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A FAST ALGORITHM FOR COMPUTING MACAULAY NULL
SPACES OF BIVARIATE POLYNOMIAL SYSTEMS*

NITHIN GOVINDARAJANT, RAPHAEL WIDDERSHOVENT, SHIVKUMAR
CHANDRASEKARAN?, AND LIEVEN DE LATHAUWER'

Abstract. As a crucial first step towards finding the (approximate) common roots of a (possibly
overdetermined) bivariate polynomial system of equations, the problem of determining an explicit
numerical basis for the right null space of the system’s Macaulay matrix is considered. If ds; € N
denotes the total degree of the bivariate polynomials of the system, the cost of computing a null space
basis containing all system roots is O(d%) floating point operations through standard numerical
algebra techniques (e.g., a singular value decomposition, rank-revealing QR-decomposition). We
show that it is actually possible to design an algorithm that reduces the complexity to O(d%)‘ The
proposed algorithm exploits the Toeplitz structures of the Macaulay matrix under a non-graded
lexicographic ordering of its entries and uses the low displacement rank properties to efficiently
convert it into a Cauchy-like matrix with the help of fast Fourier transforms. By modifying the
classical Schur algorithm with total pivoting for Cauchy-like matrices, a compact representation
of the right null space is eventually obtained from a rank-revealing LU-factorization. Details of
the proposed method, including numerical experiments, are fully provided for the case wherein the
polynomials are expressed in the monomial basis. Furthermore, it is shown that an analogous fast
algorithm can also be formulated for polynomial systems expressed in the Chebyshev basis.

Key words. Macaulay matrices, polynomials systems, rank-revealing LU-factorizations, low
displacement rank matrices, Schur algorithm.

AMS subject classifications. 15A69, 15A23

1. Introduction. Solving systems of multivariate polynomial equations is a clas-
sical problem in mathematics. While degenerate cases of this problem, such as linear
systems and univariate polynomial root-solving, have evolved into separate disciplines
of their own, the more general case has been thoroughly studied in the field of (compu-
tational) algebraic geometry [13,14]. In circumstances where the system of polynomial
equations only admits a finite number of solutions, i.e., so-called zero-dimensional sys-
tems, the literature has advocated two major approaches to find all common roots.
The first approach, which effectively only applies to square systems, employs homo-
topy continuation to retrieve the roots of the desired system by continuous deforma-
tion of a “starting system” for which the roots are already known [2, 33,46, 54, 55].
The second approach, which is more in line with the focus of this paper, are algebraic
methods [1,19,32,48,49].

The goal in algebraic methods is to apply symbolic and/or numerical operations
on the polynomials of the system to unveil the structure of the quotient algebra of
the polynomial ring by the ideal, so that the root-solving problem can essentially
be reduced to an eigenvalue problem; see e.g., [12] for a historical overview on the
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2 GOVINDARAJAN, WIDDERSHOVEN, CHANDRASEKARAN, DE LATHAUWER

method. There exists several means of accomplishing this reduction. The classical
approach is to use Grobner bases [9] or resultants [19] to construct the normal forms
in the multiplication maps [14, Chapters 2 and 3]. The instability of these classical
approaches has led to the development of border basis methods [38], and more recently,
truncated normal forms [41,51].

A fundamental object that arises frequently in these algebraic methods is the
so-called Macaulay matrix!, which generalizes the Sylvester resultant matrix of two
univariate polynomials to the multivariate case [34]. To construct multiplication maps,
particularly the null spaces of these matrices are of primary interest, since they have
a direct correspondence with the quotient ring generated by the ideal. Along with the
shift-invariance properties in the null space, this observation has allowed the authors
in [3,16,17] to reformulate root-solving problem into a generalized eigenvalue problem
starting from a numerical basis for the Macaulay null space. In [52], this generalized
eigenvalue (GEVD) problem was further reformulated as a joint generalized eigen-
value (joint-GEVD) problem [21], or equivalently, a canonical polyadic decomposition
(CPD) computation of a third-order tensor, by taking advantage of the commuting
property of the multiplication maps. The algorithms in [5,41,51] also have as starting
point a null space computation of a Macaulay-type matrix.

Irrespective of how the null space is further utilized, a major computational chal-
lenge shared by all aforementioned algorithms is the extraordinary dimensions of
Macaulay-type matrices for even moderately-sized problems, making the null space
basis computation prohibitively expensive. Classically, the algebraic geometry com-
munity has dealt with this challenge by exploiting possible sparsity structures that
may be present in the equations, which allows for the construction of smaller resul-
tant matrices [20]; see also the recent strides made in [5]. Nevertheless, Macaulay-type
matrices are highly structured (even for the generic case), and limited investigation
has taken place on how to exploit these structures directly in linear algebra compu-
tations [4,41]. In particular, Macaulay-type matrices contain convolution operations,
resulting in (quasi-)Toeplitz structures. Since these are matrices of low displace-
ment rank [31], the question arises whether the tools of fast linear algebra for dense-
structured matrices (see e.g., [10,15,30,57]) can be utilized to design asymptotically
faster algorithms.

1.1. Problem statement. In this paper, we confirm that asymptotically faster
algorithms may indeed be formulated, at least satisfactorily for the bivariate case
where the goal is to find all projective roots of the homogenized system. More specif-
ically, we consider the (possibly) overdetermined set of equations

ds, ds—1

pia,y) = Y D cga'y =

i=0 j=0

ds; dss—1

ps(z,y) = Z Z csijz'y’ =0

i=0 j=0

Hn fact, many of the algebraic operations performed in these methods, including Grébner basis
constructions, can directly be related to linear algebra operations on this matrix itself; see e.g., [18,
Section 3].
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MACAULAY NULL SPACES, BIVARIATE POLYNOMIAL SYSTEMS 3

where it is assumed that for all s = 1,...,5, ps € C[z,y] is a polynomial of total
degree? dy, i.e., Csi(ds—i) # 0 for some i = 0,1,...,ds. For S > 2, the system (1.1)
is expected to admit d% (near) solutions (including multiplicities and so-called roots
at infinity) if the set of equations are (approximately) consistent. These solutions are
embedded in a d&-dimensional null space of the Macaulay matrix M(d) € Ccrd)xn(d)
with m(d),n(d) ~ d*> and d ~ dyx. Subsequently, with current state-of-the-art tech-
niques (such as SVD or column-pivoted QR-decomposition), the cost of computing
the null space will be O(d$) floating point operations.

1.2. Contributions. The main contribution of this paper is to show that a nu-
merical basis for the null space of the Macaulay matrix can be computed in O(d%)
floating point operations. To arrive to this result, we introduce a specialized algorithm
that takes advantage of the “almost” upper-triangular Toeplitz block-(block-)Toeplitz
structure of the Macaulay matrix in a non-graded lexicographic ordering of its entries
(see Subsection 2.1). By applying displacement rank theory, it is shown that such
matrices are efficiently converted into Cauchy-like matrices using Fast Fourier Trans-
formations (FFTs) [29]. By adapting Ming Gu’s variant of the Schur algorithm with
approximate total pivoting [26], we then show that a compact representation of the
right null space can be obtained for the Cauchy-transformed Macaulay matrix from
a rank-revealing LU-factorization [37,45]. Through inverse transformations, this rep-
resentation can be converted to a numerical null space basis for the original matrix
itself.

Central to the fast algorithm is the observation that the Macaulay matrix is of
relatively low displacement rank, allowing for the Gauss steps in the Schur algo-
rithm to be done quite efficiently. Technical contributions in this context are cer-
tain design choices in the algorithm to ensure stability, without sacrificing on (as-
ymptotic) complexity. This includes some important implementation details on the
re-orthonormalization updating strategy required for pivot selection, and a greedy
heuristic to select near optimal parameters for the Cauchy conversion step. The per-
formance of the algorithm is validated experimentally.

In addition to our main contribution above, we also show, but not implement,
that the fast algorithm can be generalized for polynomial systems expressed in the
Chebyshev basis; a problem of significant numerical importance [42,43]. For this
purpose, we describe a Chebyshev variant of the Macaulay matrix and reformulate
the root-solving problem as a joint-GEVD problem in this setting as well. Although
root-solving in the Chebyshev basis has already been studied in [41] within the con-
text of truncated normal forms, our derivation of the joint-GEVD problem is new
and insightful as it highlights the underlying Toeplitz-plus-Hankel structure of the
Chebyshev-Macaulay matrix (see Subsection 5.1.1).

1.3. Related work. Structured matrices in the context of multivariate poly-
nomial systems have been studied before in [39,40] to design asymptotically faster
algorithms through randomized techniques. The use of displacement rank theory in
root-solving problems is also not entirely new. For instance, in [6,7], it was observed
how the Schur algorithm may be utilized to accelerate computations with Sylvester
and Bézout matrices. Furthermore, [36] presented a modified version of Schur algo-
rithm that determines the null space of a Toeplitz-like matrix, although motivated

2The proposed techniques introduced in this paper easily generalize to systems involving poly-
nomials of varying degree, but for clarity of exposition, it is assumed that the degrees of all the
polynomials in ¥ are equal.
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4 GOVINDARAJAN, WIDDERSHOVEN, CHANDRASEKARAN, DE LATHAUWER

from a problem in control. Furthermore, the method differs fundamentally from ours
as it is based-off a QR~decomposition and does not involve a Cauchy conversion.

1.4. Outline. The subsequent sections of this paper are organized as follows.
Section 2 introduces the Macaulay matrix and the procedure of reducing the root-
solving problem to a joint-GEVD problem. Section 3 discusses the fast algorithm for
determining the null space of the Macaulay matrix. Section 4 presents some numerical
experiments. Section 5 discusses how the fast algorithm can be generalized. We
describe (i) a generalization of the algorithm for polynomial systems in the Chebyshev
basis, and (ii) the law of diminishing returns when generalizing the algorithm to
polynomial systems with more than two variables. Section 6 presents the conclusions.

Notation. Let Z, R and C denote the set of integers, real and complex numbers.
The imaginary number is denoted with ¢, i.e., :2> = —1. The projective complex plane,
defined as set of points (0,0,0) # (¢t,z,y) € C3 with (t,z,y) = (At, \z, \y) for any
0 # A\ € C, is denoted by P?(C). P(C), on the other hand, denotes the projective
complex line. The ring of polynomials over the complex field with indeterminates x
and y, or indeterminates z, y and ¢ is denoted respectively by C[xz, y] and C[¢t, x, y]. At
times, where we would like to emphasize polynomial multiplication, the dot notation
is adopted to express the product of two polynomials, e.g., h - p € C[z,y]. The ideal
generated by two polynomials p, g € C[x, y] is expressed as Z(p, q).

Capital Greek and Roman letters shall be used to denote matrices, while vectors
are denoted with bold-faced characters. At our convenience, we use “Matlab” sub-
script notation to denote sub-blocks of vectors and matrices, e.g., Aj.; 1 refers to the
first k entries of the first column of the matrix A, while v(;41)., refers to the last
n — k entries of the vector v € C™. Certain commonly occurring families of vectors
and matrices are denoted with special symbols. A vector of all zeros (ones) is denoted
by 0, € R™ (1,, € R™), while a matrix of zeros (ones) is denoted by 0,,xn, € R™*"
(1yxn € R™*™). The k-th unit vector of length n, with a one on the k-th position
and zeros elsewhere, is denoted by ey, € R™. The n-by-n identity matrix is denoted
by L, whereas I, ,, describes the m-by-n matrix with ones on the main diagonal and
zeros elsewhere. Furthermore, for convenience we define

U1 Al
diag(v) := , diag{A;}7, := )
Un A,
At times, we may also use descending indices, e.g., diag{Ai}%:n = diag{Ap_it1}1 1.

The Kronecker product between two matrices is demarked with the symbol ®, i.e.,
for matrices A € C™*™ and B € CP*9,

CL11B alnB
A®B := : : e cpmxan,
amB - amnB
Let [, := (X7 [viP)1/2, |A], := max, 0, |Av], /[v],, and [Alg := /3, ; lai|*.

The rank of a matrix A € C"™*™ is denoted with rank A. The column and null spaces
of A are denoted with col A and null A, respectively. The symbols (-)" and (-)*, are
used to denote transpose and conjugate transpose.

This manuscript is for review purposes only.
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2. Macaulay-based method for polynomial root-solving. In this section,
we review the Macaulay-based method for finding all projective common roots of
(1.1). In Subsection 2.1 we introduce the Macaulay matrix, in Subsection 2.2 we
summarize the properties of its null space viz-a-viz its relationship with the roots
of the system, and in Subsection 2.3 we discuss how, starting from a null space
basis, the root-solving problem is reduced to an eigenvalue problem or generalizations
thereof [3,16,17,52].

2.1. Macaulay matrix. Denote Ad = d — ds, and define
(2.1) m(d) := %(Ad—k 1)(Ad + 2), n(d) := %(d—k 1)(d+2).

The Macaulay matrix M(d) € C™@*7(d) of degree d > dyx, is the matrix constructed
from the polynomial coefficients in (1.1) such that its rows span the set of polynomials

S
(2.2) M (d) = {Z he-ps: hs e Clz,y], deg(hs) = Ad} .
s=1

The row and column indexing® used to describe this vector space is of course at our
discretion. In this work, we adopt a non-graded lexicographic indexing (with z < y)
as it reveals a (multi-level) Toeplitz structure that will be exploited in the method
presented in Section 3. In other words, %1yt < z%2y72 if j; < j3, and in case j; = ja,
i1 < i2. The monomial terms x’y? with 4, j < d are ordered as

d. d,.,2 2 d, 2. .,d d d, d
I,I,...,I Y, XY, - s TYSY XY Y Y XY e, Y

but then excluding those terms that are not part of the collection {xiyj }
The rows of M(d), which describe the set of “shifted” polynomials

1,20, i+j<d’

{I’Zy] ‘P1y-- ,Ilyj . pS}i7j>07 i+i<Ad’
are ordered in analogous manner, leading to indexing illustrated graphically in Fig-
ure 1.
As such, the entries of the Macaulay matrix may be described as follows. Re-
call that cgx; is the coefficient of polynomial ps € 3 associated with the monomial
term xkyl. For convenience, let ¢ := [clkl cSkl]T for k < ds — [ and

ci; = Og, otherwise. For i = 0,1,...,ds and j = 0,1,...,Ad, define the matrix
Mz‘j e CS(Ad+1fj)><(d+1fi7j) as

Coi Ci1; - Cldg—i)i

Coi Cii Cldy—i)i
(23) Mi,j = . . ( = ) . 5

Coi Ci; o Cldg—i)i

which represents the coefficients of the monomials with 3 repeated and shifted Ad +
1 — j times. Then, for d > dyx, the Macaulay matrix associated with the polynomial
system (1.1) is given by

Moo Mip -+ Mgz

Moq:1 Mip - Mgy 1

(2.4) M(d) := e cm(d)xn(d)

Moad Miag -+ Mag.aa

30r for that matter, even the chosen polynomial basis. In Section 5, we describe how our ideas

are extended to polynomial systems described in the Chebyshev basis.
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1 e gzl y o adly Y2 e adT2y? g1 gyd—1 yd

Fig. 1: The corresponding non-graded lexicographic indexing of the Macaulay matrix
defined in (2.4). Here, p = (p1,p2,--.,ps) € (C[x,y])® and subsequently x'y’ - p is a
shorthand for describing the polynomials (z'y? - p1,2%y? - pa, ..., 2%y - pg).

To illustrate (2.4) with an example, consider the polynomial system

5. pi(z,y) = 146z +42?+2y+5zy+3y2=0
’ pa(z,y) = 9+1zx+322+8y+Txy +2y%2 =0

The Macaulay matrix for d = 4 takes on the form

1 = z2 23 24 y zy z2y :csy y2 zy2 I2y2 y3 :cyS y4
;o | 1 6 4 5 3 i
po 9 1 3 7 2
zpy 1 6 4 2 5
- 9 1 3 8 7
©2p; 1 6 4 2 5
©2py 9 1 3 8 7
yp1 1 6 4 5 3
yp2 9 1 3 7 2
zypy 1 6 2 5 3
cypo 9 1 8 7 2
v2py 1 6 4 2 5 3
v?py | 9 1 3 8 7 2 |

The Macaulay matrix (2.4), for the chosen ordering, has an upper-triangular Toeplitz
block-(block-)Toeplitz matrix?, but then with rows corresponding with polynomial
shifts of degree greater than Ad and columns corresponding with monomial terms of
degree greater than d removed accordingly. That is, we may write

(2.5) M(d) := diag {T; aa+1 ®Ts};_ gy M7 (d) diag {Tas1 5} g,

4 An upper-triangular block Toeplitz matrix, where each block element is again upper-triangular

(block-)Toeplitz.

This manuscript is for review purposes only.
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MACAULAY NULL SPACES, BIVARIATE POLYNOMIAL SYSTEMS 7

where
B tpz tpz tpz
MO 1\/[1 N Mdz
ME)pz Mtlpz .. Mtpz
. ds S(Ad+1)%x (d+1)?
M (d) := . . . e CS(Ad+1)*x(d+1)*
tpz tpz tpz
L MO Ml e Mdg
Coj Cij - Cdyj
Coj €1 - Cdyj
M;_pz = . . ) c CS(Ad+1)><(d+1),
i Coj € v Cdyj

for 7 =0,1,....ds.

2.2. Properties of the Macaulay null space. For S > 2, the Macaulay
matrix eventually grows into a tall matrix with more rows than columns for sufficiently
large values of d. The matrix is however rank deficient and has a nontrivial right null
space.

The right null space of the Macaulay matrix (2.4) is closely linked to the set of
common roots of the system (1.1), or more specifically, its homogenization

pl,h(t7$7y) = tdz} pl(x/t7y/t) =0
(2.6) DIV :

pS,h(taI7y) = tdE ps(I/t7y/t) =0

in the projective complex plane P?(C). Indeed, if v4(t,z,y) € C*¥ defines the vector

(27) Vd(t7 €, y) = td : Vd,x,y(x/tv y/t)7
where
T n
Vi y(2,y) 1= [V;irz@c) Y- V;—l,z@) T yd : V(—)r,x(x)] eC (d)a
Vaz(z):=[1 = -- a:d]T e CaHL,

we observe that for every common root (t*,x*,y*) € P?(C) of ¥, it must hold that
Va(t*, 2% y*) € null M(d). In relation to the original system X, we may place the roots
of ¥}, in two distinct categories: if ¢ # 0, (t*,2*,y*) € P?(C) is considered to be an
affine root of ¥, otherwise it is called a root at infinity. Affine roots of ¥, have a
direct correspondance with the roots of the original system ¥ in affine space. That
is, since (t*,x*,y*) = (1, 2% /t*, y*/t*) in P?(C), the point (x*/t* y*/t*) € C* will be
a root of ¥ because of the identity ps (1, z/t,y/t) = ps(z/t,y/t). Roots at infinity,
on the other hand, do not relate to any roots of ¥. Instead, they are roots of the
homogeneous system

ds
p1,oo($,y) = p1,h(0,$7y) = Z Cli(dz}—i)‘rzydz_Z =0
=0
Yo K
dz . .
pso(z,y) = psu(0,z,y) = Z Csi(ds—nT' Y= =0
\ =0

This manuscript is for review purposes only.
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in P(C). From the fundamental theorem of algebra, it can be shown that a root at
infinity only occurs if all homogeneous polynomials in ¥, share a nontrivial common
factor. Mathematically, the possibility of this occurring for a generic system is zero,
yet it should be noted that in many structured polynomial systems which arise in
practice, this property no longer holds true; see e.g., [46,50] for examples.

Nevertheless, here we focus on the generic case with an interest in finding all
roots of the homogenized system (2.6). If the polynomials in ¥, do not share any
common nontrivial factors, i.e., psp # f - gs;n for some non-constant polynomial
f € C[t,x,y], this number will turn out to be finite. Specifically, if S = 2, Bézout’s
theorem (see e.g. [28, Theorem 7.7]) applies and the number of roots, accounting for
multiplicity, equals d%. On the other hand, for overdetermined systems, the number
of roots will generically be zero®. To still provide a proper complexity analysis later
in Subsection 3.3, we shall assume that two coprime polynomials in ¥ generate the
entire ideal formed by all polynomials of the system so that we obtain a consistent
set of equations. That is,

(2.8) Ip,q € X, with p and ¢ coprime, such that Z(p,q) = Z(X) .

In such a circumstance, the homogenized system ¥, will again have d% common roots.
From a practical standpoint, it is sensible to assume condition (2.8) since it idealizes
a scenario of an overdetermined system being e-close to a square system, i.e., where
condition (2.8) is only satisfied in an approximate sense.

2.3. Recovering the roots from the Macaulay null space. As pointed out
in the introduction, there exist numerous ways to reformulate the root-solving problem
into an eigenvalue problem. In this section, we review the method in [52], which builds
upon the foundational work in [3,16,17]. In this approach, the root-solving problem
is reduced to a joint generalized eigenvalue (joint-GEVD) problem, or equivalently a
CPD computation. For simplicity of exposition, we shall assume for the remainder of
this section that all roots of ¥, are simple, i.e., the multiplicities equal one®. Note
however that this assumption can be removed and properly addressed through, for
instance, the frameworks presented in [11] or [53].

2
Let {(t;,x:,v:) € P?(C) }jfl denote the set of common roots of ¥, and define the
multivariate Vandermonde matrix as

(2.9) V(d) = [Va(ti, z1,91) -+ Valtaz, ez, yaz)] € Cr(xds,

It is clear that col V(d) < nullM(d). It turns out that this containment can be
strengthened to an equality. In fact, there exists a so-called degree of regularity
d* for which the nullity of Macaulay matrix stabilizes to the number of roots in the
system, which in the case of (2.6) with condition (2.8) implies that dimnull M(d) = d%
for all d = d*. Subsequently,

(2.10) r(d) := rank M(d) = n(d) — d%, d > d*.

Upper bounds on the degree of regularity relate back to original work by F.S. Macaulay
[34] and can be found, for example, in [14, Section 3.4]. Specifically, the degree of

5This can be interpreted as a generalization of the statement that an overdetermined linear
system typically has no exact solution.

SThe multiplicity quantifies intuitively in how many distinct intersections a common root of two
plane curves (described by the vanishing set of the respective polynomials) disperses under arbitrary
small perturbation. For generic intersections, this number equals one.
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regularity for the bivariate system (1.1) is bounded by
(2.11) d* < 2dy, — 2.

The degree of regularity is often attained well before the bound in (2.11). In practice,
one uses recursive approaches to construct the null space to avoid forming unneces-
sarily large Macaulay matrices [4,41]. In our analysis later in Subsection 3.3, we shall
nonetheless use (2.11) to provide upper bounds on the complexity.

The reduction of the roots solving problem to a joint-GEVD problem [21] takes
advantage of the fact that the columns of (2.9) form a basis for null M(d) if d >
d*. In particular, one exploits the shift-invariant structure in (2.9) as follows. Let
Si(d), Sz (d),Sy(d) € RMd=1xn(d) denote the shift-matrices

1 0
St(d) = dlag {St,d*i}f:o y St,i = t. . € Rix(i-‘rl)7
10
0 1
S.(d) = diag {Sza—i}_y, Sei=|: e R (41,
0 1
and
Oax (a+1) Iy
O(a—1)xd Ig—1
Sy(d) = O(a—2)x(a-1)
Iy
O1x2 1
Since Sp(d + 1)Vgi1(t,x,y) = h-va(t,x,y) for h = {t,z,y}, we obtain the relations
(2.12a) Si(d+ 1)V(d + 1) = V(d)Dy,
(2.12b) S:(d+ 1)V(d+ 1) = V(d)Dy,,
(2.12¢) Sy(d+1)V(d + 1) = V(d)D,,
where

(2.13) D, = diag(t4,... ,tdzz), D, = diag(z,... ,:cdzz), D, = diag(ys,. .. ,ydzE).

Suppose that the columns of N(d) are a basis for nullM(d). Since the columns of
N(d) € Cr(d)xd% gpan the same subspace as the columns of V(d) for d = d*, there
exists an invertible matrix A € C?%*9% such that N(d)A = V(d). Substitution of this
identity into (2.12) yields a joint-GEVD problem. That is, given the matrices

G1:=Si(d+1)N(d+1), G2:=8S,(d+1)N(d+1), Gz:=8,(d+1)N(d+1),
find an A that simultaneously diagonalizes G; € C”(d)XdQE, ie.,
(2.14) G1A =V(d)Dy, G2A =V(d)D,, GszA =V(d)D,.

The set of matrix equations (2.14) can be rephrased as the CPD of a tensor whose
frontal slices are given by G; for i = 1,2,3. Well-established reliable numerical meth-
ods exist to compute CPDs of tensors; see e.g., [21,47,56], and the references therein.
A schematic summary of the entire method is shown in Figure 2.

This manuscript is for review purposes only.
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Homogenize (2.6) Determine roots 32
Y g M {ti, v, yi}; 2 € P2(C)
Macaulay (2.4) (2.13)
Compute null space Solve joint-GEVD
1\’[((1) > N(d) > D¢, Dy, Di/
basis (Section 3) (2.14)

Fig. 2: A schematic overview of how all projective roots of the (homogenized) sys-
tem are found. Our objective is to determine the roots of the homogenized system
(dashed line). This is achieved by following the steps given by the solid lines, i.e.,
first computing a basis for the null space of the Macaulay matrix, and then solving
the joint-GEVD problem Equation (2.14).

3. Fast determination of the Macaulay null space. The Macaulay matrix
(2.4) has an almost Toeplitz-block-(block-Toeplitz) structure as described in detail in
Subsection 2.1. We describe an efficient method to determine a numerical basis for
the right null space of such a matrix. The method proceeds in three steps:

1. Apply unitary transformations ® € C"(@*m(d) and ¥ e C™D*7(d) guch that
®M(d)¥ =: M(d) attains the structure of a Cauchy-like matrix.
2. Compute a fast rank-revealing LU-factorization of M(d) using the Schur al-
gorithm to obtain a basis for its null space N(d).
3. Recover the null space of the original Macaulay matrix from N(d) = \I/N(d)
A schematic outline of the method is presented in Figure 3. Referring to this out-
line, Subsection 3.1 provides the details of how the Macaulay matrix is efficiently
converted into a Cauchy-like matrix. Subsection 3.2 discusses the details of finding
an efficient null space representation for this Cauchy-transformed Macaulay matrix
using the Schur algorithm. The recovery of the null space for the actual Macaulay
matrix becomes a trivial step, since an expression for ¥ has already been derived in
Subsection 3.1. In Subsection 3.3, a summary of the algorithm is given along with an
analysis of its asymptotic complexity.

Remark 3.1. Mind that our method will always produce a complex basis for the
null space, even if all coefficients in (1.1) are real. If a real basis is so specifically desired
in an application, one may obtain this by working with a displacement equation of
the type in (5.8), instead of the displacement equation in (3.2) that will be presented
shortly.

3.1. Fast conversion of Macaulay matrices into Cauchy-like matrices.
This section details how one efficiently converts Macaulay matrices into Cauchy-like
matrices. The described method relies on concepts from displacement rank theory; see
[31] for a comprehensive review on the subject or [10] for a more concise introduction.

3.1.1. Low displacement-rank structure of Macaulay matrices. Let ¢ €
C be of unit modulus, i.e., |¢| = 1, and denote

®
(3.1) L.y = ) € CP*P,

This manuscript is for review purposes only.
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Determine null space
(e.g., rank-revealing LU)

Fast conversion to Cauchy Fast conversion from Cauchy
(Subsection 3.1) (Subsection 3.1)

. Schur algorithm: fast rank-revealing LU .
M(d) = PM(d)¥ - > N(d)
(Subsection 3.2)

Fig. 3: A schematic outline of the fast algorithm. Our objective is to determine
the null space of the Macaulay matrix (dashed line). This is achieved by following
the steps given by the solid lines, i.e., first perform a Cauchy conversion, run the
Schur algorithm to compute a rank-revealing LU-factorization, perform an inverse
transformation to recover the null-space of the original matrix.

for p > 2, and Z;,, = ¢ in the special case when p = 1. Consider the displacement
operator @ : Cm(d)xn(d) _, cm(d)xn(d) defined as the linear map

1

(3.2) 2 X diag{Zi1 ®Is};_n g, X — Xdiag {Z;,, Vicain

where {p; ?Z% are chosen particularly such that (3.2) remains bijective’. A practi-
cal choice for these parameters will be discussed in Subsection 4.1.1. For Macaulay
matrices, the image under the displacement operator are matrices of (relatively) low
rank. Indeed, applying (3.2) onto (2.4) yields

Moo Mip -+ Mg
Moq: My - \Y

(33)  2{M(@) =M= o § ,

Mo.aa Miag -+ Mag,ad

\/ . S(Ad+1—i)x (d+1—j
where M _;; := (Zadg+1-i,1 ®Is) Mj_ii — Mj i iZa1—jpu.r; €C (Ad+1=9)x(d+1-7)
are matrices of the form

Os -+ Os Cogi) ** Cldp—jri-1)(G-i) Cldn—j+i)(G-i)
5 0s --- Og Og 0g Og
R . .
Og --- Og Og Og Og
Ci(j—i) ° Clds—j+i)(j—1i) Os --- Og Pd+1—5Co(j—i)
Og Og O0g --- Og 0g
Og 0g 0g --- Og 0g

Since rank l\u/[j_m < S, we may further deduce that

(3.5) rank 2 {M(d)} < S(Ad +1) = S (d + 1) — Sds =: p(d).

"Let A(A) < C and A(B) < C denote the spectrum of A € C™*™ and B € C"*", respectively.

The linear operator .¢ : X — AX — X B is invertible if, and only if, A(A) n A(B) = .

This manuscript is for review purposes only.
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This reveals that, while both the height and width of the Macaulay matrix grow
quadratically with respect to d, the rank of the displaced Macaulay matrix grows
only linearly with d. Specifically, when d equals the upper bound on the degree of
regularity (2.11), the Macaulay matrix is an £ (ds—1)ds, by 3 (2ds,—1)ds, matrix, while
its displacement has rank of at most S(dsx —1). This critical observation is what allows
for a fast algorithm since it will substantially reduce the cost of performing Gaussian
elimination (to be discussed in Subsection 3.2).

3.1.2. Cauchy representation of Macaulay matrices. Matrices of the kind
in (2.4) are easily converted into Cauchy-like matrices through unitary transforma-
tions. That is, there exist unitary matrices ¢ € crd)yxm(d) e crd)xnld) gych that
M(d) := ®M(d)¥ e C™()*n(d) ig Cauchy-like and thus has entries of the form

9 ujv, (d)
(3.6) [M(d)] = [BM()V],, = ;e CPO,
7 Hi — V5
To see how ® and ¥ should be picked, observe at first that (3.6) satisfies the displace-
ment equation

%
u;

(3.7) .@{M(d)}:=diag(u)l\7[(d)—M(d)diag(u)= e ve]
u;kn(d)

and hence, it is convenient at times to denote a Cauchy-like matrix just in terms of
its “generators”, i.e.,

(3.8) M(d) = ¢ (u,v,U, V),
with U e C(@xp(d) and V e CM(d)xr(d) defined as

uy vf
U:= : , V.=
* *
Win(d) Yn(d)

The displacement equation in (3.2) can be molded into the displacement equation of
(3.7) by substituting the eigen-decomposition of (3.1) into (3.2) and manipulating the
expression. Indeed, let wy, := exp(—2m¢/p) and observe that (3.1) decomposes into

Ly = (Dp,son)(‘Pl/pr)(Dprp)Av

where D,, , := diag(1,p" /P, ... o=~ D/P) Q, = diag(1,@p, ..., @k~ "), and F), €
CP*P is the Discrete Fourier Transform (DFT) matrix, ie., [Fy]; = %wz()ifl)(jfl)_
By setting

(3.9) O = diag {Ff ®Is}_nyrys V= diag {Dj,¢ij};=d+1 ,

S a1
(3.10) diag(p) := diag {Q; ®IS}1‘1:Ad+1 , diag(v) := diag {SD;/JQj}j:dH ,

one can show from a sequence of algebraic manipulations that (3.6) satisfies the rela-
tion

(3.11) @{M(d)} — 0 {M(d)} T = OMU =UV*.

This manuscript is for review purposes only.
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3.1.3. Fast Cauchy conversion using FFTs. By (3.5) and (3.11), we have
that L
rank 7 {M(d)} =rank 7 {M(d)} < p(d),

and finding the representation (3.6) is equivalent to just finding a low-rank factor-
ization UV* for @7 {M(d)} ¥, as the denominator coefficients u;,v; € C are already
cast in stone by (3.10). A pair of matrices U and V can be determined rather effi-
ciently. To see this, observe that by substitution of (3.9) into (3.3), we must apply
the transformation

M;_i; (FAar1-:®1s) M (Dat1-jpair; Far1—5) = UsVi_g;

o

Since, by (3.4), M,_, ; factors into

Is(adgi—is ([0s -+ Os €ogoiy = Clag—jri—1)G—i) Clds—iti)(i—i)]
—lewg—s o Cas—jrig—n Os - Os @ari—jeoip]),

we may write U; € C3(AdH1-0xS and V;_;; e Cl4+1=7)%5 a5

1
Ui = (F%,.. . ®Ls) (e ®Ig) = (Tpgs1 i ®Ls),
(FAgs1—; ®Is) (€1,nd+1-i ®]1s) m( Ad+1-i ®Ig)
[ Ons | | ey ]
*
. . Qe Cldn—ji+i) (5-1)
Vi—ii = Fai1-Dai1-jg, oG- - Oxs
N 0.
(d*gfjJrzfl)(]fz) ~ 1><§<
| Clas—j+iG—i) 1 [Pd+1-7%(-i) |
Subsequently,
Voo
. Ad : B
(3.12) U = diag {Ui}i=07 V=1|Vuo Vo,Ad

Vs, Ad

3.2. Fast null space computation of Cauchy-like matrices. This section
details how one efficiently computes a numerical basis for the right null space of the
Cauchy-like matrix (3.6) through a rank-revealing LU-factorization [37,45].

3.2.1. Rank-revealing LU-factorizations. Assume that condition (2.8) is
satisfied and that d > d* so that the Macaulay matrix has rank r(d) as specified in
(2.10). Following the definition in [37], in a rank-revealing LU-factorization of M(d),
the goal is to find row and column permutations Il; € R (d)xm(d) and T, e R*Md)xn(d)
such that®

mn, - [ g

8Mind that Mij are sub-blocks of the permuted matrix II; M(d)H2 and not of M itself!
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with partition blocks M € Cr@xr(@ N[, e Crdxds NI, e Cm(d—r(@)xr(d) and
My, € Clmd)—r(d)xds; factors into

~ I M I M "M
L M(d)TTy = | o "D H o . Hr(d) 1 12]
M) [M21M111 Lpz, May — Moy M 'M Laz ’
where
~ g; M d ~ ~ A1~ A~
(3.13) 0i(Mi1) > q(ﬁn 75 1))7 0;(Mag — Mo My Mia) < 04.p(a) (M(d))q(m, n, 1),
fori =1,...,r(d), j = 1,...,d%, and ¢(m,n,r) an expression that is a low degree

polynomial in the matrix dimensions and rank. Since o, (M(d)) » or(d)+1(M(d)) ~

0 in a numerical setting, the bounds (3.13) ensure that the Schur complement My —
MglMﬁlMlg is approximately zero so that we can speak of the approximation

R M N
M M(d)IIy ~ [MH] (L@ M Mis].
21
Subsequently,
A J— Y 71 Y
(3.14) N(d) := Hg[ MIl;M”]
P

is a numerical approximation to the right null space of M(d), and it is additionally
desirable in this setting that the entries of 1\711_111\7[12 remain small in absolute value to
ensure stability of the representation, in which case, one has a strong rank-revealing
LU-factorization [37].

3.2.2. Cauchy representation of the null space. Let
(3.15) N = =N M, € C(@ x5,

If (2.8) is exactly satisfied, the columns of

(3.16) N(d) = UN(d) = I, [11;]

provide a numerical basis for the right null space of the original Macaulay matrix
(2.4). Direct application of Gaussian elimination on M(d) will not result in any fast
algorithm to generate (3.15). To achieve that, one has to take advantage of the
fact that (3.15) is also Cauchy-like, with a displacement rank equal to that of the
original Macaulay matrix. To verify this property, partition Il = [Hg)a Hz)b] with
o4 € RH@)x7(d) and I, € RUdxd% | It can shown that the augmented matrix

Mll 1\i/112

I M(d -
(3.17) ! (T ) Mo Map]=| My My |,
IT‘(d) H2 a T N .
’ Ir(d) 07"><d22
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satisfies the displacement equation

d. [ 1\A/[ll MlQ
| zete) Moy | S |-
diag(§)
| L) | Orayxaz,

Mll 1\A/I12 | . U

o o diag(§) | ] .

M M 1 = U VZ V* )
: 21 5 22 [ ‘ dlag(n) 0 b [ b]
7(d) ‘ r(d)xd% | r(d)x S(Ad+1)

with k € C™(@, ¢ € CT@, ye Cdx, V, e Cr@xp(d) vy, e cdaxr(d) U, e Crdxp(d)
and U, e Clm(d)=r(d)xp(d) given by

K = Hll,l,, [E,] = HQV, [8:] = HlU, [“jg] = H;V

Since, by row-reduction, we have the equivalence

1\2[11 D:/IIZ 1\A/[ll . AI\A/[12A R
Mor  Mas | ~ | Om(a)—r(a))xr(@y Maz — MarM;;'Mys |
L@y Opayxaz Or(@yxr(d) N

further algebraic deductions would reveal that (3.15) satisfies the displacement equa-
tion

(3.18) diag(€&)N — N diag(n) = (—M;}Ua) (Vb - N*Va> —: RS*,

If one chooses {p; }jg such that v only has distinct entries, & € C"(%) will have no
entries in common with ) € C9%. The displacement operator in (3.18) is subsequently
invertible (see Footnote 7), and hence,

(3.19) N=%(£n,R,S),

with R € C"(@xr(d) and S e Cdéxﬂ(d), comprises a valid compact representation for
(3.15).

3.2.3. Schur algorithm for Cauchy-like matrices. The LU-factorization of
a Cauchy-like matrix can be determined efficiently using the Schur algorithm [29]. The
Schur algorithm relies on the key property that the Schur complement of a Cauchy-like
matrix is also Cauchy-like, with the displacement being equal to that of the original
matrix; see e.g., [24, Theorem 12.1.1] for a precise statement. Subsequently, each
step of Gaussian elimination can be performed efficiently by updating the entries of
the generators (instead of the dense matrix itself). With the foregoing discussions in
Subsection 3.2.2, the Schur algorithm may also be adapted to determine the generators
of (3.19), and hence, obtain a compact representation for (3.15). The details are given
below.

ALGORITHM 1 (Modified Schur algorithm for null space of Cauchy-like matrix).
In: M=%(U,V,pu,v), e >0
Out: N=%(R,S,¢,m),1,

This manuscript is for review purposes only.
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1. Initialize
I =Ly,  p®=p  UO=U,
Héo) = In(d)v V(k) =V, V(O) = V,
and set M©) .= @ (p©, O VO vO) = M(d).
2. For k = 1,2,...,min{m(d),n(d)}, repeat the following steps (see Subsec-
tion 3.2.4 for more details):
(a) Given a certain (rank-revealing) pivoting strategy, pivot the (ik, ji)-th
entry of M* =Y with i, jx = k to the (k,k)-th position. That is, if
I; € R@xmd) gpnq =, e RUD*n(d) denote the corresponding row and
column interchange permutations to achieve this pivoting action, then
Hgk) _ Fkngk_l)’ u(k) — Fku,(kil), [j(k) — FkU(kfl),
Hgk) _ Hgkfl)Ek, v®) = =, D) VR = 5, v,

and M® = 7 (mk) p(9, 00, 7)) = P nit- g,
(b) Evaluate oy = ﬂk ﬁ,ik)/(uk - Vl(ck))’

* ~(R)* ~(k _(k)¥ (K
a(®* 5® a5 sMF a®
k—1 3 (k) (k) ’ (k) (k)
iy Hit1™ Yk i "Vet1
wg = ) gk = . ’ hk = 5
~<k>* (k) ~(K)¥ (k) —(k)* <k>
k1 O Uon(d) Yk Yo(a)y ¥
(k 1) V(k) (k) (k) (k) (k) ’
- k Fom(d) " VE P "~ V()

to form the Gauss transforms

s T L {0k| T
Gr = Im@) — an ar+1|eg @y, Hi=luya — an [hk] €k,n(d)
gk

and perform Gaussian elimination on the generators
Uk =G, U, v =g, v,

to subsequently define M®*) .= % (u(k), v U(k),V(k)),

(c) Let
o-u e,
k (k) k (k)
n® = Vi i1n(ay S = V. bt 1m(a)’

and set NK) .= ¢ (ﬁ(k),n(k),R(k), S(k))'
(d) Check whether

(3.20)

Brmioomo
k+1:m(d),k+1:n(d) || p

If (3.20) is indeed satisfied, break the loop and proceed to step 3.
3. Set N=N® | and hence, € =€) n=n® R=RH® §=8k 11, = Hgk),
and II5 = Hék).
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3.2.4. Efficient complete pivoting and evaluation of stopping criteria.
The procedure outlined in Subsection 3.2.3 requires further elaboration on two aspects:
(i) how to exactly pivot the entries of (3.6) such that a rank-revealing LU-factorization
is obtained, and (ii) how to efficiently evaluate the stopping criterion (3.20) without
explicitly forming the Schur complement and computing its norm.

It is well-known that, in exact arithmetic, Gaussian elimination with complete
pivoting always reveals the rank of a matrix. Although one cannot ensure that this
property persists under floating point arithmetic (see examples in [37,45]), it is plausi-
ble to assume that complete pivoting should work decently in practice, at least for the
matrices considered in this paper. However, direct application of complete pivoting
by searching through all the matrix entries is prohibitively expensive and destroys the
asymptotic complexity gains that one would achieve with the Schur algorithm.

Nonetheless, it turns out that a suitable pivot can directly be found from the
generators of the Cauchy-like matrix if one relaxes the requirement to always find
the largest magnitude matrix entry. This method, originally introduced by Ming Gu,
is based upon a fundamental observation made in [26, Lemma 3.1] which, restated
for matrix M~ e C(dxn(d) in Algorithm 1, says that if j¥ denotes the column
position of the column with maximum 2-norm in U(k %()1) V(k_l)*, then the following
lower bound is satisfied:

— i
>—2L1  max ‘m(’?)’, K := max 7].
Kq/n(d)—k k<i<m(d) v k<ia<m(d ‘ (k) (k)‘

kE<j<n(d) k<j,y<n( d)

(k)‘
(3.21)  max mgii

k<i<m(d)

That is, the j;’th column of M*) already contains a sufficiently large pivot. Fur-
thermore, this column can be found rather efficiently (i.e., without breaking the com-

plexity gains made by the Schur algorithm) provided the columns of Ul(j;a) _ are

orthonormal?. A similar statement can also be made for the stopping criterion (3.20),
since [26, Lemma 3.1] also establishes the bound

~ (k
m*) |
W41

< K+/(n(d) —k —1)(m(d) — k — 1) kﬂrénizgn(d)

k+1:m(d),k+1:n(d) HF

gl

In the subsequent section, it is explained how m(d),: Can be kept orthonormal

throughout the execution of the Schur algorithm.

3.2.5. Re-orthonormalization procedure. The orthormality of U,(le m(d),:
is destroyed in step 2(b) of Algorithm 1 when the Gauss-updates are performed.
To find a suitable pivot, a re-orthonormalization procedure must be incorporated in
this step to maintain orthonormality of U,(Ji)l m(d), . A naive approach, which would

break the asymptotic complexity of the algorlthm is to compute a QR-decomposition

Ugi)l m( = Q®B® from scratch at each iteration so that
(k) (k)™
(k — U ke B (k) (k) (k)
(3.22) u® [ ! k’(é(k) ) v Vitrtm@,: < Vitim(d),: (B )

Instead, the re-orthonormalization must be achieved through clever updating strate-
(k)

gies. Assuming orthonormality'® of U Rem(d).>

step 2(b) of Algorithm 1 can be replaced

91n which case, it suffices to just compute the 2-norms of the rows of V(*—1),

10T his property is already satisfied at initiation of Algorithm 1!
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by Algorithm 2.
Unfortunately, Algorithm 2 by itself will introduce numerical issues. Even though

Ugir)l m(d),: and VkJrl n(d),: e computed stably, ng]z loses accuracy'! as the itera-
tions proceed if B(*) in (3.22) is close to singular. This is a cause of concern since

nglz is a key term in the construction of N. One may overcome this challenge by

running two versions of Algorithm 1 in parallel. Since only Uk Clim(d),: and V,(C _21 n(d),:
are needed in the pivot selection, the first version will use Algorithm 2 to solely find
a pivot. For the second version, Algorithm 1 is run without Algorithm 2 to avoid loss
of accuracy in ng,i This will increase the cost of running the entire algorithm by a
factor two, but will not break its asymptotic complexity. A more efficient remedy to

this problem is an open question.
ALGORITHM 2 (Gauss—update step with orthonormalization).
v U® wigh 0O o0 VR

m(d),: © kim(d),:
our: UK with U™

(k)
k+1:m(d),: Uk+1 wm(d),: Ip(d)’ v

1. Make U( ) equal to ce1 for some ¢ € C by using a suitable Householder
tmnsformatzon F, i.e.,

UR — gWpx vk yE R
2. Perform the Gauss-update step with Gy and Hj computed as in step 2 of
Algorithm 1,

~ G U® . y® Z v,

which now only modifies the first column in U) due to the re-assignment in

step 1.
3. Reorthogonalize the first column of U(k+1) m(d).: by performing the updates
k) _ (11(k) (k)
b( ) = (Uk+1 :m(d),2: T(d)) Uk+1 :m(d),1’

k) gk _g®
Uy —uly Ul 0%,

*
VO e VE L+ VE (bu«))

and note that U,(chl cm(d),2:r(d)

4. Normalize the first column ofU

18 already orthonormal due to step 2.

kt1im(d), DY performing the updates
k
Uy Uty

S A — T
(k)
U |

(k)
-V VO,

Remark 3.2. In step 4, the norm of U,(€+1 m(d),1

of the execution of the algorithm. This means that M](C +)1 m(d) k+1in(d
k)

displacement rank smaller than M ke (d) e (d) . Instead of normalizing U

may become zero in the course

) is a matrix of

(k)

k+1:m(d),1> V€

11 A property that has also been observed in practice in our initial experiments.
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MACAULAY NULL SPACES, BIVARIATE POLYNOMIAL SYSTEMS 19
can drop this first column along with the first column of V,(Clizlz
the rest of the columns. Numerically, these columns can be dropped if the norm is
close to machine precision.

n(d),: and continue with

Remark 3.3. Step 3 should be done in a numerically stable manner by applying
Gram-Schmidt twice [22].

3.3. Summary of algorithm and complexity analysis. Returning back to
Figure 2, the following algorithm is proposed to determine a numerical null space
N(d) of the Macaulay matrix (2.4) associated with the polynomial system (1.1).

ALGORITHM 3 (Fast null space of Macaulay matrix).
IN: M(d)
Out: N(d)

1. Construct the compact representation of M(d), as specified in (3.8) in terms
of the generators p, v, U, V defined in (3.10) and (3.12), respectively. Use
FFTs to accelerate the construction of V. Furthermore, ensure that {api}?:
are chosen such that: (i) the entries of v are all distinct, and (ii) do not
coincide with any entry in m. Practical choices for {goi}jii are discussed in
Subsection 4.1.1.

2. Given the generators of M(d) and a user-specified tolerance € > 0, run Algo-
rithm 1 while maintaining two copies of U and V. Perform the Schur updates
on the first copy through Algorithm 2 and obtain the pivot from V. For the
second copy, perform the update as in Algorithm 1 and use this copy to obtain
N as specified in (3.19) in terms of the generators &, m, R, S.

3. FEvaluate the expression (3.16) by using FFTs and taking advantage of the
block-diagonal structure in ®, as defined in (3.9).

Estimates on the number of floating point operations involved for the first and
last step are O(S - dyx - Ad - dlog d) and O(d% - d*log d), respectively. The second step
is by far the most expensive and dominates the null space computation. A careful
analysis reveal that the Gaussian elimination in step 2(b) and the orthogonalization
procedure are the main computational bottlenecks in Algorithm 1. The per iteration
cost involves at most O(S%d®) floating point operations, and if condition (2.8) is
satisfied, it is expected that r(d) steps will be required, leading to a total complexity
of O(r(d) - S?d®). Together with the bound on the degree of regularity (2.11), one
further deduces that the complexity of Algorithm 1 is O(S%d3,) for a Macaulay matrix
of degree d < 2dx—2. Since'? typically S « dx, one attains overall an O(d3;) algorithm
for determining a null space from where one can further deduce the roots of the system
(e.g., using the method described in Subsection 2.3). We may compare this complexity
with that of obtaining a null space basis from a singular value decomposition. To
produce the singular values and right singular vectors of M(d) using the Golub-Reinsch
algorithm will involve O(4Sd° + 8d°) floating point operations [24, Figure 8.6.1].
Hence, a complexity reduction from O(d%) to O(d3,) is achieved.

4. Numerical experiments. In the subsequent sections, we empirically evalu-
ate the accuracy (Subsection 4.2) and computational complexity (Subsection 3.3) of
the developed algorithm'?.

12Furthermore, note that for highly overdetermined systems, it is possible to apply sampling on
the rows to exploit redundancy; see e.g., [41].

13 Algorithm 3 was implemented in the Julia programming language and can be obtained by
contacting the authors of this paper. All experiments were run on a laptop with 32 GB RAM and
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4.1. Experiment setup. To test our algorithm, we generate two polynomials
of degree dy; with standard normal random coefficients. The parameter d is always
set to 2dsx, — 2; the upper bound on the degree of regularity d*. To evaluate the error,
we use the metric

_ IM(@)Ql,

) T M@, ¢

where Q € C™(9*4% refers to an orthonormal basis for col N(d) obtained from a QR-
decomposition. For a fair comparison, especially in the presence of noise, this error
should be compared with its lower bound, namely €, = UT%“, which thus only
depends on the singular values of the Macaulay matrix.

To study the behavior of our algorithm, we compare our method with easier
methods by removing layers of complexity one-by-one. All these methods are expected
to have equal or slightly better stability, but are asymptotically slower to compute
(ie., O(d%) instead of O(d3,)).

e SVD on M(d)/M(d): computing the SVD on the dense Macaulay matrix
M(d) or the dense Cauchy-like matrix M(d). Note that this method’s error
is always (approximately) equal to the lower bound €pip.

e GECP on M(d): Gaussian elimination with complete pivoting on the dense
Macaulay matrix M(d).

e GECP on M(d): Gaussian elimination with complete pivoting on the dense
Cauchy-like matrix M(d).

e GECP on ¥ the Schur algorithm with complete pivoting, or in other words,
Gaussian elimination with complete pivoting on the compact representation
of the Cauchy-like matrix M(d). This compact representation is denoted as
% in this section and was explained in Subsection 3.1.2.

e GEAP on %: the Schur algorithm with approximate complete pivoting as
explained in Subsection 3.2.4. This is the method presented in this paper
(Algorithm 3) and the only method with complexity O(d%) instead of O(d$)
(as discussed in Subsection 4.3).

4.1.1. Choice of ¢. The generators {¢; ?i%, introduced in Subsection 3.1.1,

should be chosen in such a way that singularity of operator (3.2) is avoided. The
operator is singular for the Macaulay matrix if, for any 4, j, u; = v; and for the null
space if & = n;. From a numerical point of view, if the operator is close to singular,
the problem will become ill-conditioned, leading to a loss of stability. Because of this,
maximizing the differences |u; — v;| and |§; — n;| for all 4,j seems to be a sensible
criterion, corroborated by the experiment in Subsection 4.2.1. As the partitioning of
v into £ and 7 is not known a priori, we instead maximize the difference |v; — v;| for
all 4, j where 7 # j.

In these experiments, a greedy method was employed to choose {¢; }?i% to obtain
a well-conditioned Cauchy representation. At iteration k, the optimal ¢y is chosen to
maximize

(k)

min{min |u; — v$¥], min |y — P},
2,7 1,5,17]

1/iQZ_}Ad+2—k

where v(¥) only contains {o; i=Ad+1 - Lhis greedy algorithm requires O(d?) flops.

an AMD Ryzen 7 PRO 5850U CPU @ 1.90 GHz.
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4.2. Empirical analysis of stability. We first study the stability of the algo-
rithm in the square case (Subsection 4.2.1) where condition Equation (2.8) is satisfied
by default. Then, we study the effect of noise on overdetermined systems (Subsec-
tion 4.2.2) where condition Equation (2.8) is satisfied only approximately.

4.2.1. Square systems. Table 1 shows how the error grows for increasing degree
dy; and for the different methods.

ds,
2 4 8 16 32

SVD on M(d) 2.23e-16 3.75e-16 5.70e-16 7.94e-16 9.51e-16
SVD on M(d) 2.57e-16 4.77e-16 7.54e-16 9.97e-16 1.15e-15
GECP on M(d) 1.40e-16 3.11e-16 8.33e-16 1.02e-14 1.40e-13
(d)

GECP on M 2.08e-16 4.65e-16 1.03e-15 9.73e-15 1.21e-13
GECP on ¥ 4.35e-16 1.5le-15 1.35e-14 1.72e-13 2.81e-12
GEAP on 4 4.21e-16 3.63e-15 3.88e-14 3.19¢-13  4.48e-12

Table 1: Median error for different methods (see Subsection 4.1 for an explanation
of the abbreviations) and degrees ds; over 100 runs. We see that the error arises
mostly from using an LU-factorization instead of an SVD and working on the compact
representation % instead of M(d) or M(d).

The two biggest sources of error are switching from an SVD to a LU-factorization,
as expected, and working on the compact representation % instead of the full M(d)
In Table 2, results with purposefully poorly-chosen generators of the Cauchy repre-
sentation are shown. These corroborate the reasoning in Subsection 4.1.1, namely
that the minimum gap of the generators vy, affects the numerical stability, due to a
division by a small difference of the generators g and v. The results in Table 2 seem
to suggest an inverse proportional relation between the error and the minimum gap
Ymins namely
(4.2) o Gmach N min {min; ; |p; — v;|, min; ;25 |vi — v} -
Ymin max {maxm- |/L1 — l/j|, rnaxi,j,#j |I/l‘ — I/j|}

4.2.2. Noisy overdetermined case. In this experiment we first generate two
polynomials as above and then a third polynomial as a random linear combination
of the two first generated polynomials. The degree dy is fixed to 16. Then additive
Gaussian noise is added on the coefficients of the polynomials to obtain a fixed signal-
to-noise ratio, measured as |[M(d)|%/|Mnoisy (d) —M(d)|. Figure 4 shows the results.
The LU-based methods initially stay close to the SVD (and thus €ni,), but as the
noise rises, worsen in performance. With approximate complete pivoting this happens
slightly earlier than with (exact) complete pivoting.

To decrease this error in the end, one could potentially look at iterative refinement
techniques, which could push the accuracy of LU-based methods further towards
that of SVD without paying a price for overall complexity. This was not further
investigated here.

4.3. Algorithm complexity. As stated in Subsection 3.3, the presented ap-
proach reduces the computational complexity from O(d$,) to O(d3,). This was checked
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Method
(p-generation Ymin GECP on MZd) GECP on %4 GEAP on %
Greedy 1.01e-03 9.73e-15 1.72¢-13 3.19¢-13
Random 6.80e-06 9.37e-15 6.01e-12 1.20e-11
Fixed gap 1.00e-04 9.21e-15 1.62e-12 3.22e-12
Fixed gap 1.00e-06 9.00e-15 1.56e-10 3.25e-10
Fixed gap 1.00e-08 9.28e-15 1.57e-08 3.34e-08

Table 2: Median error € with different strategies for generating the generator v over
100 runs. The “Greedy” strategy was presented in Subsection 4.1.1, “Random” gen-
erates uniform random {¢p; ?i% on the unit circle, while “Fixed gap” selects {¢; ;iii
such that the smallest d+1 gaps are all equal to a fixed quantity. We see that the min-
imum gap (Vmin as defined in Equation (4.2)) has no impact on the error of Gaussian
elimination with complete pivoted on the full Cauchy matrix M(d), while it is inversely
correlated with the error of Gaussian elimination on the compact representation of
the Cauchy matrix € for both complete and approximate complete pivoting.

100 L T T ]
101} .
1072 .
1077 = GEAP on % £

al GECP on M(d) ]
10 GECP on M(d)
10-5 B —e— SVD on M(d) = €min i
i | | | | | | | |
100 80 60 40 20 0 —20
SNR (dB)

Fig. 4: Median error e (with 25% and 75% quantiles around) for different signal-to-
noise levels and methods over 1000 experiments (see Subsection 4.1 for an explanation
of the abbreviations). GECP on € was not drawn as this was identical to GECP on
M(d). We see that GECP on whichever representation (compact Cauchy or full) has
similar accuracy, only marginally worse than the best method (SVD), but worsening
as noise increases. GEAP starts to lose accuracy slightly earlier.

empirically by solving systems of increasing degree ds.

Figure 5a shows the per iteration computation time (time of an iteration of step
2 of Algorithm 1), verifying the asymptotic complexity of O(d3,). We see that this
asymptotic behavior takes over at around degree 70. In total 7(d)(= d%—dy) iterations
are needed, leading to an asymptotic complexity of O(d3,).

In Figure 5b, the total time of the algorithm is shown for increasing degrees
as well. Due to practical limitations, we can only show up to ds = 150. As the
asymptotic behaviour starts around 70, this is a rather limited range to show the
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DO
w

10t = I I 3 10* I I I o7
Fl—=— GEAP on ¢ E | —=— GEAP on ¥ E
N O(d?’) 1 | | —— SVD on M(d) |
109 H > E 103 H E
g | - 0dR) g
I ] H---0(d%) ]
— 107 15 10°F E
1072 ¢ | 10t E
1072 1 100F E
Ll | | | | i [ | | | | -
25 50 100 200 400 25 35 50 71 100 141

ds. ds.

(a) Per iteration computation cost. (b) End-to-end computation cost.

Fig. 5: Per iteration (a) and end-to-end (b) computation cost. The measurements are
the median of an adapted number of runs after warm-up such that the measurement of
each point took at least five seconds. The per iteration cost is for step 2 in Algorithm 1,
while the end-to-end cost also includes the transformation to and from Cauchy-like
form, which is thus Algorithm 3. These costs are asymptotically O(d3,) and O(d%)
respectively although the asymptotics are only dominant after dy, = 70. The SVD
operates at a cost of O(d,).

complexity. An interesting observation is that our algorithm starts to perform faster
than SVD from degree ds; = 35 onwards.

Not visible in these figures, but also important is memory consumption. The SVD
stores the full matrix M(d) of size O(d%;), while our proposed method works directly
on the compact Cauchy representation with size O(d3,). For illustration, the last point
in Figure 5a, dy, = 501, which required ~20GB would take a total computation time
of 250500 x 5.222s ~ 15 days with our method, compared to ~3TB and ~105 days
required with SVD (determined through extrapolation).

5. Generalizations. An important question to answer is to what extent the
ideas presented in the previous sections generalize to polynomial systems expressed
in other bases or to systems involving more than two indeterminates. While Subsec-
tion 5.1 provides a (partial) answer to the first question by outlining an analogous
fast algorithm for systems expressed in the Chebyshev basis, Subsection 5.2 addresses
the challenges that one faces when dealing with more than two variables.

5.1. A fast algorithm for bivariate Chebyshev systems. The Macaulay
matrix for a Chebyshev system is introduced in Subsection 5.1.1. The reduction to
a joint-GEVD problem is described in Subsection 5.1.2. The low-displacement rank
structure of the Chebyshev-Macaulay matrix and its (fast) conversion to a Cauchy-like
matrix are addressed in Subsection 5.1.3.

5.1.1. Macaulay matrix for Chebyshev systems. Let {T}(x)}}_, with
Tii1(z) = 22 T(x) — Tip—1(z) and To(x) = 1, T1(z) = z, denote the Chebyshev basis
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terms. Suppose that the system ¥ in (1.1) is expressed with respect to this basis, i.e.,

ds ds—1i

pi(z,y) = Z Z b1i; Ti(2)T;(y) = 0

i=0 j=0
(5.1) XS
ds ds—1

3NN bsyTil)Ty(y) = 0

i=0 j=0

pS(xv y)

In this setting, the columns of the Macaulay matrix correspond with the basis terms
{T5(2)T5(y)}; j=0.i+j<q» While the rows relate to the shifted polynomials

{T‘Z(I)T](y) ‘Pl u/T'L(x)/Tj(y) . pS}i)jgo,iJ’_]‘gAd .

Since Ty (2)Ty(x) = §(Titi(z) + Tjp—y(2)), the entries of the Chebyshev-Macaulay
matrix W(d) € C"™(@*"(d) wil] differ structurally from those of the Macaulay matrix
associated with the monomial basis. In particular, if the entries are ordered in a
non-graded lexicographically way (i.e., T;, (2)T}, (y) < Ti, ()T}, (y) if j1 < j2, and in
case j1 = ja, i1 < i), the Chebyshev-Macaulay matrix will be, before the removal of
certain rows and columns, a proper sum of a Toeplitz block-(block-)Toeplitz matrix
with a Hankel block-(block-)Hankel matrix. For comparison, the Macaulay matrix
for the monomial system involved only a Toeplitz term; see (2.5). Furthermore, this
Toeplitz term had a upper-triangular structure, which is no longer the case for the
Chebyshev system.

To construct the matrix W(d), we proceed as follows. For convenience, denote
bkl = [blkl s bSkl]T for k < dg — [l and bkl = Os, otherwise. Define W}pZ,W?nk €
CS(Ad+1)xd 414

boj by - bayj
bi; by by o+ bay
5.2a WP = ' ,
( ) J bay; - by by, by - bay,
i bagj -+ by by by o bayj ]
boj  by; bas; |
(5:2b) Wik .= :
bdzj
for j = 0,1,...,dys, respectively. Then, for d > ds, the Macaulay matrix associated

with the polynomial system (1.1) is given by
(5.3) W(d) := § diag {I; ag+1 ®IS}3=Ad+1 (W2 (d) + W(d)) diag {14+1,5 };=d+1 ;

141n the presentation of (5.2a) and (5.2b), it is implicitly assumed that Ad > dyx; to reveal the full
structure of the matrices.
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668  where

_WBPZ thpz . Wjipzz 1
tpz tpz tpz tpz

W Wy Wit W

. .: : . . . .

669 W™ (d) : Wi WP W W Wy )
| Wi WP W WP e Wi
_W(t)r)z thpz . Wzlp; I
Wp” '

670 Wik (d) = |
Wi

671 5.1.2. Joint-GEVD problem for Chebyshev systems. Starting with a col-

672 umn basis P(d) for nullWW(d), the reduction of the root-solving problem (5.1) to a
673 joint-GEVD problem is done in a similar way as done for the monomial-based system
674 (1.1). Define q,(t, z,y) € C*?D as

675 (5.4) Aa(ts 2, y) =7 Ay, (2/t, y/t),
676 where
T
677 qd,z,y(ma y) = [q;lr,x(‘r) Ty (y) ' q;rfl,:c(x) e Td@(y) ’ q(-)r(x)] € Cn(d)?
678 Quo(®):i=[1 Ti(z) --- Ta(x)]" eCoHL.

679 If (t,z,y) € P?(C) is a common root of the homogenized system ¥, then q,(t, z,y) €
680 null W(d). Subsequently, if the system X, only contains simple roots, the columns of

681 (5.5) Q(d) = [qu(tr, x1,91) -+ Qultaz, T4z, va2)] € crl(d)xd3,

652 will span null W(d) for d > d*. Since z - Ty(z) = Ti(z), and @ - Ty () = £(Tht1(z) +
683 Ti_1(x)) for k = 1, the corresponding shift-matrices K, (d) € R*(4=1>"(d) for which
684 the property Ki(d + 1)0,.:(t, z,y) = h-Qy(t, 2,y) hold for h = {t,z,y}, take on the
685 form

1 0
686 Kt(d):diag{Kt,d,i}fzo, K; = | e cix+D),
1 0
687
0 1
1l 9 1
688 Kw(d):diag{Km’dfi}j:m Ky = 2 . .2 . e Cix (D).
1 1
2 0 3
689 and
Oax (d+1) L
a—1.d11 O—1)xa  3la
690 Ky(d) = .
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For d > d*, this yields the joint-GEVD problem
(5.6) LiA = Q(d)Dy, LaA =Q(d)Ds, LzA =Q(d)Dy.

where D,,D,,, D; refer to the same matrices as in (2.13), A € Cd:xd3% is an invertible
matrix that satisfies N(d)A = Q(d), and L; € C*(9*4d% are given by

L :==Ki(d+1)P(d+1), Lo:=K,(d+1)P(d+1), L3:=K,(d+1)P(d+1).

5.1.3. Fast Cauchy conversion for Chebyshev-Macaulay matrices. De-
fine

0 1 |
10
(57) Yp,a = 1 .01 € Cpo,

0 1
L 15*

and let Depep, : C™(@xn(d) _, cm(d)xn(d) he the operator

. : 1
(5.8) Denev : X > diag {0 ®@Is}h_n 40, X — Xdiag {Yj5, Yicaens
for some choice of {J; }?i% < (0,1]. A counting argument would reveal that the

displacement rank of (5.3) with respect to (5.8) is bounded by
(56.9)  rank Zeper {W(d)} <2(d+1) +2S(Ad+1) =2((S+1)(d+1) — Sdyx),

which reveals that the rank grows at the same pace as for the monomial case (see
(3.5)), but with slightly larger constants.

Remark 5.1. Since M(d) = EW(d)J for some invertible E and J, note that it is
always possible to define a displacement operator for which the displacement rank of
W(d) equals that of (3.5). However, this implicitly involves converting the Chebyshev
system into a monomial system; a potentially highly ill-conditioned operation.

Furthermore, (5.7) is known to have a “fast” eigendecomposition. Indeed, if 6 =0
and 6 = 1, the eigendecompositions are respectively

; P j b
Y, 0 =S, diag {2 cos (ﬁ)} . S;, Y, 1 = C,diag {2 cos (@)} - C;

Jj= J

where [S,];; = /p%sin ;{:Tl, [Cply; == \/%Hj cos (W), Kj = % for j =1

and k; = 0 otherwise [8,23]. The matrix S, (Cp) is the discrete sine (cosine) transform
and has a fast matrix-vector multiply; see e.g., [24, Section 1.4.2]. For 0 < § < 1,
the eigenvalues interlace between those of Y, ¢ and Y, ;. Since Y, s is a rank-two
update of Y, o (or Y, 1), the eigenmatrix of Y, s can further be expressed as the
product of S, (or Cp) with a Cauchy-like matrix, whose matrix-vector product can
also be efficiently evaluated using the fast multipole method [25,27]. Similar to the

¢;'s in (3.2), {6,172} can be chosen to put the eigenvalues of diag {Ys, }jl.de at the
desired locations, so that one can proceed in the same manner as for monomial case
discussed in Section 3. The complexity of the algorithm is again O(dS;), but slightly

larger constants will be involved.
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5.2. Extending the technique for systems with more than two variables.
For polynomial systems with more than two variables, the Macaulay matrix is multi-
level Toeplitz, as opposed to the two-level Toeplitz structure for the bivariate case
(2.5). With a similar strategy by applying displacement rank theory on the inner-
most blocks, the law of diminishing returns applies and a complexity reduction from
O(d®™) to O(d®*~1) is only achieved for a non-degenerate n-variable system. A full
exploitation of the multi-level Toeplitz structure remains an open question.

6. Conclusions and future work. We introduced a fast algorithm to compute
a numerical basis for the right null space of the Macaulay matrix associated with a
bivariate polynomial system. The algorithm applies displacement rank theory to the
inner Toeplitz blocks of the Macaulay matrix to convert it into a Cauchy form so
that subsequently the null space can be determined efficiently from a rank-revealing
LU-factorization. Initial numerical experiments show that the algorithm is stable.
Furthermore, a similar fast algorithm was also outlined for polynomial systems ex-
pressed in the Chebyshev basis.

This work has raised several open questions. Firstly, the search for better piv-
oting strategies is something worth pursuing. Secondly, it is noted that the current
method relies on the exact algebraic properties of Cauchy-like matrices to allow for
fast Gaussian elimination. The question arises whether the approximate low-rank
properties of Cauchy-like matrices [35] can be exploited to design even faster algo-
rithms. We conjecture that the complexity can be further reduced from O(d%) to
O(ds log? ds;) (for some p > 1) by using the techniques proposed in [15,44]. Thirdly,
it is not exactly clear how the presented method exactly fits into the framework of
the “degree-by-degree” recursive algorithm from [4,41]. In practice, the degree of
regularity is often attained well before the bound (2.11), so that incremental methods
of building the null space can lead to significant savings. Therefore, it is worth in-
vestigating whether the recursive and Toeplitz properties of the Macaulay matrix can
somehow be simultaneously exploited. Fourthly, a refinement algorithm could be de-
signed to mitigate the loss of accuracy while maintaining the asymptotic complexity.
Lastly, it is still unclear how to fully exploit multi-level Toeplitz structures should in
the general n-variable case.
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