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a b s t r a c t 

Background: Clinical models to predict first trimester viability are traditionally based on multivariable 

logistic regression (LR) which is not directly interpretable for non-statistical experts like physicians. Fur- 

thermore, LR requires complete datasets and pre-established variables specifications. In this study, we 

leveraged the internal non-linearity, feature selection and missing values handling mechanisms of ma- 

chine learning algorithms, along with a post-hoc interpretability strategy, as potential advantages over LR 

for clinical modeling. 

Methods: The dataset included 1154 patients with 2377 individual scans and was obtained from a 

prospective observational cohort study conducted at a hospital in London, UK, from March 2014 to May 

2019. The data were split into a training (70%) and a test set (30%). Parsimonious and complete multi- 

variable models were developed from two algorithms to predict first trimester viability at 11–14 weeks 

gestational age (GA): LR and light gradient boosted machine (LGBM). Missing values were handled by 

multiple imputation where appropriate. The SHapley Additive exPlanations (SHAP) framework was ap- 

plied to derive individual explanations of the models. 

Results: The parsimonious LGBM model had similar discriminative and calibration performance as the 

parsimonious LR (AUC 0.885 vs 0.860; calibration slope: 1.19 vs 1.18). The complete models did not out- 

perform the parsimonious models. LGBM was robust to the presence of missing values and did not re- 

quire multiple imputation unlike LR. Decision path plots and feature importance analysis revealed dif- 

ferent algorithm behaviors despite similar predictive performance. The main driving variable from the 

LR model was the pre-specified interaction between fetal heart presence and mean sac diameter. The 

crown-rump length variable and a proxy variable reflecting the difference in GA between expected and 

observed GA were the two most important variables of LGBM. Finally, while variable interactions must 

be specified upfront with LR, several interactions were ranked by the SHAP framework among the most 

important features learned automatically by the LGBM algorithm. 

Conclusions: Gradient boosted algorithms performed similarly to carefully crafted LR models in terms 

of discrimination and calibration for first trimester viability prediction. By handling multi-collinearity, 

missing values, feature selection and variable interactions internally, the gradient boosted trees algorithm, 

combined with SHAP, offers a serious alternative to traditional LR models. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

h

0

∗ Corresponding author. 

E-mail address: thibaut.vaulet@esat.kuleuven.be (T. Vaulet). 

ttps://doi.org/10.1016/j.cmpb.2021.106520 

169-2607/© 2021 The Authors. Published by Elsevier B.V. This is an open access article u
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2021.106520
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106520&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thibaut.vaulet@esat.kuleuven.be
https://doi.org/10.1016/j.cmpb.2021.106520
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Vaulet, M. Al-Memar, H. Fourie et al. Computer Methods and Programs in Biomedicine 213 (2022) 106520 

1

e

o

i

p

D

c

p

o

h

c

c

m

r

r

m

t

p

p

m

t

p

[

a

e

d

a

p

u

o

e

n

a

g

n

v

c

i

e

p

m

t

l

o

t

t

g

m

c

p

g

a

g

l

i

d

t

a

b

T

a

t

i

F

d

m

2

2

v

p

s

(

N

m

c

b

a

a

D

m

1

m

d

p

a

p

b

6

l

t

c

2

r

s

1

n

f

G

List of abbreviations 

AUC area under the curve 

CI confidence Interval 

CRL crown –rump length 

FH fetal heart 

GA gestational age (in days) 

LGBM light Gradient Boosted Machine 

LMP last menstruation period 

LR logistic regression 

MSD mean sac diameter 

MYSD mean yolk sac diameter 

PUQE score pregnancy-unique quantification of emesis and 

nausea 

SHAP SHapley additive exPlanations 

. Introduction 

First trimester miscarriage is the most common complication of 

arly pregnancy. Although difficult to assess, its incidence in rec- 

gnized pregnancies is estimated around 13–17% in recent stud- 

es [1–3] . These adverse events can be traumatizing and can cause 

sychological distress for several months following a loss [4–6] . 

iagnostic uncertainty in early pregnancy is associated with in- 

reased anxiety [7] , justifying the need for models that accurately 

redict the outcome of a pregnancy. In order to predict the risk 

f miscarriage, several models based on logistic regression (LR) 

ave been developed over the years [8–13] . Despite good dis- 

riminative performance (AUC between 0.75 and 0.95), a signifi- 

ant number of miscarriages remain difficult to predict using these 

odels. 

The rise of artificial intelligence and machine learning (ML) in 

ecent decades has led to the development of more complex algo- 

ithms which have demonstrated outstanding performance in nu- 

erous settings [14–16] , including diagnosis performance similar 

o human medical-experts [14] . In comparison to LR, more so- 

histicated ML models are intrinsically nonlinear, avoiding the ex- 

licit formulation of interaction terms and/or nonlinear transfor- 

ation of variables. In addition, some ML algorithms can also na- 

ively handle missing values, i.e. they can be trained on incom- 

lete datasets whereas data imputation is needed before using LR 

17] . Recently, advanced machine learning algorithms have been 

pplied to various pregnancy-related conditions. For instance, Liu 

t al. demonstrated that tree-based ensembles outperformed tra- 

itional regression-based methods to predict early pregnancy loss 

fter in vitro fertilization [18] , although the evaluation and hyper- 

arameters tuning procedures were not reported. Moreira et al. 

sed averaged one-dependence estimators to predict the childbirth 

utcome of pregnancies with hypertensive disorders [19] . Bruno 

t al. applied Support Vector Machine to predict recurrent preg- 

ancy losses [20] . Kuhle et al. compared logistic regression with 

dvanced machine learning algorithms for the prediction of fetal 

rowth abnormalities [ 21 ]. The early prediction of adverse preg- 

ancy outcomes with efficient models offer the opportunity to pre- 

ent a range of future complications [22] . However, despite signifi- 

ant advantages, the use of advanced ML to develop clinical models 

s still relatively uncommon. 

A common barrier to the adoption of more advanced ML mod- 

ls in clinical practice is often explained by their lack of trans- 

arency regarding predictions [ 23 , 24 ]. However, more recently, a 

odel-agnostic framework based on Shapley values has emerged 

hat explains individual predictions [25] . Methods based on Shap- 

ey values decompose each model’s prediction as a collaboration 

f individual variables. It is therefore straightforward to perceive 
2 
he contribution of each individual variable to the final predic- 

ion. This approach has a solid theoretical foundation derived from 

ame theory to provide useful post-hoc model explanations and 

ake ML models more interpretable. 

In this study, we aimed to assess the utility of interpretable ma- 

hine learning for first trimester viability prediction. We first com- 

ared the predictive and calibration performance of LR models and 

radient boosted trees. We then derived meaningful explanations 

t the patient-level and compared the global behavior of both al- 

orithms. Finally, we highlighted the potential benefits of machine 

earning with post-hoc interpretability strategy for clinical model- 

ng. 

The paper is organized as follows: in Section 2 , we first intro- 

uce the data cohort and the sets of variables. We then describe 

he two models used to predict the first trimester viability, as well 

s the performance metrics and the validation strategy employed, 

efore introducing the SHAP post-hoc interpretability framework. 

he Section 3 reports the results in terms of models performance 

nd interpretability. In Section 4 , we discuss the main findings of 

his study and we elaborate on the different levels of post-hoc 

nterpretability and its application to clinical predictive modeling. 

inally, we highlight the advantages and limitations of both pre- 

ictive modeling approaches, before addressing our concluding re- 

arks. 

. Materials and methods 

.1. Data and study design 

The study was based on data derived from a prospective obser- 

ational cohort study based at Queen Charlotte’s & Chelsea Hos- 

ital, London, conducted between March 2014 and May 2019. The 

tudy had been approved by NHS National Research Ethics Service 

NRES) Riverside Committee London (REC 14/LO/0199) and NHS 

orth East – Newcastle and North Tyneside 2 Research Ethics Com- 

ittee (17/NE/0121). All participants provided written informed 

onsent. Details on the study design and recruitment criteria can 

e found in [26] . 

Women with intrauterine pregnancies (either a confirmed vi- 

ble pregnancy or pregnancy of unknown viability) were recruited 

nd followed up with serial ultrasound scans in the first trimester. 

emographic, clinical and ultrasound scan data were collected. The 

ain outcome was defined as the presence of viable pregnancy at 

1–14 weeks of gestational age (GA). All scans when a diagnosis of 

iscarriage was made were excluded. Participants with unknown 

ate of last menstrual period (LMP) were also excluded. Due to the 

rogressive drop out of miscarriage patients from the cohort, data 

t more advanced GA are biased towards viable pregnancies. In the 

resent dataset, 15.5% of samples are associated with a miscarriage 

efore 70 days of gestational age, whereas this proportion drops to 

.3% after 70 days. 

To avoid the algorithms learning that these pregnancies are at 

ess risk of miscarriage, we focused on the first half of the first 

rimester: scans with GA greater than 70 days were therefore ex- 

luded. 

.2. Variables and univariates analysis 

Two sets of variables were used in the models. To limit the 

isk of overfitting, a restricted set of predefined variables was cho- 

en based on expert opinion and previous published studies [ 8–

3 , 15 , 27 ]. This parsimonious features set contained: maternal age, 

umber of previous miscarriages, worst bleeding score reported, dif- 

erence in estimated GA between LMP and mean sac diameter (MSD), 

A by LMP, the Pregnancy-Unique Quantification of Emesis and Nau- 
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ea (PUQE) score, crown-rump length (CRL), MSD, fetal heart (FH) and 

SD 

∗FH . This last term models an interaction between MSD and 

he presence of FH. Since advanced ML algorithms should model 

uch interaction without explicit formulation, this term was omit- 

ed with the gradient boosted trees algorithm. 

To assess the internal feature selection mechanism of gradient 

oosted trees algorithm, a more complete set of variables was also 

sed in parallel, independently of expert knowledge. This complete 

et includes the parsimonious set augmented by: maternal ethnic- 

ty, gravida, parity, supplementation with folic acid, smoking status, 

ertainty of LMP, previous cesarian sec tion, bleeding score at presen- 

ation’, number of bleeding days, pain score at presentation, no of 

ays with pain, worst pain score, mean yolk sac diameter (MYSD), 

resence of amnion sign, GA by MSD, GA by CRL. A detailed de- 

cription of the symptom variables can be found in [26] . Uni- 

ariate analysis of the cohort characteristics with regard to the 

ain outcome were performed with the Student’s t-test for con- 

inuous variables and the chi-square test for binary or categorical 

ariables. 

.3. Internal validation 

The initial dataset was split into a training (70%) and test set 

30%), stratified according to the main outcome to preserve a sim- 

lar outcome prevalence between both sets. To avoid data leakage, 

.e. the contamination of the training set with information from 

he test set in case data are not independent, the ultrasound scans 

rom the same patients were strictly allocated to either the train- 

ng or the test set. 

.4. Predictive models 

1. Logistic regression 

Multivariable logistic regression was used as a baseline model 

gainst more advanced ML models. Logistic regression is a statisti- 

al model used to perform regression analyses on binary outcomes. 

ore specifically, logistic regression is a generalized linear model 

efined as : logit ( p ( y = 1)) = X β , where p ∈ [0, 1], y is the de-

endent binary variable, X is the matrix of independent predictors, 

lso known as explanatory variables and β is the vector of param- 

ters, or coefficients, optimized during model training. The binary 

ependent variable y is related to the linear model X β through the 

ogit link function defined as: 

 ogit ( p ( y = 1 ) ) = l og 

(
p ( y = 1 ) 

1 − p ( y = 1 ) 

)
, 

here p ( y = 1 ) = 

exp ( X β) 

1 + exp ( X β) 

As a generalized linear model, logistic regression does not re- 

uire a normal distribution of the residuals. In addition, unlike or- 

inary linear regression, logistic regression models do not rely on 

omoscedasticity. The additive constraint of multivariable regres- 

ion restricts the model capacity but facilitates the understanding 

f the prediction process. 

To account for repeated measurements (e.g. clustered data), LR 

as trained using the cluster robust variance-covariance matrix. 

ultiple imputation was used to accommodate the presence of 

issing values. The training set was imputed 20 times using Multi- 

le Imputation by Chained Equations and predictive mean match- 

ng [28] . Missingness was assumed to be at random. 

2. Light gradient boosted machine (LGBM) 

We used a gradient boosted trees algorithm as the advanced 

L model. Gradient boosted trees is a tree-based ensemble algo- 
3 
ithm that produce prediction by averaging a large number of in- 

ividual decision trees predictions. The individual decision trees 

re constructed sequentially with the goal to reduce the error of 

he previous model at each iteration. With gradient boosting, the 

tructure of the next tree to add to the current ensemble is deter- 

ined through the optimization of an objective function L via its 

radient [29] . However, converting a decision tree learning algo- 

ithm into an optimization problem is not straightforward as the 

radient with respect to the model’s parameters is not directly 

omputable. With special formulations of L , it is possible to opti- 

ize the construction of a new tree such that for each node split, 

he best split is chosen, taking into account the model complex- 

ty. Turning the objective function into a splitting criterion avoids 

he intractable problem of constructing all possible trees at each 

teration. 

If the function f i represents the structure of a single decision 

ree, each new tree is added to the previous fixed ensemble as fol- 

ows: 

ˆ 
 

( 0 ) 
i 

= 0 

ˆ 
 

( 1 ) 
i 

= 

ˆ y ( 
0 ) 

i 
+ f 1 ( X i ) 

ˆ 
 

( 2 ) 
i 

= 

ˆ y ( 
1 ) 

i 
+ f 2 ( X i ) 

where ˆ y 
i 

and X i represent the prediction and the vector of ex- 

lanatory variable for patient i, respectively. 

The final predictions after adding t trees to the ensemble are 

iven by: 

ˆ 
 

( t ) 
i 

= 

t ∑ 

k =1 

f k ( X i ) = 

ˆ y ( 
t−1 ) 

i 
+ f t ( X i ) 

Tree-based ensembles have demonstrated state-of-the-art per- 

ormance in various settings, frequently outperforming neural net- 

orks in tabular datasets (e.g. [30] ). They are often easier to op- 

imize than neural networks which require additional architecture 

pecifications. Tree-based ensembles also benefit from an existing 

mplementation for the exact calculation of Shapley values (see be- 

ow) in the SHAP package [31] . LightGBM [32] was used to imple- 

ent the gradient boosted trees. The number of trees was cho- 

en with early stopping. The optimization of the other hyperpa- 

ameters was performed with tree-structured parzen estimators 

hrough 5-folds cross validation of the training set [33] . The list of 

yperparameters tuned is reported in Table S2, other parameters 

ere used with their default settings. Models are referred as par- 

imonious or complete following the dataset on which they were 

rained. 

.5. Performance 

The predictive performance of the models was assessed on the 

est set. Overall performance was assessed with the Brier score 

hich measure the accuracy of probabilistic predictions, the lower 

he score, the better [34] . Discriminative performance was assessed 

ith the area under the curve (AUC) of ROC curves. Statistical 

omparisons between two models AUC was performed with the 

eLong method [35] . Calibration was assessed with the calibra- 

ion slope and the calibration-in-the-large [34] . For the calibration 

lope, a significant departure from the perfect calibration slope of 

 was assessed by the Wald-test [34] . 

We reported those metrics in two different forms: (1) raw met- 

ic evaluated on the whole test set, not adjusted for the presence 

f repeated measurements from the same patients: (2) longitudinal 

etrics: for each GA t , the corresponding metric was computed on 

he subset of samples included in a time window of 20 days, cen- 
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ered on t . In case of repeated measurements per patient within 

hat time window, only the closest prediction to t was included 

o compute the metric. All metrics are reported with a 95% confi- 

ence interval (CI). 

.6. Post-hoc interpretability 

To derive explanations of the model’s individual predictions, we 

sed the SHAP framework: an additive feature attribution method 

25] . These model-agnostic methods rely on explanation models to 

ecompose each prediction as a sum of individual feature contri- 

utions. Following the notation of Lundberg and Lee [25] , the ex- 

lanation model g of additive feature attribution methods takes the 

orm: 

 

(
z ′ 
)

= φ0 + 

d ∑ 

j=1 

φj z j 
′ 

here z ′ ∈ {0, 1} d is a simplified version of z, represented by a bi-

ary vector of dimension d, which simulates any subset of predic- 

ors from z by indicating their presence or their absence. z j 
′ repre- 

ents therefore the presence ( = 1) or absence ( = 0) of feature j in z.

j ∈ R represents the feature attribution of the j th variable of z. 

In the SHAP method, those feature attributions ϕj are repre- 

ented by Shapley values, derived from the collaborative game the- 

ry where a game payout is fairly distributed among the players 

f a game, taking into account the possible combinations of play- 

rs. In the predictive analytics context, the game payout is the pre- 

iction and the players are the variables. The computation of the 

hapley values guarantees a fair decomposition of the final pre- 

iction among the set of variables values. The Shapley value of a 

ariable value represents its contribution to the current prediction. 

ith SHAP, this contribution is expressed as a relative contribution 

etween the current prediction and a baseline prediction value of- 

en set to E[f( X )] Therefore, the SHAP values estimate the contri- 

ution of each variable to explain the difference between f( X ) and 

[f( X )], the averaged prediction of the model. As a result, the ex- 

lanations provided under the SHAP frameworks are contrastive 

hich makes them more intuitive to understand for non-expert 

sers [36] . In addition, SHAP is the only additive attribution method 

hat remains locally faithful to the black box model prediction. 

 = f ( x ) = g 
(
x ′ 

)
= φ0 + 

d ∑ 

j=1 

φj x j 
′ 

here ϕ0 corresponds to a baseline prediction, often set to E[f( X )]. 

 more detailed explanation with theoretical formulation can be 

ound in [ 25 , 30 ]. 

In order to derive meaningful comparisons amongst different 

odels, we set the common baseline value to the outcome preva- 

ence in the training set (0.88), which estimates the overall prior 

robability of miscarrying in the study-population. The Shapley 

alues can be obtained from two different methods. The interven- 

ional approach breaks the potential inter-variables dependency to 

ompute the features SHAP values, referred in the text as inde- 

endent SHAP, while the correlated approach relies on the condi- 

ional expectation, which takes into account inter-features corre- 

ations. Recent studies suggest [ 37 , 38 ] that the conditional expec- 

ation approach can be misleading as some variables that are not 

sed explicitly by the model can receive credits if they correlate 

ith some other important variables. Where appropriate, we used 

he training set as background dataset for feature perturbation to 

ompute the SHAP values using the interventional approach. For 

ree-based ensemble models, first order interaction SHAP values 

31] were also computed. 

The aggregation of SHAP values from individual predictions pro- 

ides global model explanations. Global feature importance was 
4 
btained as the mean of absolute SHAP value across all instances 

or each variable. Similarly to the longitudinal visualization for 

he model performances, longitudinal features importance was also 

omputed. 

.7. Software 

All analysis have been performed with Python 3.6.6. 

. Results 

1. Study cohort 

Fig. 1 displays the study flowchart. Patients who underwent ter- 

ination of pregnancy ( n = 28), withdrew from the study ( n = 7),

nd who were lost to follow up ( n = 40) were excluded. Addi- 

ionally, patients with unknown or missing LMP ( n = 50) were 

lso excluded. A total of 1154 patients (986 viable pregnancies 

nd 168 miscarriage) were available for the analysis. On average, 

ach patient underwent 2.05 ( ± 0.83 SD) ultrasound scans (mis- 

arriages: 1.70 ( ± 0.73 SD); viable pregnancies: 2.65 ( ± 0.83 SD)). 

fter stratified splitting, the training set and the test set con- 

isted in 807 and 347 patients respectively. Table S1 summarizes 

he descriptive statistics of the cohort at the patient and ultra- 

ound scan levels, including the number of missing values per 

ariable. 

2. Model performances 

The overall performance metrics (with 95% CI) for parsimo- 

ious and complete models are reported in Table 1 . Compared to 

he parsimonious LR, the parsimonious LGBM model had similar 

verall (Brier scores: 0.078 vs 0.076), discriminative (AUC 0.860 vs 

.885; p -value: 0.279) and calibration performance (calibration 

lope: 1.183, p -value: 1.222 vs 1.195, p -value: 0.098; calibration in 

he large: 0.001 vs 0.001). Furthermore, our results did not demon- 

trate the need to impute the training and testing data when us- 

ng LGBM ( Table 1 ). Therefore, all subsequent analysis and figures 

re based on LGBM without imputation. The models based on a 

reselected set of meaningful variables had similar discriminant 

erformances as models based on the complete set of variables 

LR models AUC: 0.886 vs 0.876, p -value: 0.348; LGBM models 

UC: 0.885 vs 0.889, p -value: 0.574, Table 1 ). Moreover, the par- 

imonious LGBM had slightly better calibration performances than 

he complete LGBM (Slope: 1.195, p -value: 0.098 vs 1.298, p -value: 

.019, cal. in the large: 0.001 vs 0.010). Fig. 2 displays the parsi- 

onious models performances longitudinally, based on the GA by 

MP at the time of the scan. This longitudinal metrics assessment 

emonstrates similar behavior between LR and LGBM. Fig. S1 dis- 

lays the same metrics for the complete models. Complete LGBM 

odel demonstrated slightly worse calibration performance than 

omplete LR model which can be explained by a greater flexibility 

f LGBM models. However, the discriminative performance of com- 

lete LGBM model was higher than complete LR, probably due to 

he built-in feature selection mechanism of LGBM. 

In summary, LGBM models performed as good as LR ap- 

roaches, without the need of missing values imputation and ex- 

licit specifications of variable interactions. 

3. Post-hoc interpretability 

The feature importance expressed as the mean of individual ab- 

olute SHAP values per variable are displayed in Fig. 3 for the par- 

imonious models and in Fig. S2 for the complete models. The pre- 

elected variables were mostly associated with a high feature im- 

ortance in the complete models (Fig. S2). These results also reflect 

he univariate analysis as reported in Table S1. A notable exception 
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Fig. 1. Study flowchart n represents the number of unique patients and n scans the number of scans. All repeated scans of a given patient were strictly allocated to either 

the training or the test set. GA: gestational age; LMP: last menstruation period; LFTU: lost to follow-up, TOP: termination of pregnancy. 

Table 1 

Predictive performances of the models on the test se t – raw metrics with 95% CI. The Brier score assesses the accuracy of probabilistic predictions, the lower the score the 

better. AUC evaluates the discrimination performance. The calibration in the large evaluates the mean calibration and corresponds to the difference between the averaged 

binary outcome and the averaged prediction. The calibration slope summarizes how the predicted risks correspond to the observed risks. An ideal calibration slope is 

equal to 1 and departures from 1 indicate potential model miscalibration (e.g. due to over/underfitting). Overall, LR and LGBM performed similarly in terms of calibration 

and discrimination. Complete LGBM models demonstrated similar discriminative performances as parsimonious models but their calibration was slightly worse, probably 

resulting from a too large flexibility compared to LR models. 

Parsimonious Models Complete Models 

LR + MICE LGBM with missing data LGBM + MICE LR + MICE LGBM with missing data LGBM + MICE 

Brier score 0.078 (0.065 0.093) 0.076 (0.062 0.090) 0.078 (0.063 0.092) 0.080 (0.066 0.095) 0.076 (0.062 0.090) 0.076 (0.063 0.090 

AUC 0.886 (0.852 0.919) 0.885 (0.8480.922) 0.881 (0.845 0.918) 0.876 (0.841 0.911) 0.889 (0.854 0.924) 0.892 (0.852 0.926) 

Calibration in the large 0.001 ( −0.022 0.019) 0.001 ( −0.021 0.020) 0.002 ( −0.023 0.019) 0.005 ( −0.026 0.016) 0.010 ( −0.031 0.010) 0.014 ( −0.035 0.006) 

Calibration slope 1.183 (0.950 1.415) 1.195 (0.964 1.424) 1.158 (0.934 1.380) 1.030 (0.824 1.235) 1.298 (1.048 1.547) 1.344 (1.087 1.599) 
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s the worst bleeding score variable. Although an important po- 

ential predictor for miscarriage, this variable was associated with 

oor feature importance in most of the models ( Fig. 3 ). 

The features importance as described above was not neces- 

arily constant through time as reported in Fig. 4 . The longitudi- 

al assessment of features importance from the LR model demon- 

trates that, under the independent assumption, the interaction 

erm MSD 

∗FH was the determining variable throughout all gesta- 

ional ages, far above the other predictors, although its importance 
5 
ecreases in the second half of the examined period. Taking into 

ccount correlated variables, it remained the first driving variable 

ut its importance decreased as the credit was shared among other 

ariables. On the LGBM model, this analysis demonstrated that the 

RL globally stayed the most significant variable while the impor- 

ance of the MSD variable decreased with GA. In the opposite, the 

ifference in estimated GA between LMP and ultrasound measure- 

ents became more important in the second half of the examined 

eriod. 
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Fig. 2. Longitudinal assessment of the performance metrics for the parsimonious models. AUC, calibration slope and calibration in the large are displayed depending on 

the GA by LMP at the date of scan using a time window of 30 days around the GA. Both LR and LGBM display similar profiles in terms of discrimination and calibration 

performance. Note that the proportion of pregnancies remaining at risk of miscarriage naturally decreases with time, which partly explains the increase of AUC for higher 

GA. AUC: area under the curve; GA: gestational age; LGBM: light gradient boosted machine; LMP: last menstruation period; LR: logistic regression. 
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Fig. 3. Raw features importance measured with averaged absolute SHAP values per variable. 

Variables that contribute significantly to the model’s predictions for many patients have a high importance depicted as a large averaged absolute SHAP value. Main effects 

are colored in blue, interaction effects (first order variable interaction) are colored in orange. For LR models, the correlated SHAP approach (first column) takes variables 

collinearity into account when computing the SHAP values. The resulting feature importance is more balanced among correlated variables than the independent SHAP 

approach (second column) which directly reflects the LR coefficients. LGBM are reported with main effect only (third column) and with first order interactions (fourth 

and fifth columns, only the top 20 features). Despite similar performances, the algorithms have a different internal use of the same set of features. For example, the 

interaction MSD ∗FH is the main driving force of the LR model but appears as the 7th most important variable (second interaction term) in LGBM. CRL: crown-rump length; 

GA: gestational age; LGBM: light gradient boosted machine; LMP: last menstruation period; LR: logistic regression; MSD: mean sac diameter; PUQE: Pregnancy-Unique 

Quantification of Emesis. 
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The decision paths followed by the LR and LGBM parsimonious 

odels for three patients with different predicted risks are dis- 

layed in Fig. 5 . Finally, the three main first-order interaction ef- 

ects modeled by LGBM were CRL ∗MSD, FH 

∗MSD and Maternal Age 

Difference in GA, and are displayed in Fig. 6 . 

. Discussion 

In this paper, we compared the predictive performance and the 

nterpretability of an advanced ML algorithm over a carefully spec- 

fied LR model. Overall, the different models demonstrated similar 

redictive performances. Both algorithms, although delivering dif- 

erent explanations, were intuitively explained by the SHAP frame- 

ork at the local-level, i.e. for each individual patient prediction, 

nd at the global or model-level. While LR models remain sim- 

le to implement and to train, gradient boosted trees algorithms 

emonstrated additional potential benefits for clinical modeling. A 

omparative on the use of LR vs LGBM for clinical modeling is re- 

orted in Table 2 . 

.1. Predictive performance 

For the specific problem of first trimester viability, and given 

he dataset available, more advanced models such as gradient 

oosted trees did not demonstrate outstanding benefit in terms 

f predictive performance over a simple linear model carefully 

rafted with an interaction term. The raw and longitudinal perfor- 

ance metrics on the test set were similar for both algorithms 

 Table 1 and Figs. 2 , S1), with the exception of the complete

GBM model’s calibration slope which was worse than with the 

omplete LR model (calibration slope of 1.298, p -value: 0.019 vs 

.030, p -value: 0.776, respectively and Fig. 1 b). This corrobo- 

ates previous studies which found the absence of performance 

a

7 
ain from advanced models compared to LR in clinical modeling 

 21 , 39 , 40 ]. 

.2. Interpretability 

.2.1. Model-level interpretability with SHAP feature importance 

Although both algorithms displayed similar performances, par- 

imonious LR and LGBM demonstrated different behaviors when 

nspecting the models under the SHAP framework. The predic- 

ions from the LR model are mostly driven by the interaction term 

SD 

∗FH ( Figs. 3 , 4 ), whereas LGBM predictions are mostly driven

y CRL and the difference in estimated GA ( Figs. 3 , 4 ). This phe-

omenon is known as the Rashomon effect [41] , where multiple 

lgorithms with similar performances can have completely differ- 

nt internal mechanism to derive their final predictions. The SHAP 

ramework remains a method to derive individual explanations re- 

arding a specific model. As a result, it should not be regarded as 

 way to derive absolute (causal) explanations. Model dependency 

hould therefore be kept in mind when delivering post-hoc expla- 

ations to physicians. 

.3. Longitudinal SHAP feature importance and GA-dependence 

Variables such as maternal age or the history of previous mis- 

arriages are naturally independent of GA and display therefore a 

onstant feature importance throughout the range of GA ( Fig. 4 ). 

n the other hand, some variables demonstrate changes in their 

eature importance depending on the GA ( Fig. 4 ). This phenomenon 

s partly explained by the specificities of the dataset and the en- 

oding of the data. For instance, the fetal heartbeat is frequently 

bsent (FH = 0) on ultrasound scans performed at very early GA, ir- 

espective of the future pregnancy outcome. Therefore, the inter- 

ction term MSD 

∗FH of the LR model is encoded as zero, even if 



T. Vaulet, M. Al-Memar, H. Fourie et al. Computer Methods and Programs in Biomedicine 213 (2022) 106520 

Fig. 4. Longitudinal features importance measured as averaged absolute SHAP values per variable. In the LR model, under the independent SHAP values computation, 

the interaction term MSD ∗FH is much more important in the beginning than in the second half of the examined period, although it remains from far the main driving 

variable throughout all gestational ages. Under the correlated approach, this interaction term remains the most important variable, but the credit is now shared among 

other correlated variables. In the LGBM model, the CRL variable stays the main variable while the importance of MSD decreases with GA. On the other hand, the difference 

in estimated GA becomes more important in the second half of the examined period. CRL: crown-rump length; FH: fetal heart; GA: gestational age; LGBM: light gradient 

boosted machine; LMP: last menstruation period; LR: logistic regression; MSD: mean sac diameter; PUQE: Pregnancy-Unique Quantification of Emesis. 
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Fig. 5. Decision path plots . Example of individual prediction explained with the SHAP values for 3 instances of the test set (dashed line = correlated SHAP, plain line = inde- 

pendent SHAP). The SHAP values attributed to each variable fixed at their current value (as indicated below the x-axis) are gradually summed from left to right to explain 

the departure of the current prediction from the study population prevalence ( gray dashed line ), acting as a baseline viability probability. The bigger the magnitude of the 

SHAP value, the larger the variable contribution to the final prediction. The variables are ordered from lower to higher importance at the prediction level. For example, in 

the top graph, small values of CRL (2.6 mm) and MSD (4.8 mm) in combination with an older maternal age (41 years) and a large difference in estimated GA (17.2 mm) 

produce a low chance of viability from both models. CRL: crown-rump length; GA: gestational age; LGBM: light gradient boosted machine; LMP: last menstruation period; 

LR: logistic regression; MSD: mean sac diameter; Nan: missing; PUQE: Pregnancy-Unique Quantification of Emesis. 
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Table 2 

A comparison of logistic regression models and gradient boosted trees for clinical modeling. 

Logistic Regression Gradient boosted trees 

Predictive performance 

Discrimination Comparable if models correctly specified 

Calibration Comparable if models correctly specified 

Interpretability 

Raw interpretability Based on model’s coefficients. Subject to: multicollinearity, various unit 

scales, logit transform,… Not straightforward for physicians 

Complex, possibility to extract feature 

importance. Not straightforward for 

physicians 

Under the SHAP framework 

Model-level SHAP feature importance 

Patient-level Decision path plots Individual predictions explained as a sum of SHAP values 

Collinearity Handled by correlated SHAP Less affected by collinearity 

Variable interactions Based on the pre-specified interactions Possible with SHAP interaction values 

Specificities 

Missing values Require complete datasets Handle missing data internally 

Feature selection Possible with l1-regularization Internal 

Non-linearity (e.g. 

interactions) 

Pre-specified Internal 

Optimization Careful variable specifications Require hyper-parameters tuning 
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SD is observed. As the pregnancy evolves, it becomes unlikely 

ot to observe a fetal heartbeat. As a result, for more advanced 

A, a smaller proportion of pregnancies displays a null value for 

he interaction term FH 

∗MSD. Because the overall feature impor- 

ance is expressed as a mean of absolute values, the highly nega- 

ive SHAP values associated with MSD 

∗FH = 0 are counterbalanced 

y the large positive SHAP values when both MSD and FH are ob- 

erved in the second half of the period ( Fig. 4 A). When the credit

s shared among correlated variables, this phenomenon is signifi- 

antly reduced ( Fig. 4 B). A similar phenomenon explains why the 

mportance of the CRL variable increases with higher GA in the 

GBM model ( Fig. 4 C). For early GA, the embryo is often not visible.

herefore, the proportion of pregnancies where the CRL variable 

s encoded as zero is higher for early GA compared to advanced 

regnancies. The positive discrepancy in GA estimation, a strong 

redictor of miscarriage, increases with GA. Hence, the large posi- 

ive differences in GA, associated with large negative SHAP values, 

re mostly observed in the second half of the period explaining the 

onstant increase in variable importance for the discrepancy in GA 

 Fig. 4 C). 

These considerations highlight a drawback of the SHAP 

ramework: the measure of feature importance, computed as 

ean(|SHAP values|), is directly dependent on the composition of 

he sample. The data used to compute the feature importance 

hould be representative of the targeted population. The aggrega- 

ion of individual SHAP explanations under the absolute operator 

ight also obfuscate complex patterns of variable importance. 

.4. Interpretability under multicollinearity 

Interestingly, CRL had a very low importance in the parsimo- 

ious LR model under the independent SHAP approach ( Fig. 3 , 

oefficient’s p -values = 0.532 from Table S3). This is mostly ex- 

lained by the collinearity with other variables (especially MSD) 

nd highlights the limitations of LR in presence of correlated vari- 

bles which disturbs the relationship between independent and 

ependent variables. Although this problem does not necessarily 

mpact the prediction performance, it infringes the interpretabil- 

ty of LR models. Thoughtful variables selection a priori , dimen- 

ionality reduction or regularization can alleviate this phenomenon 

42] . However, the correlated method for SHAP values presents an 

nteresting alternative to display interpretable feature importance 

n the presence of collinearity as it shares credits among corre- 

ated variables, even if not explicitly used by the model. Under this 

ethod, the CRL variable importance drastically increased and re- 
10 
ected a more realistic view of this ultrasound parameter impor- 

ance ( Fig. 3 ). On the other hand, LGBM, due to its boosted nature,

s more robust to the multicollinearity problem, as depicted in the 

eature importance analysis even under the independent SHAP ap- 

roach ( Fig. 3 ). 

.5. Interpretable individual predictions with decision path plots 

At the individual prediction level, the SHAP framework decom- 

oses each prediction into a sum of Shapley values. This sum ex- 

lains the departure of the current prediction from a baseline pre- 

iction. The SHAP values attributed to each variable value can be 

rganized into a meaningful visualization plot to derive the deci- 

ion path followed by the model to reach the current prediction. 

xamples of such decision paths plots are reported in Fig. 5 . Those 

lots constitute a meaningful way to translate complex algorithms 

ecisions into interpretable predictions. As a model-agnostic ex- 

lainer relying on the original variables additively, it allows for 

eaningful comparisons between different algorithms. 

.6. Exploring interaction effects 

The SHAP values from non-linear models can be computed tak- 

ng first order interactions into account [ 31 ]. The interaction plots, 

ased on Shapley values, provide a clever alternative to partial de- 

endence plots. In the parsimonious LGBM, the interaction effect 

etween MSD and FH ranked 6th in terms of feature importance 

nd constitutes the 2nd most important interaction term (out of 36 

ossible combinations) which corroborates its use in the LR model 

and in previous study [27] ). The interaction between CRL and MSD 

as the most important interaction effect and bears similar in- 

erpretation as the interaction between MSD and FH: intrauterine 

regnancy without visible embryo is at higher risk of miscarriage 

hen MSD increases. In the third interaction effect, a large discrep- 

ncy in GA appears to be modeled as a protective variable in young 

omen while it becomes a risk factor in older women. Such inter- 

ction has never been reported and its clinical relevance remains 

ncertain as it might result from spurious findings based on the 

pecificity of the training set. 

.7. SHAP framework for LR models 

While LR models are often labeled as interpretable models, it is 

et to demonstrate that every clinician fully understands the intri- 

acy of such models, especially in the presence of non-linear terms 
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Fig. 6. Top three of interaction effects learned from LGBM and measured with the SHAP 

framework . The x-axis variable represents the first variable of the interaction. The 

color bar on the right indicates the value of the second variable present in the in- 

teraction. The SHAP value of the interaction is reported on the y-axis. (A). MSD 

∗CRL , 

intrauterine pregnancies without visible embryo (CRL equals to zero) have a higher 

predicted risk of miscarriage (depicted as negative SHAP values) when MSD in- 

creases; ( B). MSD 

∗FH , pregnancies with high MSD without FH present have a higher 

predicted risk of miscarriage than with FH (see the negative SHAP values of yellow 

dots for MSD greater to 15 mm); and ( C). Maternal Age ∗ difference in GA: a large 

discrepancy in GA is modeled as a protective variable in young women while it be- 

comes a risk factor in older women. CRL: crown-rump length; FH: fetal heartbeat, 

GA: gestational age; MSD: mean sac diameter. 
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nd multicollinearity. We have demonstrated that the SHAP frame- 

ork provides straightforward visualization of the feature impor- 

ance and individual prediction explanations with decision path 

lots, irrespective of the variables’ scales and collinearity. Intu- 

tive decision path plots are easy to understand and do not require 

eep knowledge of LR formulation. Therefore, we believe that, as a 

ost-hoc explanation method, the SHAP framework can also ben- 

fit simple clinical models such as LR models in complement to 

raditional coefficients analysis. 
11 
.8. Gradient boosted trees advantages 

Besides models’ performance and interpretability, we also 

emonstrated that LGBM produced similar results on incomplete 

atasets compared to imputed data. The internal handling of miss- 

ng values by LGBM constitutes therefore a potential advantage 

ver LR where (multiple) imputation should be carefully performed 

eforehand. Furthermore, the inherent non-linearity of LGBM algo- 

ithms facilitates the development of efficient models as it does 

ot require explicit interaction terms like LR models. 

Finally, while a clever preselection of meaningful variables by 

xpert knowledge is often recommended to prevent unnecessar- 

ly complicated models with an increased risk of overfitting [43] , 

ithout prior knowledge it can be difficult to establish such pre- 

efined set of variables. Despite its flexibility, LGBM models main- 

ained good discriminative performance even with a large set 

f variables on the complete dataset. This demonstrates the ef- 

cient internal feature selection/weighting mechanism of gradi- 

nt boosted trees. The high ranking of the pre-specified variables 

ithin the complete LGBM model also reflected this feature selec- 

ion mechanism. 

.9. Strengths and limitations 

To the best of our knowledge, this study is one of the first to 

pply interpretable ML to first trimester viability prediction. The 

odels were trained on a qualitative dataset from a well-defined 

rospective study using of validated symptom scores from early 

n in the first trimester. The models development included proper 

issing values imputations and hyper-parameters tuning. Unlike 

any previous comparative studies, this paper provides a rigorous 

odels comparison through an extensive performances assessment 

eyond simple discriminative performance, including calibration 

nd longitudinal visualizations of the performance metrics based 

n the GA. 

One of the limitations of this study is the absence of a proper 

xternal validation set. However, we should note that the focus of 

his paper is not on building the ultimate predictive model but 

ather to demonstrate the potential of ML with post-hoc inter- 

retability methods for early pregnancy predictive analytics. Sec- 

ndly, our models use an estimation of GA by LMP, which is, how- 

ver, not always available or accurate in practice [44] . Lastly, we 

ould like to point out some practical limitations of the Shap- 

ey values approach. Because of its feature perturbation nature, 

he computation of Shapley values often need access to a back- 

round dataset (unless using the specific approach for tree en- 

embles [31] ), which might impinge its use for model deployment. 

oreover, depending on the dataset dimensionality, this perturba- 

ion step can be computationally expensive due to the combinatory 

ature of the Shapley value computation. 

. Conclusion 

In this paper, we have demonstrated and assessed the use of 

achine learning enhanced by a post-hoc interpretability method 

or first trimester viability prediction. Gradient boosted algorithms 

erformed as good as carefully crafted LR models in terms of dis- 

rimination and calibration. Furthermore, gradient boosted trees 

lgorithms present several advantages over traditional LR models, 

uch as the handling of missing values and the internal modeling 

f non-linearity, making them serious candidates for future works 

n first trimester prediction. Finally, we showed that the under- 

tanding of clinical models, including traditional LR models, can be 

mproved by the use of additive feature attribution frameworks. 
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