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Abstract—Short-term individual household load forecasting is
relevant for several applications and low voltage grid (LVG)
stakeholders, e.g., for grid simulations, operation planning, con-
gestion anticipation or advance payments. Electrical consumption
at the household level is highly stochastic, point forecasting can-
not capture this efficiently. To have insights about the uncertainty
of the prediction, probabilistic methods should be developed.
We propose a method to predict the half-hourly consumption of
individual households one day ahead, based on a neural network,
enhanced with empirical quantiles based on the point forecasts
errors. The method is scalable thanks to its low computational
requirements. Additionally, it requires only historical data and
calendar features. Finally, the method is evaluated in a case study
where it achieves state-of-the-art accuracy.

Index Terms—Short-Term Probabilistic Load Forecasting,
Smart Meter, Household Consumption, Low Voltage Grid.

I. INTRODUCTION

Electric load forecasting is a key task in the grid manage-
ment and has been researched for over a century [1]. Load
forecasting can be classified according to the horizon, i.e., how
long in the future is being forecast (minutes, weeks, months
etc.) and according to the spatial granularity, i.e., the level
of aggregation of the load (household, city, country, etc.).
Different applications require different horizon and spatial
aggregation [2]. Long-term load forecasting at the country or
province level is used for capacity planning, and for energy
policies. For suppliers, monthly predictions are interesting to
determine customers’ advance payments [3] for example.

A. Related work

Residential consumption forecasting, at the household level,
started receiving more attention recently, with the roll-out of
smart meters. It is useful for day-to-day system operations,

L. Botman, O. M. Agudelo and B. De Moor Fellow IEEE, SIAM, IFAC
are with the research group STADIUS Center for Dynamical Systems,
Signal Processing, and Data Analytics within the department of Elec-
trical Engineering (ESAT), KU Leuven, Belgium (Corresponding author:
lola.botman@kuleuven.be).

T. Becker and K. Vanthournout are from the Unit Energietechnologie (ETE),
VITO/EnergyVille, Genk, Belgium.

J. Lago is with Amazon, Amsterdam, The Netherlands. He contributed to
this work as an outside activity and not as part of his role at Amazon.

This research received funding from the Flemish Government under the
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especially with the introduction of more renewable energy
sources, electrical vehicles, and heat pumps which increase
the complexity and uncertainty of the profiles [4]. Addi-
tionally, short-term household forecasting is needed to make
the network smarter [5], and potentially influence customer
behavior towards congestion avoidance systems. The main
difference between aggregated profiles (substation or citywide
level) and household profiles lies in the variability of the data.
Individual household profile present a higher stochasticity than
aggregated profiles, due to the customer (almost) unpredictable
behavior. The literature has mainly been focused on point fore-
casting methods. However, probabilistic forecasting methods
are more appropriate and meaningful in this case: they output
relevant information about the uncertainty of the predictions.
In 2016, the first review paper on probabilistic forecasting
methods was published [4], reviewing all forecasting horizons
from very short-term to long-term and several aggregation
levels. However, there is only one reference to individual
household consumption forecasting [6]. They insist there is
a strong need for more research on probabilistic forecasting
methods, reproducible case studies and evaluation methods.
The latest review on LV load forecasting [7], published in
2021, also states the lack of research at the household level
and recommends moving towards probabilistic methods.

In residential load forecasting, the peaks are often of inter-
est: they might lead to congestions on the LVG. A regular point
forecast method, and associated loss function (or error metric),
tends to ignore peaks as they generate a large error, even when
correctly predicted in terms of height and duration but with
a short time delay. This is called the double peak penalty
effect. A solution is to consider different error metrics [6].
Probabilistic forecasting is an alternative to overcome this.

In this paper, we propose a probabilistic forecasting method
for individual household electrical consumption one day
ahead, with half-hourly resolution. The method takes as input
the historical load and generates time and calendar features
based on the timestamps. First, deterministic predictions are
generated using a neural network, which are then enhanced
with empirical quantiles based on the point forecast error, to
produce a probabilistic forecast. The method is inspired from
successful applications in weather and price forecasting meth-
ods [8], [9]. The approach is applied on an open dataset [10].
We show that our model achieves the same accuracy as more
complex and computationally expensive methods.
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B. Motivation & Contributions

This paper aims to contribute to the literature by proposing
an accurate probabilistic method to forecast residential elec-
tricity consumption based on empirical quantiles. Probabilistic
methods are necessary, due to the high stochasticity of indi-
vidual household consumption profiles, to avoid phenomenons
such as the double peak penalty and to gain insights on the
uncertainty of the predictions. The paper contributes to the
literature by proposing a method that:

• can generate short-term probabilistic forecasting of indi-
vidual household’s electrical consumption, starting from
any point forecasting method;

• does not have strong data requirements such as weather
data or household-specific attributes;

• is accurate, i.e., performs as well as the state-of-the-art;
• is scalable, thanks to the low data requirement and low

computational complexity.
Finally, for reproducibility, the dataset used is publically
available and the code to is made available to the scientific
community [11].

II. PROPOSED METHOD

The approach described in this paper consists of three main
modules, applied sequentially, on each profile individually:
the preprocessing, the point forecasting and the empirical
quantiles. Each module is detailed in the respective subsec-
tions II-A, II-B and II-C. The approach is illustrated with the
flowchart in Fig. 1:

• Preprocessing each profile individually;
• Training the point forecasting model on the training set;
• Applying the point forecasting model on the validation

set. Computing and grouping the errors on the point
forecasting per time step. Computing empirical quantiles
per time step;

• Applying the point forecasting model on the test set and
adding the empirical quantiles to the point forecasting to
generate probabilistic forecasts.

A. Preprocessing

In order to maximize reproducibility, and allow for better
benchmarking, the data preprocessing is kept to its minimum.
Each household profile is normalized between [0, 1] using
MinMaxScaling [12].

B. Point Forecasting

The next step is to produce the point forecast one day
ahead. Many methods have been proposed for short-term
household forecasting [13]. However it is difficult to state
which method performs best out of all published deterministic
methods, as they use different datasets, different input features,
different pre-processing techniques, etc. One method may
perform better on a dataset and worse on another, and there
is no evidence that the complex methods outperform the more
simple ones [13]. We choose to use a Feed Forward Neural
Network (FFNN), since it is widely known, it has similar

performances to- and lower computational requirement than
other machine learning methods, and is one of the easiest to
implement. Artificial neural networks are also recommended
by Kuster et al. [13] in the specific setting of short-term
household load forecasting with sub-hourly resolution.

Inputs and outputs: The amount of time steps in one day
depends on the resolution of the dataset, e.g., half-hourly
profiles have 48 time steps in one day, while quarter-hourly
profiles have 96 time steps in one day. The number of time
steps in one day is denoted by k. The outputs of the neural
network are the k consumption predictions one day ahead:

ŷd = [ŷd1
, ŷd2

, ..., ŷdk
] ∈ Rk, (1)

where d indicates the forecast day and k depends on the dataset
time resolution. The input of the model consists of a number of
days of the historical consumption yi ∈ Rk: (i) the two days of
consumption values prior to the forecast day yd−2 and yd−1,
(ii) one full day seven days prior to the forecast day yd−7

and (iii) one full day fourteen days prior to the forecast day
yd−14. Indeed, one can expect a typical customers’ behavior
(and his subsequent electrical consumption) on a Wednesday
to be similar to the previous Monday and Tuesday, as well
as the Wednesday of the two previous weeks. Additionally,
calendar and time features of the day to be predicted are
added: (iv) hodd the hour of the day, (v) domd the day of
the month, and (vi) moyd the month of the year, are cyclically
encoded using a sine and cosine function, and a (vii) binary
indicator wkd is used for weekday versus weekend. The sine
and cosine encoding allows the algorithm to understand that
the features are cyclical, e.g., 23h00 in the evening is close to
1h00 in the morning [14], [15]. This means that in total, the
input consists of four days of historical consumption values
and seven calendar/time features. The input vector is denoted:

[yd−2, yd−1, yd−7, yd−14, sin(hodd),

cos(hodd), sin(domd), cos(domd), ∈ R4k+7.

sin(moyd), cos(moyd),wkd]

(2)

Architecture: The architecture consists of three layers: (1)
an input layer, with the number of neurons nx equal to the
input vector size 4k+7, (2) one dense hidden layer, with 200
neurons and (3) an output layer, with the number of neurons ny

equal to the output vector size k. The dimensions of the input
and output layers thus depends on the dataset time resolution.
The ReLU (rectified linear unit) activation function is used
after the input layer and after the hidden layer, and a linear
activation function is used after the output layer.

Training, validation & testing process: Due to the high
stochasticity of the consumption profiles and large differences
between them, linked with individual customer behavior, we
choose to train one model per household profile. Each profile
is split in time sequentially: the first 60% of the time steps are
used for training, the next 20% for validation and the last 20%
for testing. The Adam optimizer with default parameters from
Keras [16] is used for the training, i.e., learning rate= 0.001,
beta 1= 0.9, beta 2= 0.999, epsilon= 1e−07. Early stopping
is used during the training, in order to avoid overfitting.
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Fig. 1. Flowchart of the proposed method, applied individually on each profile. Each consumption profile is first preprocessed, then split in training, validation
and testing set. The Feedforward Neural Network (FFNN) is trained on the training set. The FFNN is then applied on the validation set. The empirical
quantiles are computed on the errors of the validation set. Finally, the FFNN is applied on the test set and the empirical quantiles are added to the point
forecast in order to obtain a probabilistic estimate of the future consumption. (a) 100 quantiles are computed per time step, there is one quantile functions
per time step in the day. (b) Point forecasting results one day ahead. (c) Point forecasting with empirical quantiles.

C. Empirical Quantiles

The trained point forecasting model is applied on the
validation set. It generates one day ahead forecasts ŷ =
[ŷ1, ŷ2, ..., ŷk] for the m days in the validation set. The errors
e (in dark yellow to khaki green on Figure 2) between the
predictions ŷ (in blue) and the true consumption y (in green)
are computed for the m days. There are m error vectors of
size k:

e = y − ŷ = [e1, e2, ..., ek] ∈ Rk. (3)

The errors are then grouped per time steps, i.e., the first group
g1 consists of all prediction errors made at the first time step
(00h00), the second group g2 consists of all errors made at
the second time step (00h30), and so on. In total, there are k
sets of m errors, one for each time step of the day:

g1 = [e1, e
′
1, ..., e

(m)
1 ] ∈ Rm

g2 = [e2, e
′
2, ..., e

(m)
2 ] ∈ Rm

...

gk = [ek, e
′
k, ..., e

(m)
k ] ∈ Rm.

(4)

Based on each set of error gi, 100 empirical quantiles are
computed. The 100 quantiles represent the error distribution
of the point forecasting at each time of the day. In total, there
are 100 quantiles for each of the k time steps, there are k
quantile functions. An example is shown in Fig. 1(a).

Finally, the point forecasting model is applied to the test
set, the output is one day ahead deterministic predictions, as

illustrated on Fig. 1(b). The previously computed quantiles
are added to these point predictions, this generates uncertainty
bounds around the predictions, as shown in Fig. 1(c).

III. CASE STUDY

A. Dataset

The dataset is provided by the Commission for Energy
Regulation (CER) of Ireland and is available on the Irish
Social Science Data Archive (ISSDA) website [10]. The data
was collected in the context of the Smart Metering Project
- Electricity Customer Behaviour Trial in 2009 and 2010. It
consists of the half-hourly electrical consumption (in kWh) of
more than 5,000 Irish homes and businesses from July 2009
until December 2010. In order to make the benchmark as
consistent as possible, we use the exact same preprocessing
pipeline as in [17], available on GitHub [18]. As Arpogaus et
al. [17] state, they first remove non-residential profiles, since
the interest and challenge of the model lies specifically in the
stochastic behavior of the residential customers. They also re-
move all incomplete records. A subset of the remaining profile
is selected randomly (10%, equivalent to 363 customers). As
mentioned in II-A, the profiles are also normalized between
[0, 1] individually.

B. Evaluation

The conventional point forecasting performance metrics
such as Mean Absolute Error (MAE) or Mean Square Error
(MSE) can easily be computed for the method proposed,
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Fig. 2. The errors are computed between the predicted consumption (in blue)
and the true consumption (in green). The errors are then grouped per time
step to compute the empirical quantiles.

as the approach consists in point forecasting in a first step,
enhanced with quantiles in a second step. Nevertheless, they
don’t take into account the reliability, nor the sharpness of the
probabilistic forecast. A proper scoring rule, such as the Con-
tinuous Ranked Probability Score (CRPS) is recommended [9],
[19], [20]. More details are provided in the supplementary
materials [11]. We thus report the MAE, MSE and CRPS.
Each metric is computed per profile and then averaged over
all profiles.

C. Benchmark models

The method proposed in this paper is compared with two
other methods: a probabilistic baseline and a complex state-
of-the-art approach proposed in the recent literature using
Bernstein-Polynomial Normalizing Flows (BNF) [17]. The
authors claim that their method outperforms a simple Gaussian
Model, a Gaussian Mixture Model and a Quantile Regression.
In the point forecasting literature, the naive baseline is often
a persistence model: the true values of the previous days are
considered as the predictions for the next day:

ŷd = yd−1, (5)

assuming that without mathematical formulation or complex
modeling, the best hypothesis that can be made is that the
consumption of the current day will be similar to the consump-
tion of the previous day. We propose a probabilistic baseline,
grounded on the same assumption, using the persistence model
in the prediction step and then applying the empirical quan-
tiles’ step as proposed in Section II-C.

The benchmark model uses BNF to transform a complex
distribution to a more simple distribution. A neural network
is trained to predict the parameters of the flows. These
parameters yield the marginal Conditional Probability Density
for all the time steps, one day ahead. Seven days of data
prior to the predicted day are used as input and there are five
additional exogenous inputs, i.e., the sine and cosine encoding
of the day of the year, and the day of the week, as well as
a binary indicator for the holidays. The reader is referred to
the full paper for details [17], [18], [21]. As this approach
outputs distribution functions per time steps, we computed
quantiles from these distributions and then applied our own
implementation of the discretized CRPS on the quantiles. Note
that the BNF method results are slightly different from the
results presented in [17], [21] as they have been re-run locally,
with our own (not normalized) CRPS implementation, in order
to allow for exact comparison with the other methods.

IV. RESULTS & DISCUSSION

The performance metric results are presented in Table I.
The approach described in this paper is compared with a
probabilistic baseline and a state-of-the-art technique, both
detailed in Section III-C.

The point forecasting of the different methods can be
compared with the MSE and MAE results. In both cases,
smaller values mean better predictions. It is clear that the
proposed method outperforms both benchmarks. However, this
is expected, as the first method is a baseline making a strong
assumption, and the second one is designed to predict a
conditional probability directly, not a point forecast.

Regarding CRPS, there is an approximate 25% decrease
in CRPS between the baseline and the two other methods,
which means 25% improvement. The difference between both
methods is rather small, but still shows a 1, 75% improvement.

The execution times of each method are summarized in
Table II. It is relevant to take execution times into account as
these algorithms are developed for applications with thousands
of profiles, at the country level for example. It is crucial that
the methods should be accurate and efficient. Each method is
run on a machine with 9th Generation ”Coffee Lake” 2.6 GHz
6-Core Intel Core i7 mobile processor (I7-9750H), MacOS
operating system, Python version 3.8.3. The baseline takes less
than two minutes to make the predictions for the 363 profiles
and requires no training.

The BNF method requires 38 minutes for training and 7
minutes for the predictions of all 363 profiles. The BNF
implementation [18] is provided by the authors and run locally.
The prediction process could be parallelized, however, the
training cannot as one model is trained on all profiles.
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MSE MAE CRPS
CRPS’ relative
improvement
to baseline

Baseline 0.6008 0.3944 0.3252 /

BNF [18] 1.0800 0.3335 0.2461 24.32%

Proposed method 0.3969 0.3080 0.2418 25.64%

TABLE I. Performance metrics of each method applied on the CER dataset.

Training Testing Total

Baseline / 1 min 15 s 1 min 15 s

BNF [18] 38 min 7 min 45 min

Proposed method 14 min 1 min 15 min

TABLE II. Execution time of the training and testing of each method.

The proposed method takes at most 15 minutes to run
the whole pipeline, i.e., preprocessing, train-test split, model
training, predictions and saving all results. More specifically,
between 11 and 14 minutes are needed for training (it varies
slightly between runs, the longest one is reported in Table II)
and 1 minute for predicting all the 363 profiles. Each profile
model is trained consecutively, and the predictions are made
sequentially profile per profile as well. The run-time could be
reduced by parallelizing the process.

It is clear that the baseline is faster, as there is no training
and simple mathematics are applied. However, for similar
performance metric achieved in terms of CRPS, the method
proposed in this paper is three times faster than the BNF
approach, and thus scalable for country wide applications.

V. CONCLUSION

This paper presents a fast and accurate approach for proba-
bilistic short-term forecasting of household consumption based
on historical data and calendar features inferred from the
timestamps. The approach contributes to the limited literature
in terms of probabilistic methods and lower aggregation level
load. The method is compared to a baseline and to a state-
of-the-art method. It presents strong advantages: (i) it has
low data requirement, nor weather, nor households-specific
attributes such as appliance information, or number of habi-
tants are needed; (ii) it is fast and scalable thanks to the low
computational complexity and low data requirements; (iii) it
is accurate as it achieves state-of-the-art performances.

In future work, the method could be improved with other
point forecasting methods in the first step, although it might
impact scalability if more complex models are used. The
error measure proposed in [6] could be used in the point
forecasting model to reduce the double penalty effect. The
model presented in this paper could also be applied on new
datasets in order to assess the generalization of the method.
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