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Abstract. As a crucial first step towards finding the (approximate) common roots of a (possibly5
overdetermined) bivariate polynomial system of equations, the problem of determining an explicit6
numerical basis for the right null space of the system’s Macaulay matrix is considered. If dΣ P N7
denotes the total degree of the bivariate polynomials of the system, the cost of computing a null space8
basis containing all system roots is Opd6Σq floating point operations through standard numerical9
algebra techniques (e.g., a singular value decomposition, rank-revealing QR-decomposition). We10
show that it is actually possible to design an algorithm that reduces the complexity to Opd5Σq. The11
proposed algorithm exploits the Toeplitz structures of the Macaulay matrix under a non-graded12
lexicographic ordering of its entries and uses the low displacement rank properties to efficiently13
convert it into a Cauchy-like matrix with the help of fast Fourier transforms. By modifying the14
classical Schur algorithm with total pivoting for Cauchy-like matrices, a compact representation15
of the right null space is eventually obtained from a rank-revealing LU-factorization. Details of16
the proposed method, including numerical experiments, are fully provided for the case wherein the17
polynomials are expressed in the monomial basis. Furthermore, it is shown that an analogous fast18
algorithm can also be formulated for polynomial systems expressed in the Chebyshev basis.19
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1. Introduction. Solving systems of multivariate polynomial equations is a clas-23

sical problem in mathematics. While degenerate cases of this problem, such as linear24

systems and univariate polynomial root-solving, have evolved into separate disciplines25

of their own, the more general case has been thoroughly studied in the field of (compu-26

tational) algebraic geometry [13,14]. In circumstances where the system of polynomial27

equations only admits a finite number of solutions, i.e., so-called zero-dimensional sys-28

tems, the literature has advocated two major approaches to find all common roots.29

The first approach, which effectively only applies to square systems, employs homo-30

topy continuation to retrieve the roots of the desired system by continuous deforma-31

tion of a “starting system” for which the roots are already known [2, 33, 46, 54, 55].32

The second approach, which is more in line with the focus of this paper, are algebraic33

methods [1, 19,32,48,49].34

The goal in algebraic methods is to apply symbolic and/or numerical operations35

on the polynomials of the system to unveil the structure of the quotient algebra of36

the polynomial ring by the ideal, so that the root-solving problem can essentially37

be reduced to an eigenvalue problem; see e.g., [12] for a historical overview on the38
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method. There exists several means of accomplishing this reduction. The classical39

approach is to use Gröbner bases [9] or resultants [19] to construct the normal forms40

in the multiplication maps [14, Chapters 2 and 3]. The instability of these classical41

approaches has led to the development of border basis methods [38], and more recently,42

truncated normal forms [41,51].43

A fundamental object that arises frequently in these algebraic methods is the44

so-called Macaulay matrix1, which generalizes the Sylvester resultant matrix of two45

univariate polynomials to the multivariate case [34]. To construct multiplication maps,46

particularly the null spaces of these matrices are of primary interest, since they have47

a direct correspondence with the quotient ring generated by the ideal. Along with the48

shift-invariance properties in the null space, this observation has allowed the authors49

in [3,16,17] to reformulate root-solving problem into a generalized eigenvalue problem50

starting from a numerical basis for the Macaulay null space. In [52], this generalized51

eigenvalue (GEVD) problem was further reformulated as a joint generalized eigen-52

value (joint-GEVD) problem [21], or equivalently, a canonical polyadic decomposition53

(CPD) computation of a third-order tensor, by taking advantage of the commuting54

property of the multiplication maps. The algorithms in [5,41,51] also have as starting55

point a null space computation of a Macaulay-type matrix.56

Irrespective of how the null space is further utilized, a major computational chal-57

lenge shared by all aforementioned algorithms is the extraordinary dimensions of58

Macaulay-type matrices for even moderately-sized problems, making the null space59

basis computation prohibitively expensive. Classically, the algebraic geometry com-60

munity has dealt with this challenge by exploiting possible sparsity structures that61

may be present in the equations, which allows for the construction of smaller resul-62

tant matrices [20]; see also the recent strides made in [5]. Nevertheless, Macaulay-type63

matrices are highly structured (even for the generic case), and limited investigation64

has taken place on how to exploit these structures directly in linear algebra compu-65

tations [4,41]. In particular, Macaulay-type matrices contain convolution operations,66

resulting in (quasi-)Toeplitz structures. Since these are matrices of low displace-67

ment rank [31], the question arises whether the tools of fast linear algebra for dense-68

structured matrices (see e.g., [10, 15, 30, 57]) can be utilized to design asymptotically69

faster algorithms.70

1.1. Problem statement. In this paper, we confirm that asymptotically faster71

algorithms may indeed be formulated, at least satisfactorily for the bivariate case72

where the goal is to find all projective roots of the homogenized system. More specif-73

ically, we consider the (possibly) overdetermined set of equations74

(1.1) Σ :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p1px, yq “

dΣ
ÿ

i“0

dΣ´i
ÿ

j“0

c1ijx
iyj “ 0

...

pSpx, yq “

dΣ
ÿ

i“0

dΣ´i
ÿ

j“0

cSijx
iyj “ 0

,75

1In fact, many of the algebraic operations performed in these methods, including Gröbner basis
constructions, can directly be related to linear algebra operations on this matrix itself; see e.g., [18,
Section 3].

This manuscript is for review purposes only.



MACAULAY NULL SPACES, BIVARIATE POLYNOMIAL SYSTEMS 3

where it is assumed that for all s “ 1, . . . , S, ps P Crx, ys is a polynomial of total76

degree2 dΣ, i.e., csipdΣ´iq ‰ 0 for some i “ 0, 1, . . . , dΣ. For S ě 2, the system (1.1)77

is expected to admit d2Σ (near) solutions (including multiplicities and so-called roots78

at infinity) if the set of equations are (approximately) consistent. These solutions are79

embedded in a d2Σ-dimensional null space of the Macaulay matrix Mpdq P Cmpdqˆnpdq80

with mpdq, npdq „ d2 and d „ dΣ. Subsequently, with current state-of-the-art tech-81

niques (such as SVD or column-pivoted QR-decomposition), the cost of computing82

the null space will be Opd6Σq floating point operations.83

1.2. Contributions. The main contribution of this paper is to show that a nu-84

merical basis for the null space of the Macaulay matrix can be computed in Opd5Σq85

floating point operations. To arrive to this result, we introduce a specialized algorithm86

that takes advantage of the “almost” upper-triangular Toeplitz block-(block-)Toeplitz87

structure of the Macaulay matrix in a non-graded lexicographic ordering of its entries88

(see Subsection 2.1). By applying displacement rank theory, it is shown that such89

matrices are efficiently converted into Cauchy-like matrices using Fast Fourier Trans-90

formations (FFTs) [29]. By adapting Ming Gu’s variant of the Schur algorithm with91

approximate total pivoting [26], we then show that a compact representation of the92

right null space can be obtained for the Cauchy-transformed Macaulay matrix from93

a rank-revealing LU-factorization [37,45]. Through inverse transformations, this rep-94

resentation can be converted to a numerical null space basis for the original matrix95

itself.96

Central to the fast algorithm is the observation that the Macaulay matrix is of97

relatively low displacement rank, allowing for the Gauss steps in the Schur algo-98

rithm to be done quite efficiently. Technical contributions in this context are cer-99

tain design choices in the algorithm to ensure stability, without sacrificing on (as-100

ymptotic) complexity. This includes some important implementation details on the101

re-orthonormalization updating strategy required for pivot selection, and a greedy102

heuristic to select near optimal parameters for the Cauchy conversion step. The per-103

formance of the algorithm is validated experimentally.104

In addition to our main contribution above, we also show, but not implement,105

that the fast algorithm can be generalized for polynomial systems expressed in the106

Chebyshev basis; a problem of significant numerical importance [42, 43]. For this107

purpose, we describe a Chebyshev variant of the Macaulay matrix and reformulate108

the root-solving problem as a joint-GEVD problem in this setting as well. Although109

root-solving in the Chebyshev basis has already been studied in [41] within the con-110

text of truncated normal forms, our derivation of the joint-GEVD problem is new111

and insightful as it highlights the underlying Toeplitz-plus-Hankel structure of the112

Chebyshev-Macaulay matrix (see Subsection 5.1.1).113

1.3. Related work. Structured matrices in the context of multivariate poly-114

nomial systems have been studied before in [39, 40] to design asymptotically faster115

algorithms through randomized techniques. The use of displacement rank theory in116

root-solving problems is also not entirely new. For instance, in [6, 7], it was observed117

how the Schur algorithm may be utilized to accelerate computations with Sylvester118

and Bézout matrices. Furthermore, [36] presented a modified version of Schur algo-119

rithm that determines the null space of a Toeplitz-like matrix, although motivated120

2The proposed techniques introduced in this paper easily generalize to systems involving poly-
nomials of varying degree, but for clarity of exposition, it is assumed that the degrees of all the
polynomials in Σ are equal.
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from a problem in control. Furthermore, the method differs fundamentally from ours121

as it is based-off a QR-decomposition and does not involve a Cauchy conversion.122

1.4. Outline. The subsequent sections of this paper are organized as follows.123

Section 2 introduces the Macaulay matrix and the procedure of reducing the root-124

solving problem to a joint-GEVD problem. Section 3 discusses the fast algorithm for125

determining the null space of the Macaulay matrix. Section 4 presents some numerical126

experiments. Section 5 discusses how the fast algorithm can be generalized. We127

describe (i) a generalization of the algorithm for polynomial systems in the Chebyshev128

basis, and (ii) the law of diminishing returns when generalizing the algorithm to129

polynomial systems with more than two variables. Section 6 presents the conclusions.130

Notation. Let Z, R and C denote the set of integers, real and complex numbers.131

The imaginary number is denoted with ι, i.e., ι2 “ ´1. The projective complex plane,132

defined as set of points p0, 0, 0q ‰ pt, x, yq P C3 with pt, x, yq ” pλt, λx, λyq for any133

0 ‰ λ P C, is denoted by P2pCq. PpCq, on the other hand, denotes the projective134

complex line. The ring of polynomials over the complex field with indeterminates x135

and y, or indeterminates x, y and t is denoted respectively by Crx, ys and Crt, x, ys. At136

times, where we would like to emphasize polynomial multiplication, the dot notation137

is adopted to express the product of two polynomials, e.g., h ¨ p P Crx, ys. The ideal138

generated by two polynomials p, q P Crx, ys is expressed as Ipp, qq.139

Capital Greek and Roman letters shall be used to denote matrices, while vectors140

are denoted with bold-faced characters. At our convenience, we use “Matlab” sub-141

script notation to denote sub-blocks of vectors and matrices, e.g., A1:k,1 refers to the142

first k entries of the first column of the matrix A, while vpk`1q:n refers to the last143

n ´ k entries of the vector v P Cn. Certain commonly occurring families of vectors144

and matrices are denoted with special symbols. A vector of all zeros (ones) is denoted145

by 0n P Rn (1n P Rn), while a matrix of zeros (ones) is denoted by 0mˆn P Rmˆn146

(1mˆn P Rmˆn). The k-th unit vector of length n, with a one on the k-th position147

and zeros elsewhere, is denoted by ek,n P Rn. The n-by-n identity matrix is denoted148

by In, whereas Im,n describes the m-by-n matrix with ones on the main diagonal and149

zeros elsewhere. Furthermore, for convenience we define150

diagpvq :“

»

—

–

v1
. . .

vn

fi

ffi

fl

, diagtAiu
n
i“1 :“

»

—

–

A1

. . .

An

fi

ffi

fl

.151

At times, we may also use descending indices, e.g., diagtAiu
1
i“n ” diagtAn´i`1uni“1.

The Kronecker product between two matrices is demarked with the symbol b, i.e.,
for matrices A P Cmˆn and B P Cpˆq,

AbB :“

»

—

–

a11B ¨ ¨ ¨ a1nB
...

. . .
...

am1B ¨ ¨ ¨ amnB

fi

ffi

fl

P Cpmˆqn.

Let }v}p :“ p
řn

i“1 |vi|
pq1{p, }A}p :“ maxv‰0n

}Av}p { }v}p, and }A}F :“
b

ř

i,j |aij |2.152

The rank of a matrix A P Cmˆn is denoted with rankA. The column and null spaces153

of A are denoted with col A and null A, respectively. The symbols p¨qJ and p¨q˚, are154

used to denote transpose and conjugate transpose.155
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2. Macaulay-based method for polynomial root-solving. In this section,156

we review the Macaulay-based method for finding all projective common roots of157

(1.1). In Subsection 2.1 we introduce the Macaulay matrix, in Subsection 2.2 we158

summarize the properties of its null space viz-a-viz its relationship with the roots159

of the system, and in Subsection 2.3 we discuss how, starting from a null space160

basis, the root-solving problem is reduced to an eigenvalue problem or generalizations161

thereof [3, 16,17,52].162

2.1. Macaulay matrix. Denote ∆d “ d ´ dΣ and define163

(2.1) mpdq :“ S
2 p∆d ` 1qp∆d ` 2q, npdq :“ 1

2 pd ` 1qpd ` 2q.164

The Macaulay matrix Mpdq P Cmpdqˆnpdq of degree d ě dΣ is the matrix constructed165

from the polynomial coefficients in (1.1) such that its rows span the set of polynomials166

(2.2) M pdq :“

#

S
ÿ

s“1

hs ¨ ps : hs P Crx, ys, degphsq “ ∆d

+

.167

The row and column indexing3 used to describe this vector space is of course at our
discretion. In this work, we adopt a non-graded lexicographic indexing (with x ă y)
as it reveals a (multi-level) Toeplitz structure that will be exploited in the method
presented in Section 3. In other words, xi1yj1 ă xi2yj2 if j1 ă j2, and in case j1 “ j2,
i1 ă i2. The monomial terms xiyj with i, j ď d are ordered as

1, x, . . . , xd; y, xy, . . . , xdy; y2, xy2, . . . , xdy2; ...; yd, xyd, . . . , xdyd

but then excluding those terms that are not part of the collection
␣

xiyj
(

i,jě0, i`jďd
.

The rows of Mpdq, which describe the set of “shifted” polynomials
␣

xiyj ¨ p1, . . . , x
iyj ¨ pS

(

i,jě0, i`jď∆d
,

are ordered in analogous manner, leading to indexing illustrated graphically in Fig-168

ure 1.169

As such, the entries of the Macaulay matrix may be described as follows. Re-170

call that cskl is the coefficient of polynomial ps P Σ associated with the monomial171

term xkyl. For convenience, let ckl :“
“

c1kl ¨ ¨ ¨ cSkl

‰J
for k ď dΣ ´ l and172

ckl “ 0S , otherwise. For i “ 0, 1, . . . , dΣ and j “ 0, 1, . . . ,∆d, define the matrix173

Mi,j P CSp∆d`1´jqˆpd`1´i´jq as174

(2.3) Mi,j :“

»

—

—

—

–

c0i c1i ¨ ¨ ¨ cpdΣ´iqi

c0i c1i ¨ ¨ ¨ cpdΣ´iqi

. . .
. . .

. . .

c0i c1i ¨ ¨ ¨ cpdΣ´iqi

fi

ffi

ffi

ffi

fl

,175

which represents the coefficients of the monomials with yi repeated and shifted ∆d`176

1 ´ j times. Then, for d ě dΣ, the Macaulay matrix associated with the polynomial177

system (1.1) is given by178

(2.4) Mpdq :“

»

—

—

—

–

M0,0 M1,0 ¨ ¨ ¨ MdΣ,0

M0,1 M1,1 ¨ ¨ ¨ MdΣ,1

. . .
. . .

. . .

M0,∆d M1,∆d ¨ ¨ ¨ MdΣ,∆d

fi

ffi

ffi

ffi

fl

P Cmpdqˆnpdq.179

3Or for that matter, even the chosen polynomial basis. In Section 5, we describe how our ideas
are extended to polynomial systems described in the Chebyshev basis.
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»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ¨¨¨ xd y ¨¨¨ xd´1y y2
¨¨¨ xd´2y2

¨¨¨ ¨¨¨ yd´1 xyd´1 yd

p

...

x∆d
¨p

y¨p

...

x∆d´1y¨p

y2
¨p

...

x∆d´2y2
¨p

...

...

y∆d´1
¨p

xy∆d´1
¨p

y∆d
¨p

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Fig. 1: The corresponding non-graded lexicographic indexing of the Macaulay matrix
defined in (2.4). Here, p “ pp1, p2, . . . , pSq P pCrx, ysqS and subsequently xiyj ¨ p is a
shorthand for describing the polynomials pxiyj ¨ p1, x

iyj ¨ p2, . . . , x
iyj ¨ pSq.

To illustrate (2.4) with an example, consider the polynomial system

Σ :

"

p1px, yq “ 1 ` 6x ` 4x2 ` 2y ` 5xy ` 3y2 “ 0
p2px, yq “ 9 ` 1x ` 3x2 ` 8y ` 7xy ` 2y2 “ 0

.

The Macaulay matrix for d “ 4 takes on the form

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 x x2 x3 x4 y xy x2y x3y y2 xy2 x2y2 y3 xy3 y4

p1 1 6 4 2 5 3

p2 9 1 3 8 7 2

xp1 1 6 4 2 5 3

xp2 9 1 3 8 7 2

x2p1 1 6 4 2 5 3

x2p2 9 1 3 8 7 2

yp1 1 6 4 2 5 3

yp2 9 1 3 8 7 2

xyp1 1 6 4 2 5 3

xyp2 9 1 3 8 7 2

y2p1 1 6 4 2 5 3

y2p2 9 1 3 8 7 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The Macaulay matrix (2.4), for the chosen ordering, has an upper-triangular Toeplitz180

block-(block-)Toeplitz matrix4, but then with rows corresponding with polynomial181

shifts of degree greater than ∆d and columns corresponding with monomial terms of182

degree greater than d removed accordingly. That is, we may write183

(2.5) Mpdq :“ diag tIi,∆d`1 b ISu
1
i“∆d`1 M

tpzpdqdiag tId`1,ju
1
j“d`1184

4An upper-triangular block Toeplitz matrix, where each block element is again upper-triangular
(block-)Toeplitz.
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where185

Mtpzpdq :“

»

—

—

—

–

Mtpz

0 Mtpz

1 ¨ ¨ ¨ Mtpz

dΣ

Mtpz

0 Mtpz

1 ¨ ¨ ¨ Mtpz

dΣ

. . .
. . .

. . .

Mtpz

0 Mtpz

1 ¨ ¨ ¨ Mtpz

dΣ

fi

ffi

ffi

ffi

fl

P CSp∆d`1q
2

ˆpd`1q
2

,186

Mtpz

j :“

»

—

—

—

–

c0j c1j ¨ ¨ ¨ cdΣj

c0j c1j ¨ ¨ ¨ cdΣj

. . .
. . .

. . .

c0j c1j ¨ ¨ ¨ cdΣj

fi

ffi

ffi

ffi

fl

P CSp∆d`1qˆpd`1q,187

for j “ 0, 1, . . . , dΣ.188

2.2. Properties of the Macaulay null space. For S ě 2, the Macaulay189

matrix eventually grows into a tall matrix with more rows than columns for sufficiently190

large values of d. The matrix is however rank deficient and has a nontrivial right null191

space.192

The right null space of the Macaulay matrix (2.4) is closely linked to the set of193

common roots of the system (1.1), or more specifically, its homogenization194

(2.6) Σh :

$

’

&

’

%

p1,hpt, x, yq :“ tdΣ ¨ p1px{t, y{tq “ 0
...

pS,hpt, x, yq :“ tdΣ ¨ pSpx{t, y{tq “ 0

195

in the projective complex plane P2pCq. Indeed, if vdpt, x, yq P Cnpdq defines the vector196

(2.7) vdpt, x, yq :“ td ¨ vd,x,ypx{t, y{tq,197

where198

vd,x,ypx, yq :“
“

vJ
d,xpxq y ¨ vJ

d´1,xpxq ¨ ¨ ¨ yd ¨ vJ
0,xpxq

‰J
P Cnpdq,199

vd,xpxq :“
“

1 x ¨ ¨ ¨ xd
‰J

P Cd`1,200

we observe that for every common root pt˚, x˚, y˚q P P2pCq of Σh, it must hold that
vdpt˚, x˚, y˚q P nullMpdq. In relation to the original system Σ, we may place the roots
of Σh in two distinct categories: if t ‰ 0, pt˚, x˚, y˚q P P2pCq is considered to be an
affine root of Σh, otherwise it is called a root at infinity. Affine roots of Σh have a
direct correspondance with the roots of the original system Σ in affine space. That
is, since pt˚, x˚, y˚q ” p1, x˚{t˚, y˚{t˚q in P2pCq, the point px˚{t˚, y˚{t˚q P C2 will be
a root of Σ because of the identity ps,hp1, x{t, y{tq “ pspx{t, y{tq. Roots at infinity,
on the other hand, do not relate to any roots of Σ. Instead, they are roots of the
homogeneous system

Σ8 :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p1,8px, yq :“ p1,hp0, x, yq “

dΣ
ÿ

i“0

c1ipdΣ´iqx
iydΣ´i “ 0

...

pS,8px, yq :“ pS,hp0, x, yq “

dΣ
ÿ

i“0

cSipdΣ´iqx
iydΣ´i “ 0
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in PpCq. From the fundamental theorem of algebra, it can be shown that a root at201

infinity only occurs if all homogeneous polynomials in Σ8 share a nontrivial common202

factor. Mathematically, the possibility of this occurring for a generic system is zero,203

yet it should be noted that in many structured polynomial systems which arise in204

practice, this property no longer holds true; see e.g., [46, 50] for examples.205

Nevertheless, here we focus on the generic case with an interest in finding all206

roots of the homogenized system (2.6). If the polynomials in Σh do not share any207

common nontrivial factors, i.e., ps,h ‰ f ¨ gs,h for some non-constant polynomial208

f P Crt, x, ys, this number will turn out to be finite. Specifically, if S “ 2, Bézout’s209

theorem (see e.g. [28, Theorem 7.7]) applies and the number of roots, accounting for210

multiplicity, equals d2Σ. On the other hand, for overdetermined systems, the number211

of roots will generically be zero5. To still provide a proper complexity analysis later212

in Subsection 3.3, we shall assume that two coprime polynomials in Σ generate the213

entire ideal formed by all polynomials of the system so that we obtain a consistent214

set of equations. That is,215

(2.8) Dp, q P Σ, with p and q coprime, such that Ipp, qq “ IpΣq .216

In such a circumstance, the homogenized system Σh will again have d2Σ common roots.217

From a practical standpoint, it is sensible to assume condition (2.8) since it idealizes218

a scenario of an overdetermined system being ϵ-close to a square system, i.e., where219

condition (2.8) is only satisfied in an approximate sense.220

2.3. Recovering the roots from the Macaulay null space. As pointed out221

in the introduction, there exist numerous ways to reformulate the root-solving problem222

into an eigenvalue problem. In this section, we review the method in [52], which builds223

upon the foundational work in [3, 16, 17]. In this approach, the root-solving problem224

is reduced to a joint generalized eigenvalue (joint-GEVD) problem, or equivalently a225

CPD computation. For simplicity of exposition, we shall assume for the remainder of226

this section that all roots of Σh are simple, i.e., the multiplicities equal one6. Note227

however that this assumption can be removed and properly addressed through, for228

instance, the frameworks presented in [11] or [53].229

Let tpti, xi, yiq P P2pCq u
d2
Σ

i“1 denote the set of common roots of Σh and define the230

multivariate Vandermonde matrix as231

(2.9) Vpdq “
“

vdpt1, x1, y1q ¨ ¨ ¨ vdptd2
Σ
, xd2

Σ
, yd2

Σ
q
‰

P Cnpdqˆd2
Σ .232

It is clear that col Vpdq Ď nullMpdq. It turns out that this containment can be233

strengthened to an equality. In fact, there exists a so-called degree of regularity234

d˚ for which the nullity of Macaulay matrix stabilizes to the number of roots in the235

system, which in the case of (2.6) with condition (2.8) implies that dimnullMpdq “ d2Σ236

for all d ě d˚. Subsequently,237

(2.10) rpdq :“ rankMpdq “ npdq ´ d2Σ, d ě d˚.238

Upper bounds on the degree of regularity relate back to original work by F.S. Macaulay239

[34] and can be found, for example, in [14, Section 3.4]. Specifically, the degree of240

5This can be interpreted as a generalization of the statement that an overdetermined linear
system typically has no exact solution.

6The multiplicity quantifies intuitively in how many distinct intersections a common root of two
plane curves (described by the vanishing set of the respective polynomials) disperses under arbitrary
small perturbation. For generic intersections, this number equals one.

This manuscript is for review purposes only.



MACAULAY NULL SPACES, BIVARIATE POLYNOMIAL SYSTEMS 9

regularity for the bivariate system (1.1) is bounded by241

(2.11) d˚ ď 2dΣ ´ 2.242

The degree of regularity is often attained well before the bound in (2.11). In practice,243

one uses recursive approaches to construct the null space to avoid forming unneces-244

sarily large Macaulay matrices [4,41]. In our analysis later in Subsection 3.3, we shall245

nonetheless use (2.11) to provide upper bounds on the complexity.246

The reduction of the roots solving problem to a joint-GEVD problem [21] takes247

advantage of the fact that the columns of (2.9) form a basis for nullMpdq if d ě248

d˚. In particular, one exploits the shift-invariant structure in (2.9) as follows. Let249

Stpdq,Sxpdq,Sypdq P Rnpd´1qˆnpdq denote the shift-matrices250

Stpdq “ diag tSt,d´iu
d
i“0 , St,i “

»

—

–

1 0
. . .

...
1 0

fi

ffi

fl

P Riˆpi`1q,251

252

Sxpdq “ diag tSx,d´iu
d
i“0 , Sx,i “

»

—

–

0 1
...

. . .

0 1

fi

ffi

fl

P Riˆpi`1q,253

and254

Sypdq “

»

—

—

—

—

—

—

–

0dˆpd`1q Id
0pd´1qˆd Id´1

0pd´2qˆpd´1q

. . .

. . . I2
01ˆ2 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.255

Since Shpd ` 1qvd`1pt, x, yq “ h ¨ vdpt, x, yq for h “ tt, x, yu, we obtain the relations256

Stpd ` 1qVpd ` 1q “ VpdqDt,(2.12a)257

Sxpd ` 1qVpd ` 1q “ VpdqDx,(2.12b)258

Sypd ` 1qVpd ` 1q “ VpdqDy,(2.12c)259

where260

(2.13) Dt “ diagpt1, . . . , td2
Σ

q, Dx “ diagpx1, . . . , xd2
Σ

q, Dy “ diagpy1, . . . , yd2
Σ

q.261

Suppose that the columns of Npdq are a basis for nullMpdq. Since the columns of262

Npdq P Cnpdqˆd2
Σ span the same subspace as the columns of Vpdq for d ě d˚, there263

exists an invertible matrix A P Cd2
Σˆd2

Σ such that NpdqA “ Vpdq. Substitution of this264

identity into (2.12) yields a joint-GEVD problem. That is, given the matrices265

G1 :“ Stpd ` 1qNpd ` 1q, G2 :“ Sxpd ` 1qNpd ` 1q, G3 :“ Sypd ` 1qNpd ` 1q,266

find an A that simultaneously diagonalizes Gi P Cnpdqˆd2
Σ , i.e.,267

(2.14) G1A “ VpdqDt, G2A “ VpdqDx, G3A “ VpdqDy.268

The set of matrix equations (2.14) can be rephrased as the CPD of a tensor whose269

frontal slices are given by Gi for i “ 1, 2, 3. Well-established reliable numerical meth-270

ods exist to compute CPDs of tensors; see e.g., [21,47,56], and the references therein.271

A schematic summary of the entire method is shown in Figure 2.272
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Σ Σh tti, xi, yiu
d2
Σ

i“1 P P2pCq

Mpdq Npdq Dt,Dx,Dy

Homogenize (2.6) Determine roots

Compute null space

basis (Section 3)

Solve joint-GEVD

(2.14)

Macaulay (2.4) (2.13)

Fig. 2: A schematic overview of how all projective roots of the (homogenized) sys-
tem are found. Our objective is to determine the roots of the homogenized system
(dashed line). This is achieved by following the steps given by the solid lines, i.e.,
first computing a basis for the null space of the Macaulay matrix, and then solving
the joint-GEVD problem Equation (2.14).

3. Fast determination of the Macaulay null space. The Macaulay matrix273

(2.4) has an almost Toeplitz-block-(block-Toeplitz) structure as described in detail in274

Subsection 2.1. We describe an efficient method to determine a numerical basis for275

the right null space of such a matrix. The method proceeds in three steps:276

1. Apply unitary transformations Φ P Cmpdqˆmpdq and Ψ P Cnpdqˆnpdq such that277

ΦMpdqΨ “: M̂pdq attains the structure of a Cauchy-like matrix.278

2. Compute a fast rank-revealing LU-factorization of M̂pdq using the Schur al-279

gorithm to obtain a basis for its null space N̂pdq.280

3. Recover the null space of the original Macaulay matrix from Npdq “ ΨN̂pdq.281

A schematic outline of the method is presented in Figure 3. Referring to this out-282

line, Subsection 3.1 provides the details of how the Macaulay matrix is efficiently283

converted into a Cauchy-like matrix. Subsection 3.2 discusses the details of finding284

an efficient null space representation for this Cauchy-transformed Macaulay matrix285

using the Schur algorithm. The recovery of the null space for the actual Macaulay286

matrix becomes a trivial step, since an expression for Ψ has already been derived in287

Subsection 3.1. In Subsection 3.3, a summary of the algorithm is given along with an288

analysis of its asymptotic complexity.289

Remark 3.1. Mind that our method will always produce a complex basis for the290

null space, even if all coefficients in (1.1) are real. If a real basis is so specifically desired291

in an application, one may obtain this by working with a displacement equation of292

the type in (5.8), instead of the displacement equation in (3.2) that will be presented293

shortly.294

3.1. Fast conversion of Macaulay matrices into Cauchy-like matrices.295

This section details how one efficiently converts Macaulay matrices into Cauchy-like296

matrices. The described method relies on concepts from displacement rank theory; see297

[31] for a comprehensive review on the subject or [10] for a more concise introduction.298

3.1.1. Low displacement-rank structure of Macaulay matrices. Let φ P299

C be of unit modulus, i.e., |φ| “ 1, and denote300

(3.1) Zp,φ “

»

—

—

—

–

φ
1

. . .

1

fi

ffi

ffi

ffi

fl

P Cpˆp,301
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Mpdq Npdq “ ΨN̂pdq

M̂pdq “ ΦMpdqΨ N̂pdq

Determine null space

(e.g., rank-revealing LU)

Schur algorithm: fast rank-revealing LU

(Subsection 3.2)

Fast conversion to Cauchy
(Subsection 3.1)

Fast conversion from Cauchy
(Subsection 3.1)

Fig. 3: A schematic outline of the fast algorithm. Our objective is to determine
the null space of the Macaulay matrix (dashed line). This is achieved by following
the steps given by the solid lines, i.e., first perform a Cauchy conversion, run the
Schur algorithm to compute a rank-revealing LU-factorization, perform an inverse
transformation to recover the null-space of the original matrix.

for p ě 2, and Z1,φ “ φ in the special case when p “ 1. Consider the displacement302

operator D : Cmpdqˆnpdq Ñ Cmpdqˆnpdq defined as the linear map303

(3.2) D : X ÞÑ diag tZi,1 b ISu
1
i“∆d`1 X ´ Xdiag

␣

Zj,φj

(1

j“d`1
,304

where tφju
d`1
j“1 are chosen particularly such that (3.2) remains bijective7. A practi-305

cal choice for these parameters will be discussed in Subsection 4.1.1. For Macaulay306

matrices, the image under the displacement operator are matrices of (relatively) low307

rank. Indeed, applying (3.2) onto (2.4) yields308

(3.3) D tMpdqu “ M̆ “

»

—

—

—

–

M̆0,0 M̆1,0 ¨ ¨ ¨ M̆dΣ,0

M̆0,1 M̆1,1 ¨ ¨ ¨ M̆dΣ,1

. . .
. . .

. . .

M̆0,∆d M̆1,∆d ¨ ¨ ¨ M̆dΣ,∆d

fi

ffi

ffi

ffi

fl

,309

where M̆j´i,i :“ pZ∆d`1´i,1 b ISqMj´i,i ´ Mj´i,iZd`1´j,φd`1´j
P CSp∆d`1´iqˆpd`1´jq310

are matrices of the form311

312

(3.4) M̆j´i,i “

»

—

—

—

–

0S ¨ ¨ ¨ 0S c0pj´iq ¨ ¨ ¨ cpdΣ´j`i´1qpj´iq cpdΣ´j`iqpj´iq

0S ¨ ¨ ¨ 0S 0S ¨ ¨ ¨ 0S 0S

...
...

...
...

...
0S ¨ ¨ ¨ 0S 0S ¨ ¨ ¨ 0S 0S

fi

ffi

ffi

ffi

fl

313

´

»

—

—

—

–

c1pj´iq ¨ ¨ ¨ cpdΣ´j`iqpj´iq 0S ¨ ¨ ¨ 0S φd`1´jc0pj´iq

0S ¨ ¨ ¨ 0S 0S ¨ ¨ ¨ 0S 0S

...
...

...
...

...
0S ¨ ¨ ¨ 0S 0S ¨ ¨ ¨ 0S 0S

fi

ffi

ffi

ffi

fl

.314

315

Since rank M̆j´i,i ď S, we may further deduce that316

(3.5) rankD tMpdqu ď Sp∆d ` 1q “ S pd ` 1q ´ SdΣ “: ρpdq.317

7Let λpAq Ă C and λpBq Ă C denote the spectrum of A P Cmˆm and B P Cnˆn, respectively.
The linear operator L : X ÞÑ AX ´ XB is invertible if, and only if, λpAq X λpBq “ H.
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This reveals that, while both the height and width of the Macaulay matrix grow318

quadratically with respect to d, the rank of the displaced Macaulay matrix grows319

only linearly with d. Specifically, when d equals the upper bound on the degree of320

regularity (2.11), the Macaulay matrix is an S
2 pdΣ´1qdΣ by 1

2 p2dΣ´1qdΣ matrix, while321

its displacement has rank of at most SpdΣ´1q. This critical observation is what allows322

for a fast algorithm since it will substantially reduce the cost of performing Gaussian323

elimination (to be discussed in Subsection 3.2).324

3.1.2. Cauchy representation of Macaulay matrices. Matrices of the kind325

in (2.4) are easily converted into Cauchy-like matrices through unitary transforma-326

tions. That is, there exist unitary matrices Φ P Cmpdqˆmpdq, Ψ P Cnpdqˆnpdq such that327

M̂pdq :“ ΦMpdqΨ P Cmpdqˆnpdq is Cauchy-like and thus has entries of the form328

(3.6)
”

M̂pdq

ı

ij
:“ rΦMpdqΨsij “

u˚
i vj

µi ´ νj
, ui,vj P Cρpdq.329

To see how Φ and Ψ should be picked, observe at first that (3.6) satisfies the displace-330

ment equation331

(3.7) D̂
!

M̂pdq

)

:“ diagpµqM̂pdq ´ M̂pdqdiagpνq “

»

—

–

u˚
1
...

u˚
mpdq

fi

ffi

fl

“

v1 ¨ ¨ ¨ vnpdq

‰

332

and hence, it is convenient at times to denote a Cauchy-like matrix just in terms of333

its “generators”, i.e.,334

(3.8) M̂pdq “ C pµ,ν,U,Vq ,335

with U P Cmpdqˆρpdq and V P Cnpdqˆρpdq defined as

U :“

»

—

–

u˚
1
...

u˚
mpdq

fi

ffi

fl

, V :“

»

—

–

v˚
1
...

v˚
npdq

fi

ffi

fl

.

The displacement equation in (3.2) can be molded into the displacement equation of
(3.7) by substituting the eigen-decomposition of (3.1) into (3.2) and manipulating the
expression. Indeed, let ωp :“ expp´2πι{pq and observe that (3.1) decomposes into

Zp,φ “ pDp,φFpqpφ1{pΩpqpDp,φFpq´1,

where Dp,φ :“ diagp1, φ´1{p, . . . , φ´pp´1q{pq, Ωp :“ diagp1, ω̄p, . . . , ω̄
p´1
p q, and Fp P336

Cpˆp is the Discrete Fourier Transform (DFT) matrix, i.e., rFpsij :“ 1?
pω

pi´1qpj´1q
p .337

By setting338

(3.9) Φ :“ diag tF˚
i b ISu

1
i“∆d`1 , Ψ :“ diag

␣

Dj,φj
Fj

(1

j“d`1
,339

340

(3.10) diagpµq :“ diag tΩi b ISu
1
i“∆d`1 , diagpνq :“ diag

!

φ
1{j
j Ωj

)1

j“d`1
,341

one can show from a sequence of algebraic manipulations that (3.6) satisfies the rela-342

tion343

(3.11) D̂
!

M̂pdq

)

“ ΦD tMpdquΨ “ ΦM̆Ψ “UV˚.344
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3.1.3. Fast Cauchy conversion using FFTs. By (3.5) and (3.11), we have
that

rank D̂
!

M̂pdq

)

“ rankD tMpdqu ď ρpdq,

and finding the representation (3.6) is equivalent to just finding a low-rank factor-
ization UV˚ for ΦD tMpdquΨ, as the denominator coefficients µi, νj P C are already
cast in stone by (3.10). A pair of matrices U and V can be determined rather effi-
ciently. To see this, observe that by substitution of (3.9) into (3.3), we must apply
the transformation

M̆j´i,i ÞÑ
`

F˚
∆d`1´i b IS

˘

M̆j´i,i

`

Dd`1´j,φd`1´j
Fd`1´j

˘

“: UiV
˚
j´i,i.

Since, by (3.4), M̆j´i,i factors into345

346

ISp∆d`1´iq,S

`“

0S ¨ ¨ ¨ 0S c0pj´iq ¨ ¨ ¨ cpdΣ´j`i´1qpj´iq cpdΣ´j`iqpj´iq

‰

347

´
“

c1pj´iq ¨ ¨ ¨ cpdΣ´j`iqpj´iq 0S ¨ ¨ ¨ 0S φd`1´jc0pj´iq

‰˘

,348349

we may write Ui P CSp∆d`1´iqˆS and Vj´i,i P Cpd`1´jqˆS as350

Ui “
`

F˚
∆d`1´i b IS

˘

pe1,∆d`1´i b ISq “
1

?
∆d ` 1 ´ i

p1∆d`1´i b ISq ,351

Vj´i,i “ F˚
d`1´jD

˚
d`1´j,φj

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

—

—

–

01ˆS

...
01ˆS

c˚
0pj´iq

...
c˚

pdΣ´j`i´1qpj´iq

c˚
pdΣ´j`iqpj´iq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

—

—

—

—

–

c˚
1pj´iq

...
c˚

pdΣ´j`iqpj´iq

01ˆS

...
01ˆS

φ̄d`1´jc
˚
0pj´iq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.352

Subsequently,353

(3.12) U “ diag tUiu
∆d
i“0 , V “

»

—

—

—

—

—

—

–

V0,0

...
. . .

VdΣ,0 V0,∆d

. . .
...

VdΣ,∆d

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.354

3.2. Fast null space computation of Cauchy-like matrices. This section355

details how one efficiently computes a numerical basis for the right null space of the356

Cauchy-like matrix (3.6) through a rank-revealing LU-factorization [37,45].357

3.2.1. Rank-revealing LU-factorizations. Assume that condition (2.8) is
satisfied and that d ě d˚ so that the Macaulay matrix has rank rpdq as specified in
(2.10). Following the definition in [37], in a rank-revealing LU-factorization of M̂pdq,
the goal is to find row and column permutations Π1 P Rmpdqˆmpdq and Π2 P Rnpdqˆnpdq

such that8

Π1M̂pdqΠ2 “

„

M̂11 M̂12

M̂21 M̂22

ȷ

,

8Mind that M̂ij are sub-blocks of the permuted matrix Π1M̂pdqΠ2 and not of M̂ itself!
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with partition blocks M̂11 P Crpdqˆrpdq, M̂12 P Crpdqˆd2
Σ , M̂21 P Cpmpdq´rpdqqˆrpdq, and

M̂22 P Cpmpdq´rpdqqˆd2
Σ , factors into

Π1M̂pdqΠ2 “

„

Irpdq

M̂21M̂
´1
11 Id2

Σ

ȷ „

M̂11

M̂22 ´ M̂21M̂
´1
11 M̂12

ȷ „

Irpdq M̂´1
11 M̂12

Id2
Σ

ȷ

,

where358

(3.13) σipM̂11q ě
σipM̂pdqq

qpm,n, rq
, σjpM̂22 ´ M̂21M̂

´1
11 M̂12q ď σj`rpdqpM̂pdqqqpm,n, rq,359

for i “ 1, . . . , rpdq, j “ 1, . . . , d2Σ, and qpm,n, rq an expression that is a low degree

polynomial in the matrix dimensions and rank. Since σrpdqpM̂pdqq " σrpdq`1pM̂pdqq «

0 in a numerical setting, the bounds (3.13) ensure that the Schur complement M̂22 ´

M̂21M̂
´1
11 M̂12 is approximately zero so that we can speak of the approximation

Π1M̂pdqΠ2 «

„

M̂11

M̂21

ȷ

“

Irpdq M̂´1
11 M̂12

‰

.

Subsequently,360

(3.14) N̂pdq :“ Π2

„

´M̂´1
11 M̂12

Id2
Σ

ȷ

361

is a numerical approximation to the right null space of M̂pdq, and it is additionally362

desirable in this setting that the entries of M̂´1
11 M̂12 remain small in absolute value to363

ensure stability of the representation, in which case, one has a strong rank-revealing364

LU-factorization [37].365

3.2.2. Cauchy representation of the null space. Let366

(3.15) Ñ :“ ´M̂´1
11 M̂12 P Crpdqˆd2

Σ .367

If (2.8) is exactly satisfied, the columns of368

(3.16) Npdq “ ΨN̂pdq “ ΨΠ2

„

Ñ
Id2

Σ

ȷ

369

provide a numerical basis for the right null space of the original Macaulay matrix370

(2.4). Direct application of Gaussian elimination on M̂pdq will not result in any fast371

algorithm to generate (3.15). To achieve that, one has to take advantage of the372

fact that (3.15) is also Cauchy-like, with a displacement rank equal to that of the373

original Macaulay matrix. To verify this property, partition Π2 “
“

Π2,a Π2,b

‰

with374

Π2,a P Rnpdqˆrpdq and Π2,b P Rnpdqˆd2
Σ . It can shown that the augmented matrix375

(3.17)

„

Π1

Irpdq

ȷ „

M̂pdq

ΠJ
2,a

ȷ

“

Π2,a Π2,b

‰

“

»

–

M̂11 M̂12

M̂21 M̂22

Irpdq 0rˆd2
Σ

fi

fl ,376
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satisfies the displacement equation377

378

„

diagpκq

diagpξq

ȷ

»

–

M̂11 M̂12

M̂21 M̂22

Irpdq 0rpdqˆd2
Σ

fi

fl´379

»

–

M̂11 M̂12

M̂21 M̂22

Irpdq 0rpdqˆd2
Σ

fi

fl

„

diagpξq

diagpηq

ȷ

“

»

–

Ua

Ub

0rpdqˆSp∆d`1q

fi

fl

“

V˚
a V˚

b

‰

,380

381

with κ P Cmpdq, ξ P Crpdq, η P Cd2
Σ , Va P Crpdqˆρpdq, Vb P Cd2

Σˆρpdq, Ua P Crpdqˆρpdq,
and Ub P Cpmpdq´rpdqqˆρpdq given by

κ “ Π1µ,

„

ξ
η

ȷ

“ Π2ν,

„

Ua

Ub

ȷ

“ Π1U,

„

Va

Vb

ȷ

“ ΠJ
2 V.

Since, by row-reduction, we have the equivalence

»

–

M̂11 M̂12

M̂21 M̂22

Irpdq 0rpdqˆd2
Σ

fi

fl „

»

–

M̂11 M̂12

0pmpdq´rpdqqˆrpdq M̂22 ´ M̂21M̂
´1
11 M̂12

0rpdqˆrpdq Ñ

fi

fl ,

further algebraic deductions would reveal that (3.15) satisfies the displacement equa-382

tion383

(3.18) diagpξqÑ ´ Ñ diagpηq “

´

´M̂´1
11 Ua

¯´

Vb ´ Ñ˚Va

¯

“: RS˚.384

If one chooses tφju
d`1
j“1 such that ν only has distinct entries, ξ P Crpdq will have no385

entries in common with η P Cd2
Σ . The displacement operator in (3.18) is subsequently386

invertible (see Footnote 7), and hence,387

(3.19) Ñ “ C pξ,η,R,Sq ,388

with R P Crpdqˆρpdq and S P Cd2
Σˆρpdq, comprises a valid compact representation for389

(3.15).390

3.2.3. Schur algorithm for Cauchy-like matrices. The LU-factorization of391

a Cauchy-like matrix can be determined efficiently using the Schur algorithm [29]. The392

Schur algorithm relies on the key property that the Schur complement of a Cauchy-like393

matrix is also Cauchy-like, with the displacement being equal to that of the original394

matrix; see e.g., [24, Theorem 12.1.1] for a precise statement. Subsequently, each395

step of Gaussian elimination can be performed efficiently by updating the entries of396

the generators (instead of the dense matrix itself). With the foregoing discussions in397

Subsection 3.2.2, the Schur algorithm may also be adapted to determine the generators398

of (3.19), and hence, obtain a compact representation for (3.15). The details are given399

below.400

Algorithm 1 (Modified Schur algorithm for null space of Cauchy-like matrix).401

In: M̂ “ C pU,V,µ,νq, ϵ ą 0402

Out: Ñ “ C pR,S, ξ,ηq,Π2403
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1. Initialize404

Π
p0q

1 “ Impdq, µp0q “ µ, Up0q “ U,405

Π
p0q

2 “ Inpdq, νpkq “ ν, Vp0q “ V,406407

and set M̂p0q :“ C
`

µp0q,νp0q,Up0q,Vp0q
˘

“ M̂pdq.408

2. For k “ 1, 2, . . . ,min tmpdq, npdqu, repeat the following steps (see Subsec-409

tion 3.2.4 for more details):410

(a) Given a certain (rank-revealing) pivoting strategy, pivot the pik, jkq-th411

entry of M̂pk´1q with ik, jk ě k to the pk, kq-th position. That is, if412

Γi P Rmpdqˆmpdq and Ξi P Rnpdqˆnpdq denote the corresponding row and413

column interchange permutations to achieve this pivoting action, then414

Π
pkq

1 “ ΓkΠ
pk´1q

1 , µpkq “ Γkµ
pk´1q, Ũpkq “ ΓkU

pk´1q,415

Π
pkq

2 “ Π
pk´1q

2 Ξk, νpkq “ Ξkν
pk´1q, Ṽpkq “ ΞkV

pk´1q,416417

and M̃pkq :“ C
´

µpkq,νpkq, Ũpkq, Ṽpkq

¯

“ Π
pkq

1 M̂pk´1qΠ
pkq

2 .418

(b) Evaluate αk “ ũ
pkq

˚

k ṽ
pkq

k {pµ
pkq

k ´ ν
pkq

k q,419

wk “

»

—

—

—

—

–

ũ
pkq˚

1 ṽ
pkq

k

ν
pk´1q

1 ´ν
pkq

k

,

...
ũ

pkq˚

k´1 ṽ
pkq

k

ν
pk´1q

k´1 ´ν
pkq

k

fi

ffi

ffi

ffi

ffi

fl

, gk “

»

—

—

—

—

—

–

ũ
pkq˚

k`1 ṽ
pkq

k

µ
pkq

k`1´ν
pkq

k

,

...
ũ

pkq˚

mpdq
ṽ

pkq

k

µ
pkq

mpdq
´ν

pkq

k

fi

ffi

ffi

ffi

ffi

ffi

fl

, hk “

»

—

—

—

—

—

–

ṽ
pkq˚

k`1 ũ
pkq

k

µ
pkq

k ´ν
pkq

k`1

...
ṽ

pkq˚

npdq
ũ

pkq

k

µ
pkq

k ´ν
pkq

npdq

,

fi

ffi

ffi

ffi

ffi

ffi

fl

,420

to form the Gauss transforms421

Gk “ Impdq ´
1

αk

»

–

wk

αk ` 1
gk

fi

fl eJ
k,mpdq, Hk “ Inpdq ´

1

ᾱk

„

0k

hk

ȷ

eJ
k,npdq,422

and perform Gaussian elimination on the generators423

Upkq “ GkŨ
pkq, Vpkq “ HkṼ

pkq,424

to subsequently define M̂pkq :“ C
`

µpkq,νpkq,Upkq,Vpkq
˘

.425

(c) Let426

ξpkq “ ν
pkq

1:k , Rpkq “ U
pkq

1:k,:,427

ηpkq “ ν
pkq

k`1:npdq
, Spkq “ V

pkq

:,k`1:npdq
,428

429

and set Ñpkq :“ C
`

ξpkq,ηpkq,Rpkq,Spkq
˘

.430

(d) Check whether431

(3.20)
›

›

›
M̂

pkq

k`1:mpdq,k`1:npdq

›

›

›

F
ď ϵ.432

If (3.20) is indeed satisfied, break the loop and proceed to step 3.433

3. Set Ñ “ Ñpkq, and hence, ξ “ ξpkq, η “ ηpkq, R “ Rpkq, S “ Spkq, Π1 “ Π
pkq

1 ,434

and Π2 “ Π
pkq

2 .435
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3.2.4. Efficient complete pivoting and evaluation of stopping criteria.436

The procedure outlined in Subsection 3.2.3 requires further elaboration on two aspects:437

(i) how to exactly pivot the entries of (3.6) such that a rank-revealing LU-factorization438

is obtained, and (ii) how to efficiently evaluate the stopping criterion (3.20) without439

explicitly forming the Schur complement and computing its norm.440

It is well-known that, in exact arithmetic, Gaussian elimination with complete441

pivoting always reveals the rank of a matrix. Although one cannot ensure that this442

property persists under floating point arithmetic (see examples in [37,45]), it is plausi-443

ble to assume that complete pivoting should work decently in practice, at least for the444

matrices considered in this paper. However, direct application of complete pivoting445

by searching through all the matrix entries is prohibitively expensive and destroys the446

asymptotic complexity gains that one would achieve with the Schur algorithm.447

Nonetheless, it turns out that a suitable pivot can directly be found from the448

generators of the Cauchy-like matrix if one relaxes the requirement to always find449

the largest magnitude matrix entry. This method, originally introduced by Ming Gu,450

is based upon a fundamental observation made in [26, Lemma 3.1] which, restated451

for matrix M̂pk´1q P Cmpdqˆnpdq in Algorithm 1, says that if j˚
k denotes the column452

position of the column with maximum 2-norm in U
pk´1q

k:mpdq,:V
pk´1q˚

, then the following453

lower bound is satisfied:454

(3.21) max
kďiďmpdq

ˇ

ˇ

ˇ
m̂

pkq

ij˚
k

ˇ

ˇ

ˇ
ě 1

K
?

npdq´k
max

kďiďmpdq

kďjďnpdq

ˇ

ˇ

ˇ
m̂

pkq

ij

ˇ

ˇ

ˇ
, K :“ max

kďi,ıďmpdq

kďj,ȷďnpdq

ˇ

ˇ

ˇ
µ

pkq

i ´ ν
pkq

j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
µ

pkq
ı ´ ν

pkq
ȷ

ˇ

ˇ

ˇ

.455

That is, the j˚
k ’th column of M̂pkq already contains a sufficiently large pivot. Fur-456

thermore, this column can be found rather efficiently (i.e., without breaking the com-457

plexity gains made by the Schur algorithm) provided the columns of U
pk´1q

k:mpdq,: are458

orthonormal9. A similar statement can also be made for the stopping criterion (3.20),459

since [26, Lemma 3.1] also establishes the bound460

›

›

›
M̂

pkq

k`1:mpdq,k`1:npdq

›

›

›

F
ď K

a

pnpdq ´ k ´ 1qpmpdq ´ k ´ 1q max
k`1ďiďmpdq

ˇ

ˇ

ˇ

ˇ

m̂
pkq

ij˚
k`1

ˇ

ˇ

ˇ

ˇ

.461

In the subsequent section, it is explained how U
pk´1q

k:mpdq,: can be kept orthonormal462

throughout the execution of the Schur algorithm.463

3.2.5. Re-orthonormalization procedure. The orthormality of U
pkq

k`1:mpdq,:464

is destroyed in step 2(b) of Algorithm 1 when the Gauss-updates are performed.465

To find a suitable pivot, a re-orthonormalization procedure must be incorporated in466

this step to maintain orthonormality of U
pkq

k`1:mpdq,:. A naive approach, which would467

break the asymptotic complexity of the algorithm, is to compute a QR-decomposition468

U
pkq

k`1:mpdq,: “ QpkqBpkq from scratch at each iteration so that469

(3.22) Upkq Ð

«

U
pkq

1:k,:

`

Bpkq
˘´1

Qpkq

ff

, V
pkq

k`1:npdq,: Ð V
pkq

k`1:npdq,:

´

Bpkq
¯˚

.470

Instead, the re-orthonormalization must be achieved through clever updating strate-471

gies. Assuming orthonormality10 of Ũ
pkq

k:mpdq,:, step 2(b) of Algorithm 1 can be replaced472

9In which case, it suffices to just compute the 2-norms of the rows of Vpk´1q.
10This property is already satisfied at initiation of Algorithm 1!
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by Algorithm 2.473

Unfortunately, Algorithm 2 by itself will introduce numerical issues. Even though474

U
pkq

k`1:mpdq,: and V
pkq

k`1:npdq,: are computed stably, U
pkq

1:k,: loses accuracy11 as the itera-475

tions proceed if Bpkq in (3.22) is close to singular. This is a cause of concern since476

U
pkq

1:k,: is a key term in the construction of Ñ. One may overcome this challenge by477

running two versions of Algorithm 1 in parallel. Since only U
pkq

k`1:mpdq,: and V
pkq

k`1:npdq,:478

are needed in the pivot selection, the first version will use Algorithm 2 to solely find479

a pivot. For the second version, Algorithm 1 is run without Algorithm 2 to avoid loss480

of accuracy in U
pkq

1:k,:. This will increase the cost of running the entire algorithm by a481

factor two, but will not break its asymptotic complexity. A more efficient remedy to482

this problem is an open question.483

Algorithm 2 (Gauss-update step with orthonormalization).484

In: Ũpkq with Ũ
pkq

˚

k:mpdq,:Ũ
pkq

k:mpdq,: “ Iρpdq , Ṽpkq485

Out: Upkq with U
pkq

˚

k`1:mpdq,:U
pkq

k`1:mpdq,: “ Iρpdq, V
pkq486

1. Make Ũ
pkq

k,: equal to ceJ
1,ρpdq

for some c P C by using a suitable Householder487

transformation F, i.e.,488

Ũpkq Ð ŨpkqF˚, Ṽpkq Ð ṼpkqF˚.489

.490

2. Perform the Gauss-update step with Gk and Hk computed as in step 2 of491

Algorithm 1,492

Upkq “ GkŨ
pkq, Vpkq “ HkṼ

pkq,493

which now only modifies the first column in Upkq due to the re-assignment in494

step 1.495

3. Reorthogonalize the first column of U
pkq

pk`1q:mpdq,: by performing the updates496

bpkq “

´

U
pkq

k`1:mpdq,2:rpdq

¯˚

U
pkq

k`1:mpdq,1,497

U
pkq

:,1 Ð U
pkq

:,1 ´ U
pkq

:,2:rpdq
bpkq,498

V
pkq

:,2:rpdq
Ð V

pkq

:,2:rpdq
` V

pkq

:,1

´

bpkq
¯˚

,499
500

and note that U
pkq

k`1:mpdq,2:rpdq
is already orthonormal due to step 2.501

4. Normalize the first column of U
pkq

k`1:mpdq,: by performing the updates502

U
pkq

:,1 Ð
U

pkq

:,1∥∥∥Upkq

k`1:mpdq,1

∥∥∥
2

, V
pkq

:,1 Ð V
pkq

:,1

∥∥∥Upkq

k`1:mpdq,1

∥∥∥
2
.503

504

Remark 3.2. In step 4, the norm of U
pkq

k`1:mpdq,1 may become zero in the course505

of the execution of the algorithm. This means that M̂
pkq

k`1:mpdq,k`1:npdq
is a matrix of506

displacement rank smaller than M̂
pkq

k:mpdq,k:npdq
. Instead of normalizing U

pkq

k`1:mpdq,1, we507

11A property that has also been observed in practice in our initial experiments.
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can drop this first column along with the first column of V
pkq

k`1:npdq,: and continue with508

the rest of the columns. Numerically, these columns can be dropped if the norm is509

close to machine precision.510

Remark 3.3. Step 3 should be done in a numerically stable manner by applying511

Gram–Schmidt twice [22].512

3.3. Summary of algorithm and complexity analysis. Returning back to513

Figure 2, the following algorithm is proposed to determine a numerical null space514

Npdq of the Macaulay matrix (2.4) associated with the polynomial system (1.1).515

Algorithm 3 (Fast null space of Macaulay matrix).516

In: Mpdq517

Out: Npdq518

1. Construct the compact representation of M̂pdq, as specified in (3.8) in terms519

of the generators µ, ν, U, V defined in (3.10) and (3.12), respectively. Use520

FFTs to accelerate the construction of V. Furthermore, ensure that tφiu
d`1
j“1521

are chosen such that: (i) the entries of ν are all distinct, and (ii) do not522

coincide with any entry in η. Practical choices for tφiu
d`1
j“1 are discussed in523

Subsection 4.1.1.524

2. Given the generators of M̂pdq and a user-specified tolerance ϵ ą 0, run Algo-525

rithm 1 while maintaining two copies of U and V. Perform the Schur updates526

on the first copy through Algorithm 2 and obtain the pivot from V. For the527

second copy, perform the update as in Algorithm 1 and use this copy to obtain528

N̂ as specified in (3.19) in terms of the generators ξ, η, R, S.529

3. Evaluate the expression (3.16) by using FFTs and taking advantage of the530

block-diagonal structure in Φ, as defined in (3.9).531

Estimates on the number of floating point operations involved for the first and532

last step are OpS ¨ dΣ ¨∆d ¨ d log dq and Opd2Σ ¨ d2 log dq, respectively. The second step533

is by far the most expensive and dominates the null space computation. A careful534

analysis reveal that the Gaussian elimination in step 2(b) and the orthogonalization535

procedure are the main computational bottlenecks in Algorithm 1. The per iteration536

cost involves at most OpS2d3q floating point operations, and if condition (2.8) is537

satisfied, it is expected that rpdq steps will be required, leading to a total complexity538

of Oprpdq ¨ S2d3q. Together with the bound on the degree of regularity (2.11), one539

further deduces that the complexity of Algorithm 1 is OpS2d5Σq for a Macaulay matrix540

of degree d ď 2dΣ´2. Since12 typically S ! dΣ, one attains overall anOpd5Σq algorithm541

for determining a null space from where one can further deduce the roots of the system542

(e.g., using the method described in Subsection 2.3). We may compare this complexity543

with that of obtaining a null space basis from a singular value decomposition. To544

produce the singular values and right singular vectors of Mpdq using the Golub-Reinsch545

algorithm will involve Op4Sd6 ` 8d6q floating point operations [24, Figure 8.6.1].546

Hence, a complexity reduction from Opd6Σq to Opd5Σq is achieved.547

4. Numerical experiments. In the subsequent sections, we empirically evalu-548

ate the accuracy (Subsection 4.2) and computational complexity (Subsection 3.3) of549

the developed algorithm13.550

12Furthermore, note that for highly overdetermined systems, it is possible to apply sampling on
the rows to exploit redundancy; see e.g., [41].

13Algorithm 3 was implemented in the Julia programming language and can be obtained by
contacting the authors of this paper. All experiments were run on a laptop with 32 GB RAM and
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4.1. Experiment setup. To test our algorithm, we generate two polynomials551

of degree dΣ with standard normal random coefficients. The parameter d is always552

set to 2dΣ ´ 2; the upper bound on the degree of regularity d˚. To evaluate the error,553

we use the metric554

(4.1) ϵ :“
∥MpdqQ∥2
∥Mpdq∥2

,555

where Q P Cnpdqˆd2
Σ refers to an orthonormal basis for col Npdq obtained from a QR-556

decomposition. For a fair comparison, especially in the presence of noise, this error557

should be compared with its lower bound, namely ϵmin “
σrpdq`1

σ1
, which thus only558

depends on the singular values of the Macaulay matrix.559

To study the behavior of our algorithm, we compare our method with easier560

methods by removing layers of complexity one-by-one. All these methods are expected561

to have equal or slightly better stability, but are asymptotically slower to compute562

(i.e., Opd6Σq instead of Opd5Σq).563

‚ SVD on Mpdq/M̂pdq: computing the SVD on the dense Macaulay matrix564

Mpdq or the dense Cauchy-like matrix M̂pdq. Note that this method’s error565

is always (approximately) equal to the lower bound ϵmin.566

‚ GECP on Mpdq: Gaussian elimination with complete pivoting on the dense567

Macaulay matrix Mpdq.568

‚ GECP on M̂pdq: Gaussian elimination with complete pivoting on the dense569

Cauchy-like matrix M̂pdq.570

‚ GECP on C : the Schur algorithm with complete pivoting, or in other words,571

Gaussian elimination with complete pivoting on the compact representation572

of the Cauchy-like matrix M̂pdq. This compact representation is denoted as573

C in this section and was explained in Subsection 3.1.2.574

‚ GEAP on C : the Schur algorithm with approximate complete pivoting as575

explained in Subsection 3.2.4. This is the method presented in this paper576

(Algorithm 3) and the only method with complexity Opd5Σq instead of Opd6Σq577

(as discussed in Subsection 4.3).578

4.1.1. Choice of φ. The generators tφju
d`1
j“1 , introduced in Subsection 3.1.1,579

should be chosen in such a way that singularity of operator (3.2) is avoided. The580

operator is singular for the Macaulay matrix if, for any i, j, µi “ νj and for the null581

space if ξi “ ηj . From a numerical point of view, if the operator is close to singular,582

the problem will become ill-conditioned, leading to a loss of stability. Because of this,583

maximizing the differences |µi ´ νj | and |ξi ´ ηj | for all i, j seems to be a sensible584

criterion, corroborated by the experiment in Subsection 4.2.1. As the partitioning of585

ν into ξ and η is not known a priori, we instead maximize the difference |νi ´ νj | for586

all i, j where i ‰ j.587

In these experiments, a greedy method was employed to choose tφju
d`1
j“1 to obtain

a well-conditioned Cauchy representation. At iteration k, the optimal φk is chosen to
maximize

mintmin
i,j

|µi ´ ν
pkq

j |, min
i,j,i‰j

|ν
pkq

i ´ ν
pkq

j |u,

where νpkq only contains tφ
1{i
i Ωiu

∆d`2´k
i“∆d`1 . This greedy algorithm requiresOpd3q flops.588

an AMD Ryzen 7 PRO 5850U CPU @ 1.90 GHz.
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4.2. Empirical analysis of stability. We first study the stability of the algo-589

rithm in the square case (Subsection 4.2.1) where condition Equation (2.8) is satisfied590

by default. Then, we study the effect of noise on overdetermined systems (Subsec-591

tion 4.2.2) where condition Equation (2.8) is satisfied only approximately.592

4.2.1. Square systems. Table 1 shows how the error grows for increasing degree593

dΣ and for the different methods.594

dΣ

2 4 8 16 32

SVD on Mpdq 2.23e-16 3.75e-16 5.70e-16 7.94e-16 9.51e-16

SVD on M̂pdq 2.57e-16 4.77e-16 7.54e-16 9.97e-16 1.15e-15
GECP on Mpdq 1.40e-16 3.11e-16 8.33e-16 1.02e-14 1.40e-13

GECP on M̂pdq 2.08e-16 4.65e-16 1.03e-15 9.73e-15 1.21e-13
GECP on C 4.35e-16 1.51e-15 1.35e-14 1.72e-13 2.81e-12
GEAP on C 4.21e-16 3.63e-15 3.88e-14 3.19e-13 4.48e-12

Table 1: Median error for different methods (see Subsection 4.1 for an explanation
of the abbreviations) and degrees dΣ over 100 runs. We see that the error arises
mostly from using an LU-factorization instead of an SVD and working on the compact
representation C instead of Mpdq or M̂pdq.

The two biggest sources of error are switching from an SVD to a LU-factorization,595

as expected, and working on the compact representation C instead of the full M̂pdq.596

In Table 2, results with purposefully poorly-chosen generators of the Cauchy repre-597

sentation are shown. These corroborate the reasoning in Subsection 4.1.1, namely598

that the minimum gap of the generators γmin affects the numerical stability, due to a599

division by a small difference of the generators µ and ν. The results in Table 2 seem600

to suggest an inverse proportional relation between the error and the minimum gap601

γmin, namely602

(4.2) ϵ „
ϵmach

γmin
where γmin :“

min tmini,j |µi ´ νj |,mini,j,i‰j |νi ´ νj |u

max tmaxi,j |µi ´ νj |,maxi,j,i‰j |νi ´ νj |u
.603

604

4.2.2. Noisy overdetermined case. In this experiment we first generate two605

polynomials as above and then a third polynomial as a random linear combination606

of the two first generated polynomials. The degree dΣ is fixed to 16. Then additive607

Gaussian noise is added on the coefficients of the polynomials to obtain a fixed signal-608

to-noise ratio, measured as }Mpdq}2F{}Mnoisypdq ´Mpdq}2F. Figure 4 shows the results.609

The LU-based methods initially stay close to the SVD (and thus ϵmin), but as the610

noise rises, worsen in performance. With approximate complete pivoting this happens611

slightly earlier than with (exact) complete pivoting.612

To decrease this error in the end, one could potentially look at iterative refinement613

techniques, which could push the accuracy of LU-based methods further towards614

that of SVD without paying a price for overall complexity. This was not further615

investigated here.616

4.3. Algorithm complexity. As stated in Subsection 3.3, the presented ap-617

proach reduces the computational complexity from Opd6Σq to Opd5Σq. This was checked618
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Method

φ-generation γmin GECP on ˆMpdq GECP on C GEAP on C

Greedy 1.01e-03 9.73e-15 1.72e-13 3.19e-13
Random 6.80e-06 9.37e-15 6.01e-12 1.20e-11

Fixed gap 1.00e-04 9.21e-15 1.62e-12 3.22e-12
Fixed gap 1.00e-06 9.00e-15 1.56e-10 3.25e-10
Fixed gap 1.00e-08 9.28e-15 1.57e-08 3.34e-08

Table 2: Median error ϵ with different strategies for generating the generator ν over
100 runs. The “Greedy” strategy was presented in Subsection 4.1.1, “Random” gen-
erates uniform random tφju

d`1
j“1 on the unit circle, while “Fixed gap” selects tφju

d`1
j“1

such that the smallest d`1 gaps are all equal to a fixed quantity. We see that the min-
imum gap (γmin as defined in Equation (4.2)) has no impact on the error of Gaussian
elimination with complete pivoted on the full Cauchy matrix M̂pdq, while it is inversely
correlated with the error of Gaussian elimination on the compact representation of
the Cauchy matrix C for both complete and approximate complete pivoting.

´20020406080100

10´5

10´4

10´3

10´2

10´1

100

SNR (dB)

ϵ

GEAP on C

GECP on M̂pdq

GECP on Mpdq

SVD on Mpdq – ϵmin

Fig. 4: Median error ϵ (with 25% and 75% quantiles around) for different signal-to-
noise levels and methods over 1000 experiments (see Subsection 4.1 for an explanation
of the abbreviations). GECP on C was not drawn as this was identical to GECP on
M̂pdq. We see that GECP on whichever representation (compact Cauchy or full) has
similar accuracy, only marginally worse than the best method (SVD), but worsening
as noise increases. GEAP starts to lose accuracy slightly earlier.

empirically by solving systems of increasing degree dΣ.619

Figure 5a shows the per iteration computation time (time of an iteration of step620

2 of Algorithm 1), verifying the asymptotic complexity of Opd3Σq. We see that this621

asymptotic behavior takes over at around degree 70. In total rpdqp“ d2Σ´dΣq iterations622

are needed, leading to an asymptotic complexity of Opd5Σq.623

In Figure 5b, the total time of the algorithm is shown for increasing degrees624

as well. Due to practical limitations, we can only show up to dΣ “ 150. As the625

asymptotic behaviour starts around 70, this is a rather limited range to show the626
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(a) Per iteration computation cost.
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(b) End-to-end computation cost.

Fig. 5: Per iteration (a) and end-to-end (b) computation cost. The measurements are
the median of an adapted number of runs after warm-up such that the measurement of
each point took at least five seconds. The per iteration cost is for step 2 in Algorithm 1,
while the end-to-end cost also includes the transformation to and from Cauchy-like
form, which is thus Algorithm 3. These costs are asymptotically Opd3Σq and Opd5Σq

respectively although the asymptotics are only dominant after dΣ “ 70. The SVD
operates at a cost of Opd6Σq.

complexity. An interesting observation is that our algorithm starts to perform faster627

than SVD from degree dΣ “ 35 onwards.628

Not visible in these figures, but also important is memory consumption. The SVD629

stores the full matrix Mpdq of size Opd4Σq, while our proposed method works directly630

on the compact Cauchy representation with size Opd3Σq. For illustration, the last point631

in Figure 5a, dΣ “ 501, which required „20GB would take a total computation time632

of 250500 ˆ 5.222s « 15 days with our method, compared to „3TB and „105 days633

required with SVD (determined through extrapolation).634

5. Generalizations. An important question to answer is to what extent the635

ideas presented in the previous sections generalize to polynomial systems expressed636

in other bases or to systems involving more than two indeterminates. While Subsec-637

tion 5.1 provides a (partial) answer to the first question by outlining an analogous638

fast algorithm for systems expressed in the Chebyshev basis, Subsection 5.2 addresses639

the challenges that one faces when dealing with more than two variables.640

5.1. A fast algorithm for bivariate Chebyshev systems. The Macaulay641

matrix for a Chebyshev system is introduced in Subsection 5.1.1. The reduction to642

a joint-GEVD problem is described in Subsection 5.1.2. The low-displacement rank643

structure of the Chebyshev-Macaulay matrix and its (fast) conversion to a Cauchy-like644

matrix are addressed in Subsection 5.1.3.645

5.1.1. Macaulay matrix for Chebyshev systems. Let tTkpxqu8
k“0 with646

Tk`1pxq “ 2x ¨Tkpxq´Tk´1pxq and T0pxq “ 1, T1pxq “ x, denote the Chebyshev basis647
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terms. Suppose that the system Σ in (1.1) is expressed with respect to this basis, i.e.,648

(5.1) Σ :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p1px, yq :“
dΣ
ÿ

i“0

dΣ´i
ÿ

j“0

b1ijTipxqTjpyq “ 0

...

pSpx, yq :“
dΣ
ÿ

i“0

dΣ´i
ÿ

j“0

bSijTipxqTjpyq “ 0

.649

In this setting, the columns of the Macaulay matrix correspond with the basis terms
tTipxqTjpyqui,jě0, i`jďd, while the rows relate to the shifted polynomials

tTipxqTjpyq ¨ p1, . . . , TipxqTjpyq ¨ pSui,jě0, i`jď∆d .

Since TkpxqTlpxq “ 1
2 pTk`lpxq ` T|k´l|pxqq, the entries of the Chebyshev-Macaulay650

matrix Wpdq P Cmpdqˆnpdq will differ structurally from those of the Macaulay matrix651

associated with the monomial basis. In particular, if the entries are ordered in a652

non-graded lexicographically way (i.e., Ti1pxqTj1pyq ă Ti2pxqTj2pyq if j1 ă j2, and in653

case j1 “ j2, i1 ă i2), the Chebyshev-Macaulay matrix will be, before the removal of654

certain rows and columns, a proper sum of a Toeplitz block-(block-)Toeplitz matrix655

with a Hankel block-(block-)Hankel matrix. For comparison, the Macaulay matrix656

for the monomial system involved only a Toeplitz term; see (2.5). Furthermore, this657

Toeplitz term had a upper-triangular structure, which is no longer the case for the658

Chebyshev system.659

To construct the matrix Wpdq, we proceed as follows. For convenience, denote660

bkl :“
“

b1kl ¨ ¨ ¨ bSkl

‰J
for k ď dΣ ´ l and bkl “ 0S , otherwise. Define Wtpz

j ,Whnk
j P661

CSp∆d`1qˆd as14662

Wtpz

j :“

»

—

—

—

—

—

—

—

—

–

b0j b1j ¨ ¨ ¨ bdΣj

b1j b0j b1j ¨ ¨ ¨ bdΣj

...
. . .

. . .
. . .

. . .

bdΣj ¨ ¨ ¨ b1j b0j b1j ¨ ¨ ¨ bdΣj

. . .
. . .

. . .
. . .

. . .

bdΣj ¨ ¨ ¨ b1j b0j b1j ¨ ¨ ¨ bdΣj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,(5.2a)663

Whnk

j :“

»

—

—

—

—

—

—

—

—

–

b0j b1j ¨ ¨ ¨ bdΣj

b1j . .
.

... . .
.

bdΣj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.2b)664

for j “ 0, 1, . . . , dΣ, respectively. Then, for d ě dΣ, the Macaulay matrix associated665

with the polynomial system (1.1) is given by666

(5.3) Wpdq :“ 1
2 diag tIi,∆d`1 b ISu

1
i“∆d`1 pWtpzpdq ` Whnkpdqq diag tId`1,ju

1
j“d`1 ,667

14In the presentation of (5.2a) and (5.2b), it is implicitly assumed that ∆d ą dΣ to reveal the full
structure of the matrices.
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where668

Wtpzpdq :“

»

—

—

—

—

—

—

—

—

–

Wtpz

0 Wtpz

1 ¨ ¨ ¨ Wtpz

dΣ

Wtpz

1 Wtpz

0 Wtpz

1 ¨ ¨ ¨ Wtpz

dΣ

...
. . .

. . .
. . .

. . .

Wtpz

dΣ
¨ ¨ ¨ Wtpz

1 Wtpz

0 Wtpz

1 ¨ ¨ ¨ Wtpz

dΣ

. . .
. . .

. . .
. . .

. . .

Wtpz

dΣ
¨ ¨ ¨ Wtpz

1 Wtpz

0 Wtpz

1 ¨ ¨ ¨ Wtpz

dΣ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,669

Whnkpdq :“

»

—

—

—

—

—

—

—

—

–

Wtpz

0 Wtpz

1 ¨ ¨ ¨ Wtpz

dΣ

Wtpz

1
. .
.

... . .
.

Wtpz

dΣ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.670

5.1.2. Joint-GEVD problem for Chebyshev systems. Starting with a col-671

umn basis Ppdq for nullW pdq, the reduction of the root-solving problem (5.1) to a672

joint-GEVD problem is done in a similar way as done for the monomial-based system673

(1.1). Define qdpt, x, yq P Cnpdq as674

(5.4) qdpt, x, yq :“ td ¨ qd,x,ypx{t, y{tq,675

where676

qd,x,ypx, yq :“
“

qJ
d,xpxq T1pyq ¨ qJ

d´1,xpxq ¨ ¨ ¨ Td,xpyq ¨ qJ
0 pxq

‰J
P Cnpdq,677

qd,xpxq :“
“

1 T1pxq ¨ ¨ ¨ Tdpxq
‰J

P Cd`1.678

If pt, x, yq P P2pCq is a common root of the homogenized system Σh, then qdpt, x, yq P679

nullWpdq. Subsequently, if the system Σh only contains simple roots, the columns of680

(5.5) Qpdq “
“

qdpt1, x1, y1q ¨ ¨ ¨ qdptd2
Σ
, xd2

Σ
, yd2

Σ
q
‰

P Cnpdqˆd2
Σ681

will span nullWpdq for d ě d˚. Since x ¨ T0pxq “ T1pxq, and x ¨ Tkpxq “ 1
2 pTk`1pxq `682

Tk´1pxqq for k ě 1, the corresponding shift-matrices Khpdq P Rnpd´1qˆnpdq, for which683

the property Khpd ` 1qqd`1pt, x, yq “ h ¨ qdpt, x, yq hold for h “ tt, x, yu, take on the684

form685

Ktpdq “ diag tKt,d´iu
d
i“0 , Kt,i “

»

—

–

1 0
. . .

...
1 0

fi

ffi

fl

P Ciˆpi`1q,686

687

Kxpdq “ diag tKx,d´iu
d
i“0 , Kx,i “

»

—

—

—

–

0 1
1
2 0 1

2
. . .

. . .
. . .

1
2 0 1

2

fi

ffi

ffi

ffi

fl

P Ciˆpi`1q,688

and689

Kypdq “

»

—

—

—

–

0dˆpd`1q Id
1
2 Id´1,d`1 0pd´1qˆd

1
2 Id´1

. . .
. . .

. . .
1
2 I1,3 01ˆ2

1
2

fi

ffi

ffi

ffi

fl

.690
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For d ě d˚, this yields the joint-GEVD problem691

(5.6) L1A “ QpdqDt, L2A “ QpdqDx, L3A “ QpdqDy.692

where Dx,Dy,Dt refer to the same matrices as in (2.13), A P Cd2
Σˆd2

Σ is an invertible693

matrix that satisfies NpdqA “ Qpdq, and Li P Cnpdqˆd2
Σ are given by694

L1 :“ Ktpd ` 1qPpd ` 1q, L2 :“ Kxpd ` 1qPpd ` 1q, L3 :“ Kypd ` 1qPpd ` 1q.695

5.1.3. Fast Cauchy conversion for Chebyshev-Macaulay matrices. De-696

fine697

(5.7) Yp,δ :“

»

—

—

—

—

—

—

—

–

δ 1

1 0
. . .

1
. . . 1
. . . 0 1

1 δ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cpˆp,698

and let Dcheb : Cmpdqˆnpdq Ñ Cmpdqˆnpdq be the operator699

(5.8) Dcheb : X ÞÑ diag tYi,0 b ISu
1
i“∆d`1 X ´ Xdiag

␣

Yj,δj

(1

j“d`1
,700

for some choice of tδju
d`1
j“1 Ă p0, 1s. A counting argument would reveal that the701

displacement rank of (5.3) with respect to (5.8) is bounded by702

(5.9) rankDcheb tWpdqu ď 2pd ` 1q ` 2Sp∆d ` 1q “ 2 ppS ` 1qpd ` 1q ´ SdΣq ,703

which reveals that the rank grows at the same pace as for the monomial case (see704

(3.5)), but with slightly larger constants.705

Remark 5.1. Since Mpdq “ EWpdqJ for some invertible E and J, note that it is706

always possible to define a displacement operator for which the displacement rank of707

Wpdq equals that of (3.5). However, this implicitly involves converting the Chebyshev708

system into a monomial system; a potentially highly ill-conditioned operation.709

Furthermore, (5.7) is known to have a “fast” eigendecomposition. Indeed, if δ “ 0
and δ “ 1, the eigendecompositions are respectively

Yp,0 “ Sp diag
!

2 cos
´

jπ
p`1

¯)p

j“1
SJ
p , Yp,1 “ Cp diag

!

2 cos
´

pj´1qπ
p

¯)p

j“1
CJ

p ,

where rSpsij :“
b

2
p`1 sin

ijπ
p`1 , rCpsij :“

b

2
pκj cos

´

p2i`1qpj´1qπ
2p

¯

, κj “ 1?
2
for j “ 1710

and kj “ 0 otherwise [8,23]. The matrix Sp (Cp) is the discrete sine (cosine) transform711

and has a fast matrix-vector multiply; see e.g., [24, Section 1.4.2]. For 0 ă δ ă 1,712

the eigenvalues interlace between those of Yp,0 and Yp,1. Since Yp,δ is a rank-two713

update of Yp,0 (or Yp,1), the eigenmatrix of Yp,δ can further be expressed as the714

product of Sp (or Cp) with a Cauchy-like matrix, whose matrix-vector product can715

also be efficiently evaluated using the fast multipole method [25, 27]. Similar to the716

ϕj ’s in (3.2), tδju
d`1
j“1 can be chosen to put the eigenvalues of diag

␣

Yj,δj

(1

j“d`1
at the717

desired locations, so that one can proceed in the same manner as for monomial case718

discussed in Section 3. The complexity of the algorithm is again Opd5Σq, but slightly719

larger constants will be involved.720
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5.2. Extending the technique for systems with more than two variables.721

For polynomial systems with more than two variables, the Macaulay matrix is multi-722

level Toeplitz, as opposed to the two-level Toeplitz structure for the bivariate case723

(2.5). With a similar strategy by applying displacement rank theory on the inner-724

most blocks, the law of diminishing returns applies and a complexity reduction from725

Opd3nq to Opd3n´1q is only achieved for a non-degenerate n-variable system. A full726

exploitation of the multi-level Toeplitz structure remains an open question.727

6. Conclusions and future work. We introduced a fast algorithm to compute728

a numerical basis for the right null space of the Macaulay matrix associated with a729

bivariate polynomial system. The algorithm applies displacement rank theory to the730

inner Toeplitz blocks of the Macaulay matrix to convert it into a Cauchy form so731

that subsequently the null space can be determined efficiently from a rank-revealing732

LU-factorization. Initial numerical experiments show that the algorithm is stable.733

Furthermore, a similar fast algorithm was also outlined for polynomial systems ex-734

pressed in the Chebyshev basis.735

This work has raised several open questions. Firstly, the search for better piv-736

oting strategies is something worth pursuing. Secondly, it is noted that the current737

method relies on the exact algebraic properties of Cauchy-like matrices to allow for738

fast Gaussian elimination. The question arises whether the approximate low-rank739

properties of Cauchy-like matrices [35] can be exploited to design even faster algo-740

rithms. We conjecture that the complexity can be further reduced from Opd5Σq to741

Opd4Σ logp dΣq (for some p ą 1) by using the techniques proposed in [15, 44]. Thirdly,742

it is not exactly clear how the presented method exactly fits into the framework of743

the “degree-by-degree” recursive algorithm from [4, 41]. In practice, the degree of744

regularity is often attained well before the bound (2.11), so that incremental methods745

of building the null space can lead to significant savings. Therefore, it is worth in-746

vestigating whether the recursive and Toeplitz properties of the Macaulay matrix can747

somehow be simultaneously exploited. Fourthly, a refinement algorithm could be de-748

signed to mitigate the loss of accuracy while maintaining the asymptotic complexity.749

Lastly, it is still unclear how to fully exploit multi-level Toeplitz structures should in750

the general n-variable case.751
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