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A B S T R A C T

Principal Component Analysis (PCA) and its nonlinear extension Kernel PCA (KPCA) are widely used across
science and industry for data analysis and dimensionality reduction. Modern deep learning tools have achieved
great empirical success, but a framework for deep principal component analysis is still lacking. Here we develop
a deep kernel PCA methodology (DKPCA) to extract multiple levels of the most informative components of
the data. Our scheme can effectively identify new hierarchical variables, called deep principal components,
capturing the main characteristics of high-dimensional data through a simple and interpretable numerical
optimization. We couple the principal components of multiple KPCA levels, theoretically showing that DKPCA
creates both forward and backward dependency across levels, which has not been explored in kernel methods
and yet is crucial to extract more informative features. Various experimental evaluations on multiple data
types show that DKPCA finds more efficient and disentangled representations with higher explained variance
in fewer principal components, compared to the shallow KPCA. We demonstrate that our method allows for
effective hierarchical data exploration, with the ability to separate the key generative factors of the input
data both for large datasets and when few training samples are available. Overall, DKPCA can facilitate the
extraction of useful patterns from high-dimensional data by learning more informative features organized in
different levels, giving diversified aspects to explore the variation factors in the data, while maintaining a
simple mathematical formulation.
1. Introduction

Principal Component Analysis (PCA) is a popular technique for
dimensionality reduction (Jolliffe, 1986) and has been widely used
in many fields (Lever et al., 2017). In fact, high-dimensional data
are very common in data science when multiple variables are used
to describe one sample; e.g., in biology, PCA has been applied to
mass spectrometry, where thousands of proteins can be quantitatively
profiled (Ringnér, 2008). PCA learns the most effective principal com-
ponents to successfully reduce the dimensionality of the data while
retaining most of the trends and patterns. This relies on the assumption
that the given observations lie in a lower-dimensional linear subspace.
Under this assumption, PCA seeks the best low-rank representation of
the given data. PCA can be efficiently computed using the Singular
Value Decomposition (SVD) and is optimal when data are corrupted by
small Gaussian noises (Wright et al., 2009). Real-world data commonly
show nonlinear relationships, so, for nonlinear problems, PCA can
be extended to Kernel PCA (KPCA) (Schölkopf et al., 1998), which
manages to simplify such complexity and high dimensionality to extract
useful patterns in nonlinear subspaces. KPCA first maps the inputs to a
high-dimensional feature space and then applies PCA to the mapped
features either through nonlinear feature mappings in the primal or
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equivalently kernel functions in the dual. In the Lagrange dual formu-
lation of KPCA, the feature map does not need to be explicitly defined
and positive-definite kernel functions are instead used by Mercer’s
theorem (Mercer, 1909).

In deep learning, dimensionality reduction and learning informative
features are also widely studied through the latent space models, such
as Variational Autoencoders (VAEs) (Kingma & Welling, 2014), which
have become popular tools to extract latent features describing the
factors of variation in the given training distribution. These models
assume that there exists a prior distribution 𝑝(𝒛) over a small number of
ground-truth factors of variation, such that an observation 𝒙 is obtained
by first sampling 𝒛 from 𝑝(𝒛) and then sampling from a conditional
distribution 𝑝(𝒙|𝒛). In this setting, the goal is to find a representation
of the data that learns the factors of variation in 𝒛 independently,
i.e., that disentangles the factors of variation. State-of-the-art models
for disentangled feature learning include InfoGAN (Chen et al., 2016),
Restricted Boltzmann machines (Hinton et al., 2006; Reed et al., 2014),
𝛽-VAE (Higgins et al., 2017) and its variants (Chen et al., 2018;
Kim & Mnih, 2018). For instance, in 𝛽-VAE, 𝑝(𝒛) =  (0, 𝑰) and the
encoder 𝑞(𝒛|𝒙) is matched to the prior 𝑝(𝒛) by minimizing the Kullback–
Leibler divergence 𝐷KL(𝑞(𝒛|𝒙)∥𝑝(𝒛)). Neural networks are used to model
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the generative model with probabilistic encoder 𝑞(𝒛|𝒙) and decoder
𝑝(𝒙|𝒛) (Kingma & Welling, 2014). A recent large-scale extensive ex-
perimental research has shown that the performance of VAE-based
models varies greatly with random initialization, hyperparameters, and
dataset, so reliable extraction of independent components describing
the variation factors of data remains challenging (Locatello et al.,
2019).

While (K)PCA has been widely used in science and industry, the
odeling flexibility of using a single feature mapping or kernel func-

ion can be insufficient and it also cannot learn well-disentangled
epresentations (Higgins et al., 2017). For such feature-learning tools,
isentanglement of the variation factors (components) in the data is
ighly desirable (Bengio, 2009; Bengio et al., 2013) and it has been
uggested that disentangled representations can benefit interpretation
nalysis, e.g., in the medical domain Holzinger et al. (2019), Sarhan
t al. (2019). For instance, a model trained on gene expression data
ay learn components such as the cell type or the cell state. In addition,

ecause (K)PCA is a shallow model employing a single feature mapping,
t learns only one flat level of components. On the other hand, deep
earning has achieved pervasive empirical success with great modeling
lexibility (Goodfellow et al., 2016), but a framework combining deep
rchitectures and principal component analysis remains lacking.

Deep kernel learning tackles multiple latent spaces for greater flex-
bility, more informative hierarchical investigation of the data, and
ernel-based interpretations. There exist many works in deep kernel
earning considering supervised learning (see Bohn et al. (2019) and
eferences therein), but little investigation has been spared on the
nsupervised settings, though a concatenation of operator-valued ker-
el layers was considered for data autoencoding in Laforgue et al.
2019). In Deng et al. (2019), it is proposed to conduct the shal-
ow PCA to extract principal components, which are then applied
o another KPCA, where each KPCA independently and sequentially
ptimizes its variance maximization. Importantly, when extending to
eep architectures, Allen-Zhu and Li (2023) warn that simply doing
sequential kernel learning is not enough to achieve good accuracy

ue to the lack of backward feature correction, meaning that shallow
ayers need to use the information from deeper layers to boost their own
earned representation. In Allen-Zhu and Li (2023), it is proved that
ierarchical learning cannot be efficiently achieved without backward
eature correction.

In this paper, we establish a novel Deep Kernel Principal Component
nalysis (DKPCA) framework with the following main aspects.

• DKPCA presents multiple levels of principal components associ-
ated with the key properties of the data for more informative
feature learning in multiple subspaces. The objective of each level
is attained as an upper bound of a shallow KPCA1 problem, and
multiple levels are constructed by coupling the latent space of
level 𝑗 − 1(𝑗 ≥ 2) with the input space of level 𝑗, where the depth
is given by the learned spaces directly relating to the principal
components, as shown in Fig. 1. We derive that the optimization
problem of our method explicitly formulates a set of nonlinear
equations for each level resembling an eigenvalue problem of
some matrix 𝑴 𝑗 , in contrast with black-box optimization in deep
learning.

• Interestingly, 𝑴 𝑗 fuses the hidden features of previous and sub-
sequent levels. This means that the proposed deep architecture
introduces not only forward couplings between the levels, but also
backward couplings, which by far has not been explored in kernel
methods and yet is crucial for effective hierarchical representation
learning according to the theoretical analysis in Allen-Zhu and
Li (2023). As the levels are coupled together, we formulate a

1 To differentiate DKPCA, we name the classical KPCA as shallow KPCA
onsidering its one-level architecture.
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multi-level constrained optimization problem with an eigenvalue
problem at each level with hidden features as optimization vari-
ables, also facilitating deep approximation analysis of the given
data.

• The solution of the proposed optimization process gives both the
deep eigenvectors and the deep eigenvalues of the DKPCA: they
correspond to the solution of the eigenvalue problem of each
level. Within the considered deep architecture, we then construct
a generative procedure for the DKPCA by defining both an out-
of-sample encoding scheme and a decoding procedure, discussing
connections with Autoencoders. The generative procedure gener-
ates new samples from multiple latent spaces in different levels,
makes it possible to explore the role of the deep eigenvectors of
each level through the latent space traversals, and gives diversi-
fied aspects to explore the variation factors of data. Our method
can also be implemented with out-of-sample extensions which
allow to efficiently tackle large-scale cases.

Extensive numerical experiments demonstrate the efficacy and ad-
vantages of the proposed DKPCA from different aspects and in different
tasks on multiple data types. (1) DKPCA gives higher explained vari-
ance than shallow KPCA, indicating that more information is captured
in fewer components. We also provide a strategy for practitioners to
select the numbers of components and levels, which is in contrast
with typical deep learning tools that use trial and error strategies in
determining the network structure. (2) DKPCA effectively facilitates
hierarchical data exploration, as the role of each principal component
in each level can be investigated through the generation of new data. In
images of 3D objects with different generative factors (i.e., colors, size,
etc.), our deep method creates a learning hierarchy in the components
in each level. Prevailing features are typically learned in the shallower
levels, e.g., colors, while the deeper levels capture more subtle features,
e.g., the specific object shape. (3) Quantitative performances are eval-
uated by comparing to state-of-the-art methods in disentangled feature
learning (Chen et al., 2018; Higgins et al., 2017; Kim & Mnih, 2018)
when few training samples are available, which is of particular interest
in many real-world problems where data are difficult or expensive to
collect. (4) We show that the more informative features extraction
by DKPCA can be applied to multiple data types benefiting various
downstream tasks in data science, such as regression and classification.

2. Background and related work

This section describes the shallow KPCA problem under the RKM
framework through the Fenchel–Young inequality, and elaborates on
the main novelties with respect to existing works in unsupervised deep
kernel machines.

2.1. KPCA with restricted kernel machines

The RKM formulation of KPCA gives another expression of the Least-
Squares Support Vector Machine (LS-SVM) KPCA problem (Suykens
et al., 2003) with visible and hidden units similar to the energy of
Restricted Boltzmann Machines (RBMs) (Bengio, 2009; Fischer & Igel,
2014; Hinton et al., 2006; Salakhutdinov, 2015). In this new formu-
lation, contrary to RBMs, both the visible units and the hidden units
can be continuous. To derive this formulation, consider training data
𝐷 = {𝒙𝑖}𝑁𝑖=1 with 𝒙𝑖 ∈ R𝑑 , a feature map 𝜑 ∶ R𝑑 ↦ R𝑑 , and let 𝑠 be
he number of selected principal components. In the LS-SVM setting,
he KPCA problem can be written as minimizing a regularization term
nd finding directions of maximum variance (Suykens et al., 2002):

inimize
𝑾 , 𝒆𝑖

𝐽kpca =
𝜂
2
Tr (𝑾 ⊤𝑾 ) − 1

2

𝑁
∑

𝑖=1
𝒆⊤𝑖 𝚲

−1𝒆𝑖

⊤

(1)
subject to 𝒆𝑖 = 𝑾 𝜑(𝒙𝑖), 𝑖 = 1,… , 𝑁,
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Fig. 1. Topology of the RKM-based deep KPCA with 𝑛𝐿 levels. An input vector 𝒙 is mapped to the feature space of the first level using a feature map 𝜑1 with hidden features
𝒉(1) in the latent space of the first level. Subsequently, the input of level 𝑗, with feature map 𝜑𝑗 , are the hidden features of level 𝑗 − 1.
here 𝑾 ∈ R𝑑×𝑠 is the interconnection matrix, e𝑖 ∈ R𝑠 are the
core variables along the selected 𝑠 projection directions, and 𝚲 =
𝑖𝑎𝑔{𝜆1,… , 𝜆𝑠} ≻ 0, 𝜂 > 0 are regularization hyperparameters.

The RKM formulation of KPCA (Suykens, 2017) is given by an up-
er bound of 𝐽kpca obtained component-wise with the Fenchel–Young
nequality 1

2𝜆 𝑒
2 + 𝜆

2ℎ
2 ≥ 𝑒ℎ, ∀𝑒, ℎ ∈ R which introduces the hidden

eatures 𝒉 and leads to the following objective with conjugate feature
uality:

𝐽𝑘𝑝𝑐𝑎 = −
𝑁
∑

𝑖=1
𝜑(𝒙𝑖)⊤𝑾 𝒉𝑖 +

1
2

𝑁
∑

𝑖=1
𝒉𝑖⊤𝚲𝒉𝑖 +

𝜂
2
Tr

(

𝑾 ⊤𝑾
)

, (2)

here 𝒉𝑖 ∈ R𝑠 are the conjugated hidden features corresponding to
ach training sample 𝒙𝑖; in representation learning, 𝒉𝑖 is also known as
he latent representation of 𝒙𝑖 consisting of 𝑠 latent variables or of 𝑠
idden features. Note that the first term of (2) is similar to the energy
f an RBM with connections between visible units 𝒙𝑖 in the input space
nd hidden units 𝒉𝑖 in the latent space. The stationary point conditions
f 𝐽𝑘𝑝𝑐𝑎(𝑾 ,𝒉𝑖) are given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝐽𝑘𝑝𝑐𝑎(𝑾 ,𝒉𝑖)
𝜕𝒉𝑖

= 0 ⟹ 𝑾 𝑇𝜑(𝒙𝑖) = 𝚲𝒉𝑖, ∀𝑖 = 1,… , 𝑁

𝜕𝐽𝑘𝑝𝑐𝑎(𝑾 ,𝒉𝑖)
𝜕𝑾

= 0 ⟹ 𝑾 = 1
𝜂
∑𝑁
𝑖=1 𝜑(𝒙𝑖)𝒉

𝑇
𝑖 .

(3)

Eliminating 𝑾 and considering a positive definite kernel function 𝑘 ∶
R𝑑 × R𝑑 ↦ R with 𝑘(𝒙𝑖,𝒙𝑗 ) = 𝜑(𝒙𝑖)⊤𝜑(𝒙𝑗 ), the stationary points of
𝐽𝑘𝑝𝑐𝑎(𝑾 ,𝒉𝑖) are given in the dual by the following eigenvalue problem

1
𝜂
𝑲𝑯 = 𝑯𝚲, (4)

where 𝑲 ∈ R𝑁×𝑁 denotes the kernel matrix induced by 𝑘(⋅, ⋅) and the
atrix 𝑯 = [𝒉1,… ,𝒉𝑁 ]⊤ incorporates the conjugate hidden features

or all 𝑁 data points. In (4), the hidden features 𝑯 conjugated along
projection directions now correspond to the first 𝑠 eigenvectors, with

he first 𝑠 eigenvalues corresponding to the hyperparameter 𝚲 in (2).
eanwhile, 𝜂 becomes a scaling coefficient that does not change the

olution space, and thus can be simply set as 1. Note that, in the
onjugate feature duality of RKMs, the dual variables 𝒉 correspond to
he latent variables playing the role of hidden features living in the
atent space.

The dual problem (4) corresponds to the kernel PCA problem as
efined in Schölkopf et al. (1998). While (4) is regularized by nor-
alizing the eigenvectors to the unit ball in feature space, the primal
roblem (2) is explicitly regularized with coefficients 𝚲, 𝜂 chosen at
he hyperparameter selection level. Each eigenvalue/eigenvector pair
orresponds to a principal component in KPCA. Therefore, for the
irst 𝑠 principal components, one can solve the dual problem (4) by
onsidering the 𝑠 largest eigenvalues and their eigenvectors, which lead
o 𝐽𝑘𝑝𝑐𝑎 = 0. Since 𝐽𝑘𝑝𝑐𝑎 is unbounded below regarding its optimization
n the primal, Suykens (2017) proposed to instead minimize a stabilized
ersion to make the objective suitable for minimization, such that
𝐽𝑘𝑝𝑐𝑎,𝑠𝑡𝑎𝑏 = 𝐽𝑘𝑝𝑐𝑎 + 𝑐stab

2 𝐽
2
𝑘𝑝𝑐𝑎, where 𝑐stab > 0 is a hyperparameter.

It can be shown that 𝐽𝑘𝑝𝑐𝑎 and 𝐽𝑘𝑝𝑐𝑎,𝑠𝑡𝑎𝑏 share the same stationary
points (Pandey et al., 2021).
580
2.2. Related works

Suykens (2017) first introduced the RKM framework but only pre-
sented deep configurations for supervised learning. In this work, we
study deep unsupervised learning with RKMs, which is a more chal-
lenging problem due to the objective in (2) being unbounded. Thus,
one cannot straightforwardly solve such problem by a objective min-
imization, which is instead feasible in the supervised cases studied
in Suykens (2017) thanks to the classification or regression losses.
The training algorithm of Suykens (2017) only works with linear
kernels in deep levels (𝑗 ≥ 2), where the nonlinearity can be applied
only to the first level. In our DKPCA, all levels are allowed to be
nonlinear in the proposed new formulation. In Tonin et al. (2021), a
two-level kernel architecture for unsupervised learning was proposed
with orthogonality constraints on the latent variables within each level
and across levels. It employs a straightforward numerical approach to
solve an unconstrained optimization problem augmented with a penalty
term for the constraints, where the backward couplings between the
levels are omitted in the formulation, which can be instead realized
by our DKPCA. Compared to previous related works in deep kernel
machines (Suykens, 2017; Tonin et al., 2021), we derive a new interpre-
tation of the deep KPCA problem as a multi-level eigenvalue problem
with both forward and backward couplings, which has not been pro-
posed yet in kernel methods. Differently from Suykens (2017), Tonin
et al. (2021), building upon this new interpretation, we propose a resid-
ual minimization procedure augmented by orthogonality constraints of
the hidden features within each level. We develop a new end-to-end
training algorithm that jointly optimizes all KPCA levels and realizes
the backward couplings in the learning process. Additionally, to more
formally understand unsupervised deep kernel machines, we present
novel analytical results that have not been addressed in previous works.
We derive deep error approximation bounds through the Eckart-Young
theorem applied to multi-level architectures, and we prove that the
explained variance by DKPCA can be greater than that by shallow KPCA
with appropriate regularization coefficients. In Deng et al. (2019), PCA
is firstly conducted to extract principal components of the data and
then further dimensionality reduction is sequentially applied to the
extracted features from the previous (K)PCA layer. Their procedure
only considers forward couplings, as each layer simply optimizes its
variance maximization objective, which is independent of other layers.
Thanks to the new formulation of our DKPCA, all levels can be jointly
optimized, where both forward and backward couplings between the
levels are considered. Notably, contrary to Deng et al. (2019), Suykens
(2017), Tonin et al. (2021), our proposed DKPCA can also be used
as a generative model. While reconstruction in linear shallow PCA
can be realized by basis transformation, the generation in nonlinear
kernel machines and especially in deep kernel machines with mul-
tiple nonlinearities is challenging. Our DKPCA makes the generation
feasible through multiple latent spaces, facilitating hierarchical data
exploration, through which the role of each principal component in
each level can be investigated.

3. Deep kernel principal component analysis

In this section, we present the proposed DKPCA. We start by describ-
ing the model formulation of DKPCA. Next, we derive the optimization

algorithm. Finally, the generative DKPCA model is introduced.
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Level 1:
[

1
𝜂1

𝑲1 +
1
𝜂2

1(𝑯1,𝑯2)𝑯⊤
1

]

𝑯1 = 𝑯1𝚲1,

Level 𝑗:
[

1
𝜂𝑗

𝑲𝑗 (𝑯 𝑗−1) +
1
𝜂𝑗+1

𝑗 (𝑯 𝑗 ,𝑯 𝑗+1)𝑯⊤
𝑗

]

𝑯 𝑗 = 𝑯 𝑗𝚲𝑗 , ∀𝑗 = 2,… , 𝑛levels − 1,

Level 𝑛levels:
1

𝜂𝑛levels

𝑲𝑛levels (𝑯𝑛levels−1) 𝑯𝑛levels = 𝑯𝑛levels𝚲𝑛levels .

(6)

Box I.
o

t

.1. DKPCA model formulation

We construct the objective function of DKPCA by joining the KPCA
bjectives of multiple levels in the Restricted Kernel Machine (RKM)
ramework (Suykens, 2017), which combines the flexibility of deep
rchitectures and the interpretations rooted in kernel methods. DKPCA
onsiders general cases consisting of 𝑛levels (𝑛levels ≥ 2) KPCA levels

stacked in the corresponding latent spaces, i.e., the hidden features
of level 𝑗 are the input of level 𝑗 + 1, inducing inter-level couplings,
similar to the stacked Autoencoders (Bengio, 2009). Correspondingly,
the objective for the proposed DKPCA is formulated in the primal model
representation:

𝐽 = −
𝑁
∑

𝑖=1
𝜑1(𝒙𝑖)⊤𝑾 1𝒉

(1)
𝑖 + 1

2

𝑁
∑

𝑖=1
𝒉(1)𝑖

⊤
𝚲1𝒉

(1)
𝑖 +

𝜂1
2

Tr
(

𝑾 ⊤
1𝑾 1

)

+
𝑛levels
∑

𝑗=2

[

−
𝑁
∑

𝑖=1
𝜑𝑗 (𝒉

(𝑗−1)
𝑖 )⊤𝑾 𝑗𝒉

(𝑗)
𝑖 + 1

2

𝑁
∑

𝑖=1
𝒉(𝑗)𝑖

⊤
𝚲𝑗𝒉

(𝑗)
𝑖

+
𝜂𝑗
2
Tr

(

𝑾 ⊤
𝑗 𝑾 𝑗

)

]

.

(5)

The feature map 𝜑1 ∶ R𝑑 ↦ R𝑑1 of the first level takes the original
ata as the input, while 𝜑𝑗 ∶ R𝑠𝑗 ↦ R𝑑𝑗 is the feature map of level
= 2,… , 𝑛levels that takes the hidden features 𝒉(𝑗−1)𝑖 of level 𝑗 − 1 as

he input, where 𝑾 𝑗 ∈ R𝑑𝑗 ×𝑠𝑗 is the interconnection matrix of level 𝑗.
ere, the matrix 𝑯 𝑗 = [𝒉(𝑗)1 ,… ,𝒉(𝑗)𝑁 ]⊤ ∈ R𝑁×𝑠𝑗 incorporates the hidden

features conjugated along 𝑠𝑗 projection directions for all 𝑁 data points,
where 𝑠𝑗 is the number of selected principal components by the 𝑗th
level of our DKPCA. In the primal formulation, 𝚲𝑗 = 𝑑𝑖𝑎𝑔{𝜆(𝑗)1 ,… , 𝜆(𝑗)𝑠𝑗 }
and 𝜂𝑗 ≠ 0 both serve as the hyperparameters of level 𝑗. While 𝜂 > 0
in the shallow KPCA case for variance maximization in Eq. (2), this
constraint is not required in the deep objective (5), having complex
inter-level couplings. Note that, in our DKPCA formulation, the visible
units 𝒙𝑖 in the input space are conjugated with the multi-level hidden
features 𝒉(𝑗)𝑖 in the latent space of each level 𝑗, giving an energy
function that resembles the deep Boltzmann machine (Salakhutdinov
& Hinton, 2009). The DKPCA topology in its primal formulation is
visualized in Fig. 1.

The projection directions of shallow (K)PCA are uncorrelated due to
the orthogonality of different principal components as in (4). Similarly
for DKPCA, we impose intra-level orthogonality on 𝑯 𝑗 , i.e., 𝑯⊤

𝑗 𝑯 𝑗 = 𝑰 .
From the stationary points of (5), the formulation of DKPCA in the dual
variables is in Box I: A graphical illustration of (6) is given in Fig. 2.
The kernel matrices are obtained as follows: 𝑲1 ∈ R𝑁×𝑁 is attained as
(𝐾1)𝑖𝑘 = 𝑘1(𝒙𝑖,𝒙𝑘) and 𝑲𝑗 ∈ R𝑁×𝑁 as (𝐾𝑗 )𝑖𝑘 = 𝑘𝑗 (𝒉

(𝑗−1)
𝑖 ,𝒉(𝑗−1)𝑘 ), where

𝑘1 ∶ R𝑑 × R𝑑 ↦ R with 𝑘1(𝒙, 𝒚) = 𝜑1(𝒙)⊤𝜑1(𝒚) is the kernel function of
the first level and 𝑘𝑗 ∶ R𝑠𝑗−1 × R𝑠𝑗−1 ↦ R with 𝑘𝑗 (𝒙, 𝒚) = 𝜑𝑗 (𝒙)⊤𝜑𝑗 (𝒚)
is the kernel function of level 𝑗 = 2,… , 𝑛levels by the kernel trick.
Instead of first defining a feature map 𝜑𝑗 , one can simply choose a
positive definite kernel 𝑘𝑗 due to Mercer’s theorem (Mercer, 1909),
guaranteeing the existence of a feature map 𝜑𝑗 such that 𝑘𝑗 (𝑦, 𝑧) =

⊤
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𝜑𝑗 (𝑦) 𝜑𝑗 (𝑧). The stationary points of (5) can be found in Appendix A.1.
In (6), 𝑗 (𝑯 𝑗 ,𝑯 𝑗+1) ∈ R𝑁×𝑠𝑗 are matrices jointly depending on the
conjugated hidden features 𝑯 𝑗 and 𝑯 𝑗+1. In particular, they are for-

mulated as 𝑗 (𝑯 𝑗 ,𝑯 𝑗+1) =
(

𝑰𝑁 ⊙
(

𝑯 𝑗+1𝑯⊤
𝑗+1

))⊤
𝑱𝐾𝑗+1 (𝑯 𝑗 ) ∈ R𝑁×𝑠𝑗 ,

where the Khatri–Rao product between matrices 𝑨 =
[

𝒂1 ⋯ 𝒂𝑛
]

∈
R𝑚1×𝑛 and 𝑩 =

[

𝒃1 ⋯ 𝒃𝑛
]

∈ R𝑚2×𝑛 is 𝑨 ⊙ 𝑩 =
[

𝒂1 ⊗ 𝒃1 ⋯ 𝒂𝑛 ⊗ 𝒃𝑛
]

with ⊗ denoting the Kronecker product,

𝑱𝐾𝑗+1 (𝑯 𝑗 ) ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑱 𝜅𝑗+1,1 (𝑯 𝑗 )
𝑱 𝜅𝑗+1,2 (𝑯 𝑗 )

⋮
𝑱 𝜅𝑗+1,𝑁 (𝑯 𝑗 )

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁
2×𝑠𝑗 and

𝑱 𝜅𝑗+1,𝑖 (𝑯 𝑗 ) ≜

⎡

⎢

⎢

⎢

⎢

⎣

∇𝑘𝑗+1(𝒉
(𝑗)
𝑖 ,𝒉

(𝑗)
1 )⊤

∇𝑘𝑗+1(𝒉
(𝑗)
𝑖 ,𝒉

(𝑗)
2 )⊤

⋮
∇𝑘𝑗+1(𝒉

(𝑗)
𝑖 ,𝒉

(𝑗)
𝑁 )⊤

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁×𝑠𝑗 .

(7)

Below, two examples are illustrated on the derivations of  when
different kernel functions are chosen.

Example 3.1 (Linear Kernel). In the case of linear 𝑘𝑗 (𝒛, 𝒚) = 𝒛⊤𝒚,
we obtain 𝑱 𝜅𝑗,𝑖 = 𝑯⊤

𝑗−1, so we further have 𝑗−1 = 𝑯 𝑗𝑯⊤
𝑗 𝑯 𝑗−1,

and 𝑲𝑗 (𝑯 𝑗−1) = 𝑯 𝑗−1𝑯⊤
𝑗−1. In two-level architectures with 𝑘2(𝒛, 𝒚) =

𝒛⊤𝒚, 1 has a linear dependency on 𝑯1 as 1 = 𝑯2𝑯⊤
2𝑯1, where

the eigendecomposition for the first level is written in the form of
𝑴1(𝑯2)𝑯1 = 𝑯1𝚲1 with 𝑴1(𝑯2) independent of 𝑯1.

Example 3.2 (RBF Kernel). Consider 𝑘𝑗 (𝒛, 𝒚) = exp
(

− ‖𝒛 − 𝒚‖22 ∕(2𝜎
2)
)

.
The partial derivative is

𝜕𝑘𝑗 (𝒉
(𝑗−1)
𝑖 ,𝒉(𝑗−1)𝑘 )

𝜕𝒉(𝑗−1)𝑖

= − 1
𝜎2

(

𝒉(𝑗−1)𝑖 − 𝒉(𝑗−1)𝑘

)

𝑘𝑗 (𝒉
(𝑗−1)
𝑖 ,𝒉(𝑗−1)𝑘 ), (8)

so 𝑱 𝜅𝑗,𝑖 = −2𝛾 diag(𝐾𝑗∶𝑖)
[

𝒉𝑖(𝑗−1)1⊤ −𝑯 𝑗−1
]

, where 1 is a vector of all
nes and 𝐾𝑗∶𝑖 is the 𝑖th column of 𝑲𝑗 .

The derivations to the dual formulations show that 𝚲𝑗 relates to
he first 𝑠𝑗 eigenvalues corresponding to the 𝑠𝑗 eigenvectors 𝑯 𝑗 in

the optimization of DPKCA, indicating that all the pairs (𝚲𝑗 ,𝑯 𝑗 ), 𝑗 =
1,… , 𝑛levels solving the dual problem constitute a pool of candidate
solutions that lead to 𝐽 = 0 in the primal objective (5). Thus, the
regularization hyperparameters 𝚲𝑗 in the primal are automatically
determined in the dual by the solutions of (6). Such obtained 𝑯 𝑗 and
𝚲𝑗 with 𝑗 = 1,… , 𝑛levels are named as deep eigenvectors and deep
eigenvalues in DKPCA, respectively. The dual problem of DKPCA in
each level is interpreted as an eigenvalue problem, giving the conju-
gated hidden features (principal components) 𝑯 𝑗 solved by the deep
eigenvectors corresponding to level 𝑗. The existing (shallow) KPCA is
a special case of DKPCA with 𝑛levels = 1, where 𝚲1 degenerates to
the first 𝑠1 eigenvalues corresponding to the 𝑠1 eigenvectors (principal
components) 𝑯1 of the kernel matrix 𝑲1.

3.2. Optimization algorithm
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1

Fig. 2. Graphical illustration of the DKPCA dual problem (6) with 𝑛𝐿 levels. Each arrow goes from the level that is characterized by the corresponding hidden features to the
level where it is used as input. DKPCA introduces not only forward couplings (green arrows), but also backward couplings (blue arrows) between the levels. For simplicity, 𝜂𝑗 = 1
in the diagram.
Algorithm 1 DKPCA Training using PGD. The stepsize 𝛼 is selected via backtracking for each variable.

1: function DeepKPCA({𝒙𝒊}𝑁𝑖=1, 𝜀 > 0)
2: Compute 𝑲1 from {𝒙𝒊}𝑁𝑖=1
3: Initialize {𝑯1

1,… ,𝑯1
𝑛levels

,𝚲1
1,… ,𝚲1

𝑛levels
}

4: 𝑘← 0
5: repeat
6: 𝑘 ← 𝑘 + 1
7: Compute 𝑲𝑘

𝑗 from 𝑯𝑘
𝑗−1, ∀𝑗 = 2,… , 𝑛levels

8: Compute 𝑘𝑗 from 𝑯𝑘
𝑗 ,𝑯

𝑘
𝑗+1, ∀𝑗 = 1,… , 𝑛levels − 1

9: Compute the residuals in (9)
0: 𝑯𝑘+1

𝑗 ← 𝚷St(𝑠𝑗 ,𝑁)

(

𝑯𝑘
𝑗 − 𝛼𝑘∇𝑯𝑗

𝐽
(

𝑯𝑘
1 ,… ,𝑯𝑘

𝑛levels
,𝚲𝑘1 ,… ,𝚲𝑘𝑛levels

))

⊳ Update for all levels

11: 𝚲𝑘+1𝑗 ← 𝚲𝑘𝑗 − 𝛼𝑘∇𝚲𝑗 𝐽
(

𝑯𝑘
1 ,… ,𝑯𝑘

𝑛levels
,𝚲𝑘1 ,… ,𝚲𝑘𝑛levels

)

⊳ Update for all levels

12: until ‖

‖

‖

𝑯𝑘+1
𝑗 −𝑯𝑘

𝑗
‖

‖

‖max∕𝛼𝑘 ≤ 𝜀 and ‖

‖

‖

𝚲𝑘+1𝑗 −𝚲𝑘𝑗
‖

‖

‖max∕𝛼𝑘 ≤ 𝜀 ⊳ Condition for all levels
13: return 𝑯1,… ,𝑯𝑛levels ,𝚲1,… ,𝚲𝑛levels
14: end function
a
a
c
S
T

3

l
k
T
c
r
s
m
m
h

For general positive definite kernels 𝑘𝑗 , (6) is interpreted as a set
of eigendecompositions with optimization variables 𝑯 𝑗 coupled with
previous and subsequent layers. In the algorithmic aspect, we propose
to train the DKPCA by residual minimization of (6), which considers
the orthogonality constraints on intra-level hidden features and results
in the following constrained optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑯 𝑗 ,𝚲𝑗 𝐽 ≜ 1

2
‖

‖

‖

‖

1
𝜂1

𝑲1𝑯1 +
1
𝜂2

1(𝑯1,𝑯2) −𝑯1𝚲1
‖

‖

‖

‖

2

F
+

𝑛levels−1
∑

𝑗=2

‖

‖

‖

‖

‖

1
𝜂𝑗

𝑲 𝑗 (𝑯 𝑗−1)𝑯 𝑗 +
1
𝜂𝑗+1

𝑗 (𝑯 𝑗 ,𝑯 𝑗+1) −𝑯 𝑗𝚲𝑗

‖

‖

‖

‖

‖

2

F

+

‖

‖

‖

‖

‖

1
𝜂𝑛levels

𝑲𝑛levels
(𝑯𝑛levels−1) 𝑯𝑛levels

−𝑯𝑛levels
𝚲𝑛levels

‖

‖

‖

‖

‖

2

F

subject to 𝑯⊤
𝑗 𝑯 𝑗 = 𝑰 𝑠𝑗 , ∀𝑗 = 1,… , 𝑛levels,

(9)

where 𝐽 denotes the optimization objective and the residual error is
adopted as the Frobenius norm ‖⋅‖F. During the training, the hid-
den features not only flow forward from the previous level, but also
backward from the subsequent level, as 𝑯 𝑗 comes from the eigende-
composition depending on 𝑯 𝑗−1 and 𝑯 𝑗+1 in a level-wise fashion.

The constraint set for the hidden features of level 𝑗 is the Stiefel
manifold St(𝑠𝑗 , 𝑁) = {𝑯 𝑗 ∈ R𝑁×𝑠𝑗

|𝑯⊤
𝑗 𝑯 𝑗 = 𝐼𝑠𝑗 }. Optimization of

(9) can be tackled by the Projected Gradient Descent (PGD) algorithm,
where the iterates for 𝑯 𝑗 are specified by
𝑯𝑘+1
𝑗 = ΠSt(𝑠𝑗 ,𝑁)

(

𝑯𝑘
𝑗 − 𝛼𝑘∇𝑯𝑗

𝐽
(

𝑯𝑘
1 ,𝚲

𝑘
1 ,… ,𝑯𝑘

𝑛levels
,𝚲𝑘𝑛levels

))

, in the
(𝑘 + 1)th iteration, with ΠSt(𝑠𝑗 ,𝑁) being the Euclidean projection onto
the Stiefel manifold, where 𝛼𝑘 is the stepsize selected via backtracking
and the projection in PGD can be computed by the compact SVD of
𝑯𝑘
𝑗 . This algorithm is detailed in Algorithm 1. In Algorithm 1, the

deep principal components 𝑯 𝑗 and deep eigenvalues 𝚲𝑗 are iteratively
updated, during which the forward and backward couplings across
levels are realized in the deep kernel machine.

In comparison, shallow (with one level) KPCA is solved by an eigen-
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decomposition of the kernel matrix, and the existing deep KPCA (Deng r
et al., 2019) extends its levels simply in a forward-wise manner by
sequentially learning a KPCA in each level. Note that the optimization
of DKPCA involves end-to-end training jointly optimizing all levels,
which is a significantly different training scheme than the existing
KPCA methods. In fact, (Deng et al., 2019) can be simply seen as a spe-
cific initialization of our DKPCA in (9), where the hidden features 𝑯 𝑗
of each level are initialized with the eigenvectors from sequential level-
wise KPCA from Deng et al. (2019). Regarding computational analysis,
shallow KPCA requires the computation of the first 𝑠̄ eigenvectors of
the kernel matrix with complexity (𝑠̄𝑁2), and the deep KPCA (Deng
et al., 2019) consisting of 𝑛levels levels requires sequential eigendecom-
positions with complexity (𝑛levels𝑠̄𝑁2), with 𝑠̄ =

∑𝑛levels
𝑗=1 𝑠𝑗 . The main

complexity in Algorithm 1 is the projection step in PGD computing the
compact SVD with complexity (𝑛levels𝑠̄𝑁2). Optimization of (9) can
lso be addressed with more efficient algorithms than classical PGD. An
lternative is the Riemannian Adam (Becigneul & Ganea, 2019), which
an exploit the Stiefel manifold constraints of (9) without performing
VD, resulting in significantly less expensive iterations, as shown in
able B.3 in Appendix B.2.

.3. Generative DKPCA

In linear PCA, performing reconstruction is straightforward by a
inear basis transformation, while the nonlinear KPCA faces the well-
nown pre-image challenges in reconstructions (Mika et al., 1999).
he proposed DKPCA employs multiple nonlinear feature maps and
onsists of multiple latent spaces, posing even greater challenges for the
econstruction. We propose a procedure for generative DKPCA from the
ampled hidden features 𝒉(𝑗) in latent spaces with parametric feature
aps 𝜑𝑗 of each level, which also induces a positive definite kernel
atrix (Pandey et al., 2021; Suykens et al., 2002). We also describe
ow the proposed generative model can facilitate the exploration of the

ole of the deep eigenvectors of each level.
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Fig. 3. Overview of generative DKPCA with 𝑛𝐿 levels. Multiple latent spaces are considered with multi-level hidden features 𝒉(𝑗) , ∀𝑗 = 1,… , 𝑛𝐿. The feature maps 𝜑𝑗 are indicated
with arrows going from left to right. The generative model employs the pre-image maps 𝜓𝑗 , represented by the arrows going from right to left. The dashed line in input space
represents the reconstruction error. The projecting vector in latent spaces indicates the projections in the corresponding 𝑠𝑗 -dimensional latent subspace.
Given the learned 𝒉(𝑗), we consider a generative objective introduc-
ing one term per level to the objective (5) for a point 𝒙: 1

2𝜑1(𝒙)⊤𝜑1(𝒙)
for the first level and 1

2𝜑𝑗
(

𝒉(𝑗−1)
)⊤ 𝜑𝑗

(

𝒉(𝑗−1)
)

for level 𝑗 = 2,… , 𝑛levels.
By the characterization of the stationary points given in Appendix A.2,
a new point 𝒙̂ is generated through the inverse maps of the multiple
levels:

𝒙̂ = 𝜑−1
1

(

𝑾 1𝒂(2)
)

, (10)

such that 𝒂(𝑗) = 𝜑−1
𝑗

(

𝑾 𝑗𝒂(𝑗+1)
)

, 𝑗 = 2,… , 𝑛levels, 𝒂(𝑛levels+1) = 𝒉(𝑛levels),
and where 𝜑𝑗 is invertible with the inverse map denoted as 𝜑−1

𝑗 . Note
that (10) has a similar structure to the decoder of an Autoencoder
architecture. This process is visualized in Fig. 3.

In practice, it is particularly useful to employ parametric feature
maps, as they can learn to well map high-dimensional complex data
from the unknown training distribution. For instance, in computer
vision tasks one can define a convolutional neural network as the
feature map 𝜑1. A transposed convolutional network 𝜓1 is used in the
generation formula (10) to approximate the inverse map 𝜑−1

1 such that
(𝜓1◦𝜑1)(𝒙) ≈ 𝒙. In such cases when the inverse map 𝜑−1

1 is unknown
explicitly in advance, one can employ a learnable pre-image map to
approximate the inverse map, which resembles the decoder part in
an Autoencoder architecture. Thus, we add the reconstruction error,
e.g., 𝑖(𝒙𝑖, 𝜓1(𝜑1(𝒙𝑖))) = ‖

‖

𝒙𝑖 − 𝜓1(𝜑1(𝒙𝑖))‖‖
2 to the optimization objective

𝐽 in (9) for the learning of the inverse feature map 𝜓1. The full objective
is thereby cast as

𝐽 + 𝛾
𝑁
∑

𝑖=1
𝑖

(

𝒙𝑖, 𝜓1(𝜑1(𝒙𝑖))
)

, (11)

where 𝜓1 is the learnable pre-image map that approximates the inverse
map 𝜑−1

𝑗 , 𝑖 is the reconstruction error of sample 𝒙𝑖, and 𝛾 > 0 balances
the reconstruction error and the residuals minimization. Besides 𝑯 𝑗
and 𝜦𝑗 in 𝐽 , the network parameters of 𝜑1 and 𝜓1 also need to be
learned. In this optimization problem, an alternating update scheme
is adopted: the Adam optimizer (Kingma & Ba, 2015) is used to update
the parameters of 𝜑1 and 𝜓1, while keeping the deep eigenvectors and
eigenvalues fixed; the hidden features 𝑯 𝑗 and the corresponding eigen-
values 𝜦𝑗 are updated using the DKPCA training algorithm described
in Section 3.2 with 𝜑1 and 𝜓1 fixed.

In this case, the optimization to the proposed generative model in-
cludes both the latent variables 𝒉(𝑗)𝑖 in the dual and the explicit feature
map 𝜑1 in the primal. This combination allows both the couplings
of the levels in the latent variables of each level and deep powerful
parametric feature maps better suited for more complex tasks. The
deep architecture of DKPCA consists of feature maps over multiple
levels, where depth is given both by multiple KPCA levels and by
feature maps possibly consisting of multi-layered neural networks.
This generative model resolves the pre-image problem in performing
reconstruction and also enables to obtain new data corresponding to
583
any sampling in the multiple latent spaces. For reconstruction, given
any input, its hidden features (principal components) in latent spaces
are first computed and are then fed to the inverse feature maps for
reconstruction in the original input space. For generation, given any
sampling in latent spaces, their correspondingly generated samples in
the input space can be obtained through the inverse feature maps using
(10). This makes it viable to explore the role of the deep eigenvectors
relating to the principal components of each level, i.e., the generation
of newly sampled latent variables can be investigated by changing only
one latent variable (principal component) at a time, performing the
traversals over these latent variables.

Besides, DKPCA also pertains the out-of-sample extension, which
allows to predict unseen input data without retraining. This property
is of particular interest in large-scale case for such unsupervised set-
tings (Suykens et al., 2002), as a subset of 𝑀 ≪ 𝑁 samples are used
for the efficient training and the rest 𝑁 −𝑀 samples can be predicted
through out-of-sample extensions, as detailed in Appendix A.2. In this
way, the storage complexities for the kernel matrices and the hidden
features matrices of level 𝑗 decrease from (𝑁2) and (𝑁𝑠𝑗 ) to (𝑀2)
and (𝑀𝑠𝑗 ), respectively. One approach to the subset selection is to
take a random subsample of 𝑀 data points for the training, which is
capable of well balancing both efficiency and accuracy as evaluated
in Fig. 8. One can also use more sophisticated selection schemes,
such as the quadratic Renyi entropy (Girolami, 2002) or the leverage
score sampling (Rudi et al., 2018). The optimal selection strategy is
nevertheless data-dependent in practical applications (Espinoza et al.,
2003; Fanuel et al., 2021).

4. Analytical findings

In this section, first we show that the optimization problem of
our method explicitly formulates a set of nonlinear equations for each
level resembling an eigenvalue problem of some matrix 𝑴 𝑗 fusing the
principal components of previous and subsequent levels, i.e., DKPCA
introduces not only forward couplings, but also backward couplings
between the levels. Further, we illustrate that the additional levels act
as a regularization on the first level. Then, we apply the Eckart-Young
theorem to the deep kernel machine for approximation error bounds on
the kernel matrix of the given data. Finally, we show conditions under
which the explained variance of DKPCA is strictly greater than the one
from KPCA.

4.1. Forward and backward couplings between levels

The equations in (6) give the level-wise eigendecomposition inter-
pretation of DKPCA, in which the forward and backward couplings
between levels are embodied. The first level resembles the eigende-
composition of the regularized kernel matrix of the given data 𝑴1 ≜
1 𝑲 + 1  (𝑯 ,𝑯 )𝑯⊤; the last level is the eigendecomposition of
𝜂1 1 𝜂2 1 1 2 1
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Fig. 4. Deep approximation bounds. Illustration of Lemma 4.1. Lower (green dashed line) and upper bound (red dashed line) for the deep approximation error (black solid line)
f 𝑲1 on Synth 3, for varying 𝜂2 when (a) 𝜂2 > 0 and when (b) 𝜂2 < 0, (c) 𝑠1, and (d) 𝑠2. In (a)(b), the full decomposition case is considered.
w

the symmetric matrix 𝑴𝑛levels ≜ 1
𝜂𝑛levels

𝑲𝑛levels ; the intermediate levels
= 2,… , 𝑛levels − 1 are related to the eigendecomposition of

𝒋(𝑯 𝑗−1,𝑯 𝑗 ,𝑯 𝑗+1) ≜
1
𝜂𝑗

𝑲𝑗 (𝑯 𝑗−1) +
1
𝜂𝑗+1

𝑗 (𝑯 𝑗 ,𝑯 𝑗+1)𝑯⊤
𝑗 , (12)

with deep eigenvectors 𝑯 𝑗 and deep eigenvalues 𝚲𝑗 . Fig. 2 visualizes
this process.

The optimization of DKPCA discussed in Section 3.2 is interpreted
as a set of 𝑛levels eigendecomposition problems, each of which (𝑯 𝑗)
depends on the hidden features of both previous (𝑯 𝑗−1) and subsequent
(𝑯 𝑗+1) levels. In this way, information not only flows forward but
also backward in the learning process, as 𝑴 𝑗 has dependency on both
𝑯 𝑗−1 and 𝑯 𝑗+1. This is an important property, as previous theoretical
works in deep learning such as (Allen-Zhu & Li, 2023) stressed that
forward propagation alone in a level-wise fashion is not enough to learn
efficient deep architectures, as the levels also need to be coupled in
backward directions so that more abstract representation of subsequent
levels can be utilized to improve the learning of the current level. With
the forward and backward couplings between levels, eigenvalue prob-
lems in (6) cannot be independently solved in series, which motivates
the DKPCA training algorithm by residual minimization of the set of
nonlinear equations (6) described in Section 3.2.

4.2. Deep approximation analysis

For theoretical analysis, we consider the two-level DKPCA with
𝑘2(𝒛, 𝒚) = 𝒛⊤𝒚, as the optimization can be simplified. In this case,
𝑴 𝑗 does not depend on 𝑯 𝑗 such that 𝑴1(𝑯2)𝑯1 = 𝑯1𝜦1 and
𝑴2(𝑯1)𝑯2 = 𝑯2𝜦2, where 𝑯1 and 𝑯2 are implemented as the
eigenvectors in Level 1 and Level 2, respectively:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Level 1:
(

1
𝜂1

𝑲1 +
1
𝜂2

𝑯2𝑯⊤
2

)

𝑯1 = 𝑯1𝚲1,

Level 2:
(

1
𝜂2

𝑯1𝑯⊤
1

)

𝑯2 = 𝑯2𝚲2,
(13)

here the first level performs KPCA of 1
𝜂1
𝑲1 + 1

𝜂2
𝑯2𝑯⊤

2 and the
second level performs KPCA of 1 𝑯 𝑯⊤. Here, the second level can
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𝜂2 1 1
be regarded as playing a regularization role: the second level leads
to a regularized 𝑲1 with the regularization constant 𝜂1

𝜂2
. Note that

𝑯2 is unknown a priori, so one has to solve the sets of nonlinear
equations (13) for both levels rather than first solving the eigenvalue
problem for level 1 and then for level 2, reflecting the forward and
backward dependency.

We analyze approximation error bounds for the conceived two-
level architectures through the Eckart-Young theorem (Eckart & Young,
1936), as both of the matrices to be factorized are symmetric, providing
additional insights into the DKPCA.

Lemma 4.1 (Error Bounds). Applying the Eckart-Young theorem to both
levels in (13) with orthonormality constraints, the following bound for the
deep approximation of 𝑲1 is obtained
√

√

√

√

𝑟1
∑

𝑖=𝑠1+1
𝜆(1)𝑖

2
−

√

𝑠2
|𝜂2|

≤ ‖

‖

‖

𝑲1 −𝑯1𝚲1𝑯⊤
1
‖

‖

‖𝐹

≤
⎧

⎪

⎨

⎪

⎩

√

∑𝑟1
𝑖=𝑠1+1

𝜆(1)𝑖
2
−
(

𝑠2
𝜂2

+ 2
∑𝑠2
𝑖=1 𝜆𝑖

)

1
𝜂2

𝜂2 < 0,
√

∑𝑟1
𝑖=𝑠1+1

𝜆(1)𝑖
2
−
(

1
𝜂2

− 2𝑠1
∑𝑠1
𝑖=1 𝜆

(1)
𝑖

)

𝑠2
𝜂2

𝜂2 > 0,

(14)

ith 𝑠1 ≤ 𝑟1, where 𝑟1 = rank(𝑲1 + 1
𝜂2
𝑯2𝑯⊤

2 ) and 𝜆𝑖 is the 𝑖th largest
eigenvalue of 𝑲1.

Lemma 4.1 gives the error of approximating the data kernel matrix
𝑲1 with the low-rank matrix of hidden features 𝑯1 of the first level
as a lower bound depending on the remaining eigenvalues of 𝑲1
regularized with the matrix of hidden features 𝑯2 of the second level.
The smaller 𝜂2, the greater the effect of the second level. On the other
hand, a very large 𝜂2 indicates high regularization on the second level,
reducing its effect, in which the deep architecture behaves resembling
a shallow low-rank approximation. If the number of columns 𝑠1 of
the approximating matrix is greater than the rank 𝑟1 of the matrix
to be approximated, one can choose 𝑠1 = 𝑟1 achieving an error-free
approximation. See Fig. 4 for numerical evaluation and Appendix A.3.1
for the proof.

In the next Lemma, we study the cumulative explained variance
given by the principal components of the considered two-level DKPCA
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with comparisons to shallow KPCA, analytically showing the higher
explained variance of DKPCA.

Lemma 4.2 (Explained Variance of Deep KPCA). In the full decomposition
ase (𝑠1 = 𝑠2 = 𝑁), when 𝜂2 < − 1

𝜆𝑁
, the explained variance of the top 𝑛

rincipal components of DKPCA in (13) is strictly greater than the variance
xplained by the top 𝑛 principal components of shallow kernel PCA, i.e.,
∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

>

∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

, (15)

here 𝜆𝑖 > 0 is the 𝑖th largest eigenvalue of the kernel matrix 𝑲1, which is
aken positive-definite, and 𝜆𝑖 is the 𝑖th largest eigenvalue of 𝑲1+

1
𝜂2
𝑯2𝑯⊤

2 ,
or all 1 ≤ 𝑛 < 𝑁 .

The above Lemma gives conditions on 𝜂2 under which the consid-
red two-level DKPCA is advantageous compared to shallow KPCA in
erms of the explained variance of the first 𝑛 principal components.

hen choosing 𝜂2 < − 1
𝜆𝑁

, where 𝜆𝑁 is the smallest eigenvalue of the
data kernel matrix, the cumulative variance explained by the first 𝑛
components of the first DKPCA level is strictly greater than the variance
explained by the first 𝑛 components of shallow KPCA. In other words,
DKPCA can capture more information in fewer components. See the
next Section for associated numerical experiments and Appendix A.3.2
for the proof.

5. Numerical experiments

We present a series of experiments to assess and explore DKPCA,
showing the efficacy and advantages of the proposed deep method
from different aspects in the following subsections. DKPCA is imple-
mented in Python using the PyTorch library. The code is available at
https://github.com/taralloc/deepkpca, where all datasets used in this
study and the setup details are publicly available and described in the
repository.

Datasets. Both synthetic and real-world data are used to assess the
proposed method with empirical evidence. Three synthetic datasets
are presented: a 2D square dataset (Synth 1), a complex 2D dataset
consisting of one square, two spirals and one ring (Synth 2), and a
140-dimensional multivariate Normal dataset (Synth 3), where samples
are drawn randomly from mixed Gaussian distributions. For real-world
data, we consider MNIST (LeCun et al., 2010), 3DShapes (Kim & Mnih,
2018), Cars3D (Reed et al., 2015), and SmallNORB (LeCun et al.,
2004). In particular, we evaluate disentanglement on the 3DShapes,
Cars3D, and SmallNORB, which are popular benchmarks for evaluating
variation factors.

Evaluation metrics and compared methods. Different related unsuper-
vised learning methods are adopted to comprehensively evaluate DK
PCA. A comparison to the shallow KPCA is presented with the learned
principal components on multiple aspects. We also consider the state-
of-the-art methods 𝛽-VAE (Higgins et al., 2017), FactorVAE (Kim &
Mnih, 2018), and 𝛽-TCVAE (Chen et al., 2018) for general disentangled
feature learning. For quantitative evaluations, we employ the IRS met-
ric (Suter et al., 2019), where a higher value indicates better robustness
to changes in variation factors. The shared hyperparameters among
all methods are fixed to be the same. For the model-specific hyper-
parameters, we used the suggested values in their papers. It is worth
mentioning that the compared methods are sensitive to hyperparameter
selections, as shown in Locatello et al. (2019). Our method does not
suffer from such issue as 𝚲𝑗 is automatically determined by the solution
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f the deep KPCA problem.
Hyperparameters and tuning setups. In unsupervised learning setups, the
experiments with linear kernels are parameter-free. In the experiments
comparing the explained variance of KPCA, DKPCA and Deng et al.
(2019), the shared hyperparameters, i.e., the RBF bandwidth, are set
the same for all levels in the methods for consistent comparisons and
selected based on reconstruction error on a validation set. We fix
𝜂𝑗 = 1, 𝑗 = 1,… , 𝑛levels and 𝛾 = 1 in (11) to equally balance the AE
and deep KPCA error. For the more challenging SmallNORB, we set
𝛾 = 100. The RBF kernel in the downstream supervised experiments is
tuned in the range exp (−2) and exp (7) using gridsearch on the separate
validation set. In the generative experiments, the maximum number
of epochs for the Riemannian Adam optimizer was set to 80000 with
learning rate 2 ⋅ 10−4, and we keep the same encoder 𝜑1 and decoder
𝜓1 architecture for all compared methods. Thorough setup details are
given in Appendix B.1.

5.1. DKPCA provides interpretable deep principal components

This part examines the roles of each individual deep principal com-
ponent and of the components in each level. Contrary to shallow KPCA
owning one set of eigenvectors/eigenvalues, DKPCA have multiple sets
of eigenvectors/eigenvalues for each level. Thus, the features can be
represented in a more hierarchical way that benefits the interpretation
explorations. In fact, via the proposed deep generative procedure (10),
sampled hidden features and their pre-image mappings to the input
space can be computed. By traversing the latent space in some specific
dimensions, i.e., varying a single deep principal component while keep-
ing the others fixed and generating the corresponding sample in input
space, what each component learns can be observed. In DKPCA, with
the extracted deep eigenvectors 𝑯 𝑗 , the model can well disentangle
the factors of variation in the data. This is verified quantitatively
and qualitatively, comparing the traversals on the learned principal
components with the state-of-the-art FactorVAE.

Notably, we show that DKPCA effectively facilitates hierarchical
data exploration, as the role of each principal component in each level
can be investigated through the generation of new data. Specifically,
we consider images of 3D objects with different generative factors,
i.e., colors, sizes, etc. For individual components, our method can find
new principal components such that, when sampling along one of them,
only one generative factor changes, e.g., only the object scale changes,
while its color and other factors remain fixed. For the components in
each level, our deep method creates a learning hierarchy: prevailing
features are typically learned in the shallower levels, e.g., colors, while
the deeper levels capture more subtle features, e.g., the specific object
shape.

Fig. 5 summarizes the main results for 3DShapes. Detailed analysis
is given in the following for each principal component in all levels and
for each level separately.

Individual principal components. In Figs. 6 and 5(a), we show the traver-
sals in the latent spaces of a DKPCA with explicit feature maps. Aside of
high visual reconstruction quality in the second row, other rows show
the generated images while traversing along the individual principal
component of the first level (𝒉(1)) or of the second level (𝒉(2)) of the
proposed DKPCA that explains the corresponding generative factor.
In FactorVAE, a single latent space is obtained, and the images are
generated by traversing along each dimension in the latent space of
FactorVAE. For instance, in 3DShapes (Fig. 5(a)), the component in
Row 3 captures the factor of wall hue, as both the floor and object hue
remain almost constant. In 3DShapes, DKPCA better disentangles the
scale of the object, which only slightly varies in FactorVAE. In Cars3D
(Fig. 6(a)), the three factors of elevation, car type, and azimuth by
DKPCA are well captured and disentangled, while FactorVAE gives en-
tanglement in differentiating the learning of azimuth with the two other
components of elevation and car type. A similar analysis is conducted
for the other rows, showing that the deep components well capture the

https://github.com/taralloc/deepkpca
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Fig. 5. Results on the 3DShapes dataset. (a) Role of the deep principal components. The ground-truth on the 1st row, reconstructions on the 2nd row, and traversals on
other rows in the latent spaces induced by DKPCA and FactorVAE. The factors extracted by DKPCA are better disentangled than FactorVAE. Unlike FactorVAE, DKPCA shows a
hierarchy of details, where the second level learns more complex factors of variation than the first level. (b) Explained variance (%) of both DKPCA and shallow KPCA using the
same kernel. DKPCA captures considerably greater explained variance (informative features) in the first principal components than KPCA, where the lines denote the cumulative
explained variance and the bars denote the variance explained by each component. (c)(d)(e) Scatter plots of the latent variable distribution, where DKPCA learns one latent
space for each level. The FactorVAE distribution shows partial irregularity, while the distributions learned by DKPCA follow a more compact Gaussian profile, centered around the
origin in the second level.
factors of variation of the data. Besides, thanks to the eigenvalues 𝜦𝑗
obtained in the optimization, DKPCA can identify an ordering of the
components, providing a way to reflect their relative importance. This
cannot be done with the considered VAE-based methods (Chen et al.,
2018; Higgins et al., 2017; Kim & Mnih, 2018).

Principal components in each level. Besides individual components, we
further explore the level-wise interpretation of the learned deep prin-
cipal components in DKPCA. In Fig. 5(a), the two components of the
first level capture the background, which corresponds to the factors
of the highest variation, i.e., the wall and floor hue, as they involve
the most pixels in the images. The two components of the second level
capture subtle characteristics of the object, e.g., scale and orientation,
as the deeper components capture generative factors for more detailed
information with less variation among samples. In other words, DKPCA
learns a hierarchy of abstraction in its deep components, from less
abstract, i.e., background, to more abstract, i.e., object. Similar con-
clusions hold for Cars3D (Fig. 6(a)): the first level learns the car type,
which is the factor of highest variation, while the second level learns
more sophisticated factors capturing the elevation and azimuth of the
car.

Disentanglement learning. A quantitative evaluation of disentangled fea-
ture learning is performed by comparing with the state-of-the-art meth-
ods 𝛽-VAE (Higgins et al., 2017), FactorVAE (F-VAE) (Kim & Mnih,
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2018), and 𝛽-TCVAE (Chen et al., 2018) on the commonly used IRS
metric (Suter et al., 2019). We also incorporate the KPCA approach
for comparison between the classical shallow kernel machine and our
proposed deep architecture of DKPCA. The studied DKPCA architecture
has 𝑛levels = 2, 𝑠1 = 𝑠2 set to the number of generative factors, and the
latent representation of a data point 𝒙𝑖 is given by the concatenation
of 𝒉(1)1 and 𝒉(2)2 . The dimension of the latent space of the compared
methods is set to 𝑠1 + 𝑠2. Fig. 7 gives the performance evaluation
with models trained on a subset of 𝑁 = 200 samples. The proposed
DKPCA shows overall favorable performance for disentanglement learn-
ing on the tested datasets, notably outperforming the state-of-the-art
VAE-based methods in Cars3D. Those advantageous results of DKPCA
achieved under this setting reflects better sample efficiency in this
set of experiments: from only hundreds of data points, the DKPCA
can learn more disentangled representations than the compared data-
hungry deep learning methods. In real-life scenarios, this property can
be of particular interest, as the training examples might be available in
limited quantity or expensive to collect, so models better capturing the
true generative factors from a limited number of data are desirable.

DKPCA can be implemented with out-of-sample extensions for large-
scale cases by selecting a subset 𝑀 ≪ 𝑁 for training and then
obtaining the latent representations of the remaining data. To evaluate
the performance of DKPCA on the full dataset, in Fig. 8 we evaluate the
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Fig. 6. Role of the deep principal components. First row: ground-truth. Second row: reconstructions. Other rows: traversals in the latent spaces induced by DKPCA. The DKPCA
shows a hierarchy of details, where the second level learns more complex factors of variation than the first level.
Fig. 7. Disentanglement with small data (↑). Distribution (mean and standard deviation) of disentanglement scores (IRS) for different methods with 𝑁 = 200 samples. Higher
is better (↑).
Fig. 8. Disentanglement with large-scale extensions (↑). Disentanglement score (IRS) on the full datasets. A subset of 𝑀 = 200 is selected for training (D)KPCA and the
remaining data is inferred with out-of-sample extensions, which is particularly beneficial under limited computational resources.
entire corresponding datasets through out-of-sample extensions using
𝑀 = 200 samples for the training. The results shows a higher mean IRS
is attained over all compared VAE-based methods which are trained on
the full dataset. The results also demonstrate that DKPCA consistently
outperforms the shallow KPCA. This comparison further verifies the
disentanglement of the hidden features learned by our method, as well
as its sample efficiency: only hundreds of samples are needed by DKPA
to effectively learn disentangled representations and outperform the
deep learning methods trained on thousands of data points.
587
5.2. DKPCA learns more informative features

In this section, we further investigate the features learned by
DKPCA. DKPCA gives higher explained variance than shallow KPCA,
indicating that more information is captured in fewer components. We
therefore show the superiority of DKPCA as a feature extractor for
downstream supervised tasks for multiple data types. We also inves-
tigate the problem of selecting the number of principal components in
each level and the number of levels, providing a selection strategy in an
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Fig. 9. Interpretation of the deep eigenvalues. Explained variance (%) of DKPCA. (a) The compared method is kernel PCA with RBF kernel with the same bandwidth. Our
method is able to capture considerably greater explained variance in the first principal component than shallow KPCA, showing that the proposed deeper architecture outputs
more informative principal components even with the same kernel function as the shallow KPCA. (b) Illustration of Lemma 4.2: the first DKPCA level maintains higher cumulative
explained variance than KPCA for all 𝑛, capturing more information in fewer components. (c) Four-level DKPCA with RBF kernels on MNIST. In all plots, bars: explained variance,
lines: cumulative explained variance.
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unsupervised setting, in contrast with typical trial and error tuning in
deep learning. Besides, we also compare with the extracted principal
components which are learned from the deep KPCA in Deng et al.
(2019) employing a level-wisely sequential learning scheme.

Deep eigenvalues. As presented in Section 3.2, deep eigenvalues 𝚲𝑗 are
learned by DKPCA in different levels 𝑗 = 1,… , 𝑛levels, compared to 𝚲
of the single level in shallow KPCA. We now investigate the learned
deep eigenvalues in terms of the percentage of variance explained and
compare with shallow KPCA, where the nonlinear case is considered
by using the RBF kernel in all levels. Figs. 5(b), 9(a), and 9(b) plot the
variance explained by each component by DKPCA (orange bars) and by
shallow KPCA (blue bars), as well as the cumulative variance explained
by DKPCA (orange line) and by shallow KPCA (blue line).

In Fig. 9(a) for Synth 2 with 30 components in each level, it shows
that the cumulative explained variance reaches almost 100% after
around 10 deep principal components, while a much slower explained
variance growth in the shallow case. Even if both methods use the same
kernels, the first principal component of DKPCA explains around 20%
of the variance compared to only around 8% of KPCA. This experi-
ment shows that our method can lead to more informative principal
components, ultimately resulting in a more powerful representation
in fewer components with the deep architecture. Comparing the deep
eigenvalues 𝚲1 (solid orange line) of the first level with the ones
𝚲2 (dotted orange line) of the second level, the former shows faster
initial growth, while the latter gives a flatter cumulative explained
variance. A similar analysis is conducted for 3DShapes in Fig. 5(b),
while Fig. 9(b) presents the numerical evaluation of Lemma 4.2 in the
two-level DKPCA with RBF first level and linear second level on Synth
3, with 𝜂2 chosen to be the largest value satisfying the conditions of
4.2.

Additionally, a 4-level DKPCA with 10 principal components in each
level is trained on the handwritten digit images dataset MNIST (LeCun
et al., 1998) in Fig. 9(c): the first and the second levels follow a similar
pattern, and each subsequent level shows a flatter curve with increas-
ingly higher explained variance in the top components. The fourth
level explains almost the entire variance in the first few components,
indicating that the current four levels are sufficient. In this way, the
minimum number of levels to fully explain a given dataset can be
determined. This observation can also be a useful suggestion for tuning
the kernel settings in the different levels: the kernel settings might need
to be better tuned when introducing additional levels does not lead to
a sufficient increase in explained variance.

We additionally compare with the sequential deep KPCA of Deng
et al. (2019) through the ratio of explained variance. The results,
shown in Fig. B.2 in Appendix B.2, demonstrate that, with our end-
to-end optimization with both forward and backward learning in the
levels, DKPCA can attain higher explained variance in the first principal
components than straightforwardly applying KPCA sequentially (Deng
et al., 2019).
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a

Selection of principal components in each level. Contrary to shallow
KPCA, different numbers of principal components can be selected for
each level in deep architectures of DKPCA. In this experiment, we
train a two-level DKPCA, introduced in Eq. (13), with linear kernels
on the synthetic datasets to investigate the influence of the numbers
of selected principal components 𝑠1 and 𝑠2 of the first and second
evels, respectively. In practice, one would like to select the smallest
umber of principal components to suffice the required small enough
econstruction error that depends on the specific applications, so a
eneral method for selection of 𝑠𝑗 is needed for practitioners. This
election can be performed by analyzing the relative importance of each
eep component through its explained variance.

A two-dimensional synthetic dataset located as a noisy square is
xemplified (Synth 1). As shown in Fig. 10(a), the eigenvalues of the
irst level drop distinctively after the second principal component, and
he percentages of explained variance by the first and second compo-
ent are similar. This is consistent with the ground-truth properties
f this two-dimensional dataset. In Fig. 10(b), the reconstruction error
ecreases with 𝑠2 increasing and shows its largest drop after the first
wo components in the second level, where the MSE reaches 0 with
1 = 𝑠2 = 6. In fact, our method can always achieve 0 reconstruction
rror in the case of the full decomposition with 𝑠1 = 𝑠2 = 𝑁 , also
s verified on the real-world 3DShapes in Fig. 11. For 3DShapes,
he ground-truth number of variation factors is 6, so the cumulative
xplained variance climbs quickly as most variance has been captured
y only a few components. The reconstruction error shows the opposite
ehavior, dropping sharply after around 10 principal components and
eaching 0 for the full decomposition. Such evaluations are conducted
n an unsupervised setting, and thus practitioners can accordingly use
hese evaluations to determine 𝑠𝑗 of the DKPCA architecture for faithful
econstructions.

xtracted principal components for downstream tasks. KPCA is often used
s a feature extraction step for downstream supervised tasks. Simi-
arly, DKPCA can extract multiple levels of disentangled features that
an facilitate different tasks. Specifically, it has been suggested that
isentangled features could be useful for the supervised downstream
roblems due to the compact structure of the representation of the
nput distribution (Locatello et al., 2019). Besides the shallow PCA and
PCA, we also compare with the deep KPCA method proposed in Deng
t al. (2019) in the downstream task. We fed the concatenation of
he deep representation learned by the unsupervised two-level deep
PCA machines of our work and of Deng et al. (2019) to a linear
lassifier/regressor and compared with shallow (K)PCA with 𝑠 principal
omponents using the same overall number of components, i.e. 𝑠1+𝑠2 =
. For all datasets 𝑠1 = 3, 𝑠2 = 2. The nonlinear kernel machines,
.e., KPCA, DKPCA and Deng et al. (2019), employ RBF kernels; hy-
erparameters are tuned on a validation set using a 60/20/20 split for
raining/validation/test sets.

Results are shown in Table 1. Our proposed DKPCA outperforms

ll compared methods, including the shallow KPCA and the deep KPCA
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Fig. 10. Explained variance by the first level and reconstruction error (training MSE) for the Synth 1 dataset with 𝑠1 = 6. This experiment shows the minimum number of
components such that the approximation error is small enough so that practitioners have a guarantee on the faithfulness of the representation learned by the proposed model. For
this dataset, the reconstruction error is 0 with 𝑠1 = 𝑠2 = 6.
Table 1
Comparison of test performance for classification/regression and disentangled feature learning by DKPCA
on real-world datasets of various data types. Higher scores (↑) are better for ACC (%) and WINDIN, lower
scores (↓) are better for RMSE. The best performance is in bold. All datasets are UCI datasets from Dua and
Graff (2017).

Dataset Metric PCA KPCA Deng et al. DKPCA

Diabetes ACC(↑) 70.83 67.89 71.42 72.02
WINDIN(↑) 0.001 0.082 0.001 0.287

Ionosphere ACC(↑) 86.09 92.17 88.70 93.04
WINDIN(↑) 0.001 0.22 0.001 1.05

Liver ACC(↑) 70.94 72.65 73.50 74.36
WINDIN(↑) 0.001 0.069 0.001 0.72

Cholesterol RMSE(↓) 61.67 61.65 61.42 60.59
WINDIN(↑) 0.0001 0.0001 0.0001 0.003

Yacht Hydrodynamics RMSE(↓) 8.41 8.42 8.38 8.02
WINDIN(↑) 0.0001 0.0001 0.0001 0.19
Fig. 11. Full decomposition for a subset of 3DShapes (𝑁 = 480). Cumulative
explained variance (%) from the deep eigenvalues of the first level of KPCA and
reconstruction error. A sharp increase in the explained variance corresponds to a
distinctive drop in reconstruction error, which reaches 0 for the full decomposition.

proposed in Deng et al. (2019) in all evaluated metrics. In general, deep
kernel machines, i.e., DKPCA and Deng et al. (2019), achieve better
classification and regression results than the shallow KPCA, showing
the potential of deep KPCA methods. The WINDIN metric (Do & Tran,
2022) evaluates the disentanglement of a representation 𝒛 when the
ground truth factors of variations are not known: it measures both
the informativeness and the separability of the representation through
the conditional mutual information between the input 𝒙 and its la-
tent representation 𝒛. DKPCA produces significantly more disentangled
representations; for instance, in the Liver dataset DKPCA improves
the WINDIN by approximately 10 times over KPCA. The sequentially
learned deep KPCA method in Deng et al. (2019) displays inferior
performance in disentanglement. Overall, DKPCA leads to better su-
pervised performances and disentanglement, showing the improved
informativeness of our DKPCA, which can more effectively capture the
trends of the data that are most relevant for supervised prediction.
589
6. Discussion and conclusion

6.1. Discussion

Our proposed DKPCA establishes a novel framework for deep non-
linear principal component analysis by leveraging the RKM formula-
tion. DKPCA exploits the Fenchel–Young inequality introducing conju-
gate feature duality, and extends the classical shallow KPCA to multiple
levels, where both neural network feature mappings and kernel func-
tions can be adopted in different levels for flexible modeling. In contrast
to shallow KPCA involving a single eigendecomposition to the ker-
nel matrix, DKPCA gives different eigenvalue problems across levels
and yields the so-called deep eigenvectors and deep eigenvalues, as
characterized by the stationary conditions. DKPCA can be applied to
general feature learning tasks in place of classical KPCA or VAE-based
methods in various applications. Conventional KPCA may need many
components to attain a high explained variance, while DKPCA can
capture information more efficiently in fewer components. Compared
to the black-box optimization in deep learning-based methods, the
optimization problem of DKPCA explicitly formulates a set of nonlinear
equations for each level resembling an eigenvalue problem.

DKPCA formalizes the couplings between levels in terms of the
conjugated hidden features, playing the roles of principal components
in the latent spaces with dual formulations. The proposed deep kernel
method is not a simple forward level-wise algorithm, but the op-
timization of features flows backwards in the deep architecture, so
that components in levels of lower abstraction can benefit from the
representation learned in levels of higher abstraction. This property
has been theoretically verified as essential for effective hierarchical
learning, and yet has not been explored in deep kernel methods. We
then devise a multi-level optimization algorithm for DKPCA, where



Neural Networks 170 (2024) 578–595F. Tonin et al.

t
m

6

t
m
f
e
a
v
b
d
k
p
i
s
m
e
t
a

D

c
i

D

A

(
1
t
v
d
G
W
3

A

t
D
l
A
t
l
n
i
g
p
t
d
s

A

b
f
(

a
t
g
t

the deep eigenvectors and deep eigenvalues regarding the level-wise
principal components are taken as optimization variables. For a specific
case with two-level architectures, the optimization is simplified with
solutions being the singular vectors in each level, which facilitates
theoretical analysis for greater insights: the Eckart-Young theorem is
applied to establish approximation bounds, interpreting the role of the
second level as a regularizer, and the explained variance by DKPCA is
analytically compared with shallow KPCA.

We also develop the generative DKPCA, so that hidden features
in multiple levels can be sampled from the latent spaces and their
correspondingly newly generated data can be attained. The role of each
component or each level can be explored by traversing it in the latent
space and keeping the others fixed, providing diversified aspects to
explore the meaning of principal components and the variation factors
of data. The pre-image problem is a well-known challenging problem
in KPCA, and its solution to general cases of multi-level KPCA was
not investigated before. In DKPCA, we incorporate the reconstruction
errors, minimized to approximate the pre-image feature mappings, so
that the reconstruction procedures can be conducted. Compared to the
generation and reconstruction in VAE-based methods, DKPCA creates
multiple latent spaces, which not only enhances modeling flexibility
with deep architectures but also provides multi-level feature learning.
Out-of-sample extensions are also allowed in DKPCA to predict unseen
data. The scalability issue commonly exists in kernel-based methods,
but this can be well resolved by the out-of-sample extensions owned by
DKPCA. When a small subset with 𝑀 samples is used in training and
he rest 𝑁 −𝑀 samples are predicted via out-of-sample extensions, the
aximal storage complexity of level 𝑗 drops from (𝑁2) to (𝑀2).

.2. Conclusion

In this paper, the proposed DKPCA introduces a novel deep archi-
ecture for unsupervised multi-level feature learning, where deep kernel
achines and neural networks can both be exploited. DKPCA realizes

orward and backward learning and provides more informative features
nabling the exploration and interpretations on hierarchical feature
bstractions. Both theoretical derivations and numerical evaluations
erify the effectiveness of DKPCA. The data representations learned
y DKPCA can be utilized in various tasks and on different types of
ata with promising practical values in the era of versatile data. Deep
ernel machines combine the advantages of both flexibility and inter-
retability. In future work, several interesting directions could be worth
nvestigating: variants of KPCA, e.g., sparse or robust KPCA, can be
tudied in deep architectures when sparsity or reliability are required; a
ore adaptive scheme of choosing the kernel functions in different lev-

ls can be favored for real-world applications, e.g., through parametric
echniques; similar to deep learning, more efficient end-to-end training
lgorithms would be of great significance.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data/code is available on the GitHub link in the manuscript.

cknowledgments

This work is jointly supported by ERC Advanced Grant E-DUALITY
787960), KU Leuven Grant CoE PFV/10/002, and Grant FWO G0A49
7N, EU H2020 ICT-48 Network TAILOR (Foundations of Trustwor-
hy AI - Integrating Reasoning, Learning and Optimization), and Leu-
en.AI Institute. This work was also supported by the Research Foun-
ation Flanders (FWO) research projects G086518N, G086318N, and
0A0920N; Fonds de la Recherche Scientifique — FNRS and the Fonds
etenschappelijk Onderzoek — Vlaanderen under EOS Project No.

0468160 (SeLMA).
590
ppendix A. Proofs and derivations

In this section, mathematical derivations to the modeling, optimiza-
ion, and analytical properties of the proposed DKPCA are elaborated.
KPCA establishes a novel deep architecture of KPCA, which has

ong been an important unsupervised feature learning methodology.
ppendix A.1 provides the formulations leading to the optimization in-

erpreted by a set of eigendecompositions. It demonstrates how DKPCA
everages the RKM formulations bridging neural networks and ker-
els and enjoys the merits of flexible deep architectures and more
nterpretable kernel methods. In what follows, technical details of the
enerative modeling are presented in Appendix A.2, showing promising
otentials for versatile scenarios in real-world applications. Proofs for
he lemmas in Section 4.2 are given in Appendix A.3, providing more
etails and insights towards the proposed DKPCA under the considered
ettings with analytical properties.

.1. Derivation of DKPCA

The objective (5) of DKPCA in the primal formulations is given
y the compositions of latent spaces of multiple levels, and its dual
ormulations can be attained by characterizing the stationary points to
5):
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⎪
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⎪

⎪

⎪

⎪
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= 0 ⇒ 𝑾 ⊤
1 𝜑1(𝒙𝑖) = 𝚲1𝒉

(1)
𝑖

− 𝜕
𝜕𝒉(1)𝑖

[

𝜑2(𝒉
(1)
𝑖 )⊤𝑾 2𝒉

(2)
𝑖

]

,

𝜕𝐽
𝜕𝑾 1

= 0 ⇒ 𝑾 1 =
1
𝜂1

∑𝑁
𝑖=1 𝜑1(𝒙𝑖)𝒉

(1)
𝑖
⊤
,

𝜕𝐽
𝜕𝒉(𝑗)𝑖

= 0 ⇒ 𝑾 ⊤
𝑗 𝜑𝑗 (𝒉

(𝑗)
𝑖 ) = 𝚲𝑗𝒉

(𝑗)
𝑖

− 𝜕
𝜕𝒉(𝑗)𝑖

[

𝜑𝑗+1(𝒉
(𝑗)
𝑖 )⊤𝑾 𝑗+1𝒉

(𝑗+1)
𝑖

]

,

∀𝑗 = 2,… , 𝑛levels − 1,
𝜕𝐽
𝜕𝑾 𝑗

= 0 ⇒ 𝑾 𝑗 =
1
𝜂𝑗

∑𝑁
𝑖=1 𝜑𝑗 (𝒉

(𝑗−1)
𝑖 )𝒉(𝑗)𝑖

⊤
,

∀𝑗 = 2,… , 𝑛levels − 1,
𝜕𝐽

𝜕𝒉(𝑛levels)
𝑖

= 0 ⇒ 𝑾 ⊤
𝑛levels

𝜑𝑛levels (𝒉
(𝑛levels−1)
𝑖 ) = 𝚲𝑛levels𝒉

(𝑛levels)
𝑖 ,

𝜕𝐽
𝜕𝑾 𝑛levels

= 0 ⇒ 𝑾 𝑛levels =
1

𝜂𝑛levels

∑𝑁
𝑖=1 𝜑𝑛levels (𝒉

(𝑛levels−1)
𝑖 )

×𝒉(𝑛levels)
𝑖

⊤
.

(A.1)

By eliminating the weight matrices 𝑾 𝑗 , one obtains the following
non-linear equations in the hidden features 𝒉(𝑗)𝑖 (see Box II): with 𝑗 =
2,… , 𝑛levels − 1.

By organizing (A.2) into matrices, the dual formulation of DKPCA
in (6) is obtained equivalently.

A.2. Derivation of generative DKPCA

For the challenging pre-image problem for multi-level nonlinear
PCA, we propose a procedure for generative DKPCA from the sampled
hidden features 𝒉(𝑗) in latent spaces with explicit feature maps: the
feature map 𝜑𝑗 of each level is known and can also be parametric with
learnable parameters.

Assume that 𝜑𝑗 is invertible, with the inverse map denoted as 𝜑−1
𝑗 ,

nd that 𝒉(𝑛levels) is given, which can be the hidden feature vector of a
raining or test point, or newly sampled from the latent space. First,
iven the learned 𝒉(𝑗)𝑖 from the training, we introduce an additional
erm per level to the objective (5) for a point 𝒙: 1

2𝜑1(𝒙)⊤𝜑1(𝒙) for the
first level and 1𝜑

(

𝒉(𝑗−1)
)⊤ 𝜑

(

𝒉(𝑗−1)
)

for level 𝑗 = 2,… , 𝑛 .
2 𝑗 𝑗 levels
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Characterizing the stationary points w.r.t. 𝜑1(𝒙) and 𝜑𝑗
(

𝒉(𝑗−1)
)

, we
obtain

⎧

⎪

⎨

⎪

⎩

𝜕𝐽
𝜕𝜑1(𝒙)

= 0 ⇒ 𝜑1(𝒙) = 𝑾 1𝒉(1),

𝜕𝐽
𝜕𝜑𝑗

(

𝒉(𝑗−1)
)
= 0 ⇒ 𝜑𝑗

(

𝒉(𝑗−1)
)

= 𝑾 𝑗𝒉(𝑗), ∀𝑗 = 2,… , 𝑛levels,

(A.3)

so that the feature map 𝜑𝑗 (⋅) of each level can be calculated from the
given hidden features 𝒉(𝑗). DKPCA then generates new samples through
the inverse maps of the multiple levels, and accordingly a generated
sample 𝒙̂ is attained through 𝜑−1

1 in the first level that maps 𝑾 1𝒉(1)

back to the input space, as shown in (10).
In case the inverse map 𝜑−1

1 is unknown explicitly, one can learn a
pre-image map by minimization of the AutoEncoder reconstruction as
described in Section 3.3.

We also developed an extension to attain the hidden features in
each level corresponding to an out-of-sample point 𝒙⋆ from the first,
third, and fifth equations in (A.1). For the two-level case with linear
𝑘2, where it is more straightforward to obtain the out-of-sample exten-
sion, we obtain by eliminating the interconnection matrices: 𝒉(2)⋆ =
1

𝜂1𝜂2
(𝚲2 − 1

𝜂22
𝑯⊤

2𝑯1𝚲−1
1 𝑯⊤

1𝑯2)−1𝑯⊤
2𝑯1𝚲−1

1 𝑯⊤
1𝜱1𝜑1(𝒙⋆) and 𝒉(1)⋆ =

−1
1 ( 1

𝜂1
𝑯⊤

1𝜱1𝜑1(𝒙⋆) +
1
𝜂2
𝑯⊤

1𝑯2𝒉(2)
⋆).

A.3. Proof of deep approximation analysis

In this section, we give the proofs of Lemmas 4.1 and 4.2 in the
two-level case of (13).

A.3.1. Proof of approximation bounds
With the level-wise SVD interpretation to the discussed two-level

cases in (13), the Eckart-Young theorem can be applied to both levels,
deriving the approximation errors:
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(A.4)

with 𝑟1 = rank(𝑲1 +
1
𝜂2
𝑯2𝑯⊤

2 ) and 𝑟2 = rank( 1
𝜂2
𝑯1𝑯⊤

1 ). We fix 𝜂1 = 1
nd vary the regularization factor 𝜂2. With orthonormality constraints
n the second level, ‖‖

‖
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2
‖

‖

‖𝐹
=

√

𝑠2, the lower bound in Lemma 4.1
s obtained.

Using the orthonormality constraints of the second level, we square
A.4) and rewrite it as
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(A.6)

ecalling that 𝑲1 is positive semi-definite, the inequality for the up-
er bound when 𝜂2 > 0 in Lemma 4.1 is obtained by using (A.6)
n (A.5). When 𝜂2 < 0 in Lemma 4.1, with symmetric 𝑲1, note that
ax𝑯𝑇

2 𝑯2=𝐼
Tr(𝑯⊤

2𝑲1𝑯2) =
∑𝑠2
𝑖=1 𝜆𝑖, which gives the upper bound by

ombining with (A.5). Therefore, the proof of deriving the bounds for
he approximation analysis in Section 4.2 is completed.

.3.2. Proof of explained variance lemma
In the two-level architecture of (13), let 𝜆𝑖 be the 𝑖th largest eigen-

value of 𝑲1 and 𝜆𝑖 be the 𝑖th largest eigenvalue of 𝑲1 +
1
𝜂2
𝑯2𝑯⊤

2 .
In the full decomposition case (𝑠1 = 𝑠2 = 𝑁), 𝑯2 is an orthogonal

matrix due to the orthogonality constraints. We denote 𝒉(1)∶𝑖 the 𝑖th
column of 𝑯1, i.e., the eigenvector corresponding to 𝜆𝑖. Then for each
eigenvalue 𝜆𝑖, we have
(

𝑲1 +
1
𝜂2

𝑯2𝑯⊤
2
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)𝒉(1)∶𝑖 ,

(A.7)

ielding 𝜆𝑖 = 𝜆𝑖 −
1
𝜂2

. Note that we consider 1 ≤ 𝑛 < 𝑁 for the
cumulative explained variance in this lemma, as otherwise one would
explain 100% of the variance, resulting in equality in (15). Further, 𝜆𝑖
is constrained to be non-negative, i.e., 𝜆𝑖 ≥ 0, which keeps the ratio
∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

between 0 and 1 for a solid analysis of the explained variance.
This leads to the condition

𝜂2 ≤ − 1
𝜆𝑁

, (A.8)

where 𝜆𝑁 is the smallest eigenvalue of 𝑲1.
With (A.7), the explained variance by the first 𝑛 deep principal

components can be rewritten as
∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

=

∑𝑛
𝑗=1 𝜆𝑗 +

𝑛
𝜂2

∑𝑁
𝑖=1 𝜆𝑖 +

𝑁
𝜂2

, (A.9)

hich is greater than the variance explained by the shallow principal
omponents

∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

when satisfying

∑𝑛
𝑗=1 𝜆𝑗 +

𝑛
𝜂2

∑𝑁
𝑖=1 𝜆𝑖 +

𝑁
𝜂

−

∑𝑛
𝑗=1 𝜆𝑗

∑𝑁
𝑖=1 𝜆𝑖

=
𝑛
∑𝑁
𝑖=1 𝜆𝑖 −𝑁

∑𝑛
𝑗=1 𝜆𝑗

𝜂
(

∑𝑁 𝜆
)2

+𝑁
∑𝑁 𝜆

> 0. (A.10)

2 2 𝑖=1 𝑖 𝑖=1 𝑖
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In (A.10), there exists two cases either with denominator and nu-
erator both positive or negative. For the former case, a positive
umerator gives

∑𝑛
𝑗=1 𝜆𝑗
Tr𝑲1

< 𝑛
𝑁 . For 1 ≤ 𝑛 < 𝑁 , the ratio between the first

largest 𝑛 eigenvalues and the summation of all eigenvalues, i.e.,
∑𝑛
𝑗=1 𝜆𝑗
Tr𝑲1

,
is always greater than 𝑛

𝑁 , which is contradictory with the condition for
positive numerator. We thereby consider the case with denominator

nd numerator both negative, from which one obtains the conditions

2 < − 𝑁
Tr𝑲1

and 1 ≤ 𝑛 <
𝑁

∑𝑛
𝑗=1 𝜆𝑗

Tr𝑲1
, the latter of which always holds.

ombining with (A.8), as − 𝑁
Tr𝑲1

> − 1
𝜆𝑁

, the required condition of
emma 4.2 on the explained variance remains as (A.8), i.e., 𝜂2 < − 1

𝜆𝑁
.

Note that the increase of DKPCA in explained variance can now

be written as
𝑛−𝑁

∑𝑛
𝑗=1 𝜆𝑗
Tr𝑲1

𝜂2 Tr𝑲1+𝑁
. Given fixed 𝜂2, 𝑛, and Tr𝑲1, the explained

variance boost of DKPCA is more pronounced when the decay or the
cumulative ratio of the first 𝑛 eigenvalues of 𝑲𝟏 is not sharp, which is
often the case in complex real-word data.

Appendix B. Supplementary empirical evaluations

B.1. Detailed experimental setups

Datasets. Three synthetic datasets are tested (see Fig. B.1): a square
synthetic dataset (Synth 1, see Fig. B.1(a)), a complex 2D synthetic
dataset consisting of one square, two spirals and one ring (Synth 2,
see Fig. B.1(b)), and a multivariate Normal synthetic dataset (Synth
3), where samples are drawn randomly from a multivariate normal
distribution with zero mean and fixed covariance matrix. The test set
of Synth 3 consists of 𝑁test = 10000 samples drawn from the same
distribution. For real-world data, detailed descriptions on the used
datasets can be found in Table B.1. The downstream supervised tasks
are performed on publicly available UCI benchmark datasets (Dua &
Graff, 2017).

Evaluation metrics and compared methods. Different related unsuper-
vised learning methods are adopted to comprehensively evaluate our
proposed deep KPCA. A comparison to the shallow kernel PCA is
presented in terms of the explained variance, demonstrating the higher
informativeness of the principal components learned by our method.
For the general disentangled feature learning, we consider the state-
of-the-art methods 𝛽-VAE (Higgins et al., 2017), FactorVAE (Kim &
Mnih, 2018), and 𝛽-TCVAE (Chen et al., 2018). In the qualitative dis-
entanglement experiments, convolutional-based network architectures
are used for the data feature maps, with details shown in Table B.2.
We keep the same encoder 𝜑1 and decoder 𝜓1 architecture for all
compared methods and use 𝑘2(𝑧, 𝑦) = 𝑧⊤𝑦 for the second DKPCA level.
To quantitatively evaluate the disentanglement learning, we employ the
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IRS metric (Suter et al., 2019), where a higher value indicates better
robustness to changes in generative factors. In other words, if a latent
variable is associated with some generative factor, the inferred value
of this latent variable shows little change when that factor remains the
same, regardless of interventions to the other generative factors. Other
metrics for disentanglement evaluation have been proposed, but it has
been shown that they are closely correlated with each other (Locatello
et al., 2019).

Hyperparameter selection. In unsupervised learning experiments, for
consistent evaluations, the shared hyperparameters among all methods
are fixed to be the same, e.g., the RBF bandwidth in KPCA. For the
model-specific hyperparameters, we used the suggested values in the
papers of the compared methods. Specifically, we used 𝛽 = 4 for 𝛽-VAE,
𝛽 = 6, 𝛼 = 1, 𝛾 = 1 for 𝛽-TCVAE, and 𝛾 = 10 for FactorVAE. We fix 𝜂𝑗 =
1, 𝑗 = 1,… , 𝑛levels and 𝛾 = 1 in (11) to equally balance the AE and deep
KPCA error. For the more challenging SmallNORB, we set 𝛾 = 100 for
better reconstruction. In the qualitative disentanglement experiments,
we use Adam optimizer (Kingma & Ba, 2015) with learning rate 10−4

nd 50,0000 maximum epochs for the compared methods. For DKPCA,
n the qualitative disentanglement experiments we use Riemannian
dam (Becigneul & Ganea, 2019) with learning rate 2 ⋅10−4 and 80,000
aximum epochs. Concerning the principal components, 𝑠1 = 𝑠2 is set

to the true number of generative factors and the factors of variations
involving the fewest pixels are trained on a subset with fixed factors of
highest variation as these factors dominate the principal components as
they have the largest number of pixels. In the quantitative disentangle-
ment experiments, we employ the two-level architecture of (13) with
linear kernels, which are parameter-free. In the experiments comparing
the explained variance of KPCA, DKPCA and Deng et al. (2019), the
shared hyperparameters, i.e., the RBF bandwidth, are set the same
for all levels in the methods for consistent comparisons and selected
based on reconstruction error on a validation set. In the supervised
experiments, the RBF kernel is used for all datasets. Tuning is carried
out through grid search based on validation performance. The 𝜎2 of

BF kernels is tuned between exp (−2) and exp (7). For DKPCA, we tune
2 between −10 and 10. The hidden features of the test points are
btained through a kernel smoother approach (Hastie et al., 2009) for
he supervised and the large-scale disentanglement experiments. In the
xplained variance experiments, subsampling of 3DShapes and MNIST
s performed with 𝑁 = 50 and 𝑁 = 100, respectively. The shared
yperparameters in the compared methods are tuned under the same
ettings, e.g., the kernel parameters are tuned in the same range.

.2. Additional results

In Table B.3, we empirically evaluate the DKPCA optimization

lgorithms discussed in Section 3.2 in terms of speed and quality
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Table B.1
Details of the datasets used in the experimental evaluation of unsupervised learning with DKPCA, where ‘‘#’’ stands for ‘‘number of’’.

Dataset Input dimensions # Factors ofvariation Meaning of the factors
of variation
and # possible values

Total #data points

Synth 1 2 – – 100
Synth 2 2 – – 100
Synth 3 140 – – 10 100
MNIST 1 x 28 x 28 – – 60 000
Cars3D 3 x 64 x 64 3 - elevation (4 possible

values)
- azimuth (24 possible
values)
- object type (183
possible values)

17 568

3DShapes 3 x 64 x 64 6 - floor color (10
possible values)
- wall color (10 possible
values)
- object color (10
possible values)
- scale (8 possible
values)
- shape (4 possible
values)
- orientation (15
possible values)

480 000

SmallNORB 1 x 64 x 64 4 - category (5 possible
values)
- elevation (9 possible
values)
- azimuth (18 possible
values)
- lighting condition (6
possible values)

4860
n
s
e
w
e
p
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r
f
p
(

l
T
p
e
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Table B.2
Model architectures for the disentangled feature learning exper-
iments with computer vision datasets. For all, 𝑐 = 40 and 𝑘̂ = 3.
All convolutions (Conv) and transposed convolutions (ConvTr)
are with stride 2 and padding 1, except the last convolutional
layer of 𝜑1 and the first transposed convolutional layer of 𝜓1,
which have stride 1 and no padding. Layers have Parametric-
RELU (𝛼 = 0.2) activation functions, except the output layer
of the pre-image map 𝜓1 that has Sigmoid activation function
(since input data is normalized in [0, 1]).

Encoder 𝜑1(⋅) Decoder 𝜓1(⋅)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶𝑜𝑛𝑣 [𝑐] × 4 × 4;
𝐶𝑜𝑛𝑣 [𝑐 × 2] × 4 × 4;
𝐶𝑜𝑛𝑣 [𝑐 × 4] × 𝑘̂ × 𝑘̂;
𝐹𝐶 256;
𝐹𝐶 50 (𝐿𝑖𝑛𝑒𝑎𝑟)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐹𝐶 256;
𝐹𝐶 [𝑐 × 4] × 𝑘̂ × 𝑘̂;
𝐶𝑜𝑛𝑣𝑇 𝑟 [𝑐 × 4] × 4 × 4;
𝐶𝑜𝑛𝑣𝑇 𝑟 [𝑐 × 2] × 4 × 4;
𝐶𝑜𝑛𝑣𝑇 𝑟 [𝑐] (𝑆𝑖𝑔𝑚𝑜𝑖𝑑)

of the solutions on the Ionosphere dataset under the settings of Ta-
ble 1 in main text. The termination condition for both algorithms is
‖

‖

‖

𝑯𝑘+1 −𝑯𝑘‖
‖

‖max
∕𝛼𝑘 ≤ 10−4 where 𝛼𝑘 is the stepsize. Both algorithms

achieve a similar final cost and all computed solutions show good
feasibility. The lowest average cost is found by Riemannian Adam.
Riemannian Adam is significantly faster than PGD due to the com-
putationally expensive SVD used in the latter. Riemannian Adam can
therefore be a more efficient alternative training algorithm for large-
scale high-dimensional problems and was employed in the generative
disentanglement experiments. We also show the training time of shal-
low KPCA and the deep KPCA of Deng et al. (2019) in Table B.4. It
can be seen that deep kernel machines require more training time,
which is reasonable as our DKPCA algorithm performs end-to-end
training, employing a significantly different training scheme than the
compared methods that simply conduct eigendecompositions. While
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our DKPCA takes relatively longer time in training, our new insights
in the unsupervised deep kernel methods and boosted performance are
of significance.

Table B.5 gives the test reconstruction errors on a 140-dimensional
synthetic dataset with different numbers of principal components in
the two-level DKPCA of Eq. (13) with linear kernels. In Table B.5, for a
fixed 𝑠1, the best test error is obtained with 𝑠2 = 𝑠1: the test error does
ot further decrease for 𝑠2 > 𝑠1. In fact, the rank of 𝑯1𝑯𝑇

1 is at most 𝑠1.
o an 𝑯2 with rank higher than 𝑠1 cannot lead to lower approximation
rror. Therefore, for a fixed 𝑠1 in this conceived two-level architecture
ith linear kernels, 𝑠1 should be set as 𝑠1 ≤ 𝑠2 in terms of reconstruction

rror, in which increasing 𝑠1 leads to lower reconstruction error as more
rincipal components are incorporated.

We additionally compare the principal components from our DKPCA
nd Deng et al. (2019) through the ratio of explained variance. The
esults are shown in Fig. B.2. These experiments show that the learned
eatures of the proposed DKPCA can explain more variance in the first
rincipal components than the sequential deep KPCA of Deng et al.
2019).

In Table B.6, we provide the ablation study on the number of
evels in our DKPCA, based on the setups of the downstream task in
able 1. The number of levels is currently determined by the validation
erformance: a two-level architecture gives good performance for all
valuated datasets and tasks in this work; performance does not dis-
inctively vary when increasing the depth to three or four levels and
et it may result in overfitting and more computation. This is similar
o determining the number of layers in neural networks. The ablation
tudy demonstrates that 3-level and 4-level models perform similarly to
he two-level model in terms of the supervised and unsupervised met-
ics. For simplified setups and more consistent evaluations, we default
he number of levels as 2 in Table 1 in main text. A deeper architecture
ay be useful on problems where greater model complexity could boost
lassification accuracy. One can always tune each dataset separately on
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Fig. B.2. Explained variance of principal components from the deep KPCA of Deng et al. (2019) and our DKPCA. (a, b, c) Compared to Deng et al. (2019) using the same kernel,
our method is able to capture greater explained variance in the first principal component, showing that the proposed forward–backward training algorithm outputs more informative
principal components. (d) Four-level architecture from Deng et al. (2019) trained on MNIST, which does not consistently show increased explained variance with deeper levels
compared to our DKPCA in Fig. 9(c).
Table B.3
Comparison of PGD and Riemannian Adam training algorithms for Problem (9) on the Ionosphere dataset.
Mean (standard deviation) over five initializations. Lower is better on all metrics.

Algorithm Final cost Final feasibility Runtime (s)

PGD 0.44045 (0.00003) 2.29 ×10−13 (10−12) 1.03 (0.018)
Riemannian Adam 0.43938 (0.0001) 1.93 ×10−12 (10−12) 0.172 (0.002)
Table B.4
Average training time of 5 runs (in seconds).

Dataset KPCA Deng et al. (2019) DKPCA

Diabetes 0.016 0.038 0.161
Ionosphere 0.015 0.025 0.172
Liver 0.017 0.095 0.117
Cholesterol 0.014 0.037 0.126
Yacht Hydrodynamic 0.009 0.053 0.143

Table B.5
Test reconstruction error (MSE) on the 140D Synth 3 dataset
for different numbers of principal components of the two levels
in the proposed deep KPCA. All numbers are ×102.

𝑠2
𝑠1 2 4 16 32 64 100

2 1.59 1.60 1.59 1.63 1.65 1.66
4 1.59 1.53 1.55 1.62 1.62 1.64
16 1.59 1.53 1.26 1.38 1.55 1.59
32 1.59 1.53 1.26 1.08 1.35 1.44
64 1.59 1.53 1.26 1.08 0.98 1.19
100 1.59 1.53 1.26 1.08 0.98 0.97

its own validation set, and in this way the performance of our DKPCA
can be further boosted as shown in the supplemented ablation study.
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Table B.6
Ablation study on the number of levels in DKPCA in terms of the supervised
downstream tasks and disentangled feature learning. Higher scores (↑) are better for
ACC (%) and WINDIN, lower scores (↓) are better for RMSE.

Dataset Metric 2-level 3-level 4-level

Diabetes ACC(↑) 72.02 72.07 72.10
WINDIN(↑) 0.287 0.275 0.276

Ionosphere ACC(↑) 93.04 93.01 92.99
WINDIN(↑) 1.05 1.08 1.13

Liver ACC(↑) 74.36 74.37 74.37
WINDIN(↑) 0.72 0.74 0.73

Cholesterol RMSE(↓) 60.59 60.25 60.19
WINDIN(↑) 0.003 0.004 0.004

Yacht Hydrodynamics RMSE(↓) 8.02 8.21 8.27
WINDIN(↑) 0.19 0.18 0.16
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