
1

Towards Deep Adaptive Hinging Hyperplanes
Qinghua Tao, Jun Xu, Zhen Li, Na Xie, Shuning Wang, Xiaoli Li, Johan A.K. Suykens, Fellow, IEEE

Abstract—The adaptive hinging hyperplanes (AHH) model is
a popular piecewise linear representation with a generalized tree
structure, and has been successfully applied in dynamic system
identification. In this paper, we aim to construct the deep AHH
(DAHH) model to extend and generalize the networking of AHH
model for high dimensional problems. The network structure
of DAHH is determined through a forward growth, in which
the activity ratio is introduced to select effective neurons and no
connecting weights are involved between layers. Then all neurons
in the DAHH network can be flexibly connected to the output
in a skip-layer format, and only the corresponding weights are
the parameters to optimize. With such network framework, the
back-propagation algorithm can be implemented in DAHH to
efficiently tackle large scale problems and the gradient vanishing
problem is not encountered in the training of DAHH. In fact,
the optimization problem of DAHH can maintain convexity with
convex loss in the output layer, which brings natural advantages
in optimization. Different from the existing neural networks,
DAHH is easier to interpret, where neurons are connected
sparsely and ANOVA decomposition can be applied, facilitating to
revealing the interactions between variables. Theoretical analysis
towards universal approximation ability and explicit domain
partitions are also derived. Numerical experiments verify the
effectiveness of the proposed DAHH.

Index Terms—Adaptive hinging hyperplanes, piecewise linear,
skip-layer connection, domain partition, ANOVA decomposition.

I. INTRODUCTION

DEEP neural networks (NN) have been widely applied
and have achieved significant breakthroughs in various

applications [1]–[5]. In deep NNs, the flexibility of networks
greatly relies on their activation functions, which introduce
nonlinearity to flexibly approximate complicated systems. In
recent years, the rectifier linear unit (ReLU) was proposed
and became one of the most popular activation functions
since it can relieve gradient difficulties in back-propagation
[6]. In essence, ReLU is a piecewise linear (PWL) function,

This work is jointly supported by National Natural Science Foundation
of China U181322, 71772195, and 61873006, National Key Research and
Development Project (2018YFC1602704, 2018YFB1702704), ERC Advanced
Grant E-DUALITY (787960), KU Leuven Grant CoE PFV/10/002, and Grant
FWO G0A4917N. (Corresponding author: Na Xie.)

Qinghua Tao is with STADIUS, ESAT, KU Leuven, Belgium and the
Department of Automation, Tsinghua University, Beijing 100084, China, email:
qinghua.tao@esat.kuleuven.be.

Jun Xu and Zhen Li are from School of Mechanical Engineering and
Automation, Harbin Institute of Technology, Shenzhen 518055 China, email:
xujunqgy@hit.edu.cn, zueslee.hitsz@foxmail.com.

Na Xie is with School of Management Science and Engineering, Cen-
tral University of Finance and Economics, Beijing 100081, China, email:
xiena@cufe.edu.cn.

Shuning Wang is with the Department of Automation, Tsinghua University,
Beijing 100084, China, email: swang@tsinghua.edu.cn.

Xiaoli Li is with Faculty of Information Technology, Beijing University of
Technology, Beijing 100124, China, email: lixiaolibjut@bjut.edu.cn.

Johan A.K. Suykens are with STADIUS, ESAT, KU Leuven, Belgium, email:
johan.suykens@esat.kuleuven.be.

meaning that it appears different linear expressions in different
subregions. In fact, the neuron output of ReLU is equivalent
to the hinging hyperplanes (HH), which is a popular model in
PWL representation theory [7]. Then, many variants of ReLU
were proposed, such as leaky ReLU [8], parametric ReLU [9],
adaptive ReLU [10], etc [11], [12]. These variants can also be
equivalently formulated as HH models. In [13], Goodfellow
et al. proposed the Maxout network and achieved state-of-the-
art performance in some benchmarks. The activation of the
Maxout network is closely related to the generalized hinging
hyperplanes (GHH), another important PWL model [14].

Although the deep structures have shown to be powerful,
the existing deep NNs are generally considered as complicated
black-boxes, which are difficult to interpret and analyze. The
common way to achieve high accuracy and flexibility in such
NNs is by simply stacking more layers, bringing more obstacles
in interpretation and optimization.

In PWL representations, the adaptive hinging hyperplanes
(AHH) model was proposed [15]. Similar to HH and GHH,
AHH model consists of a linear combination of PWL basis
functions, but differently it is built based on a generic tree
topology, which is more interpretable than that of HH and
GHH. The existing AHH is trained in an incremental manner,
where the model is constructed progressively. In each iteration,
it requires exhaustive searches on domain partitions by solving
least squares (LS) problems repeatedly to generate two new
basis functions, which is very computationally expensive [15].
Afterwards, another round of exhaustive searches is performed
to identify the redundant basis functions and delete them to
prevent over-fitting. Fast AHH (FAHH) was proposed to reduce
the exhaustive searches and the least absolute shrinkage and
selection operator (LASSO) was introduced to replace the
exhaustive pruning, but the improvement of FAHH is still
limited [16], [17]. Then, the efficient hinging hyperplanes
(EHH) model was constructed to further improve the efficiency
of AHH to formulate a directed acyclic graph, and achieved
some improvement in dynamic system identification [18]. EHH
inherits the method in FAHH to optimize parameters and also
conducts the structure optimization, thus it still needs exhaustive
searches to progressively generate the model with the lowest
objective function in each iteration, where LASSO problems
need to solve repeatedly. Hence, EHH is still prohibitive in
efficiency and lacks extendability to various tasks [19].

In this paper, we revisit both AHH and EHH, and aim to bring
a generalized neural network based on AHH by constructing
the deep AHH (DAHH) neural network. The proposed DAHH
can be regarded as an attempt to extend the PWL representation
model of AHH to apply for high dimensional regression and
classification problems.

DAHH is established as a compact neural network without
harming the interpretability of AHH and makes the training

2

techniques in deep NNs well fitted. In the forward growth of
network structure, DAHH makes a trade-off between exhaustive
searches in AHH and EHH by incorporating the concept of
activity ratio to obtain effective neurons, which resembles the
generation of leaf nodes in decision trees and random forests.
In the forward growth, neurons are connected in a skip-layer
format with “ min{·, ·}′′ activations and no connecting weight
is involved. Then all neurons from each layer can also be
flexibly connected to the output by skipping layers, completing
the DAHH network.

Under the proposed structure diagram, back-propagation
algorithm can be easily implemented in DAHH, which can
tackle large scale problems and flexibly extend the current LS
residuals to different loss functions, such as the cross entropy
for classification. In training DAHH, we only need to optimize
the weights connecting the output, which not only avoids
the gradient difficulty in back-propagation, but also maintains
convexity with convex losses in the output layer, bringing
natural advantages in optimization. Meanwhile, the backward
pruning is also employed to reduce redundancy resulted from
forward growth, in which the neurons with zero connecting
weights can be easily pruned to obtain more concise structures.

Compared to the typical fully connected NNs or multilayer
percetrons (MLP), DAHH has a sparser structure, which
facilitates detecting the interactions among variables in each
neuron and extracting the explicit domain partitions and locally
linear expressions. Theoretical analysis of the approximation
ability is also given. Numerical experiments are then conducted
to verify the effectiveness of the proposed DAHH.

The rest of the paper is organized as follows. Section II
briefly introduces related PWL representations and activations
in NNs. Section III introduces the forward growth of DAHH
network structure and Section IV proposes the training method
for DAHH. In Section V, detailed theoretical analysis of
DAHH is provided. Section 6 reports the numerical experiments.
Finally, Section VII ends the paper with brief conclusions.

II. BACKGROUND

A. PWL Activations and Hinging Hyperplanes Models

Among the existing activations in NNs, ReLU is one of the
most popular ones, and is written as max{0, x}. In fact, the
neuron output of ReLU activation is equivalent to the basis
function in HH model, which is formulated as

fHH(x) =

M∑
m=1

wm max{aTmx + bm, 0}, (1)

where wm, bm ∈ R, am,x ∈ Rd and M is the number of
basis functions (hidden units) [7].

Analogously, the Maxout activation is then proposed, and it
is expressed as maxi∈I{zi}, where I is an index set [13]. As
ReLU to HH, Maxout closely resembles GHH, i.e.,

fGHH(x) =

M∑
m=1

wm max{aTm,1x+bm,1, . . . ,a
T
m,imx+bm,im}

(2)
where im is the number of linear functions contained in the
mth basis function [14].

B. AHH

In PWL representation theory, AHH is proposed , such that

fAHH(x) = w0 +
∑M
m=1 wmzm(x)

zm(x) = minj{max{0, δj,m(xvj,m − βj,m)}}, (3)

where vj,m ∈ Jm, Jm ⊆ {1, . . . , d}, δj,m = ±1, xvj,m is the
vj,mth variable of x ∈ Rd, and βj,m is the splitting knot on
variable (dimension) xvj,m [15].

Different from HH and GHH, variables x1, . . . , xd are
coupled by nested min{·} and max{·} operators in AHH,
instead of a linear combination aTx + b. Meanwhile, the
variables in each basis function can also be different and
need to be identified. The existing identification method of
AHH is developed in an incremental manner to generate basis
functions, which can be interpreted as the recursive domain
partitions, where each basis function corresponds to a subregion.
Specifically in each iteration, it sequentially chooses one of
the existing basis functions (subregions) as the root, and then
traverses all the candidate knots in each dimension to select
the one with the sharpest error decrease to split, leading to the
generation of two new basis functions. A simple example is
presented in Fig. 1.

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration (d) 4th iteration

Fig. 1: An simple illustration on the geometrical descrip-
tion of fAHH(x) =

∑8
m=1 wmzm(x), where z1(x) =

max{0, x2 − 0.4}, z2(x) = max{0, 0.4 − x2}, z3(x) =
max{0, 0.4 − x1}, z4(x) = max{0, x1 − 0.4}, z5(x) =
min{z2, z3}, z6(x) = min{z2, z4}, z7(x) = min{z1, z4},
z8(x) = min{z2, z4}, where zm(x) can be regarded to
corresponds to a subregion Tm.

In Fig. 1, each iteration traverses all the existing basis
functions in all candidate splitting knots along x1 and x2, and
then select the best split to generate two new basis functions.
For instance, the 4th iteration sequentially chooses the existing
6 basis functions z1, . . . , z6 (concerning T1, . . . ,T6) as the
root, and traverses all candidate splits x1 = 0, 0.1, . . . , 0.9 and
x2 = 0, 0.1, . . . , 0.9, where their corresponding parameters all
need to be computed for 6 × (10 + 10) = 120 times by LS
and then the split with the lowest fitting error (x2 = 0.4) is
selected, generating z7 and z8.

The above recursive partition can be interpreted as a
generic tree with basis functions zm(x) as nodes, whose linear
combination is the output. In the tree topology, the relations
among variables are not depicted explicitly and the information
of previously generated basis functions is not easy to be reused.
In fact, such tree topology can be equivalently performed as a
special network [18]. Fig. 2 gives the topology of the AHH
model described in Fig. 1.

Similar with the exhaustive searching in AHH, EHH also
requires to traversing all candidate splits to obtain the model

3

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T0 T T

1

() ()m m

m

f w w z


 x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

AHH T0 T T

1

() ()m m

m

f w w z


 x x

(a) Tree topology.

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T2

T1
T3 T4

T5 T6 T8

T7

. . .
. . .

. . .
. . .

Full skip-layer output

1#

2#

(K-1)#

K#

. . . DAHHf

1,1w

,k sw

, KK nw

. . .

Partial skip-layer output

1#

K#

. . .

out

DAHH , ,

1

knK

k s k s

k s

f w z
 

 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
 



DAHHf

,k sw

(b) Network topology.

Fig. 2: Topology of AHH model depicted in Fig. 1.

by repeatedly solving multiple LASSO problems and checking
their corresponding objective values, and then selects the best
one. Thus it is still prohibitive in efficiency and extendability
to large scale problems in various tasks.

III. DEEP ADAPTIVE HINGING HYPERPLANES NEURAL
NETWORKS

In this section, inspired by the PWL representation of AHH,
we aim at constructing the neural network based on AHH to
tackle large scale problems in regression and classification with
efficient network structures and flexible training methods.

A. Sketch of DAHH Neural Network

In this paper, we aim at constructing and training a novel
neural network based on AHH. The existing AHH and EHH
are applicable to low dimensions with a few variables in basis
functions, while the proposed network focuses on large scale
problems with deeper structure. Thus, we name it as DAHH.

DAHH performs the forward growth to generate the network
structure and the output. Then, backward training is employed
to efficiently train DAHH. The diagram of the forward growth
to obtain DAHH network structure is shown in Fig. 3.

In Fig. 3(a), the dashed lines indicate the data flow and
the generation of network layers, where the data pass through
the DAHH network via layers. Different from the standard
MLP, there exist skip-layer connections in DAHH, where the
initial layer (1#) is connected with each subsequent layer.
In the geometrical interpretation of DAHH, such skip-layer
connections give further feature space partitions in generating
more flexible PWL neurons. In the deep residual neural
network, the concept of skip-layer connection is also adopted
[5]. Differently, there is no connecting weight in the forward
growth of DAHH, and such skip-layer connection is an intrinsic
property from DAHH itself instead of extra modifications.

In Fig. 3(b), the solid lines are the connections among
neurons. For representation simplicity, the output connection
is omitted in Fig. 3(b) and will be introduced with details
in Section III-A3. Fig. 3(b) illustrates that the neurons are
connected sparsely, where the neurons in layer Ki# after
the initial layer are only connected with one neuron from the
previous layer (Ki−1)# and another one from the initial layer

T1 T2 T3 T4

T5 T6 T7 T8

T0

1TB 2TB 3TB 4TB

5 1 2min{ , }T T TB B B

6 2 3min{ , }T T TB B B

7 2 4min{ , }T T TB B B

8 3 4min{ , }T T TB B B

1TB

2TB

3TB

4TB

Input

5 2 3min{ , }T T TB B B

6 2 4min{ , }T T TB B B

7 4 1min{ , }T T TB B B

8 4 2min{ , }T T TB B B

.

.

.

.

.
Input

1,1 1 11max{ }z x  

11, max{ }n n njz x  

1,2z

2,1 1,1 1,2min{ , }z z z

11, 1nz  22, 1nz 

22,nz
33,nz

3,1 1,2 2,1min{ , }z z z

,1kz

, kk nz

, 1kk nz 

3 1 23, 1, 1,min{ , }n n nz z z

T1

T2

T3 T4

T5 T6

T7

T8

.

.

.

1x

2x

nx

1nx 

1,1()f x

1,2 ()f x

11, ()Mf x

11, 1()Mf x

2,1()f x

22, ()Mf x

1,1()Kf x

1, ()
KK Mf x

, ()K mf x.

.

T1 T2 T3 T4

T5 T6 T7 T8

T0

1TB 2TB 3TB 4TB

5 2 3min{ , }T T TB B B

6 2 4min{ , }T T TB B B

7 4 1min{ , }T T TB B B

8 4 2min{ , }T T TB B B

T1

T2

T3 T4

Input

. . . Output

. . .
. . .

OutputOutput

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1,sz

2,sz

,K sz

Full skip-layer connection

1,K sz 

OutputOutput

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .

1,sz

out ,K sz

,K sz

Partial skip-layer connection

. . .
. . .

1, max{ ,0}
s ss v vz x  

1 22, 1, 1,min{ , }s s sz z z
1 21, 1, 2,min{ }K s s K sz z z 

` 2, 1, 1,=min{ , }K s s K sz z z 

. . .

. . .

. . .

. . .

1,sw

2,sw

,r sw

1,K sw 

,K sw

,r sw

,K sw

out ,K sw

Input

. . . Output

1,sz 2,sz
1,K sz  ,K sz

. . .

. . .

. . .

. . .

. . .

. . .

11,nz
1,2z

2,1z

11, 1nz 

22,nz

,1kz
, kk nz

33,nz

1,sz 2,sz 1,K sz  ,K sz

Input

. . .

Output

1 22, 1, 1,min{ , }s s sz z z

1 21, 1, 2,min{ }K s s K sz z z 

` 2, 1, 1,=min{ , }K s s K sz z z 

. . .

. . .

. . .

. .
 .

1, max{ ,0}
s ss v vz x  

1 2, 1, 1,min{ }r s s r sz z z 

1,sz

2,sz

1,K sz 

,K sz

1,1z

Input

1, 2kz 1,1kz  . . .

. . .

. . .

. . .

. . .

.

1,sz 2,sz ,K sz

Full skip-layer connection

1,K sz 

.

1,sz
out ,K sz ,K sz

Partial skip-layer connection

.

1,sw
2,sw 1,K sw 

,K sw

,K sw
out ,K sw

DAHHf

DAHHf

Input

. . .

. . .

. . .

. . .

. . .

. . .

1# 2# 3# (K-1)# K#

. . .
. . .

. . .
. . .

Full skip-layer output

1#

2#

(K-1)#

K#

. . . DAHHf

1,1w

,k sw

, KK nw

. . .

. . .

Partial skip-layer output

1#

K#

. . .

out

DAHH , ,

1

knK

k s k s

k s

f w z
 

 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
 



DAHHf

.

.

.

.

.
Input

1,1 1 11max{ }z x  

11, max{ }n n njz x  

1,2z

2,1 1,1 1,2min{ , }z z z

11, 1nz  22, 1nz 

22,nz
33,nz

3,1 1,2 2,1min{ , }z z z

,1kz

, kk nz

, 1kk nz 

3 1 23, 1, 1,min{ , }n n nz z z

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Input

1# 2# 3# (K-1)# K#

,k sw

(a) Forward growth of network structure.

T1 T2 T3 T4

T5 T6 T7 T8

T0

1TB 2TB 3TB 4TB

5 1 2min{ , }T T TB B B

6 2 3min{ , }T T TB B B

7 2 4min{ , }T T TB B B

8 3 4min{ , }T T TB B B

1TB

2TB

3TB

4TB

Input

5 2 3min{ , }T T TB B B

6 2 4min{ , }T T TB B B

7 4 1min{ , }T T TB B B

8 4 2min{ , }T T TB B B

.

.

.

.

.
Input

1,1 1 11max{ }z x  

11, max{ }n n njz x  

1,2z

2,1 1,1 1,2min{ , }z z z

11, 1nz  22, 1nz 

22,nz
33,nz

3,1 1,2 2,1min{ , }z z z

,1kz

, kk nz

, 1kk nz 

3 1 23, 1, 1,min{ , }n n nz z z

T1

T2

T3 T4

T5 T6

T7

T8

.

.

.

1x

2x

nx

1nx 

1,1()f x

1,2 ()f x

11, ()Mf x

11, 1()Mf x

2,1()f x

22, ()Mf x

1,1()Kf x

1, ()
KK Mf x

, ()K mf x.

.

T1 T2 T3 T4

T5 T6 T7 T8

T0

1TB 2TB 3TB 4TB

5 2 3min{ , }T T TB B B

6 2 4min{ , }T T TB B B

7 4 1min{ , }T T TB B B

8 4 2min{ , }T T TB B B

T1

T2

T3 T4

Input

. . . Output

. . .
. . .

OutputOutput

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1,sz

2,sz

,K sz

Full skip-layer connection

1,K sz 

OutputOutput

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .

1,sz

out ,K sz

,K sz

Partial skip-layer connection

. . .
. . .

1, max{ ,0}
s ss v vz x  

1 22, 1, 1,min{ , }s s sz z z
1 21, 1, 2,min{ }K s s K sz z z 

` 2, 1, 1,=min{ , }K s s K sz z z 

. . .

. . .

. . .

. . .

1,sw

2,sw

,r sw

1,K sw 

,K sw

,r sw

,K sw

out ,K sw

Input

. . . Output

1,sz 2,sz
1,K sz  ,K sz

. . .

. . .

. . .

. . .

. . .

. . .

11,nz
1,2z

2,1z

11, 1nz 

22,nz

,1kz
, kk nz

33,nz

1,sz 2,sz 1,K sz  ,K sz

Input

. . .

Output

1 22, 1, 1,min{ , }s s sz z z

1 21, 1, 2,min{ }K s s K sz z z 

` 2, 1, 1,=min{ , }K s s K sz z z 

. . .

. . .

. . .

. .
 .

1, max{ ,0}
s ss v vz x  

1 2, 1, 1,min{ }r s s r sz z z 

1,sz

2,sz

1,K sz 

,K sz

1,1z

Input

1, 2kz 1,1kz  . . .

. . .

. . .

. . .

. . .

.

1,sz 2,sz ,K sz

Full skip-layer connection

1,K sz 

.

1,sz
out ,K sz ,K sz

Partial skip-layer connection

.

1,sw
2,sw 1,K sw 

,K sw

,K sw
out ,K sw

DAHHf

DAHHf

Input

. . .

. . .

. . .

. . .

. . .

. . .

1# 2# 3# (K-1)# K#

. . .
. . .

. . .
. . .

Full skip-layer output

1#

2#

(K-1)#

K#

. . . DAHHf

1,1w

,k sw

, KK nw

. . .

. . .

Partial skip-layer output

1#

K#

. . .

out

DAHH , ,

1

knK

k s k s

k s

f w z
 

 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
 



DAHHf

.

.

.

.

.
Input

1,1 1 11max{ }z x  

11, max{ }n n njz x  

1,2z

2,1 1,1 1,2min{ , }z z z

11, 1nz  22, 1nz 

22,nz
33,nz

3,1 1,2 2,1min{ , }z z z

,1kz

, kk nz

, 1kk nz 

3 1 23, 1, 1,min{ , }n n nz z z

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Input

1# 2# 3# (K-1)# K#

,k sw

(b) Neuron connections in the forward growth.

Fig. 3: Diagram of the forward procedure in generating
DAHH network, where the output connections are omitted
for expression simplicity.

1#. The mathematical expressions concerning each component
of DAHH, and the motivation and scientific basis of such
structure are presented in Section III-A1 and Section III-A2.

1) Motivation to the diagram of DAHH: In DAHH, the basic
components constituting the neurons generate from the initial
layer 1# consisting of the units z1,s, which initially partition
the domain along one dimension, where s ∈ {1, 2, . . . , n1} is
the index of the neuron and n1 is the number of neurons in the
initial layer. Taking Fig 4 for illustration, the resulting domain
partitions from the initial layer are the dashed lines over each
dimension (x1 and x2) in Fig. 4(a), where the input domain is
assumed to normalized into [0, 1]2. Fig. 4(b) and Fig. 4(c) are
two examples of the partition in the initial layer.

(a) Total partitions (b) x1 = 0.4(z1, z2) (c) x2 = 0.4(z1, z2)

Fig. 4: An illustration on domain partitions of the initial layer
in DAHH.

Fig 4 shows that the neurons in the initial layer initially
partitions the domain along one dimension, i.e., x1, x2 =
0, . . . , 0.9 with n1 = 20. For instance, the partition x1 = 0.4
in Fig. 4(b) can lead to neurons z1(x) = max{0, x2 − 0.4}
and z2(x) = max{0, 0.4 − x2}. Similarly, x2 = 0.4 in Fig.
4(c) leads to neurons z3(x) = max{0, 0.4− x1} and z4(x) =
max{0, x1 − 0.4}.

In PWL representations, model flexibility increases when
the domain is partitioned into more subregions, each of

4

which appears different linear response and then formulates
the final PWL output. Therefore, analogous to the partitions
of the initial layer, we can further partition the domain to
obtain more flexible neurons, which motivates to generate the
subsequent layers in DAHH. For instance, Fig 4(b) can be
further partitioned on x2, such as x2 = 0.8 in Fig 5(a), and
Fig 4(c) can be partitioned by adding x1 = 0.4 in Fig 5(b).
Without loss of generality, we can also give an illustration on
the domain partitions in the 3-dimensional space over a cube
[0, 1]3, which is presented in Fig 5(c), where the partitions are
x1 = βj1 , x2 = βj2 and x3 = βj3 .

(a) Fig 4(b) split by
x2 = 0.8

(b) Fig 4(c) split
byx1 = 0.4

(c) A cube split by xi = βji

Fig. 5: An illustration on domain partitions of the neurons in
DAHH.

As demonstrated in Fig 4 and Fig 5, the mechanism of
flexible domain partitions motivates us to attain the structure
of the proposed DAHH in this paper, i.e., connecting the initial
layer with the current layer to formulate the neurons with deeper
partitions over the domain. According to the diagram in Fig. 3,
the following neurons zk,s(k#, k ≥ 2) are constructed based on
further partitioning the subregions represented by the (k−1)th
layer along an extra dimension by a neuron from the initial layer,
bringing more subregions and approaching a more flexible PWL
neuron output. Therefore, the subsequent layers (k#, k ≥ 2) are
formulated as zk,s(x) = min{z1,qs,1(x), zk−1,qs,2(x)}, where
neuron zk,s is connected (generated) with z1,qs,1 and zk−1,qs,2
located in the 1st layer and the (k − 1)th layer, meaning that
neuron zk,s gives deeper partitions to zk−1,qs,2 on z1,qs,1 . qs,1
and qs,2 are the corresponding indices (neuron connections)
with qs,1 ∈ {1, . . . , n1}, qs,2 ∈ {1, . . . , nk−1}, where n1 and
nk−1 denote the numbers of neurons in the 1st layer and the
(k − 1)th layer, respectively. Then, these generated neurons in
all layers can be connected and contribute to the final flexible
PWL network, i.e., DAHH.

2) Network Layers and their neurons in DAHH: In DAHH,
we denote zk,s as the sth neuron in the kth layer, where nk is
the number of neurons in the kth layer with s ∈ {1, . . . , nk}.
Correspondingly as n Section III-A1, neurons in the kth (k ≥ 2)
layer are sparsely connected with the (k − 1)th layer and the
initial 1st layer. Thus, the neuron outputs can be cast as follows.
• The initial (1st) layer:

z1,s(x) = max{δ1,s(xv1,s − β1,s), 0}, (4)

where δ1,s = ±1, s ∈ {1, 2, . . . , n1}, v1,s ∈ {1, . . . , d}, β1,s
is the splitting knot and xv1,s is the splitting variable in neuron
z1,s. For instance, assuming the 5th neuron in the initial layer
as z1,5(x) = max{x3 − 0.7, 0}, we have β1,5 = 0.7 as the

splitting knot and v1,5 = 3 as the index of splitting variable.
• The kth layer (k ≥ 2):

zk,s(x) = min{z1,qs,1(x), zk−1,qs,2(x)},
= minvs1 ,...,vsk∈Jk,s

{max{δs1(xvs1 − βs1), 0},
. . . ,max{δsk(xvsk − βsk), 0}},

(5)
where δk,s = ±1 and the cardinality of Jk,s is |Jk,s| = k.
Jk,s = {vs1 , . . . , vsk} denots the set which contains the
indices of all the splitting dimensions (variables) xvs1 , . . . , xvsk
contained in neuron zk,s, where {vs1 , . . . , vsk} ⊆ {1, . . . , d}
with vsi ∈ {1, . . . , d}, i = 1, . . . , k, meaning that k variables
are interacted in the sth neuron of the kth layer, i.e., neuron
zk,s gives multiple splits on k dimensions.

Formula (4) and (5) show that the activations in DAHH
network are only “ max ” and “ min ” operators. Different
from MLP, the neurons in DAHH are connected sparsely with
only two connections, in which one neuron can be connected
in a skip-layer format from the initial layer. Besides, no
connecting weights and hyperparameters are involved in the
forward growth, which greatly facilitates the optimization of
DAHH, shown in Section IV with details.

3) Output Connections: After the forward growth of gen-
erating DAHH network structure, the output can also be
formulated with skip-layer connections, and thereby all the
neurons can be connected to the output, such that fDAHH(x) =∑
k

∑
s wk,szk,s(x), where the combination of these neurons

lead to a flexible PWL output, i.e., the DAHH network.
In practice, for some high dimensional problems in which the

interactions among variables are complicated, the neurons in
shallow layers can have trivial influence to the output directly,
while only deep layers in DAHH play critical roles. Hence,
DAHH generalizes the output connection of networking AHH,
namely the full skip-layer and partial skip-layer output, i.e.,

Full skip-layer: fDAHH(x) =
∑K
k=1

∑
s wk,szk,s(x),

Partial skip-layer: fDAHH(x) =
∑K
k=Kout

∑
s wk,szk,s(x).

(6)
The topology is shown in Fig. 6. In fact, the output of an
MLP is a special case of partial skip-layer connection with
Kout = K.

B. Forward Growth of DAHH Network Structure

In the forward growth of DAHH, neurons are generated in
each layer. Instead of exhaustive searches to find the optimal
split xvk,s

and βk,s in AHH and EHH, DAHH revisits the
neuron property in Section III-A, and makes a trade-off between
optimal exhaustive searches and computational complexity to
select effective neurons.

In decision trees, each leaf node is generated by checking
through the splitting variables and knots to find the optimal
one, similar to the existing exhaustive searches in AHH. Since
the neuron output in DAHH is formulated as formula (5), the
neuron zk,s can only be activated with nonzero outputs on the
condition that at least one component max{δsi(xvsi−βsi), 0)}
satisfies δsi(xvsi − βsi) > 0. Otherwise, it always outputs
zk,s(x) = 0 and makes no contribution to network output.

In decision trees, the data contained in (activated by) the
leaf nodes can usually be imposed with a confinement to

5

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T2

T1
T3 T4

T5 T6 T8

T7

. . .
. . .

. . .
. . .

Full skip-layer output

1#

2#

(K-1)#

K#

. . . DAHHf

1,1w

,k sw

, KK nw

. . .

Partial skip-layer output

1#

K#

. . .

out

DAHH , ,

1

knK

k s k s

k s

f w z
 

 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
 



DAHHf

,k sw

(a) Full skip-layer output.

T1 T2 T3 T4

T5 T6 T7 T8

T0

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T0

T0

T1

T2

T3

T4

T5

T6

T7

T8

8

AHH T 0 T T

1

() ()m m

m

f w w z


 x x

T2

T1
T3 T4

T5 T6 T8

T7

. . .
. . .

. . .
. . .

Full skip-layer output

1#

2#

(K-1)#

K#

. . . DAHHf

1,1w

,k sw

, KK nw

. . .

Partial skip-layer output

1#

K#

. . .

out

DAHH , ,

1

knK

k s k s

k s

f w z
 

 

out ,1Kw

, KK nw
#outK

DAHH , ,

1 1

knK

k s k s

k s

f w z
 



DAHHf

,k sw

. . .
. . .

. . .

(b) Partial skip-layer output.

Fig. 6: Topology of output connections in DAHH network.

enhance the performance. Inspired by that, we introduce the
activity ratio ract to select the neurons in the forward growth,
meaning that a certain number of training data are required to
be activated by the neurons. Thus, DAHH proposes to select
more effective neurons zk,s which suffices

C{zk,s(xi)}Ni=1

N
≥ ract, (7)

where C{·} denotes the number of training data xi activated by
the neuron zk,s(xi) > 0. Smaller value of ract brings sparser
neuron outputs with the given training data.

With the activity ratio ract in formula (7), DAHH abandons
the neurons which are activated only by a trivial proportion
of data and are prone to bring less influence on the network
output. In fact, the proposed activity ratio ract in DAHH also
resembles the mechanism behind random forest. To generate
the decisions trees in the forest, random forest method replaces
the original exhaustive traversal by only selecting the most
potential ones among the subset which is randomly chosen
from the complete splits of the trees.

A simple example is tested on MNIST image classification
dataset [20] to evaluate the effectiveness of the proposed activity
ratio. Two DAHH networks are constructed both of depth
K = 6. DAHH1 and DAHH2 have simple structures, where
the number of weights is similar with that of a single-layer
MLP consisting of 10 to 20 hidden units. For DAHH1 (AR)
and DAHH2 (AR), “AR” means that the activity ratio ract = 0.1
is used. Tables I gives the average of 20 runs, in which the
proposed activity ratio strategy is shown to bring more effective
neurons for better performance. To simplify the tuning, we
fix ract = 0.1 for all numerical experiments, showing as a
satisfactory choice for various cases. In this paper, ract = 0.1
is suggested as the defaulting setting.

In the forward growth of DAHH, no parameter needs
to be estimated, since the splitting knots β1,s of the uni-
variate units z1,s in the initial layer are pre-allocated and
there are no connecting weights between neurons, such that

TABLE I: Example for verifying activity ratio strategy.

Dataset DAHH1 DAHH1 (AR) DAHH2 DAHH2 (AR)
MNIST 95.57% 97.48% 95.11% 96.87%

zk,s(x) = min{z1,qs,1(x), zk−1,qs,2(x)}. Thus, we only need
to determine the network structure of DAHH in the forward
growth, whose details are summarized in Algorithm 1.

Algorithm 1 Forward Growth of DAHH Network Structure

Input: Network structure budgets K and nk, pre-allocated
splitting knots β = {β1, . . . , βn1

} and ract.
Output: DAHH network with neurons zk,s.
• Generate neurons z1,s, s = 1, . . . , n1 by formula (4) such
that z1,s(x) = max{δ1,s(xv1,s − β1,s), 0}, β1,s ∈ β.
for k = 2 to K do

for s = 1 to nk do
• Generate the neuron zk,s by formula (5) zk,s(x) =
min{z1,qs,1(x), zk−1,qs,2(x)} which satisfies formula
(7) with activity ratio ract, i.e., C{zk,s(x

i)}Ni=1

N ≥ ract.
end for

end for
• Obtain the DAHH network structure with neurons zk,s in
each layer k = 1, . . . ,K.

In Algorithm 1, similar with MLP, the tuning parameters are
the determination of network structure, i.e., the depth K of the
network, the number of neurons nk, k = 1, . . . ,K in each layer
and the number of splitting knots β. In DAHH, the splitting
knots are pre-allocated on. More splits bring more subregions in
the initial layer with increasing parameters. Since the following
layer can further partition the feature space into smaller
subregions, the number of splitting knots in the initial layer are
not necessarily required to set very large. In our previous works
[15], [16], the number of splitting knots is suggested to set
within [5, 10], which can generally bring satisfactory results.
Thus, in this manuscript, the defaulted number of splitting
knots in each dimension is set as 7. Inheriting from the AHH
tree, the following Section IV introduces the backward pruning
in DAHH to trim the network with proper size. Thus, the
structure setting in the forward growth can be regarded as
the budget of DAHH network rather than the precise final
structure, where only the effective neurons can be kept after
the backward pruning. For simplicity, the number of neurons
can be set as the same, such that n1 = . . . = nK . For the
depth K, we can set from a very small number, since it has
been noticed that the interaction level K among variables are
usually distinctively less than the dimensionality d of the data.
The numerical details are presented in Section VI.

IV. TRAINING METHOD OF DAHH NEURAL NETWORK

The optimization problem of DAHH training is cast as

min
wk,s

L(wk,s;x
i,yi, β) + λP(wk,s), (8)

where xi ∈ Rd,yi ∈ Rl, i = 1, . . . , N are the training data and
labels, β is the set containing the splitting knots, the wk,s is the

6

weight of neuron zk,s connecting the output layer, i.e., formula
(6). L(·) is the loss function and P(·) is the regularization
with coefficient λ.

A. Back-Propagation Framework

Though the proposed DAHH network has special structures
with sparse neuron connections, it is still a compact neural
network, in which the back-propagation framework can be
well fitted. Hence, the stochastic gradient descent algorithm
and batch-wise optimization can be applied for tackling large
scale problems. The back-propagation algorithm in DAHH is
performed by following a gradient descent direction

∆wk,s = −η(
∂L(wk,s;x

i,yi, β) + ∂P(wk,s)

∂wk,s
), (9)

in which η is the learning rate.
Obviously, the derivative of regularizer P(·) is easy to

compute, thus we pay more emphasis on the part of loss
function L(·). Assuming σ(·) as the activation function of the
output layer, we have the derivative of the loss L(·), i.e.,

∂L(wk,s;x,y,β)
∂wk,s

=
∂L(wk,s;x,y,β)

∂σ(
∑

k,s wk,szk,s(x))

∂σ(
∑

k,s wk,szk,s(x))

∂wk,s

= G
∂(

∑
k,s wk,szk,s(x))

∂wk,s

= Gzk,s(x),
(10)

where G =
∂L(wk,s;x,y,β)

∂σ(
∑

k,s wk,szk,s(x))

∂σ(
∑

k,s wk,szk,s(x))

∂(
∑

k,s wk,szk,s(x))
.

Equation (10) illustrates that only the derivative of the
activation function in the output layer ∂σ(x)

∂x needs to compute
and the chain rule is not necessary. Thus, the optimization
process is quite simple and does not suffer from the gradient
difficulties in back-propagation. Especially, when σ(·) and P(·)
are chosen as convex, the optimization problem (8) remains
convex, since the convex function can maintain convexity with
affine inputs

∑
k,s wk,szk,s(x).

Under such training framework, it is capable of handling
large scale problems, and different loss functions L(·) can
also be flexibly extended in DAHH together with different
regularization items P(·) for various tasks, such as cross
entropy for classification, l1 norm and l2 norm regularizers.

B. Selection of Splitting Knots

Besides the connecting weights wk,s, the splitting knots βij
within the neurons also determine the final DAHH. Without
loss of generality, we assume that the domain is normalized as
[0, 1]d. The original AHH determines the splitting knots βij
by uniformly sampling each dimension, i.e., βk1 = 0, βk2 =
1/e, βk3 = 2/e, . . . , βke = 1− 1/e, where k = 1, . . . , d and
1/e is the sampling interval [15].

In our previous works [16], an alternative is proposed to
determine the splitting knots by utilizing the distribution of
the training data, i.e., the quantiles in each dimension, which
is more adaptive to the data distributions. Then, the splitting
knots are generated as

βk1 = x̂nk,1
k , βk2 = x̂nk,2

k , . . . , βke = x̂nk,e
k . (11)

In fact, under the back-propagation framework in Section
IV-A, the splitting knots βij ∈ β can be optimized together
with the weights wk,s, such that

min
wk,s,βij

L(wk,s, βij ;x
i,yi) + λP(wk,s). (12)

Analogously, the gradient of splitting knots βij can be com-
puted as

∂L(βij ;x,y,wk,s)
∂βij

= G1G2

∑
k̂,ŝ wk̂,ŝ

∂zk̂,ŝ(βij ;x)

∂βij
, (13)

where {k̂, ŝ} denotes the neurons zk̂,ŝ containing βij , G1 =
∂L(βij ;x,y,wk,s)

∂σ(
∑

k,s wk,szk,s(βij ;x))
and G2 =

∂σ(
∑

k,s wk,szk,s(βij ;x))

∂(
∑

k,s wk,szk,s(βij ;x))
.

Though the splitting knots βij can be optimized by following
the gradient in (13), the induced optimization problem (12)
becomes highly non-convex and more complex than (8), thus
the performance of the stochastic gradient descent algorithm
can be affected. In Section VI-A1, numerical experiments
are conducted to evaluate the optimization methods of the
splitting knots βij and verifies the effectiveness of the method
in (11). Therefore, in this paper, we suggest to use quantiles
to determine the splitting knots in (11), and then therein tackle
the relatively simpler optimization problem as (8).

C. Neuron Pruning

The forward growth of DAHH resembles the identification
mechanism in AHH, which deliberately over-fits the data
with an excessively large model for gaining greater flexibility.
Afterwards, a backward pruning is incorporated to trim the
model to a proper size.

Instead of exhaustive searchies in pruning AHH, we employ
sparsity penalty to prune the model, where l1 norm is chosen
as the regularization item P(·), i.e., P (wk,s) =

∑
k,s |wk,s|

[16]. In DAHH network structure, the neurons with wk,s = 0
weights connecting the output layer are redundant and can be
easily pruned in the output connection, which brings a more
concise DAHH network.

Besides, with the neuron pruning process, the determination
of network structures can also be benefited, since we only
need to set the budgets of network depth K and the number
of neurons nk, k = 1, . . . ,K in each layer. The final network
structure of DAHH is then obtained by pruning the redundant
neurons. Therefore, the backward training process of DAHH
network can be summarized as Algorithm 2.

Algorithm 2 Backward Training of DAHH Network

Input: DAHH network with neurons zk,s obtained from
Algorithm 1, λ, Kout and Ffull ∈ {0, 1}.
Output: Parameters wk,s of DAHH network.
if Ffull = 1 then
• Kout = 1.

end if
• Obtain the output fDAHH(x) =

∑K
k=Kout

∑
s wk,szk,s(x).

• Apply back-propagation algorithm with gradient in formula
(9) to optimize the weights wk,s, k = Kout, . . . ,K.
• Prune the redundant output neurons zk,s with wk,s = 0
and obtain the final DAHH network.

7

V. PROPERTIES OF DAHH NEURAL NETWORK

A. Universal Approximator

A standard MLP with one hidden layer and enough hidden
units is a universal approximator. The approximation ability of
DAHH neural network is also proved by the following lemma.

Lemma 1. Let C be a compact domain C ⊂ Rn, f : C → R
be a continuous function. Given arbitrary positive real number
ε > 0, there exists a DAHH neural network fDAHH(x), such
that for all x ∈ C, we have

|f(x)− fDAHH(x)| < ε. (14)

Proof. For each neuron zk,s in DAHH network, the neuron
output can be equivalently expressed as

zk,s(x) = min
j∈K1,s

{z1,j(x)}, (15)

where K1,s is the index set of neurons z1,j(x) in the initial
layer with |K1,s| = k. The data pass through the network via
z1,j(x) and constitute the neuron zk,s, k ≥ 2. Considering the
basis function of AHH in equation (3), it is obvious that each
DAHH neural network can be transformed into an equivalent
AHH tree and vice versa. As the AHH model has been proven
to approximate any continuous function with arbitrary accuracy
in a compact set [15], [21], the DAHH network is also then a
universal approximator.

B. Explicit Domain Partitions and Locally Linear Expressions

DAHH is a flexible PWL neural network consisting of
various skip-layer neurons, where the output of each neuron is
also PWL over the input domain. In PWL models, the domain is
partitioned into different subregions, appearing different linear
functions as local responses. Thus, the flexibility of PWL
models can generally be measured by their domain partitions,
i.e., more partitions are the keys to bringing higher flexibility.

Also pointed out in [22], the number of linear regions of
the functions that can be computed by a given model is a
measure of the model flexibility. In [22], the complexity of
functions computable by deep feedforward NNs is discussed
by estimating the number of linear regions with activations of
ReLU and Maxout, in which the bounds of such numbers are
estimated by layer-wise composition and re-usage of previous
layer computations. The existing works are performed for NNs
in the fully connected format, where the explicit partitioning
hyperplanes are difficult to extract. Thanks to the special
network structure of DAHH, the resulting domain partitions
regarding each individual neuron can be explored explicitly,
which provides a view to reflect network flexibility and better
understand the structured-PWL NN of DAHH.

For instance, Figure 7 shows a 2-dimensional example on a
neuron output in DAHH, given the normalized domain [0, 1]2.

Figure 7 demonstrates that the given neuron contains
the partitions of x1 = 0.3 and x2 = 0.5. Therefore, the
corresponding boundaries brought by such domain partitions
can be described by the hyperplanes x1 = 0.3, x2 = 0.5,
and x1 − 0.3 = x2 − 0.5, the third of which introduces 2
linear functions separated by x1 − 0.3 = x2 − 0.5 in the
active subregion {0.3 ≤ x1 ≤ 1, 0.5 ≤ x2 ≤ 1}, where the

0
1

0.5

1

1y

1.5

x
2

0.5

x
1

2

0.5

0 0

Fig. 7: A simple example of neuron output in DAHH, such
that z(x) = min{max{x1 − 0.3, 0},max{x2 − 0.5, 0}}.

neuron is activated with nonzero outputs. We can see that
each neuron in DAHH can lead to different domain partitions
towards PWL outputs and then gets combined to formulate
the more flexible final DAHH, in which the domain partitions
regarding each individual neuron can be detected explicitly,
i.e., the partitioning hyperplanes can be listed. On such basis,
we can obtain the following Theorem 1.

Theorem 1. Given a neuron zk,s in DAHH with domain
Ω ⊆ Rd, its output zk,s(x) is continuous PWL, where Ω
is partitioned into different subregions, each of which appears
as a linear function. Then, the boundaries Bk,s between such
subregions can be described by the following hyperplanes, i.e.,

Bk,s =

{
{xv1,s = β1,s|s ∈ J1,s} k = 1

B1k,s ∪ B2k,s k ≥ 2,
(16)

where B1k,s = {xvk,s
= βk,s|s ∈ Jk,s}, B2k,s = {δk,si(xvk,si

−
βk,si) = δk,sj (xk,sj − βk,sj), si, sj ∈ Jk,s, si 6= sj}. Analo-
gously, the number of such partitioning hyperplanes in Bk,s
can be computed as

Nk,s =

{
1 k = 1

k(k + 1)/2 k ≥ 2.
(17)

Proof. For a given neuron zk,s(x) in DAHH, from the neuron
outputs in (4) and (5), we can obtain these hyperplanes
partitioning the domain Ω, and then the boundaries of the
active region (zk,s(x) ≥ 0) can be easily obtained as

δk,s(xvk,s
− βk,s) = 0,∀vk,s ∈ Jk,s, (18)

which is equivalent to xvk,s
= βk,s, i.e., B1k,s. Meanwhile,

the active region can be further partitioned by additional
hyperplanes to formulate the local PWL output, i.e., if
k ≥ 2,∀si, sj ∈ Jk,s, the additional partitioning hyperplanes
are

δk,si(xvk,si
− βk,si) = δk,sj (xk,sj − βk,sj), si 6= sj . (19)

The number of partitioning hyperplanes brought by (18) is
computed as |Jk,s| = k, and such number brought by (19)
is
(|Jk,s|

2

)
=
(
k
2

)
= k(k − 1)/2. In the neuron output z1,s(x)

of the initial layer, the hyperplane xv1,s = β1,s partitions Ω.

8

In the subsequent layers, the hyperplanes in (19) result in
more flexible partitions. Therefore, there are in total k+

(
k
2

)
=

k(k + 1)/2 such hyperplanes, and therein formula (17) holds
true in DAHH.

Consequently, based on the well-known theorem about
partitions of d-dimensional space by hyperplanes [23]. The
following Corollary 1 is straightforward and capable of
depicting the capacity of the given PWL neuron [24].

Corollary 1. Given a neuron zk,s in DAHH, its PWL output
zk,s(x) partitions the domain by the hyperplanes in Bk,s, and
then the maximal number of the resulting linear subregions is
bounded by Ck,s =

∑d
i=0

(Nk,s

i

)
, where Nk,s is given in (17).

Fig. 8 gives a visualized example for better demonstration,
where Fig. 8(a) illustrates the explanation of Theorem 1 relating
to the example in Fig. 7 and Fig. 8(b) is another simple example
of a neuron in 3-dimensional space.

(a) z1(x),N 1 = 3. (b) z2(x),N 2 = 6.

Fig. 8: Boundaries of the subregions relating to the given
neurons, where z1(x) = min{max{x1 − 0.3, 0},max{x2 −
0.5, 0}} and z2(x) = mini=1,2,3{max{βji − xi, 0}}.

Based on Theorem 1, when given an input x̂ feeding
into a DAHH network fDAHH(x), we can easily compute
the active neurons, i.e., the ones with nonzero outputs, such
that zk̂,ŝ, (k̂, ŝ) ∈ T̂ with T̂ = {(k, s)|zk,s(x̂) > 0}. Then,
the corresponding linear subregion Ω̂x̂ that x̂ locates can be
obtained, i.e., Corollary 2.

Corollary 2. Given an input x̂ into a DAHH network
fDAHH(x), the subregion Ω̂ sharing the same local linear
function with x̂ is Ω̂x̂ = {x ∈ Ω|δt(xvt − βt) > 0, t ∈ Jk̂,ŝ}.

Based on Corollary 2, given an arbitrary input x̂, the linear
function of the PWL network fDAHH(x) in the corresponding
local subregion Ω̂x̂ can also be computed explicitly, i.e.,
Corollary 3.

Corollary 3. Given an input x̂, the network DAHH
fDAHH(x) locally appears as a linear function lx̂(x) in
the subregion Ω̂x̂, such that ∀x ∈ Ω̂x̂, fDAHH(x) =
lx̂(x) =

∑
k̂

∑
ŝ wk̂,ŝδt∗k̂,ŝ

(xvt∗
k̂,ŝ

− βt∗
k̂,ŝ

), with t∗
k̂,ŝ

=

arg mintk̂,ŝ∈Jk̂,ŝ
{δtk̂,ŝ

(x̂vt
k̂,ŝ
− βtk̂,ŝ

)}.

Different from other PWL NNs, the proposed DAHH not
only can estimate the upper bound concerning the number
of linear subregions in Corollary 1, but also can list the
hyperplanes which partition the domain and configure the
boundaries among these subregions in Theorem 1. By definition,

PWL systems own different linear expressions in different local
subregions. The existing PWL NNs get benefited from the
flexibility of piecewise linearity, but when given an arbitrary
input x̂ ∈ Ω, it is generally difficult to give informative
analysis towards the subregion in which x̂ locates, and the
corresponding local linear expression. Owing the special
network configuration, Corollary 2 and Corollary 3 present
the informative results concerning the local subregion and its
linear expression, providing varied theoretical perspectives to
better understand the PWL NN of DAHH.

C. ANOVA Decomposition

In MLP, all variables are fully connected and stacked
layerwisely. Hence, the relations among variables are difficult
to explore and it is prone to bring model redundancy. In DAHH,
each neuron can be more interpretable concerning the relation
among variables. We can sort the neurons zk,s by its layer
index k in DAHH, and then the explicit expression of each
layer can be easily obtained, so that the interaction among
variables in each neuron can be easily revealed, i.e.,

z1,s(x) = minvi∈J1,s{max{δi(xvi − βi), 0}}
z2,s(x) = minvi,vj∈J2,s{max{δi(xvi − βi), 0},

δj(max{xvj − βj), 0}},
...
zK,s(x) = minvi1 ,...,viK∈JK,s

{max{δi1(xvi1 − βi1), 0},
. . . ,max{δK(xviK − βinK

), 0}}
(20)

where K is the depth of the DAHH network, i, i1, . . . , iK are
the indices of neurons in its layer, and Jk,s ⊆ {1, . . . , d} with
|Jk,s| = k and k ∈ {1, . . . ,K}. Based on (20), similar with the
analysis of variance (ANOVA) decomposition in [25], [26], we
can also easily get the corresponding ANOVA decomposition
of DAHH in (21), while the structure of MLP hinders such
analysis.

fDAHH(x) = w0 +
∑
f1r1(xr1) +

∑
f2r1r2(xr1 , xr2)

+
∑
f3r1r2r3(xr1 , xr2 , xr3) + . . . ,

(21)
where f l denotes the neurons with l(l ≤ d) variables
interacting, rk ∈ {1, . . . , d} and f lJ represents the neuron
with interacting variable(s) xv, v ∈ J .

With ANOVA decomposition, the contribution of different
variables xrk can be detected so as the interactions among
variables xr1 , . . . , xrk with k ≤ d, such that

f1r1(xr1) =
∑
Jk,s={r1} wk,szk,s(x),

f2r1r2(xr1 , xr2) =
∑
Jk,s={r1,r2} wk,szk,s(x),

...
fkr1...rk(xr1 , . . . , xrk) =

∑
Jk,s={r1,...,rk} wk,szk,s(x).

(22)
Based on ANOVA decomposition, the importance of different

neurons in DAHH can be evaluated by the relevance to
the network output [25]. Specifically, with training data, the

9

standard variance of each ANOVA function in (22) can be
calculated quantitatively by the ξ value, such that

ξkr1...rk =
√

VAR(fkr1...rk(x̃)),

fkr1...rk(x̃) =
∑

{k̃,s̃}∈T̃
wk̃,s̃zk̃,s̃(x̃), (23)

where the variables interacted in the ANOVA function fkr1...rk
are denoted as x̃ = [xr1 , . . . , xrk]T , rj ∈ {1, . . . , d}, j =
1, . . . , k. T̃ = {(k, s)|zk,s(x) = zk,s(x̃)} contains the indices
of the correlated neurons, and VAR(·) represents the variance
of the corresponding model outputs.

In (23), the larger ξJk,i is, the more influential x̃ is on the
network output. Since formula (23) indicates the contribution
of different neurons to the network output, i.e., the direct
contribution of different variables or interactions between
variables to the network output, the ξ value can be referred as
the influence to the corresponding model output, meaning that
it reflects the perturbation of corresponding ANOVA function
in DAHH network output.

When generating the additive DAHH network (K = 1),
the ANOVA decomposition can be cast as suggestions for
variable selections based on the relative importance revealed
by its ξ value. In fact, many datasets and systems are low
dimensional in essence or even additive models, even though
they come from a higher dimensionality feature space. Taking
the 6 dimensional Monk 1/2/3 datasets for instance [27], we
use a simple additive DAHH network, and a brief result is
shown in Table II, where M is parameter number.

TABLE II: Accuracy on the Monk datasets with single-layer
DAHH networks.

Monk 1 Monk 2 Monk 3
Accuracy 75% 67.4% 97.2%
M 6 2 4
x̃ x5 x5 (x2, x5)

Table II shows that only variables x2 and x5 are left in
DAHH, indicating the importance of x2 and x5. Monk 3 dataset
achieves a very good result with an additive DAHH of only 4
parameters. According to the description of Monk datasets in
[27], it tells that x1 = x2 and x5 = 1 are the critical conditions,
which coincides with the property obtained by the ANOVA
decomposition analysis from DAHH. In DAHH with more
layers (K ≥ 2), ANOVA decomposition can reveal variable
interactions in each neuron and the coupling level K can reflect
the complexity among variables in the given dataset, to some
extent. Table III gives the results.

TABLE III: Accuracy on the Monk datasets with two-layered
DAHH networks.

Monk 1 Monk 2 Monk 3
Accuracy 100% 100% 97.2%
M 28 262 6
x̃ (x1, x2, x5) (x1 ∼ x6) (x2, x5)

The accuracy of Monk 1/2 improves significantly with adding
another layer, but Monk 3 dataset has a similar result with Table

II, revealing the simple interaction among variables in Monk
3. As illustrated in Table III, the coupling level of variables
lies in lower dimensionality, meaning that the 6 variables are
not necessarily all interacted with each other. It can be noticed
that DAHH can achieve state-of-the-art performance in Monk
datasets with very simple structures of a few parameters.

Although the validity of ANOVA decomposition analysis
cannot always be guaranteed with ground truth and deeper
insights are worth further investigations, it can be regarded as
an attempt to “look inside” DAHH neural networks.

D. Some Remarks

1) Piecewise Linearity: The activations in DAHH are simply
the “max” and “min” operators, which maintain the piecewise
linearity of the network.

2) Convexity: The splitting knots β are suggested to be
pre-allocated, and then the weights wk,s connecting the output
layer are the only parameters to be optimized in DAHH. Thus,
the optimization problem maintains convexity when the loss
function and the regularization are chosen as convex.

3) Simple optimization: Due to the special network structure,
the optimization problem in training DAHH is quite simple,
since it does not suffer from gradient vanishing and exploding
difficulties in back-propagation .

4) Skip-layer connection: DAHH enables us to flexibly
connect the neurons by skipping layers, which does not
complicate the optimization but makes DAHH more flexible.

5) Explicit expression and domain partition: The explicit
expressions of DAHH can be easily obtained in each layer,
where the domain partition and their partitioning hyperplanes
can be detected. Besides, the relative importance of variables
can be explored through its ANOVA decomposition, which
greatly facilitates the interpretation and can be regarded as a
simple attempt to explore the “box” of neural networks.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of DAHH with
comparisons to related state-of-the-art models. We first evaluate
the effectiveness and properties of DAHH. Then, multiple
benchmarks are tested for further discussions.

A. Evaluations on Model Effectiveness and Properties

Table IV introduces the selected datasets, where Ntrain and
Ntest are denoted as the numbers of instances in the training
and the test datasets. “C” indicates the task for classification
and “R” for regression. The dimensionality of input variables
and output are expressed as d and l. For the datasets which do
not separate the training and testing data, we randomly partition
the data for training and testing with ratio 2. Considering the
randomness, we report the average of 20 runs. For classification,
the criterion is taken as the classifying accuracy, while in
regression the criterion is chosen as normalized mean error
(NME) in dB, defined as NME = 10 log10

||y−ŷ||22
||y||22

, where ŷ
represents the predicted output, y is the observed output, and
|| · ||2 denotes the l2 norm.

10

TABLE IV: Descriptions of the selected datasets.

Dataset Task Ntrain Ntest d l
Strike R 416 209 6 1
Bodyfat R 168 84 14 1
Spacega R 2071 1036 6 1
Abalone R 2784 1393 8 1
California Housing R 14448 6192 8 1
Boston Housing R 337 169 13 1
Satimage C 4435 2000 36 6
Letter C 13333 6667 16 26
Shuttle C 43500 14500 9 7

In DAHH, the number of neurons in each layer is set default
as nk = 1000. The knots β of initial layer are uniformly pre-
allocated as quantiles based on the distribution of training data
with 7 splitting knots in each dimension and can be tuned
with an increment of 2d−1 in this paper. For the l1 norm
regularization, we set the coefficient λ = 10−10 with a change
of timing 10, and it is decided by 5-fold cross validation. Then,
only the number of layers K needs to be determined. Normally,
when the number of training data is significantly larger than data
dimension, we need a more complicated model to describe the
system. Thus, we provide a heuristic suggestion for determining
the depth of DAHH network. For Ntrain/d < 100, we set
the number of layers as K = 2, and K ∈ {6, 11, d} for
Ntrain/d > 100, which can also be adaptively adjusted. The
DAHH model is implemented in the platform of Tensorflow
1.12.0 with a 3.20GHz Intel(R) Core(TM) i7-8700 CPU of
16.0 GB, where the AdamOptizer is selected with default
batch size of 500 and 50 for Ntrain > 2000 and Ntrain ≤ 2000
respectively.

1) Selection of splitting knots βij: In Section IV-B, we point
out that the splitting knots βij can be optimized together with
the weights wk,s on the sacrifice that the optimization problem
(8) becomes more complicated, shown in (12). In this part, we
evaluate the methods of determining the splitting knots βij , i.e.,
the method in (11) and the method in (13), whose accuracy are
denoted by DAHH and DAHH (with βij), respectively. Table
V lists the average predicted accuracy and its standard variance.

TABLE V: Testing accuracy on the methods of determining
the splitting knots β.

Dataset DAHH DAHH (with βij)
Strike -2.0±0.1 -1.8±0.1
Bodyfat -24.7±2.3 -23.5±1.1
Spacega -15.2±0.3 -15.2±0.2
Abalone -13.47±0.2 -13.6±0.2
California Housing -13.5±0.1 -12.9±0.2
Boston Housing -18.3±1.0 -18.2±0.8
Satimage 90.8%±0.3 90.8%±0.2
Letter 96.6%±0.1 96.5%±0.1
Shuttle 99.9%±0.0 99.5%±0.2

Table V shows that incorporating splitting knots into the
optimization problem (8) leads to inferior performance than the
method in (11). This can be due to the fact that the stochastic
gradient descent algorithm performs poorly in the induced
highly non-convex optimization problem (12). The results in
Table V verify the effectiveness of the method by pre-allocating

the splitting knots as the quantiles in (11). Thus, in this paper,
we suggest the method in (11) to select the splitting knots in
DAHH, and then apply the stochastic gradient descent algorithm
to optimize the weights wk,s in (8), which presents a simple
but effective training of DAHH.

2) Model Flexibility: We next present comparison exper-
iments with some related learning methods, including the
progressive learning networks (PLN), which incorporates
randomness of neurons and uses ReLU activation functions to
obtain the network based on forwardwise method with l1 norm
regularization for more compact structures [28], [29]. Another
popular forwardwise neural network, i.e., extreme learning
machine (ELM), is then incorporated [30]. MLPs with ReLU
activations are also presented. The results of PLN and ELM
network are fine tuned for each dataset and cited from [28].
For MLP, the single-layered or two-layered structure is chosen
for the given simple examples and runs on Tensorflow 1.12.0
platform, where the AdamOptimizer is selected with batch
size of 50 and learning rate of 0.01. The number of hidden
neurons is set as {10, 20, 50, 100, 200, 500} and the best result
is reported. For simple examples, we adopt the full skip-layer
connection in DAHH with Kout = 1. Table VI lists the results
over 20 runs, where “Calif H” and “Bost H” are abbreviated
for the datasets of California Housing and Boston Housing.

TABLE VI: Testing accuracy on the datasets in Table IV.

Dataset DAHH PLN ELM MLP
Strike -2.0±0.1 -1.7±0.7 -1.6±0.5 -1.90±0.5
Bodyfat -24.7±2.3 -14.1±0.7 -13.4± 0.6 -24.3±2.1
Spacega -15.2±0.3 -11.6±0.4 -8.5±0.2 -14.8±0.1
Abalone -13.5±0.2 -13.8±0.2 -13.8±0.2 -13.8±0.3
Calif H -13.5±0.1 -10.6±0.4 -10.8±0.2 -12.9±0.2
Bost H -18.3±1.0 -13.4±0.7 -13.9±0.7 -16.9±1.1
Satimage 90.8±0.3 89.9±0.5 84.6±0.5 89.6±0.2
Letter 96.6±0.1 95.7±0.2 95.7±0.2 96.2±0.1
Shuttle 99.9±0.0 99.8±0.1 99.6±0.1 99.8±0.0

Table VI shows that DAHH outperforms the selected models
for most of the given datasets, which shows the flexibility
of the proposed DAHH neural network. Since the existing
EHH is currently restricted to the LS residual loss, we only
present comparisons on regression tasks, where EHH is set
to be the same structure budgets of DAHH. The results of
EHH are inferior than that of DAHH and MLP, thus we omit
the concrete statistical performance of EHH in Table VI for
simplification. Table VI indicates that the forward growth in
DAHH and the proposed activity ratio ract strategy are effective
and works well in enhancing accuracy, and it also reflects that
the stochastic gradient descent algorithm can approach a good
solution in optimizing DAHH by combining the method of
selecting the splitting knots in (11). The programming platforms
and algorithms are different, thus the running time is omitted.
Since PLN and ELM requires many random neurons with
obviously much more number of connecting weights in model
representation, the comparison of parameter numbers is omitted.
We only compare the number of parameters with the MLPs
and the results are shown in Table IX.

Table IX shows that higher accuracy is achieved with less

11

TABLE VII: The number of modeling parameters.

Dataset DAHH MLP
Strike 387 350
Bodyfat 39 150
Spacega 210 350
Abalone 33 90
California Housing 4066 1800
Boston Housing 450 1400
Satimage 1447 21000
Letter 28800 42000
Shuttle 569 320

parameters in DAHH for most of the given datasets. Although
the depth of DAHH is set significantly higher than MLPs, the
number of parameters remains less than MLPs for most of the
datasets. Due to the special network structure, the definitions of
network depth differ in DAHH and MLP, since the neurons are
connected in a sparse way and the min{·} activation requires no
connecting weights in DAHH. Thus, even distinctively deeper
DAHH can have less number of parameters than MLP. In fact,
for the datasets in Table IX, the MLP with more than two
hidden layers performs inferior than the results in Table IX,
since the optimization performance can be hindered in deep
MLP. In DAHH, the optimization problem maintains convex
and the performance of algorithm itself is not impaired by
deepening the DAHH. Thus, rather than the network depths,
we compare the number of parameters in Table IX.

B. Empirical Study on ANOVA Decomposition

Owing the special network structure, ANOVA decomposition
can be conducted to the network output of DAHH, where the
impact of all neurons (ANOVA functions) can be detected
quantitatively concerning its influence to the corresponding
variance of network output, i.e., the ξ value in (23).

We then conduct empirical studies of ANOVA decomposition
on the datasets in Table IV. Taking the Bodyfat and California
Housing datasets for illustrations, similar with Section V-C, we
first shed light on the univariate initial layer (K = 1), providing
a suggestion for variable selections. Table VIII shows the ξ
value based on ANOVA decomposition to reflect the influence
of neurons regarding the perturbation to DAHH outputs.

Table VIII reveals the influence of individual variables to
the network output. In California Housing dataset, x3 (housing
median age) has the least influence to the output, while
x1 (longitude), x2 (latitude) and x8 (median income) have
shown to be more influential. In Bodyfat dataset, x7 (abdomen
circumference), x1 (desity) and x3 (weight) are significant to
the output. Meanwhile, x13 (forearm), x4 (height) and x12
(biceps) have shown to be trivial. Moreover, the accuracy is
unaffected and even more accurate when deleting x13, x4 and
x12 in Bodyfat, which provides an evidence for the solidity of
the aforementioned ANOVA decomposition analysis.

Next, we perform analysis on the DAHH with deeper layers,
meaning that the influence of the neurons containing multiple
variables can be detected, where ANOVA decomposition can
therein provide an alternative to present the interacting relations
among variables when necessary. In the California Housing

TABLE VIII: The ξ value based on ANOVA decomposition
analysis for additive DAHH.

California Housing
Sort Variable ξ Sort Variable ξ
1 x1 15.51 5 x5 5.10
2 x2 9.45 6 x7 3.02
3 x8 7.36 7 x4 1.25
4 x6 6.64 8 x3 0.86

Bodyfat
Sort Variable ξ Sort Variable ξ
1 x7 0.49 8 x2 0.16
2 x1 0.38 9 x6 0.16
3 x3 0.23 10 x8 0.16
4 x10 0.19 11 x5 0.14
5 x9 0.18 12 x13 0.08
6 x11 0.18 13 x4 0.07
7 x14 0.18 14 x12 0.04

dataset, the ξ value of the 2nd layer involving x1 (longitude)
and x2 (latitude) are significantly higher, i.e., z2,s(x̃) with
x̃ = [x1, x2]T , meaning that the location is quite important
for the housing price. After the pruning, DAHH has K = 6
layers, meaning that most of the variables and their interactions
are influential to the network output. This indicates that the
factors resulting in the final housing price are a bit complicated.
Differently, for Bodyfat dataset, an additive model of DAHH is
obtained with the highest accuracy after the tuning, indicating
a simpler intrinsic relation among the variables.

Although higher accuracy can generally be attained by
increasing layers (model flexibility), some datasets which
are intrinsically simple in variable interactions can appreciate
simpler model structures. For Bodyfat dataset, deeper structure
K ≥ 2 even brings inferior accuracy. For many datasets, not
all variables are interacted with each other as MLPs which
connect all variables and stack them layerwisely. The depth
K of DAHH network can reveal this characteristic, which
helps explore the coupling level of variables and bring a more
concise structures. Table IX gives the depth of DAHH in Table
VI with comparing data dimensionality d.

TABLE IX: Depth K of DAHH for the datasets in Table IV.

Dataset nin K
Strike 6 2
Bodyfat 14 2
Spacega 6 2
Abalone 8 2
California Housing 8 6
Boston Housing 13 6
Satimage 36 11
Letter 16 11
Shuttle 9 2

We can see that the depth K of DAHH mainly lies in
significantly lower dimensionality for most of the datasets,
meaning that all variables are not necessarily interacted. The
depth K can be regarded as a view to interpret complexity of the
dataset concerning variable coupling levels. An additive PWL
system is flexible enough to describe Bodyfat dataset. For Strike,
Spacega and Abalone, the models consisting of two-variable

12

coupled components are enough to reveal the intrinsic relations
of the datasets, where the number of training data is quite
smaller compared to the dimensionality. It is worthy to notice
that DAHH can achieve a significantly high accuracy with
merely 2 variables coupled in Shuttle dataset which contains
over 14000 training data, revealing the simple intrinsic relations
among variables. Next, we simply adopt K = 8 for both
datasets of Bodyfat and California Housing to check the relative
contribution of different layers #k, k = 1, . . . ,K in DAHH
concerning the ξ value based on ANOVA decomposition.

TABLE X: The ξ value based on ANOVA decomposition of
multi-layered DAHH.

Layer #k
1 2 3 4 5 6 7 8

Bodyfat 2.19 8.52 2.45 0.35 0 0 0 0
Cali H 18.3 39.1 31.1 13.7 5.6 0.2 0 0

Table X shows that ANOVA decomposition can reflect the
relative contribution of different layers when given a DAHH,
i.e., the relative contribution of different levels of variable
coupling. In Table X, even set with a higher depth, DAHH
still prunes these neurons of high levels of variable coupling,
indicating a simpler modeling description for Bodyfat, while a
relatively deeper DAHH is preferred for California Housing.

The above analysis of ANOVA decomposition can give
a suggestion to reveal the relative importance of different
individual variables, and also the relative importance of
different layers (different variable interactions). These analyzing
results facilitating the interpretation of DAHH and its structures.
Therefore, besides being a prediction model, DAHH itself can
also perform variable analysis and selections. Although the
aforementioned analysis are not necessarily the ground truth
always with guarantee, it can be regarded as an attempt to
interpret the “box” of DAHH neural networks.

C. Performance Evaluation on Benchmarks

In this subsection, we test several popular benchmarks
of regression and classification in Table XI. The selected
benchmarks have different characteristics and suit different
learning methods. Thus, the selected state-of-the-art methods
can differ slightly for each dataset in the comparisons. Since
the methods are varied and implemented in different platforms,
we omit the running time comparisons in this paper.

For complicated datasets, the neurons from shallow layers
can pertain less influence to the output. To make the network
more concise, we adopt the partial skip-layer connections with
Kout = K − 1, meaning that only the last two layers are
connected to the network output. In the selected benchmarks,
Kout = K − 1 and Kout = 1 achieve comparable accuracy, but
Kout = K−1 has less parameters and simpler structure, which
proves the effectiveness of the partial-skip layer connection.

1) Regression of Year Prediction MSD: Year Prediction
MSD dataset is a popular benchmark for large scale
multivariate regression [27]. This dataset contains the songs
between 1922 and 2011, and aims to predict the year in which
a song was released based on the audio features. Since PLN

TABLE XI: Descriptions of the selected benchmarks.

Data set Task Ntrain Ntest d l
Year Prediction MSD R 463715 51630 90 1
MNIST C 60000 10000 784 10
NORB C 24300 24300 2048 5

and MLE do not pertain good performance in this dataset,
we compare DAHH with MLP and the variational inference
for neural network (VI), which is an improved stochastic
variational network method with very good performance in
the Year Prediction MSD dataset [31], [32]. The method
of scalable predictive uncertainty estimation using deep
ensembles is proposed in [33], which is another state-of-the-art
method for this dataset. For MLP, we choose the candidate
structure as the single hidden layer with neurons numbers of
{500, 800, 1000, 1200, 1500, 2000} and two hidden layers of
{[500, 500], [800, 800], [500, 1000], [1000, 500], [1000, 1000]},
where the l2 regularization and dropout are introduced to fine
tune the model. We then report the best performance of MLP.
In DAHH, we set nk = 20000 neurons as the budgets in each
layer, and the backward pruning is also used. The fine tuned
results of VI and deep ensembles methods are cited from [32],
[33]. Table XI illustrates the comparisons.

TABLE XII: Testing NME on Year Prediction MSD dataset.

DAHH (K) VI Deep Ensembles MLP
NME -47.04 (20) -46.89 -47.04 -46.98

Table XII shows that DAHH still pertains advantages in
accuracy for MSD dataset and obtains the same best result
with the state-of-the-art method of Deep Ensembles. The depth
K = 20 indicates that at most 20 variables interacted in the
neurons of DAHH are capable of describing the model and
achieving a fairly good performance, while all variables interact
with each other in each neuron of MLP.

2) Image Classification of MNIST and NORB: MNIST and
NORB are the benchmarks for image classification [20], [34].
MNIST dataset contains the handwritten digits from 0 to 9
by a matrix with 28 × 28 gray scale pixels. NORB dataset
contains images of 50 different 3-D toy objects belonging
to 5 distinct categories, where the images have 2 × 32 × 32
pixels. Except MLP, we also compare with the broad learning
(BL) network, which designs an incremental learning neural
network in a forward wise way and has shown obvious better
performance than PLN in both MNIST and NORB [35]. Rather
than ELM, we employ multiple-layered ELM (MLELM) for
better performance, and the MLP is also considered [36]. Table
XIII shows the results, where the BL, MLELM and MLP are
fine tuned and cited from [35], [36]. For both MNIST and
NORB, DAHH is set with K = 6 also with the l1 norm
regularization to delete redundant neurons in the network.

Table XIII shows that DAHH achieves the highest accuracy
in NORB dataset and MLELM shows to outperform DAHH
slightly in MNIST, which verifies the effectiveness of DAHH
in dealing with image datasets. It worths to be noticed that
the depth K = 6 of DAHH are significantly shallower than

13

TABLE XIII: Testing classification accuracy on MNIST and
NORB datasets.

DAHH (K) BL MLELM MLP
MNIST 98.83% (6) 98.74% 99.04% 97.39%
NORB 90.54% (6) 89.27% 88.91% 84.20%

the dimensionality of the original feature space, i.e., d = 784
and d = 2084, meaning that at most 6 variables interacted in
the neurons of DAHH are capable of achieving competitive
performance for the datasets containing d = 784 and d = 2084
variables. This characteristic tells that the interaction among
variables is not complicated, which facilitates simplicity in
model representation and interpretation of the coupling levels
among variables.

BL and MLELM achieve comparable accuracy with DAHH
networks, but the numbers of network weights in BL and
MLELM are tremendous, since there are many random fully
connected neurons requiring quite a lot memory in storage.
The whole network of DAHH only needs the output connecting
weights. We then present the number of weights in the networks
of BL, MLELM and DAHH.

The deep structures of BL are set as 100-11000 and 1000-
9000 for MNIST and NORB respectively. In [35], it shows
that BL achieves comparable results with MLELM, but has
much less number of weights than MLELM. Thus, we only
need to compare the model size of BL with that of DAHH.The
connecting weights of BL and MLELM require huge storage for
model representations. After the pruning, only 260k weights are
contained in DAHH for MNIST and 140k weights for NORB.
Table XIV demonstrates the comparison on the numbers of
weights contained in the models, where the numerical operator
represents the concrete calculation on the number of weights
in BL.

TABLE XIV: Comparisons on the number of weights.

BL DAHH
MNIST 784 · 100 + 100 · 11000 + 11100 · 10 260k
NORB 784 · 9000 + 9000 · 11000 + 20000 · 10 140k

Table XIV demonstrates that the sparse connections in
DAHH network contribute to less memory storage in model
representation but maintains competitive performance, which
verifies the conciseness and the flexibility of the proposed
DAHH neural network.

D. Performance Analysis and Further Discussions

The aforementioned experiments present comprehensive
evaluation of DAHH on different benchmark datasets for
various tasks. It is worth noticing that DAHH can achieve
competitive performance even for the image datasets of MNIST
and NORB, where no extra feature extractors are used, such
as the convolutional neural network (CNN) [20].

Generally, in order to achieve fairly good performance in
image classification, CNNs should be taken to extract features
and then connect to other classifiers, so as to capture the spatial

information and local patterns. Therefore, the models using
CNNs as feature extractors commonly appear significantly
superior results than the ones without using CNNs. However,
in such cases, the resulting high accuracy for the tested image
datasets mainly owns to the contribution of CNNs, and the
evaluation on the effectiveness of the connected classifier is
weakened. Therefore, we directly apply our proposed DAHH
to the image datasets of MNIST and NORB in Table XIII
without using any feature extractor nor data augmentation,
where DAHH still shows competitive performance, which can
better verify the flexibility and effectiveness of the proposed
model. To better state this point, we test on MNIST with
CNN and one of the state-of-the-art deep models, i.e., LeNet-5,
which is built on the delicate integration of multiple CNNs
and MLPs. In addition, we also test a three-layered CNN,
whose architectures is set as 32 × 3 × 3, 64 × 3 × 3 and
128 × 3 × 3, each of which is followed by a max pooling
of 2× 2. Then, we simply replace the initial layer in DAHH
with such three-layered CNN as feature extractors, followed
by a simple DAHH configured as [1000, 1000], i.e., C-DAHH.
Similarly, we also try to different structures of MLP with
neurons of [100], [500] and [1000] in each layer, concatenated
after the CNN by reporting the best performance, i.e., C-MLP.
Table XV shows the comparisons, where the result of LeNet-5
is fine tuned and cited from [37].

TABLE XV: Comparisons on the testing accuracy of MNIST
with and without CNNs.

MLP DAHH CNN C-MLP C-DAHH LeNet-5
97.39% 98.83% 99.03% 99.16% 99.18% 99.40%

We can see that the incorporation of CNNs significantly
improves the performance of both DAHH and MLP. The
performance of C-DAHH shows slightly better prediction than
C-MLP, though the number of weights in C-DAHH is much less
than C-MLP. C-DAHH is slightly inferior than that of the state-
of-the-art deep NN like LeNet, where LeNet-5 also incorporates
layers of batch normalization to enhance the performance and
has significantly more parameters, while C-DAHH and C-
MLP do not posses such strategy and have relatively simpler
architectures. Thus, C-DAHH can still be regarded to remain
a competitive result with state-of-the-art NN of LeNet-5.

CNNs have natural advantages in image classfication, and
thus we mainly consider them as feature extractors in such
cases. In this paper, we shed core light on the flexibility of the
proposed DAHH on general tasks.

Besides, different trails are given to utilize the explicit struc-
ture information of DAHH, i.e., theoretical analysis in Section V
and numerical experiments in Section VI-B. For some specific
applications, interpretation analysis can be appreciated to detect
more properties, such as the importance of different model
components towards prediction outputs. However, the current
analysis has limitations for more complex scenarios, where
variables are differently or inexplicitly coupled, and its validity
cannot always be guaranteed with prior knowledge regarding
the ground truth, yet it can still be regarded as an attempt to
look inside the box of DAHH network.

14

Based on the above discussions, image-specified cases
remain as challenges. Thus, more sophisticated integration
of CNN and DAHH is worth rigorous investigations, where
the skip-layer connection and the nested pooling operator
of min{·} and max{·} can be promising to construct novel
network integrations. Meanwhile, how to better utilize and
interpret of the special structure of DAHH is also worthy
of further trials, and its explicit geometrical explanation may
facilitate theoretical insight towards generic deep NNs with
PWL activations.

VII. CONCLUSION

Starting from the tree structure of AHH, DAHH is proposed
as a specialized PWL neural network together with effective
training method. Through the forward growth, the network
structure is efficiently and adaptively determined, and the output
connection can be flexibly chosen with skip-layer connections.
Under such structure framework, DAHH can be trained by
back-propagation algorithm, which is capable of tackling large
scale problems. Instead of a black box, the explicit expression
of each neuron can be easily obtained and facilitate the
application of ANOVA decomposition, revealing the coupling
level and interactions among variables. Theoretical analysis are
also discussed regarding the approximation, explicit domain
partition and locally linear expressions. Numerical experiments
verify the effectiveness and flexibility of the proposed DAHH.

REFERENCES

[1] K.-I. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural networks, vol. 2, no. 3, pp. 183–192, 1989.

[2] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” IEEE
Potentials, vol. 13, no. 4, pp. 27–31, 1994.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[6] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp. 807–814.

[7] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999–1013, 1993.

[8] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[10] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

[11] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[12] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with
s-shaped rectified linear activation units,” in Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[13] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[14] S. Wang and X. Sun, “Generalization of hinging hyperplanes,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4425–4431,
2005.

[15] J. Xu, X. Huang, and S. Wang, “Adaptive hinging hyperplanes and
its applications in dynamic system identification,” Automatica, vol. 45,
no. 10, pp. 2325–2332, 2009.

[16] Q. Tao, J. Xu, J. A. Suykens, and S. Wang, “Fast adaptive hinging
hyperplanes,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 1482–1487.

[17] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[18] J. Xu, Q. Tao, Z. Li, X. Xi, J. A. Suykens, and S. Wang, “Efficient
hinging hyperplanes neural network and its application in nonlinear
system identification,” 2020.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[21] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical
piecewise linear representation using a simplicial partition,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 46, no. 4, pp. 463–480, 1999.

[22] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Advances in neural information
processing systems, 2014, pp. 2924–2932.

[23] R. Winder, “Partitions of n-space by hyperplanes,” SIAM Journal on
Applied Mathematics, vol. 14, no. 4, pp. 811–818, 1966.

[24] P. Baldi and R. Vershynin, “The capacity of feedforward neural networks,”
Neural networks, vol. 116, pp. 288–311, 2019.

[25] J. H. Friedman et al., “Multivariate adaptive regression splines,” The
annals of statistics, vol. 19, no. 1, pp. 1–67, 1991.

[26] I. Lind and L. Ljung, “Regressor and structure selection in narx models
using a structured anova approach,” Automatica, vol. 44, no. 2, pp.
383–395, 2008.

[27] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[28] S. Chatterjee, A. M. Javid, M. Sadeghi, P. P. Mitra, and M. Skoglund,
“Progressive learning for systematic design of large neural networks,”
arXiv preprint arXiv:1710.08177, 2017.

[29] X. Liang, A. M. Javid, M. Skoglund, and S. Chatterjee, “Distributed large
neural network with centralized equivalence,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 2976–2980.

[30] H. Guang-Bin, C. Lei, and S. Chee-Kheong, “Universal approximation
using incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans Neural Netw, vol. 17, no. 4, pp. 879–892, 2006.

[31] A. Graves, “Practical variational inference for neural networks,” in
Advances in neural information processing systems, 2011, pp. 2348–
2356.

[32] C. Louizos and M. Welling, “Deep bayesian neural nets as deep matrix
gaussian processes,” 2016.

[33] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
Neural Information Processing Systems, 2017, pp. 6402–6413.

[34] Y. LeCun, F. J. Huang, L. Bottou et al., “Learning methods for generic
object recognition with invariance to pose and lighting,” in CVPR (2).
Citeseer, 2004, pp. 97–104.

[35] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient
incremental learning system without the need for deep architecture,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 1, pp. 10–24, 2017.

[36] C. Erik, G. Huang, L. Liyanaarachchi et al., “Extreme learning machines
[trends & controversies],” IEEE Intelligent Systems, vol. 28, no. 6, pp.
30–59, 2013.

[37] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu, “Addernet:
Do we really need multiplications in deep learning?” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1468–1477.

http://archive.ics.uci.edu/ml

15

Qinghua Tao received the B.S. degree from Central
South University, China, in 2014, and the Ph.D.
degree from Tsinghua University, China, in 2020.
She is currently a Post-Doctoral Researcher with
ESAT-STADIUS, KU Leuven, Belgium. Her research
interests include machine learning, dynamic systems
and optimization, especially for the analysis and
applications of piecewise linear neural networks.

Jun Xu received the B.S. degree in control sci-
ence and engineering from the Harbin Institute of
Technology, China, in 2005, and the Ph.D. degree
in control science and engineering from Tsinghua
University, China, in 2010. She is currently an
Associate Professor with the School of Mechanical
Engineering and Automation, Harbin Institute of
Technology, Shenzhen, China. Her research interests
include piecewise linear functions and their appli-
cations in machine learning, as well as nonlinear
system identification and control.

Zhen Li received the B.S. degree in automation
from Changzhou University, Changzhou, China, in
2017, and the M.S. degree in control science and
engineering from Harbin Institute of Technology,
Shenzhen, China. His current research interests
include, ensemble and boosting machine learning
methods, piecewise linear neural networks and their
applications.

Na Xie received the B.S. degree from Zhejiang
University, China, in 2006, and the Ph.D. degree
from Tsinghua University, China, in 2011. From 2009
to 2010, she was a visiting scholar in Cambridge
University, the UK. She is currently an Associate
Professor with School of Management Science and
Engineering, Central University of Finance and
Economics, China. Her research interests include the
investment and financing of infrastructures, intelligent
transportation investing policy, and the applications of
machine learning and operational research methods,

especially from economy aspects.

Shuning Wang received the B.S. degree in electrical
engineering from Hunan University, Changsha, China,
in 1982, and the M.S. and Ph.D. degrees in system
engineering from Huazhong University of Science
and Technology, Wuhan, China, in 1984 and 1988,
respectively. He was an Associate Professor from
1992 to 1993 and a Full Professor from 1994 to 1995
with the Institute of Systems Engineering, Huazhong
University of Science and Technology, Hubei, China.
Since 1996, he has been a Full Professor with the
Department of Automation, Tsinghua University,

Beijing, China. He was a Visiting Scholar with the College of Engineering,
University of California at Riverside, Riverside, in 1994, and a Visiting Fellow
with the Department of Electrical Engineering, Yale University, New Haven,
CT, from 2001 to 2002. His current research interests include developing
practical methods for nonlinear system identification, control and optimization
via piecewise-linear approximation.

Xiaoli Li received the B.E. and M.E. degrees from
Dalian University of Technology in 1994 and 1997,
respectively, and a Ph.D. degree from Northeastern
University, China, in 2000. From 2000 to 2003,
he was a postdoctoral research fellow at Tsinghua
University, China, and at the University Libre de
Bruxelles, Belgium. Now, he is a professor at Beijing
University of Technology. His research interests
include intelligent control, multiple model control,
adaptive control, and robust control.

Johan A.K. Suykens (SM’05–F’15) was born in
Willebroek, Belgium, in May 18, 1966. He received
the M.S. degree in electro-mechanical engineering
and the Ph.D. degree in applied sciences from
Katholieke Universiteit Leuven, Leuven, Belgium,
in 1989 and 1995, respectively. In 1996, he was a
Visiting Post-Doctoral Researcher with the University
of California at Berkeley, Berkeley, CA, USA. He has
been a Post-Doctoral Researcher with the Fund for
Sci- entific Research FWO Flanders, Belgium. He is
currently a Professor (Hoogleraar) with KU Leuven,

Leuven. He is currently serving as the Program Director of Master AI at KU
Leuven. He is the author of the books, Artificial Neural Networks for Modelling
and Control of Non-linear Systems (Kluwer Academic Publishers) and Least
Squares Support Vector Machines (World Scientific), a coauthor of the book,
Cellular Neural Networks, Multi-Scroll Chaos and Synchronization (World
Scientific), and an Editor of the books, Nonlinear Modeling: Advanced Black-
Box Techniques (Kluwer Academic Publishers) and Advances in Learning
Theory: Methods, Models and Applications (IOS Press).

Dr. Suykens has been an elevated IEEE Fellow 2015 for developing least
squares support vector machines. He has been awarded an ERC Advanced
Grant 2011 and 2017. He was a recipient of the International Neural Networks
Society INNS 2000 Young Investigator Award for significant contributions in
the field of neural networks. He received the IEEE Signal Processing Society
1999 Best Paper (Senior) Award and several best paper awards at international
conferences. In 1998, he organized an International Workshop on Nonlinear
Modeling with Time-Series Prediction Competition. He has served as Associate
Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
from 1997 to 1999 and 2004 to 2007 and the IEEE TRANSACTIONS ON
NEURAL NETWORKS from 1998 to 2009. He has served as the Director
and an Organizer of the NATO Advanced Study Institute on Learning Theory
and Practice (Leuven, in 2002), a Program Co-Chair for the 2004 International
Joint Conference on Neural Networks and the 2005 International Symposium
on Nonlinear Theory and its Applications, an Organizer of the 2007 Interna-
tional Symposium on Synchronization in Complex Networks, a Co-Organizer
of the NIPS 2010 workshop on Tensors, Kernels and Machine Learning,
and the chair of the International Workshop on Advances in Regularization,
Optimization, Kernel Methods, and Support Vector Machines: Theory and
Applications (ROKS) 2013.

	Introduction
	Background
	PWL Activations and Hinging Hyperplanes Models
	AHH

	Deep Adaptive Hinging Hyperplanes Neural Networks
	Sketch of DAHH Neural Network
	Motivation to the diagram of DAHH
	Network Layers and their neurons in DAHH
	Output Connections

	 Forward Growth of DAHH Network Structure

	 Training Method of DAHH Neural Network
	Back-Propagation Framework
	Selection of Splitting Knots
	Neuron Pruning

	Properties of DAHH Neural Network
	Universal Approximator
	Explicit Domain Partitions and Locally Linear Expressions
	ANOVA Decomposition
	Some Remarks
	Piecewise Linearity
	Convexity
	Simple optimization
	Skip-layer connection
	Explicit expression and domain partition

	Numerical Experiments
	 Evaluations on Model Effectiveness and Properties
	Selection of splitting knots ij
	Model Flexibility

	Empirical Study on ANOVA Decomposition
	Performance Evaluation on Benchmarks
	Regression of Year Prediction MSD
	Image Classification of MNIST and NORB

	Performance Analysis and Further Discussions

	Conclusion
	References
	Biographies
	Qinghua Tao
	Jun Xu
	Zhen Li
	Na Xie
	Shuning Wang
	Xiaoli Li
	Johan A.K. Suykens

