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Accelerated sparse Kernel Spectral Clustering for
large scale data clustering problems
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Abstract—An improved version of the sparse multiway kernel
spectral clustering (KSC) is presented in this brief. The original
algorithm is derived from weighted kernel principal compo-
nent (KPCA) analysis formulated within the primal-dual least-
squares support vector machine (LS-SVM) framework. Sparsity
is achieved then by the combination of the incomplete Cholesky
decomposition (ICD) based low rank approximation of the kernel
matrix with the so called reduced set method. The original ICD
based sparse KSC algorithm was reported to be computationally
far too demanding, especially when applied on large scale data
clustering problems that actually it was designed for, which has
prevented to gain more than simply theoretical relevance so far.
This is altered by the modifications reported in this brief that
drastically improve the computational characteristics. Solving
the alternative, symmetrized version of the computationally most
demanding core eigenvalue problem eliminates the necessity of
forming and SVD of large matrices during the model construc-
tion. This results in solving clustering problems now within
seconds that were reported to require hours without altering the
results. Furthermore, sparsity is also improved significantly, lead-
ing to more compact model representation, increasing further not
only the computational efficiency but also the descriptive power.
These transform the original, only theoretically relevant ICD
based sparse KSC algorithm applicable for large scale practical
clustering problems. Theoretical results and improvements are
demonstrated by computational experiments on carefully selected
synthetic data as well as on real life problems such as image
segmentation.

Index Terms—spectral clustering, sparse model, large-scale
data, kernel methods, LS-SVM

I. INTRODUCTION

SPECTRAL Clustering (SC) algorithms are known to per-
form well even in case of complex structures in the data

when classical methods fail. This has led to several successful
applications in computer vision [1]–[3], load balancing [4],
[5], bioinformatics [6], [7], network [8], [9] and many other
data analysis and machine learning related problems.

Classical formulations of SC [1], [10]–[14] starts from a
graph partitioning problem that is NP-hard due to the discrete
constraints on the indicators. By letting the indicator vectors
to be real valued, the optimal solution of this relaxed version
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is provided by some of the eigenvectors of the underlying nor-
malised affinity matrix. The discrete cluster indicators of the
original problem can then be inferred from these eigenvectors.

Traditional SC algorithms are typically based on the com-
plete data set due to the lack of a clear extension to unseen
data. Since the memory requirement of the affinity matrix as
well as the computing time of the corresponding eigenvalue
decomposition grow quickly with increasing data size, these
SC algorithms are suitable only for relatively small size
problems. A possible extension is offered in [15], [16] by
using the Nyström method [17]. These algorithms rely only
on a subset of the data to obtain an approximation of the
implicit eigenfunctions that is used then to cluster the out-of-
sample data points. However, the underlying clustering model
is unknown and the hyper-parameter selection is done in a
heuristic way.

Unlike the traditional graph partition based SC, the so
called Kernel Spectral Clustering (KSC) [18], [19] has been
formulated as weighted Kernel Principal Component Analysis
(KPCA) [20] using the primal-dual Least Square Support
Vector Machine (LS-SVM) framework [21], [22]. It has been
shown in [18], that the optimal solution of this weighted KPCA
problem in the dual space resembles to the random walk SC
eigenvalue problem [1] when choosing the weights appropri-
ately. However, the weight centered kernel matrix plays the
role of the affinity matrix in the case of weighted KPCA
hence the name KSC. Unlike the classical SC algorithms,
KSC provides model selection criterion for hyper-parameter
tuning that can be used to find the optimal number of clusters
and kernel parameters. The most important advantage of KSC
though is the natural and straightforward way that it offers for
out-of-sample extension without relying any Nyström like ap-
proximations. This makes possible to construct the clustering
model based on a subset of the data while the obtained model
can be used then to assign any remaining or new data points
to the clusters.

For extending the KSC applicability to large scale data,
sparse models have been developed [23], [24] based on the
reduced set method [25], [26] and exploiting its out-of-sample
extension capability. One [24] relies on an iterative, quadratic
Rényi entropy maximisation based subset selection [22], [27]
before obtaining the reduced set points. A mathematically
more concise solution [23], [24] is built on the Incomplete
Cholesky Decomposition (ICD) based low rank approximation
of the kernel matrix [28]–[30]. While both outperform the
Nyström approximation based sparse version of the traditional
SC [24], the ICD based algorithm has the great advantage that
it automatically provides the reduced set, used for the sparse
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model construction, while the former requires an additional
L1+L2 penalisation [26], [31] based step for this. On the
other hand, the ICD based sparse KSC was observed [24] to
require larger reduced set size (i.e. worse sparsity) compared
to the Rényi entropy maximisation based version. More im-
portantly, the ICD based sparse KSC algorithm was found to
be computationally far too demanding [23], [24], especially
in case of larger data sets which the sparse algorithm was
actually designed for which has prevented to gain any practical
importance so far. Our main contributions, summarized below,
result in a new version of the algorithm that alter this situation:

1) The computationally expensive core part of the original
algorithm is replaced with a significantly faster but
equivalent alternative. This drastically accelerates the
ICD based sparse KSC, especially in case of large data
sets, resulting in solving the same clustering problem
within seconds that were reported to require hours for
the original version without altering the results.

2) A more accurate computation of the approximated bias
terms, depending less directly on the reduced set size,
is introduced. This leads to a substantially increased
sparsity of the obtained clustering model which not only
improves further the computational efficiency but also
results in a more compact model representation.

3) The theoretical results and improvements are demon-
strated by computational experiments on carefully se-
lected synthetic as well as on real life problems such as
image segmentation.

II. PROBLEM FORMULATION

A. SC formulation as weighted KPCA

While all the details can be found elsewhere [18], [19], the
most important characteristics of the (none-sparse) multiway
KSC is summarized first briefly in order to provide the neces-
sary basis for the corresponding sparse problem formulation.

Given an input data set D = {xi}Ni=1,xi ∈ Rd together with
the corresponding weights V = {vl}Nl=1, vl ∈ R+, the goal of
weighted KPCA is to find the directions such that the weighted
variance of the projections of the weight centered ϕ(·) : Rd →
Rnh feature map of D onto thesew(k) ∈ Rnh , k = 1, . . . ,K <
N direction vectors is maximal. This leads to the following
primal optimisation problem [18], [19]

max
w(k),e(k),b(k)

J(w, e, b) =
1

2

K∑
k=1

γ(k)e(k)T V e(k)

−1

2

K∑
k=1

w(k)Tw(k)

such that e(k) = Φw(k) + b(k)
1N , k = 1, ...,K

(1)
where γ(k) ∈ R+, V ∈ RN×N , [V ]ii = vi, i = 1, ..., N is the
diagonal weight matrix, Φ = [ϕ(x1), . . . , ϕ(xN )]T ∈ RN×nh

is the feature map matrix and e(k) = Φw(k) + b(k)
1N ∈

RN , k = 1, . . . ,K are the error vectors with the b(k) ∈ R, k =

1, . . . ,K bias terms. It can be shown, that using the bias terms
leads to the same weighted centering of the feature map as the
corresponding explicit centering [21]. The Lagrangian of this
constrained optimization problem is

L(w(k), e(k), b(k);βββ(k)) =
1

2

K∑
k=1

γ(k)e(k)T V e(k)

− 1

2

K∑
k=1

w(k)Tw(k) −
K∑
k=1

βββ(k)T (e(k) − Φw(k) − b(k)
1N )

(2)

with βββ(k) ∈ RN , k = 1, ...,K Lagrange multiplier vectors.
Starting from the Karush-Kuhn-Tucker (KKT) optimality con-
ditions and eliminating the primal variables yield the following
eigenvalue problem

VMvΩβββ
(k) = λ(k)βββ(k), k = 1, ...,K (3)

for the optimal solution of the wighted KPCA problem in-
volving the dual variables βββ(k) as eigenvectors. Mv = IN −
1N1

T
NV/[1

T
NV 1N ] above is the weighted centering matrix,

Ω = ΦΦT is the kernel matrix with [Ω]ij = ϕ(xi)
Tϕ(xj) =

K(xi,xj), i, j = 1, ..., N and K : Rd×Rd → R is a positive
definite kernel while λ(k) = 1/γ(k). It can be shown easily,
that the objective given by (1) can be maximised by taking
the K leading eigenvectors of the VMvΩβββ

(k) matrix.
The KKT optimality conditions (Eqs.(11) in [19]) provide

the w(k) = ΦTβββ(k) connection between the primal - dual
solutions as well as the b(k) = −1TNV ΦΦTβββ(k)/[1TNV 1N ]
expression for the bias terms. These yield z(k) = Φw(k) +
b(k)

1N = MvΩβββ
(k) ∈ RN for the k-th score variable, i.e.

projection of the weight centered feature map of the input
data set D onto the k-th optimal direction vector.

As discussed in depth in [18], [19], (3) becomes

D−1MDΩβββ(k) = λ(k)βββ(k), k = 1, ...,K (4)

when using the K(xi,xj) kernel to measure the pairwise
similarities between the xi,xj ∈ D input data points and
choosing the corresponding inverse degree matrix V =
D−1,diag(D) = Ω1N as the weight matrix. This resembles
to the eigenproblem of a classical SC algorithm, introduced
in [1] based on the normalized random walk graph Laplacian,
with the only difference that now the weight centered kernel
matrix plays the role of the affinity matrix. However, the
properties of the eigenvectors βββ(k) are different now from
those obtained during the related classical SC algorithm due
to the weighted centering of the kernel matrix. Nevertheless,
the special properties of some of these βββ(k) eigenvectors
make possible the clustering interpretation of the weighted
KPCA, hence the name Kernel Spectral Clustering (KSC).
Construction of the clustering model together with some of
its most attractive properties are summarized below. Interested
readers can find all details elsewhere [18], [19].

1) Cluster membership encoding-decoding: The special
properties of some selected eigenvectors of the D−1MDΩ
matrix and the corresponding score variables are discussed
in detail in [18], [19] under the assumption, that the input
data set contains K clusters. It has been shown, that the more
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similar a subset of the input data are the more collinear their
K − 1 dimensional representations in the subspace spanned
by the columns of the Z = [z(1), . . . ,z(K−1)] ∈ RN×K−1

score matrix that corresponds to the K−1 leading eigenvectors
of the D−1MDΩ matrix. Moreover, well separated clusters
are mapped into different orthant of this K − 1 space. These
makes possible the cluster membership encoding and model
construction either by selecting the K most frequent K − 1
dimensional sign based code words [18], [19], constructed
from the rows of Z, or finding K direction based encoding
exploiting the above mentioned collinearity [32]. Either way,
the model construction results in K cluster prototypes that can
be used then to assign the individual data points to one of the
clusters. This is done by selecting the cluster that yields the
minimal distance measured between the K cluster prototypes
and the K−1 dimensional score space representation of a given
data point, i.e. the corresponding row of Z. The distance is
either Hamming or direction based depending on the selected
encoding.

2) Out-of-sample extension and model selection: The fact
that KSC includes the above mentioned model construction
step before the cluster membership assignment has important
consequences.

The first is the natural way that KSC offers for out-of-
sample extension. This is simple because the KSC model can
be constructed based on a Dtr = {xtri }

Ntr
i=1 ⊂ D subset of the

input data set and the constructed model can be used then to
assign any x ∈ Rd data point to one of the clusters. The model
construction requires the βββ(k) ∈ RNtr , k = 1, ...,K−1 lead-
ing eigenvectors of the corresponding D−1MDΩ ∈ RNtr×Ntr

matrix. Then before the assignment, one needs to compute the

z(k)(x) = ϕ(x)Tw(k) + b(k) =

Ntr∑
i=1

K(x,xi)β
(k)
i + b(k) (5)

k = 1, ...,K − 1 projections of the given x data point.
The second is the KSC model selection capability. As men-

tioned above, the collinearity of the K − 1 dimensional score
space representation of the input data, assigned to the same
cluster, indicates how well the data set is partitioned into K
clusters using the given kernel parameter and K cluster number
hyper-parameters. This can be exploited for defining model
selection criterion that accounts and measures the related
collinearity. One can construct KSC models with different
hyper-parameter values and then select the one that yields
the maximal model selection criterion. Combining this with
the out-of-sample extension capability, the model construction
can be done based on a training subset of the data while a
different, validation subset can be used for the evaluation of
the model selection criteria.

B. Original ICD based sparse KSC

As discussed in the previous section, KSC requires to compute
the βββ(k) ∈ RN , k = 1, ...,K− 1 leading eigenvectors of the
D−1MDΩ matrix, assuming K clusters in the data. The score
variables can be computed then based on these eigenvectors,
as given by (5), and used for the KSC model construction
(x ∈ D) as well as for clustering any x ∈ Rd data point.

While the out-of-sample extension capability of KSC offers
the Dtr ⊂ D, Ntr = |Dtr| based model construction, one still
would like to use as large Dtr subset as possible in order
to incorporate as much information in the model construction
as available in the entire D data set. On the other hand, the
size of the related eigenvalue problem (4) grows rapidly with
increasing Ntr which leads to an intractable problem again in
case of large Dtr. This requires an approximate solution of
the associated eigenvalue problem that is suitable even in case
of large Ntr.

Furthermore, the primal solutions of the underlying
weighted KPCA problem are expressed as linear combinations
of the mapped input data w(k) = ΦTβββ(k), k = 1, . . . ,K − 1.
Since the components of the βββ(k) eigenvectors are usually
not zero, each data point contributes to the primal vari-
able w(k) resulting in a non-sparse model. The so-called
reduced set method [25], [26] was utilised in [23], [24] to
construct the sparse model by finding R = {x̃r}Rr=1 ⊂
Dtr, R < Ntr reduced set points and the corresponding
ξ(k) ∈ RR, k = 1, . . . ,K − 1 reduced set coefficients such
that w(k) = ΦTβββ(k) ≈ w̃(k) = ΨT ξ(k), k = 1, . . . ,K − 1
with Ψ = [ϕ(x̃1), . . . , ϕ(x̃R)]T ∈ RR×nh . After finding
an appropriate set of reduced set points, the reduced set
coefficients are determined by minimizing the squared distance
of the approximation that yields the

ΩΨΨξ
(k) = ΩΨΦβ̃ββ

(k)
(6)

linear system at the first order optimality where ΩΦΦ =
ΦΦT ∈ RNtr×Ntr , ΩΨΦ = ΨΦT ∈ RR×Ntr and ΩΨΨ =
ΨΨT ∈ RR×R are the corresponding kernel matrices.

Note, that w(k) ≈ w̃(k) above is nothing more than an
approximation based on the linear combination of a small
{ϕ(x̃r)}Rr=1 subset of the {ϕ(xi)}

Ntr
i=1 feature map vectors.

Therefore, finding an appropriate reduced set corresponds to
identify the R = {x̃r}Rr=1 ⊂ Dtr, R < Ntr points such that
the corresponding {ϕ(x̃r)}Rr=1 feature map vectors are linearly
independent.

The incomplete Cholesky decomposition of the ΩΦΦ =
ΦΦT ∈ RNtr×Ntr kernel matrix provides solutions to both
problems mentioned above. It offers a reduced size, approx-
imate solution of the related eigenvalue problem (4) that is
suitable even in case of large Ntr. Moreover, it automati-
cally provides an appropriate reduced set R = {x̃r}Rr=1 ⊂
Dtr, R < Ntr that can be used for the sparse KSC model
construction as discussed above.

1) On the ICD of the kernel matrix: Any symmetric
positive definite matrix A ∈ RM×M can be decomposed as
A = LLT where L ∈ RM×M is a lower triangular matrix.
If the spectrum of A decays rapidly it has a small numerical
rank [33] and A can be well approximated by GGT where
G ∈ RM×R, R � M [34]. This is the incomplete Cholesky
decomposition of A. ICD with symmetric pivoting greedily
selects the columns of A and calculates the columns of G such
that a lower bound on the actual gain in the corresponding
approximation error ‖PAPT − GGT ‖1 = Tr(PAPT −
GGT ) = ε is maximised [30]. P is the permutation matrix
associated to the symmetric pivoting and ‖ · ‖1 is the trace
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norm. The algorithm terminates when the approximation error
drops below a certain limit ε ≤ εtol.

Since the spectrum of the ΩΦΦ = ΦΦT ∈ RNtr×Ntr kernel
matrix decays rapidly in case of many kernels, it can be very
often well approximated by GGT = Ω̃ΦΦ ≈ ΩΦΦ, G ∈
RNtr×R with a low R � Ntr rank [29], [33], [35]. This is
utilised in [23], [24] to obtain an approximate, reduced size
solution of the eigenvalue problem given by (4), that is suitable
even in case of large Ntr.

Moreover, as the Cholesky decomposition of the ΩΦΦ kernel
matrix is equivalent to the QR factorization of the correspond-
ing feature map Φ = [ϕ(x1), . . . , ϕ(xNtr )]T ∈ RNtr×nh

[36], its incomplete version GGT = Ω̃ΦΦ ≈ ΩΦΦ can be
seen as the result of a truncated, pivoted Gram-Schmidt(GS)
orthogonalization of these feature map vectors. The selected
pivots, i.e. {ϕ(x̃r)}Rr=1 that correspond to the columns of Ω
selected during the ICD, are linearly independent. Therefore,
ICD automatically provides a suitable reduced set R =
{x̃r}Rr=1 such that the corresponding {ϕ(x̃r)}Rr=1 linearly
independent feature vectors are suitable for the sparse KSC
model construction.

2) The original algorithm: As mentioned above, the
GGT = Ω̃ΦΦ ≈ ΩΦΦ, G ∈ RNtr×R ICD of the Dtr training
data ΩΦΦ kernel matrix is exploited in two ways in the original
sparse KSC algorithm [23], [24].

First, the size of the related eigenvalue problem (4) is
reduced from Ntr to R� Ntr by using the the G = UΛV T

Singular Value Decomposition (SVD) in the corresponding
low rank approximation of the training data kernel matrix
ΩΦΦ ≈ Ω̃ΦΦ = GGT = UΛ2UT in (4). This leads to the

UT D̃−1MD̃UΛ2γγγ(k) = λ̃(k)γγγ(k), k = 1, ...,K (7)

eigenvalue problem with γγγ(k) = UTβββ(k) such that the approx-
imated eigenvectors of the original problem can be obtained as
β̃ββ

(k)
= Uγγγ(k). ·̃ denotes approximation of the corresponding

quantity based on the ΩΦΦ ≈ Ω̃ΦΦ = GGT low rank
approximation.

After the β̃ββ
(k)

approximated eigenvectors are determined,
the sparse solution of the KPCA can be composed that
corresponds to the w(k) = ΦTβββ(k) ≈ w̃(k) = ΨT ξ(k), k =
1, . . . ,K − 1 approximation. The ICD of the training data
kernel matrix is utilised again at this point by taking the pivots
selected during the decomposition as the R = {x̃r}Rr=1 ⊂ Dtr
reduced set. The ξ(k) ∈ RR, k = 1, . . . ,K − 1 reduced set
coefficients can then be determined by solving (6) with the
ΩΨΨ reduced-reduced, ΩΨΦ reduced-training set kernel ma-
trices and the corresponding β̃ββ

(k)
approximated eigenvectors.

The approximated score variables of any x ∈ Rd data can
be expressed as

z(k)(x) ≈ z̃(k)(x) =

R∑
r=1

K(x,xr)ξ
(k)
r + b̃(k) (8)

k = 1, . . . ,K−1 by using the above reduced set based sparse
approximation in (5). The corresponding sparse clustering
model can then be constructed based on the approximated
score variables related to the training data set and any data

point can be assigned to one of the underlying clusters as
described in sections II-A1 and II-A2.

III. MAIN RESULTS

A. Modified Algorithm

1) Making it faster: The computational bottleneck of the
original ICD based sparse KSC algorithm [23], [24] is the
computation of the β̃ββ

(k)
approximated eigenvectors of the

D−1MDΩ matrix associated to the Dtr ⊂ D, Ntr = |Dtr|
training data set. As mentioned above, the algorithm first
exploits the GGT = Ω̃ΦΦ ≈ ΩΦΦ ICD of the training set
kernel matrix then the G = UΛV T SVD of the resulted
G ∈ RNtr×R matrix. The corresponding original Ntr × Ntr
sized eigenvalue problem (4) is then relaxed to solve (7).
Indeed, the size of the matrix involved in (7) is R×R with
R � Ntr that makes possible to use significantly larger Ntr
training data sets. However, the computation time, required
to obtain the corresponding eigenvectors, was reported to
increase rapidly with Ntr by the authors [23], reaching already
to ∼hours with Ntr ∼ 105. This prevented the algorithm to
gain any practical importance as these eigenvectors need to be
computed several times during the hyper-parameter tuning.

Having a closer look to the algorithm, one can recognise
that the naive computation of the above mentioned R×R
sized matrix, involved in (7), can lead to a O(R2N2

tr) com-
putational complexity. This might be avoided by exploiting
both the special structure of the individual matrices and the
effects of the corresponding operations ensuring to maintain a
O(R2Ntr) complexity. However, the algorithm still includes
the G = UΛV T SVD of the large G ∈ RNtr×R matrix
that keeps the algorithm computationally demanding with
increasing Ntr. All these complications can be fully avoided
by computing the required β̃ββ

(k)
approximated eigenvectors of

the D−1MDΩ matrix in the following alternative way.
Instead of performing the SVD of G then constructing and

solving (7), one can transform (4) to the corresponding

D−
1
2MDΩMT

DD
− 1

2α(k) = λ(k)α(k), k = 1, . . . ,K − 1
(9)

symmetric problem where ααα(k) = D1/2βββ(k), k = 1, . . . ,K−1
with the same λ(k) eigenvalues as in (4). The ΩΦΦ ≈ Ω̃ΦΦ =
GGT ICD based approximation of the kernel matrix can
be exploited at this point leading to D−

1
2MDΩMT

DD
− 1

2 ≈
D̃−

1
2MD̃GG

TMT
D̃
D̃−

1
2 . Taking X = D̃−1/2MD̃G ∈

RNtr×R, performing its QR factorisation that leads to X =
QXRX with QX ∈ RNtr×R and RX ∈ RR×R, then utilising
the RX = URX

ΣRX
V TRX

SVD of this small RX matrix result
in the following eigenvalue decomposition

D̃−
1
2MD̃GG

TMT
D̃
D̃−

1
2 = [QXURX

]Σ2
RX

[QXURX
]T (10)

with QXURX
∈ RNtr×R eigenvectors and

Σ2
RX

= ΛRX
∈ RR×R diag(ΛRX

) eigenvalues of the
D̃−

1
2MD̃GG

TMT
D̃
D̃−

1
2 ∈ RNtr×Ntr matrix.

Therefore, the α̃αα(k), k = 1, . . . ,K − 1 leading eigenvectors
of the D̃−

1
2MD̃GG

TMT
D̃
D̃−

1
2 matrix can be obtained by

simply taking the K − 1 columns of the QXURX
matrix that

correspond to the K − 1 largest eigenvalues in the diagonal
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Σ2
RX

= ΛRX
. Then the ΩΦΦ ≈ Ω̃ΦΦ = GGT ICD based

approximated eigenvectors β̃ββ
(k)

of the D−1MDΩ matrix can
be calculated easily from the corresponding α̃αα(k) eigenvectors
as β̃ββ

(k)
= D̃−1/2α̃αα(k). These modifications were motivated

by [37] where a similar trick was used to accelerate the
computation of some selected eigenvectors of the symmetric
normalised graph Laplacian.

It must be noted, that this modified and the original compu-
tation of the required approximate eigenvectors of D−1MDΩ
matrix give identical results. However, the proposed modi-
fication has several advantages. First and most importantly,
while the original algorithm includes an SVD of the large
G ∈ RNtr×R, the proposed algorithm performs only a much
simpler QR factorisation on the large X = D̃−1/2MD̃G ∈
RNtr×R and an SVD only on the small RX ∈ RR×R which
can be done significantly faster. Furthermore, since D̃−1/2 is
diagonal and the effect of left multiplying G by MD̃ is that
it removes the 1/d̃i weighted mean from each column of G,
X can be generated quickly column-by-column in place of
G. Since the QR factorisation of X can then also be done in
place, the proposed algorithm does not need any extra memory.
The greatly reduced computation time of the approximate
eigenvectors is clearly demonstrated in the next section.

2) Improved sparsity: It has been shown in [24], that
the original ICD based sparse KSC algorithm is not only
computationally more demanding but also requires remarkably
larger reduced set size R compared to its alternative.

As briefly discussed in Section II-A1, clusters are well
separated in the score variable space, lying even in different
orthant, that eventually makes possible the clustering model
construction. This separation is due to the weighted centering
of the feature map, achieved through the b(k) bias term, that
leads to a similar centering of the score variables in (5) and
(8) [19]. Therefore, the accuracy of the b̃(k) approximated bias
term in (8) can greatly influence the quality of the constructed
clustering model due to the importance of this centering.

As mentioned in Section (II-A), the KKT optimality con-
ditions provide the expression for the bias term that has
the form of b(k) = −1TND−1ΩΦΦβββ

(k)/[1TND
−1
1N ] in case

of KSC. In the original ICD based sparse KSC algorithm,
the corresponding b(k) ≈ b̃(k) approximate values, required
in (8), are simple estimated based on the small reduced
set, i.e. computing the inverse degrees based on the small
ΩΨΨ ∈ RR×R reduced set kernel matrix and relying on the
w(k) = ΦTβββ(k) ≈ ΨT ξ(k) approximation. Therefore, the
accuracy of this estimate depends on the R reduced set.

A more accurate value of b̃(k) can be obtained relying
consistently on the ΩΦΦ ≈ Ω̃ = GGT ICD based low rank ap-
proximation of the entire training set kernel matrix instead of
only its reduced subset. This leads to the D ≈ D̃, diag (D̃) =

D̃1Ntr
= Ω̃ΦΦ1Ntr

= G[GT1Ntr
], βββ(k) ≈ β̃ββ

(k)
approxi-

mations and the simpler b̃(k) = [λ̃(k) − 1][1TNtr
D̃] ˜βββ(k)/Ntr

expression, also given by KKT optimality conditions. Since
all required quantities are already calculated during the com-
putation of the β̃ββ

(k)
approximate eigenvectors, including the

corresponding λ(k) ≈ λ̃(k) approximate eigenvalues as the

diagonals of Σ2
RX

= ΛRX
in (10), these approximated bias

terms can be computed very quickly.
The original algorithm requires a larger R reduced set size

just to obtain an estimate of the b̃(k) bias term in (8) that
is good enough to provide an appropriate centering which
is essential for an accurate clustering model construction. In
contrast, the proposed modification results in more accurate
values, depending less directly on R, leading to correct cen-
tering in the score variable space. Therefore, the modified
algorithm can lead to accurate clustering model even at lower
reduced set sizes increasing significantly the KSC model
sparsity which is clearly demonstrated in the next section.

B. Computational experiments

1) Implementation and configuration: The modified ICD
based sparse KSC algorithm has been implemented in the
leuven test environment [38], [39] using the C++ object-
oriented language. This lightweight framework provides the
possibility of utilising the most popular optimised BLAS
[40] and LAPACK [41] numerical linear algebra libraries
as computing backends. While this multi-threaded imple-
mentation can also exploit multiple CPU cores and even
NVIDIA GPUs through the appropriate CUDA libraries [42]
when available, all reported experiments were carried out
using only a single Intel core i7 CPU core with the op-
timised Intel MKL BLAS/LAPACK backend (v-2019.4.223)
[43] on MacOS (High Sierra 10.13.6) system with a Clang
(v-1000.11.45.5) compiler.

The sparse KSC model is constructed during the training
phase based on Ntr = |Dtr| ≤ N training data points sampled
uniformly random from the entire D data set. The R ⊂ Dtr
reduced set is formed by the pivots selected during the ICD of
the training data kernel matrix. The result of this ICD is the
input of the training phase, which includes the computation
of the β̃ββ

(k)
approximated eigenvectors of the D−1

tr MDtr
Ω

matrix associated to the training data set, the construction of
the sparse representation by solving (6) and it terminates by
producing the cluster prototypes based on the selected cluster
membership encoding as discussed in Section II-A1. This last
step relies on the sparse approximation based expression of
the score variables as given by (8).

The resulted sparse KSC model can then be used to assign
any data points to one of the clusters during the so called test
or out-of-sample extension phase as described in II-A2 relying
again on (8).

2) The intertwined spiral synthetic data: The significantly
improved computation time is illustrated first by reproducing
the same synthetic experiment that was used by the authors
of the original algorithm to investigate its characteristics and
performance in [23]. The data set contains N = 105, d = 2
dimensional data points, sampled from two intertwined spirals
as shown in figure 1.

The average computation time and Adjusted Rand In-
dex(ARI) [44] (based on 10 independent runs), are reported
in figure 2 as a function of the Ntr training set size. The
corresponding run times, obtained by using the original al-
gorithm in [23], are also shown for reference. In order to
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Fig. 1. The intertwined spiral synthetic data. top: the entire N = 105 input
data set is shown in grey and the R = 115 reduced set points, obtained by
applying ICD using the entire Ntr = N = 105 data points with γ = 0.006
kernel parameter, are shown in green. bottom: the perfect clustering result,
obtained by using the proposed algorithm. (Note, that this figure corresponds
to the last row of Table II.)

TABLE I
NUMERICAL VALUES OF THE PROPOSED ALGORITHM SHOWN IN FIGURE 2.

Ntr R Training [s] Test [s] ARI
1× 103 168 0.026 0.332 0.036±0.039
2× 103 185 0.042 0.369 0.903±0.291
3× 103 195 0.059 0.383 1.0
5× 103 210 0.093 0.419 1.0
1× 104 223 0.174 0.442 1.0
2× 104 231 0.347 0.456 1.0
5× 104 242 0.976 0.479 1.0
1× 105 261 2.428 0.514 1.0

ensure comparable characteristics and computation times, the
reduced set size R was fixed to the same value at each
Ntr as in [23]. An RBF kernel was utilised in the form of
K(xi,xj) = exp(−‖xi − xj‖22/γ) with kernel parameter of
γopt = 0.006 that was determined during a hyper-parameter
tuning by maximising the Balanced Line Fit (BLF) model
selection criterion [19]. At each different Ntr training set sizes,
the sparse KSC model was constructed during the training
phase based on the Ntr training data points and the corre-
sponding R reduced set size while the entire N = 105 data
set was partitioned during the test phase. Numerical values
are also shown in Table I. While the original algorithm was
reported to require hours to solve this clustering problem when
the Ntr training set size approaches 105 [23], it takes only
approximately two seconds for the proposed version with the
given implementation using exactly the same configurations.

As mentioned above, the R reduced set sizes were fixed
to be the same at each Ntr as in [23] in order to ensure

Fig. 2. Spiral : average computation time and ARI of the proposed algorithm
(based on 10 independent runs) as a function of the Ntr training set size.
Numerical values are shown in Table I. The corresponding run times, as
reported by Alzate & Suykens in [23], are also shown for reference.

comparable characteristics affecting the computing time. The
minimum reduced set sizes Rmin, required to obtain a perfect
clustering (average ARI=1), are reported in Table II using
the original(γopt = 0.0102) and proposed(γopt = 0.006)
versions of computing the approximated bias terms in (8).
As discussed in Section III-A2, the accuracy of the bias
term approximation influences the quality of the corresponding
clustering model. Since the related modification leads to a
more accurate approximation, depending less directly on R,
the new algorithm requires significantly smaller reduced set
sizes for a perfect clustering as demonstrated in Table II.
Moreover, the related Rmin value decreases rapidly between
Ntr = 103 − 104, then stays constant. This indicates that the
corresponding clustering model can well exploit and benefit
from the new information incorporated into the increasing
training data set while no significant additional information
arrives at Ntr > 1− 2× 104. In contrast, the original version
not only requires significantly larger reduced set sizes for a
perfect clustering, but the corresponding Rmin value decreases
only very mildly with increasing Ntr. This shows that the
related clustering model accuracy is limited more by the
corresponding bias term approximation as it is determined
more directly by the reduced set size.

It must be noted, that according to the last row of Table
II, the proposed modifications led to a new ICD based sparse
KSC algorithm that requires only a second to solve the same
clustering problem that was reported to take about 8 hours for
the original version in [23].

3) Image segmentation: Ten color images were selected
from the Berkeley image data set [45] to demonstrate the
performance of the proposed sparse KSC algorithm on a real
life problem such as image segmentation.

Each of the RGB color images consists of 321×481 pixels.
A local color histogram was computed at each pixel by taking
a 5 × 5 window around the pixels using minimum variance
color quantisation of eight levels. After normalisation, the
N = 154 401 color histograms serve the 8 dimensional data
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TABLE II
SPIRAL: MINIMUM REDUCED SET SIZE RMIN AND CORRESPONDING

SPARSITY IN % REQUIRED TO GET A PERFECT CLUSTERING (ARI=1).

Original Proposed
Ntr Rmin Rmin Training [s] Test [s]

3× 103 270 (91.00%) 180 (94.00%) 0.052 0.356
5× 103 252 (94.96%) 138 (97.24%) 0.056 0.275
1× 104 251 (97.49%) 121 (98.79%) 0.074 0.243
2× 104 246 (98.77%) 115 (99.42%) 0.155 0.232
5× 104 244 (99.51%) 115 (99.77%) 0.411 0.233
1× 105 244 (99.76%) 115 (99.88%) 0.869 0.193

TABLE III
IMAGE DATA: DETAILS ON THE ICD AND THE HYPER-PARAMETERS.

ICD (Rmax = 500) Optimal
(input parameters, rank, time) hyper-parameters

Image ID σχ2 εtol R T[s] K σχ2

119082 0.07 0.600 196 0.260 3 0.0251
145086 0.05 0.600 119 0.122 4 0.0841
147091 0.50 0.030 116 0.122 2 0.0800
167062 0.01 0.900 98 0.085 3 0.0720
182053 0.20 0.010 179 0.222 5 0.0022
196073 0.05 0.800 169 0.204 2 0.0475
295087 0.07 0.032 196 0.253 3 0.1170

3096 0.01 0.800 142 0.152 3 0.0660
42049 0.01 0.850 138 0.147 3 0.0128
62096 0.20 0.120 192 0.246 2 0.0120

set of the clustering problem. The χ2 kernel K(h(i), h(j)) =
exp(−χ2

ij/σχ2) was used to compute the similarity between
two local color histograms h(i) and h(j) with σχ2 kernel
parameter and χ2

ij = 0.5
∑8
l=1(h

(i)
l −h

(j)
l )2/(h

(i)
l +h

(j)
l ) [16],

[19], [46].
The so called Balanced Angular Similarity(BAS) [39], a

direction based cluster membership encoding-decoding similar
to the one in [32], was utilised in this experiment. The
optimal values of the σχ2 kernel parameter and K cluster
number hyper-parameters were determined by maximising
the corresponding model selection criterion over a (K ∈
{3, . . . , 10}, σχ2 ∈ [0.001, 1.0]) 2D grid. The previously
utilised BLF was also evaluated at K = 2, 3 whenever the
optimal cluster number was found to be K = 3 (as the BAS
based criterion defined only for K > 2). During the hyper-
parameter tuning, a sparse KSC model was constructed at
each 2D grid point based on the Ntr = 10 000 training
data points while the obtained clustering model was used to
partition Nv = 20 000 independent validation points on which
the model selection criterion was computed.

The final sparse KSC model was constructed on the training
data set using the optimal hyper-parameter values (reported in
Table III with some details on the ICD phase) and utilised to
partition the entire N = 154 401 color histograms to produce
the image segmentation. The corresponding F-measure, with
respect to human segmentation, as a performance criterion is
reported in Table IV together with earlier results [19] obtained
by using the dense version of the KSC and the Nyström
method. The present ICD based sparse KSC algorithm pro-
vides better F-measure values than the corresponding dense
KSC while it has already been reported in [19], that the
dense KSC outperforms the Nyström method both in terms of

TABLE IV
IMAGE DATA: F-MEASURE WITH RESPECT TO HUMAN SEGMENTATION

(K, σχ2 HYPER-PARAMETERS AND R REDUCED SET SIZE OF THE
PROPOSED ICD BASED SPARSE KSC ARE REPORTED IN TABLE III).

Image F-measure Time [s] (proposed)
ID Nyström KSC Proposed Training Test

119082 0.62 0.73 0.77 0.190 1.08
145086 0.78 0.88 0.88 0.114 0.59
147091 0.68 0.80 0.80 0.100 0.58
167062 0.46 0.85 0.89 0.048 0.48
182053 0.71 0.65 0.71 0.078 0.93
196073 0.74 0.79 0.75 0.143 0.97
295087 0.60 0.72 0.74 0.174 1.03

3096 0.27 0.72 0.78 0.068 0.67
42049 0.87 0.88 0.90 0.105 0.68
62096 0.76 0.78 0.82 0.084 1.00

accuracy (F-measure) and speed. As discussed in Section II-B,
the dense KSC algorithm is feasible only for relatively small
training data sets as it relies on the eigenvalue decomposition
of the entire training data kernel matrix. Therefore, the F-
measures were achieved in [19] by constructing a dense KSC
model on a small Ntr = 2000 only randomly selected training
set then partitioning the entire N = 154 401 color histograms
utilising its out-of-sample extension capability. In contrast, the
present sparse KSC model can easily be constructed based
on significantly larger Ntr = 10 000 data points exploiting
the incorporated information that eventually results in a more
accurate clustering model. Moreover, the proposed modifica-
tions make now possible to obtain a more compact, sparse
clustering model and to perform all the related computations
within a fraction of a second demonstrating clearly the benefits
of the presented results. It must be noted, that while the
proposed algorithm can handle significantly larger training
data sets, it has been found that Ntr > 10 000 do not provide
additional information that would yield a significant increase
in the segmentation quality.

IV. CONCLUSION

An improved version of the sparse multiway Kernel Spec-
tral Clustering (KSC) algorithm, exploiting the incomplete
Cholesky decomposition (ICD) based low rank approximation
of the kernel matrix, is presented. The computational char-
acteristics of the original algorithm is drastically improved,
especially when applied on large scale data, by replacing
the computationally most demanding core part with a sig-
nificantly faster but equivalent alternative. Furthermore, the
level of sparsity is also increased significantly by changing the
related part of the original algorithm to a new, more accurate
approximation leading to more compact clustering model
representation. These result in solving clustering problems
now within a second that were reported to require hours for
the original version with an even more compact clustering
model representation with increased descriptive power. This
transforms the original, only theoretically relevant ICD based
sparse KSC algorithm to applicable for large scale data clus-
tering problems. The theoretical results are demonstrated by
computational experiments on carefully chosen synthetic data
as well as on real life problems such as image segmentation.
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