion.
Figure S1 presents the values for E(A; μ) for each of the
embeddings.
Currently CAML has been implemented as an extension of

the UMAP algorithm because of its general applicability. The
implementation is based on the model implementation of
UMAP by the original author. Although CAML expands the
algorithm, to our knowledge the implementation does not
impose additional theoretical complexities on UMAP and does
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not remove performance improvement made to the algorithm.
The UMAP algorithm also makes it possible to embed data
based on an existing embedding. Leveraging this data
transformation option together with image slicing releases
the computational burden imposed by very large images.
All images are converted to the LAB color space prior to

fusing. The LAB color space is used to approximate a uniform
color space (i.e., a color space in which same-size changes in
the color coordinates correspond to same-size recognizable
changes in the visible color tones and color saturation).15

Only the dimensionality reduction step for the lymphoma
MSI data set has been done on an Intel Xeon CPU E5-2660 v2
2.20 GHz machine with 10 cores and 128 GB RAM. All other
experiments have been done on a MacBook Pro with a 2.8
GHz Intel Core i7 CPU and 16 GB RAM.
Data Measurements. For the human lymph node sample,

cryosections of 5 μm thickness were prepared and mounted on
indium tin oxide (ITO) glass slides. 2,5-Dihydroxybenzoic acid
(2,5-DHB) was used as the matrix and applied using
sublimation. The pixel size was set to 10 μm, and the recorded
m/z range was 620−1200 Da in positive reflector mode. The
acquisition was performed with 200 lasershots/pixel and a laser
repetition rate of 10 kHz, resulting in an acquisition speed of
32 pixels/s. For the mouse brain spatial transcriptomics

samples, H&E images and count matrices were downloaded
from https://www.spatialresearch.org/resources-published-
datasets/ licensed under the Creative Commons Attribution
license. The dimensions of the data sets are as follows: for the
lymphoma data set 500 000 pixels × 8000 m/z values and for
the spatial transcriptomics data 281 pixels × 16 416 transcripts.

■ RESULTS
With correspondence-aware manifold learning we:

(i) project the high-dimensional molecular features to a
low-dimensional space,

(ii) capture spatial correspondence between the high-
resolution microscopic image and the high-dimensional
molecular measurements of the same tissue sample, and

(iii) perform correspondence-aware manifold projection
using both data modalities to obtain a fused image
reflecting both modalities in one visualization.

The general methodology is depicted in Figure 2. The high-
dimensional molecular data is first reduced to three
dimensions. After a registration step, this hyperspectral
visualization is used as a constraint to transform the
microscopy image, resulting in a fusion of the molecular
information with the microscopy data. By modeling the

Figure 2.Method overview. (1) Molecular data represented by the matrix Bm×q is reduced to a matrix Bm×3 target embedding. (2) Pixel coordinates
of the molecular and the microscopy image undergo a registration step such that we obtain a correspondence matrix. (3) Subsequently, the
microscopy image is subjected to a dimensionality reduction step, wherein each pixel is evaluated as a function of its correspondence to target
embedding. (4) Specifically, the projection step in the dimensionality reduction method is constrained based on target embedding, causing pixels in
the microscopy image to receive a similar color based on the reduced target embedding of the molecular data. This approach not only enables the
transfer of information obtained from a complete high-dimensional molecular data set to a single microscopy slide but can also be used to transfer
the information from a single feature or molecular image to the microscopy slide.
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manifold and piecewise transforming the full-resolution
microscopy image while taking into account the properties of
the molecular data, we are able to visualize the molecular
image at a much higher resolution. As such we leverage the
complementarity of the high spatial resolution offered by
optical microscopy with the high-dimensional but lower spatial
resolution molecular imaging data.
We demonstrate the correspondence-aware manifold learn-

ing approach for data fusion of molecular measurements and
their corresponding microscopy images. We show:

(i) the prediction of molecular trends at a higher spatial
resolution through data fusion,

(ii) the prediction of molecular trends outside of the tissue
area measured with out-of-sample prediction, and

(iii) the general applicability of the method.

Correspondence-Aware Manifold Learning for Data
Fusion of Molecular and Microscopy Images. In Figure 3,
we show the low-dimensional representation of reactive
lymphoid tissue in a human tonsil MSI data set (500.000

Figure 3. Low-dimensional representation of a lymphoma MSI data set and the corresponding H&E image. Shown on the left: the low-dimensional
representation of a human lymphoma MSI data set (500.000 pixels × 8000 m/z features, 10 μm resolution). The different colors reflect the
molecular trends present in the data. On the right, two parts of the corresponding microscopy image are shown.

Figure 4. Fusion of mucosa-associated lymphoid tissue of the tonsil MSI data set and the corresponding H&E image. On the left, the data fusion
result for the molecular and microscopy images is shown. On the right, the fusion details are shown for the two regions.
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pixels × 8000 m/z features, measured at 10 μm resolution).
This hyperspectral visualization represents the complete 8000
m/z feature space compressed into three dimensions, such that
each color is connected to a molecular trend present in the
data. This molecular, hyperspectral visualization is subse-
quently used to perform data fusion with the corresponding
microscopy image. In Figure 4, the fused results show that the
molecular trends in the data can be visualized at a much higher
resolution.
The goal of performing data fusion is to exploit the

complementarity present between the different data modalities
such that the resulting visualization goes beyond the
information offered by a single modality. In Figure 5, a fused
detail is shown of the extracellular matrix and stroma
comprising glycoproteins and proteoglycans with below the
multilayered squamous epithelium (panel A). Panel B shows a
detailed view of a cluster of plasma cells. The nuclei of these
cells received a black color after data fusion, while the green
color seems to correspond to the cytoplasm. In active plasma
cells, a high density of the golgi apparatus is required for the

synthesis of immunoglobulins, which explains the larger
amount of cytoplasm present. A closer look reveals that
these plasma cells infiltrate the epithelium (panel C) and
display a kind of integration with the present epithelial cells
(purple color) such that they do not overlay or compress these
keratinocytes. Panel D shows that the keratinocyte cells further
away from the basement membrane have become larger in
comparison to the ones closer to this basal layer, which can be
explained by the progressive maturation process taking place
inside of the squamous epithelium. This maturation process is
associated with changes in the composition of the cytoplasm
with mainly an increase in the number of cytokeratines, which
are part of the cytoskeleton. These findings are supported by
the corresponding H&E stainings in panels B′−D′, and show
the power of data fusion to surpass the regional or subregional
level of interpretation offered via MSI by bringing the
molecular information to the cellular level.
In the Supporting Figures, additional examples highlight the

potential of data fusion. In Figure S2, two blood vessels are
shown where we can see that a venule on the left is surrounded

Figure 5. Details of the fused data. Panel (A) shows the extracellular matrix and stroma comprising glycoproteins and proteoglycans, as well as
plasma cells on top and the multilayered squamous epithelium below. Panel (B) shows a detailed view of a cluster of plasma cells. The nuclei of
these cells received a black color after data fusion, while the green color seems to correspond to the abundant cytoplasm. In active plasma cells a
high density of the golgi apparatus is required for the synthesis of immunoglobulins, which explains the larger amount of cytoplasm present. A
closer look in panel (C) reveals that these plasma cells infiltrate the epithelium, as they display a kind of integration with the present keratinocytes
(purple color) such that they do not overlay or compress these cells. Panel (D) shows that the keratinocyte cells further away from the basement
membrane have become larger in comparison to the ones closer to this basal layer, which can be explained by the progressive maturation of these
cells. These findings are supported by the corresponding H&E stainings in panels (B′)−(D′). Note that these results are provided at the cellular
level: individual cells with their particular nuclei and cytoplasm are shown. This demonstrates the power of data fusion to surpass the regional or
subregional level of interpretation offered via MSI by bringing the molecular information to the cellular level.

Figure 6. Example of out-of-sample prediction. On the left, an overlay of the region in the lymphomoid tissue measured by MSI with the
microscopy slide is shown. On the right, the result of out-of-sample prediction shows the fused result for the complete microscopy or H&E image.
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by a thin layer of endothelial cells, while the arteriole on the
right is lined by a layer of smooth muscle cells. In light pink, we
can also perceive some collagen fibers. Figure S3 demonstrates
a secondary B-cell follicle where the reactive germinal center is
surrounded by a lymphocyte corona, highlighted by an orange
and green dashed line, respectively. Figure S3 shows how data
fusion can support us in distinguishing artifacts from true
biological signals. The epithelium contains a small, rounded
structure where the number of cells is increased. While this
structure is visible in the H&E image, it becomes more
pronounced upon data fusion. It is regarded as an artifact
created during the cutting process.
All findings are supported by the corresponding H&E

images. Moreover, these results highlight the potential of our
method to distinguish individual cells in their microenviron-
ment instead of being limited to the interpretation of regional
or subregional molecular trends measured by MSI. This could
be very valuable when evaluating, for instance, the invasiveness
of individual tumor cells and their interaction with the tumor
microenvironment.
Out-of-Sample Prediction. In addition to performing

data fusion for the area covered by the MSI measurements, we
can predict the molecular distributions for the entire
microscopy image through out-of-sample prediction, as
shown in Figure 6. This approach enables the interpretation
of a much larger microscopic area based on a limited amount
of molecular information. This can be a valuable asset given
the high costs associated with molecular measurements or the
limited amount of tissue that is often available.
Data Fusion for Spatial Transcriptomics Data. We

illustrate the general applicability of the method for spatial
omics data. In Figure S5, we show the hyperspectral
visualization of the low-dimensional representation obtained
for a spatial transcriptomics mouse brain measurement and the
corresponding microscopy image with the fused result on the
right. We show these results to highlight the potential of this
method for other spatial omics technologies. Notwithstanding
the low spatial resolution of the molecular measurement (281
pixels × 16.416 features), we can see that the green colored cell
nuclei are embedded in a purple background of the tissue
center. Given the low spatial resolution, we want to emphasize
the restricted potential for biological interpretation. However
given the fast technical improvements that are being made in
terms of spatial resolution, we believe the proposed method
holds a lot of potential for data fusion of spatial omics
measurements. In this light, in Figure S5, we can also observe
that the highlighted regions show a clear correspondence of the
green dots with the cell nuclei, as stained by hematoxylin,
across the associated H&E image.

■ DISCUSSION
Scalable and powerful dimensionality reduction methods have
become indispensable to deal with the growing number of
high-dimensional data sets. Nonlinear dimensionality reduc-
tion methods, such as t-SNE and UMAP, have brought and
continue to bring significant value for the biomedical sciences
in this regard.16,17 Due to their strong visualization capabilities
these methods have become a standard for the analysis of high-
dimensional data sets.18 And while the number of high-
dimensional and spatial omics measurements keeps on
growing, the computational methods capable of fusing the
multimodal measurements acquired from the same sample are
lagging behind. In this work, we present a novel data fusion

method that is able to compress and fuse the complete
molecular and microscopic feature spaces toward a combined
image. This work builds on the framework of nonlinear
dimensionality reduction methods to enable the fusion of
molecular and microscopic data obtained from the same tissue
sample. We demonstrate our results according to the UMAP
framework, but the same principle could be applied starting
from similar methods such as, for example, t-SNE. By
constraining the projection step based on the molecular target
information, we are able to transform the corresponding pixels
in the microscopy image accordingly, resulting in a fused
representation presenting the molecular information at a much
higher spatial resolution.
In Figure 4, we highlight the potential of our method for the

integration of MSI data with the corresponding microscopy
images. While we show that this enables us to improve the
resolution of the MSI data, these colors reflect in fact an
underlying group of biomolecules. As such, in the previous
work, we have shown that it is possible to prioritize and
identify those molecules associated with a molecular trend or
color.19 This could support researchers in finding correlations
between underlying biological actors and their histopatho-
logical architecture. Recent work has shown that it is possible
to correlate single-cell morphological features based on
microscopic images with molecular information.20 Given that
the proposed method is capable of retaining the cellular
morphology in the fused results, we believe it holds potential
for this area of study as well. Moreover, in Figure 5 we show
that the proposed method can leverage MSI measurements to
study tissues at the cellular level such that we can move beyond
the regional or subregional insights and evaluate the presence
of aberrant cells in their microenvironment. This will be of
growing importance with technological advancements in terms
of spatial resolution and also with the increasing demand to
integrate multimodal data measurements. In this regard, we
have also included a spatial transcriptomics sample as an
example of a rapidly evolving domain with a lot of potential.21

While the molecular measurements are at the moment still of a
lower resolution, it is yet possible to show that the method is
widely applicable and will be able to offer more value with
increasing spatial resolution. An additional advantage data
fusion has to offer is the ability to better distinguish artifacts
from true biological signals (Figure S4). These advantages will
be useful not only in the domain of molecular imaging but in
general when dealing with other imaging technologies such as,
for example, magnetic resonance imaging (MRI), computed
tomography (CT), positron emission tomography (PET), etc.
An earlier work in this domain has been focused on the

modeling of linear relationships between the different modal-
ities. Van de Plas et al. have focused on the fusion of matrix-
assisted laser desorption ionization (MALDI) MSI data with
optical images of H&E stainings through the mapping between
two modalities based on linear regression models.22 And
recently, a novel method was introduced by Race et al.23 based
on dimensionality reduction through non-negative matrix
factorization. While providing good results, given the nonlinear
nature of biological data, taking into account these complex
relationships is preferable. This is in particular the case for
MALDI MSI data which can suffer from artifacts caused by the
nonlinear ionization process or for instance by ion suppression.
Therefore, the method proposed in this work performs data
fusion through a nonlinear dimensionality reduction approach.
In addition to the benefit of being able to take more complex
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interactions into account, the data fusion result is not hindered
by an imperfect multimodal registration, which can also be
seen in Figure 6. Given that registration is often a time-
consuming and difficult step, this constitutes an important
advantage. To illustrate the general applicability of the method,
we have also performed a study on a multimodal MNIST data
set, an extension of the well-known MNIST database of
handwritten digits. In Figure S6, we show that we can perform
data fusion on single multimodal digits and we can also
perform out-of-sample prediction based on this initial trained
data fusion model, added with additional experimental
verification for the MSI data in Figures S7 and S8.
In conclusion, data fusion facilitates the combination of

complimentary data sources to obtain insights that would not
be obtained from a single modality alone. Given the growing
interest toward spatial multiomics studies, this method will be
valuable to enable the mapping of molecular measurements to
the underlying tissue architecture at the cellular resolution.
Moreover, given the large costs associated with state-of-the-art
molecular measurements, the out-of-sample prediction can
expand the amount of information obtained from conducted
experiments. Finally, due to its broad applicability we hope that
the proposed paradigm will be valuable to researchers coming
from different domains.
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