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Abstract

Adversarial training is a widely used method to improve the robustness of deep
neural networks (DNNs) over adversarial perturbations. However, it is empirically ob-
served that adversarial training on over-parameterized networks often suffers from the
robust overfitting : it can achieve almost zero adversarial training error while the robust
generalization performance is not promising. In this paper, we provide a theoretical
understanding of the question of whether overfitted DNNs in adversarial training can
generalize from an approximation viewpoint. Specifically, our main results are sum-
marized into three folds: i) For classification, we prove by construction the existence
of infinitely many adversarial training classifiers on over-parameterized DNNs that ob-
tain arbitrarily small adversarial training error (overfitting), whereas achieving good
robust generalization error under certain conditions concerning the data quality, well
separated, and perturbation level. ii) Linear over-parameterization (meaning that the
number of parameters is only slightly larger than the sample size) is enough to en-
sure such existence if the target function is smooth enough. iii) For regression, our
results demonstrate that there also exist infinitely many overfitted DNNs with linear
over-parameterization in adversarial training that can achieve almost optimal rates of
convergence for the standard generalization error. Overall, our analysis points out that
robust overfitting can be avoided but the required model capacity will depend on the
smoothness of the target function, while a robust generalization gap is inevitable. We
hope our analysis will give a better understanding of the mathematical foundations of
robustness in DNNs from an approximation view.

Keywords: Deep learning theory, adversarial training, robust overfitting, robust general-
ization, learning rates
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1 Introduction

Deep neural networks (DNNs) have achieved great empirical success but are demonstrated
to be susceptible to small perturbations [20]. To be specific, under adversarially chosen,
albeit imperceptible, perturbations to their inputs, a.k.a., adversarial examples, a well-
performed DNN achieves quite low accuracy on these adversarial examples [42, 21]. This
results in a high risk of building robust, secure, trustworthy machine learning systems.
To improve the robustness of DNNs, a series of methods are proposed to defend against
artificially designed adversarial attacks aiming at fooling the models [22, 8, 33, 51, 15, 1].
Among them, adversarial training [33] is one of the most empirically successful methods
to defend against adversarial examples via a min-max optimization.

Mathematically, let X ⊂ Rd be the input space, Y ⊂ R be the output space, and F be
the hypothesis space, e.g., the class of DNNs. Suppose that the data set {(xi, yi)}ni=1 are
i.i.d. sampled from the true unknown Borel probability distribution ρ on Z = X ×Y . Then
adversarial training aims to solve the following empirical (adversarial) risk minimization
under a certain ℓ∞ white-box adversarial attack

min
f∈F

1

n

n∑
i=1

max
x′
i∈Bδ,∞(xi)

ℓ
(
f(x′

i), yi
)
, (1.1)

where ℓ : R×R → R is the loss function which evaluates the cost between the model output
and the corresponding label, Bδ,∞(z) = {x : ∥x − z∥∞ ≤ δ} ∩ X is the δ-ball (i.e., the
perturbation radius δ) centered at z w.r.t. ℓ∞ norm.

Taking δ = 0 in Equation (1.1), adversarial training degenerates to standard train-
ing. Empirical and theoretical studies [50, 3, 6, 43, 53] indicate that DNNs in the over-
parameterized regime (i.e., the number of parameters is much larger than the training data
size) can achieve zero training error under noisy data, but still generalize well. This is
called the benign overfitting phenomenon1. When it comes to adversarial training (1.1)
with δ > 0, empirical observations [41, 35, 36] demonstrate the robust overfitting phe-
nomenon in the over-parameterized regime of adversarial training instead, i.e., overfitting
to the training set (achieving small adversarial training error or called train robust error)
does harm the robust generalization to a large extent for multiple datasets. Moreover,
there exists a large robust generalization gap between the robust generalization and the
standard generalization performance [33, 36]. For example, as shown in Figure 1 from [36],
the adversarial training can achieve almost zero train robust error, but the test robust error
is only nearly 50%, and is much higher than the test standard error (slightly smaller than
20%).

Recent work [47] finds that real datasets have a natural separation property which is
called ϵ-separated : input data points from different classes have at least 2ϵ distance in the
pixel space. For example, on the CIFAR-10 dataset, ϵ = 0.212 [47], which is much larger
than the commonly used attack level δ = 8/255. Due to this well-separated property,
ideally, there exist DNNs that can achieve both good robustness and accuracy simultane-
ously. Nevertheless, this target makes the parameter size of DNNs suffer from the curse of
dimensionality as suggested by [29], i.e., an exp(Ω(d)) lower bound on the network size is
inevitable. At first glance, this result is counter-intuitive due to the following two reasons:

1In this paper, benign overfitting is given with a broader meaning, i.e., achieving almost zero training
error as well as good generalization performance.
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Figure 1: The learning curves of adversarial training on CIFAR-10 with δ = 8/255 [36],
while CIFAR-10 is 0.212-separated [47].

• Due to the nice separation property, if the target function is sufficiently smooth or
possesses some special structure, the required parameter size of DNNs is not needed in
the exponential order of the input dimension d from the perspective of approximation.

• Adversarial training degenerates to the standard training when taking the pertur-
bation radius δ = 0, as shown in Equation (1.1). If δ is sufficiently small, under
well-behaved data distribution, robust overfitting can be avoided and benign overfit-
ting can naturally arise without curse of dimensionality, as empirically suggested by
[17, 19, 18].

The above two reasons motivate us to carefully rethink the following question:

Can overfitted DNNs in adversarial training generalize with reasonable model complexity?

We give an affirmative answer to this question from an approximation viewpoint by pro-
viding a comprehensive analysis to close the gap between theory and practice as much as
possible. In our analysis, we consider the data quality, the regularity condition of the target
function, and the existence of label noise, and check the existence of the adversarial train-
ing global minima with good robust generalization performance. We make the following
contributions and findings in this paper:

• We prove by construction that there exist infinitely many over-parameterized DNNs
that can achieve zero adversarial training error as well as good robust generaliza-
tion error of the same order as the lower bound. Such construction is based on the
condition on data and perturbation, i.e., the data distribution is of relatively high
quality and is well-separated; the perturbation radius of adversarial training is small
enough. Furthermore, if the target function is smooth enough, DNNs with Ω(n) pa-
rameters (i.e., linear over-parameterization) are sufficient to achieve both robustness
and accuracy simultaneously.

• Our construction of the adversarial training global minima is almost optimal since
its robust generalization upper bound matches the order of the lower bound. We also
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theoretically demonstrate the existence of the robust generalization gap by showing
that even for these adversarial training classifiers with good robust performance, their
robust generalization error is still worse than their standard generalization error.

Accordingly, our theoretical analysis provides an in-depth understanding of overfitting in
adversarial training on over-parameterized DNNs from the perspective of approximation,
and provides a relaxed model complexity requirement as well as the best possible robust
generalization under this circumstance. Note that our construction is data (distribution)-
dependent, which allows us to study the limit performance of DNNs under adversarial
training, and hence our analysis points out that robust generalization gap is inevitable.
We expect that our results will be beneficial to the dynamics analysis of DNNs under
adversarial training algorithms.

The rest of the paper is organized as follows. In Section 2, we give an overview of related
works close to our paper. The problem setting and common assumptions for classification
and regression is introduced in Section 3. Then in Section 4, we present our main results
about robust and standard generalization performance of good adversarial training global
minima for the classification tasks. In Section 5, we extend our results in Section 4 to the
regression tasks. Section 6 draws a conclusion of this paper. The proofs of our theoretical
results can be found in the Appendix.

2 Related Work

It is empirically observed in previous works that adversarial training in over-parameterized
regime sometimes might overfit, i.e., the robust overfitting phenomenon [41, 35, 36]. How-
ever, the mechanism for this is still unclear. Many works try to figure out the important
elements in adversarial training that might lead to robust generalization. [37, 5, 14] mani-
fest that to achieve robust generalization in adversarial training, it requires a larger sample
complexity compared with standard training. These results also demonstrate that data
distribution is a vital factor in adversarial training. [27] indicates that non-robust features
in the data can hurt robust generalization, thus making the data quality significant in
adversarial training. [39, 16] also show that robust generalization obtained by adversarial
training essentially hinges on the property of the data distribution. [17, 18] further demon-
strate that adversarial training can achieve better robust generalization by utilizing data
samples with higher quality.

Some works have studied the robust generalization of adversarial training in the under-
parameterized regime [28, 49, 46, 34]. For example, [49] presents the adversarial general-
ization error bounds by adversarial Rademacher complexity, and [46] estimates the bounds
of adversarial Rademacher complexity of deep neural networks. However, such adversarial
generalization error bounds only work for adversarial training in the under-parameterized
regime and are not suitable for the over-parameterized regime. It is still unknown whether
benign overfitting exists in adversarial training on over-parameterized DNNs, although
there are some attempts in some simple settings. For instance, [10] demonstrates the
occurrence of benign overfitting in the adversarially robust linear classification with sub-
Gaussian mixture data for both standard and robust generalization. While [30] shows that
standard generalization and robust overfitting both happen in adversarial training for the
patch data distribution.
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Besides, there exist some works close to the scope of this paper that tries to understand
the robust generalization from an approximation theory viewpoint [32, 29]. In [32], they
study the difference between the robust generalization and standard generalization for
the true regression function. In [29], they demonstrate that the network requires O(ϵ−d)
parameters to achieve zero robust generalization for all the 2ϵ-separated data distribution
when there is no noise. However, the networks they constructed to achieve such robust
generalization are irrelevant to the networks learned from adversarial training with the
usage of data samples, making their analysis not suitable for the study of the robust
generalization for overfitting networks under adversarial training.

3 Problem settings and common assumptions

Here we introduce the common problem settings for classification and regression under
adversarial training, e.g., the learning framework, the hypothesis space, and the model
formulation. The specific problem settings and assumptions for classification and regression
can be found in Section 4.1 and Section 5.1, respectively.
Learning framework: We follow the classical statistical learning framework [13]. Suppose
that the data sample D = {(xi, yi)}ni=1 ⊂ Zn are i.i.d. sampled from a Borel probability
measure ρ on Z = X × Y with X ⊂ [0, 1]d, Y = {−1, 1} for binary classification and
Y ⊆ [−M,M ] with some M > 0 for regression. For notational simplicity, denoting X :=
{xi}ni=1, the separation distance of the input data sample X satisfies [45]

qX :=
1

2
min
i ̸=j

∥xi − xj∥∞ ≤ n− 1
d , (3.1)

which is half of the minimal distance between two distinct input data samples admitting
an upper bound w.r.t. n and d.

Denote ρ(y|x) as the conditional distribution at x ∈ X induced by ρ, ρX as the marginal
distribution of ρ on X , and (L2

ρX
, ∥ · ∥ρ) as the Hilbert space of square-integrable functions

with respect to ρX . The objective of learning for classification or regression is to find a
learning model that is a good approximation of the “target function”, which is defined as the
conditional mean fρ(x) =

∫
Y ydρ(y|x). Here the used learning model is a fully-connected

deep neural network as described below.
Model formulation of DNNs: Regarding the learning model, we consider standard fully-
connected deep neural networks (FNNs) with the ReLU activation function in this paper.
Denote the affine operator Aℓ : Rdℓ−1 → Rdℓ as Aℓ(x) = Wℓx + bℓ, where Wℓ ∈ Rdℓ×dℓ−1

is the weight matrix and bℓ ∈ Rdℓ is the bias vector. A deep ReLU FNN with depth L and
width {dℓ}Lℓ=1 is defined as

f(x) = c · σ ◦ AL ◦ σ ◦ AL−1 ◦ · · · ◦ σ ◦ A1(x) , (3.2)

where d0 = d, c ∈ RdL is the coefficient vector, {Wℓ}Lℓ=1 are the weight matrices and
{bℓ}Lℓ=1 are the bias vectors. The number of parameters in this network is

N = dL +
L∑

ℓ=1

(dℓ−1dℓ + dℓ) . (3.3)
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We denote the hypothesis space F
d⃗,L

as the collection of all deep ReLU FNNs with the

form (3.2).
Common assumptions: In the next, we make two assumptions: one is about the distor-
tion of LρX with respect to the Lebesgue measure [12] and the other one is the regularity
assumption of the “target function”.

Assumption 1. [40, 12, non-irregularity of ρX ] Let Jρ be the identity mapping Jρ :
L1(X ) → L1

ρX
(X ) and ∥Jρ∥ be the operator norm. Similarly, we denote J̄ρ as the identity

mapping J̄ρ : L1
ρX

(X ) → L1(X ), and ∥J̄ρ∥ as the corresponding operator norm. We assume
that

∥Jρ∥ < ∞, ∥J̄ρ∥ < ∞. (3.4)

Moreover, we denote Φρ as the set of ρX that satisfies Assumption 1.

Remark 1. This assumption on the marginal distribution ρX is similar as [40, 12] to
ensure that ρX is not that irregular. Admittedly, it is a little stronger than the standard
assumption that ρX is absolutely continuous with respect to the Lebesgue measure. How-
ever, this assumption can be satisfied when ρX is some common distribution with bounded
support, e.g., uniform distribution.

Hölder continuity: We assume the “target function” satisfies some smoothness level
which is of interest for ease of analysis. We describe it in Hölder spaces, i.e., the α-Hölder
continuous functions Wα

∞(X ) with α > 0 [48, 38]. To be specific, for α ∈ (0, 1], Wα
∞(X )

consists of α-Lipschitz functions with the norm

∥f∥Wα
∞ = ∥f∥∞ + |f |Wα

∞ with ∥f∥∞ = sup
x∈X

|f(x)|, |f |Wα
∞ = sup

x̸=y

|f(x)− f(y)|
∥x− y∥α2

.

Note that |f |Wα
∞ is the semi-norm. For α = s + t with s ∈ N and t ∈ (0, 1], Wα

∞(X ) con-
sists of s-times differentiable functions whose partial derivatives of order s are t-Lipschitz
functions, with an equivalent norm ∥f∥Wα

∞ =
∑

∥k∥2<s∥Dkf∥∞ +
∑

∥k∥2=s∥Dkf∥W t
∞
. For

certain regularity assumptions for the “target function”, we will detail them in the respec-
tive sections.

4 Main Results for Classification

In this section, we demonstrate the main results of adversarial training for classification:
there exist infinitely many classifiers obtained by adversarial training with commonly used
loss functions, such as hinge loss and logistic loss, that can achieve arbitrarily small adver-
sarial training error and good robust generalization error with the same order of the lower
bound when the data distribution is well-separated and of relatively high quality.

4.1 Problem settings and notations

For binary classification, the objective of learning is to find the best classifier (Bayes rule)
fc on X defined by

fc(x) =

{
1, if ρ(y = 1|x) ≥ ρ(y = −1|x) ,
−1, if ρ(y = 1|x) < ρ(y = −1|x) ,

(4.1)
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which is the minimizer of the standard misclassification error with the 0-1 loss

R(f) :=

∫
Z
1{yf(x)=−1}dρ . (4.2)

Based on the observed data sample, a learning algorithm aims at finding a function f in
a hypothesis space F such that the classifier sgn(f) is a good approximation of the Bayes
rule fc. In the next, we introduce the empirical/expected risk for analysis.
Empirical and expected risks for standard and robust learning: Since the 0-1 loss
is non-convex and discontinuous, it is difficult to optimize. Instead, one can utilize some
surrogate loss functions ϕ to learn an estimator from the data sample D, such as hinge loss,
least squares loss, and logistic loss. To be specific, we define the ϕ-risk and its minimum
fϕ
ρ as

fϕ
ρ := argmin

f
Eϕ(f) , with Eϕ(f) :=

∫
Z
ϕ (yf(x)) dρ . (4.3)

Actually, fϕ
ρ has the closed form for many commonly used surrogate loss functions [52]. For

example, denoting η(x) := ρ(y = 1|x), we have fϕ
ρ = 2η− 1 = fρ for the least squares loss;

we have fϕ
ρ = sgn(2η−1) = fc for the hinge loss. The standard empirical risk minimization

(ERM) algorithm aims to minimize the empirical ϕ-risk over the hypothesis space being
the deep ReLU FNNs F

d⃗,L

f̂D,ϕ = argmin
f∈F

d⃗,L

Êϕ
D(f), with Êϕ

D(f) :=
1

n

n∑
i=1

ϕ (yif(xi)) . (4.4)

We desire that the classifier sgn(f̂D,ϕ) can approach the Bayes rule when the number
of samples is large enough, in the sense that the standard excess misclassification error
R(sgn(f̂D,ϕ))−R(fc) is small.

The above definitions can be extended to the adversarial training setting where we
apply the robust loss instead of the standard loss. In this paper, we consider the ℓ∞ white-
box adversarial attack, where the adversary can use small perturbations of the inputs
within some ℓ∞ ball to maximize the standard loss. In order to defend against such
adversarial attack, our goal is to minimize the adversarial misclassification error (robust
generalization)

Rδ(f) :=

∫
Z

max
x′∈Bδ,∞(x)

1{yf(x′)=−1}dρ , (4.5)

which measures the robust generalization performance, and we denote the best robust
classifier as f δ

c = argminf Rδ(f). Similarly, the adversarial training implements the ERM
algorithm by minimizing the empirical adversarial ϕ-risk

Êϕ,δ
D (f) :=

1

n

n∑
i=1

max
x′
i∈Bδ,∞(xi)

ϕ
(
yif(x

′
i)
)
, (4.6)

over the hypothesis space F
d⃗,L

. Moreover, we denote ∆̃
δ,d⃗,L

as the set of the global minima

of the optimization problem Equation (4.6) for adversarial training, i.e.,

∆̃
δ,d⃗,L

:=

{
f̂ δ
D : f̂ δ

D = argmin
f∈F

d⃗,L

Êϕ,δ
D (f)

}
. (4.7)
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4.2 Assumptions

In this subsection, apart from assumptions discussed in Section 3, we additionally require
some assumptions with regard to the data separation and quality. All of them are related
to how to set the Borel measure ρ to control the data generation process.

First, we make the following assumption related to well-separated data in X .

Assumption 2 (well separated data). Denote A = {x ∈ X : fc(x) = 1} and B = {x ∈
X : fc(x) = −1}, clearly we have X = A ∪B. The two classes are 2δ-separated if

∥xA − xB∥∞ ≥ 2δ, ∀xA ∈ A, xB ∈ B . (4.8)

Remark 2. This assumption is needed to guarantee the existence of a robust classifier,
which is also considered in previous theoretical work [29]. This assumption has been dis-
cussed in the introduction and is demonstrated to be attainable. For real data sets, different
classes tend to be well-separated, and the perturbation radius is typically much smaller than
the separation distance of different classes [47]. For example, on CIFAR-10, the minimum
separation distance is 0.21, which is much larger than the perturbation radius δ = 8/255.

However, merely with Assumption 2, [29] show that a worst-case requirement on the
model complexity suffers from the curse of dimensionality. This is because no regularity
assumption is added to the target function. To obtain a relaxed model complexity re-
quirement, apart from the α-Hölder continuous assumption as mentioned in Section 3, we
additionally require that the Bayes rule is confident in its prediction.

Assumption 3 (regularity assumption and high confidence of the Bayes rule). We assume
that η ∈ Wα

∞(X ) with α ∈ N. Besides, there exists some arbitrary small constant ζ > 0
such that

|η(x)− 0.5| > ζ, ∀x ∈ X . (4.9)

Remark 3. This assumption is also reasonable since it assures that for the true data
distribution ρ, if the Bayes rule fc indicates that the label of the input x belongs to one
class, then the probability that it belongs to this class should not be that close to 0.5. That
means the true classifier should have some confidence in its classification for every input
data. In other words, this assumption ensures that the data distribution is of relatively high
quality. Similar notations to measure the quality of data samples and features are utilized
in [27, 18].

4.3 Generalization analysis of adversarial training global minima on over-
parameterized FNNs

In this subsection, we indicate that overfitted DNNs in adversarial training can generalize
under the circumstances that the data distribution is of relatively high quality and is well-
separated, the perturbation radius is small enough, and the number of free parameters in
DNNs is large enough. To begin with, we utilize the following error decomposition method
for the excess adversarial misclassification error.

Proposition 1. Let f δ
c := argminf Rδ(f). For any classifier f , we have

Rδ(f)−Rδ(f δ
c ) ≤ Rδ(f)−R(f) +R(f)−R(fc) . (4.10)

Moreover, we always have R(f) ≤ Rδ(f).
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Proof of Proposition 1. We use the following error decomposition and the fact thatR(fc) ≤
R(f δ

c ) to get

Rδ(f)−Rδ(f δ
c ) = Rδ(f)−R(f) +R(f)−R(fc)

+R(fc)−R(f δ
c ) +R(f δ

c )−Rδ(f δ
c )

≤ Rδ(f)−R(f) +R(f)−R(fc) +R(f δ
c )−Rδ(f δ

c ) .

Moreover, for any x ∈ X , y ∈ {−1, 1}, ϕ(yf(x)) ≤ maxx′∈Bδ,∞(x) ϕ(yf(x
′)) holds for any

f , then we get R(f) ≤ Rδ(f). Therefore, we also have R(f δ
c ) ≤ Rδ(f δ

c ). Thus we complete
the proof.

Remark 4. Since R(f) ≤ Rδ(f) for any f , the robust generalization of any function is
always larger than its standard generalization. This lower bound of robust generalization
error together with the upper bound of it in Proposition 1 partially illustrates the robust gen-
eralization gap phenomenon. Moreover, Proposition 1 shows that the robust generalization
of a classifier f is bounded by the sum of its standard generalization R(f)−R(fc) and its
robustness Rδ(f)−R(f). Roughly speaking, the existence of such an additional robustness
term of the classifier might result in lower robust generalization performance compared with
the standard generalization performance in adversarial training. We explicitly demonstrate
the existence of the robust generalization gap hereinafter.

Based on the above error decomposition, we are now ready to bound the adversarial
misclassification error of good adversarial training classifiers on over-parameterized deep
ReLU FNNs. The following theorem is one main result of our paper with the surrogate
loss being the hinge loss.

Theorem 1 (upper bound under the hinge loss). Let the surrogate loss function ϕ(t) =
max{1− t, 0} be the hinge loss. Suppose that the Borel measure ρ satisfies Assumption 1,
Assumption 2, Assumption 3 with η ∈ Wα

∞(X ) and α ∈ N, taking the perturbation radius

δ < qX
3 ≤ 1

3n
− 1

d , then for any C0 ∈ (0, 1], there exist infinity many adversarial training

global minima f̂over
D ∈ ∆̃

δ,d⃗,L
with depth L = O

(
log 1

ζ

)
, width d1 = O

(
ζ−

d
α log 1

ζ + n
)
,

d2, . . . , dL = O
(
ζ−

d
α log 1

ζ

)
, and non-zero free parameters O

(
ζ−

d
α log 1

ζ + n
)
, such that

E
[
R
(
sgn

(
f̂over
D

))
−R(fc)

]
≤ 2∥Jρ∥ ((2 + 2C0)δ)

d n , (4.11)

and
E
[
Rδ
(
sgn

(
f̂over
D

))
−Rδ(f δ

c )
]
≤ 3∥Jρ∥ ((4 + 2C0)δ)

d n . (4.12)

Remark 5. We make the following remarks on the derived results:
1) This theorem shows that for the 2δ-separated data distribution with relatively high qual-
ity (with the quality measured by ζ), when the perturbation radius δ is small enough, and
the complexity of the neural network is large enough depending on the data distribution’s
quality and regularity, there exist infinitely many adversarial training global minima with
clean and robust generalization performance.
2) This result partially indicates the importance of the data distribution’s quality in ad-
versarial training, which is consistent with the empirical findings that adversarial training
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with high-quality data has better robust performance compared with using low-quality data,
and it can largely alleviate the robust overfitting problem [17].
3) Moreover, when the data distribution’s quality is higher (ζ is larger) or its regularity is
larger (α is larger), the requirement of the model complexity is smaller, to ensure the ex-
istence of adversarial training global minima with good robust generalization performance.
Such requirement of model complexity is better than O(δ−d) stated in [29] when the regu-
larity is large. They only consider the worst case of model complexity to obtain good robust
generalization for all 2δ-separated data, without consideration of the regularity of the target
function.

Remark 6. We make the following remarks on the derived bounds w.r.t. the perturbation
radius:
1) The perturbation radius plays a significant role in the adversarial training. The well-
separated training set is a standard assumption in the over-parameterized literature. Here
we require that the perturbation radius is smaller than a third of the training set’s separation
distance. Such assumption can be satisfied when the input dimension d is large, e.g., for
CIFAR-10 dataset d = 3072, then n− 1

d can be nearly 1, while δ is typically at most 0.05 in
practice [24]. It is also exhibited in [39] that for the same MNIST task, adversarial training
on the MNIST dataset with higher resolution can achieve higher adversarial robustness.
2) Our robust generalization error upper bound suggests that the robust generalization error
of adversarial training can be smaller when the perturbation radius is relatively smaller.
This is partially derived from the expansion of the memorization of the label noise at one
point to the δ ball while overfitting occurs in adversarial training. Empirical results also
suggest that such label noise would be larger with usage of larger perturbation radius in
adversarial training, thus resulting in larger variance and the robust overfitting phenomenon
[19, 18].

Next, we also provide a lower bound of the adversarial misclassification error for all the
adversarial training global minima on over-parameterized deep ReLU nets with the hinge
loss.

Theorem 2 (lower bound under the hinge loss). Under the same setting of Theorem 1, then
for any adversarial training global minimum f̂over

D ∈ ∆̃
δ,d⃗,L

with non-zero free parameters

O
(
ζ−

d
α log 1

ζ + n
)
, we have

E
[
Rδ
(
sgn

(
f̂over
D

))
−Rδ(f δ

c )
]
≥ 2ζ∥J̄ρ∥R(fc)(4δ)

dn . (4.13)

Remark 7. Comparing Equation (4.11) with Equation (4.13), since C0 ∈ (0, 1] can be ar-
bitrarily small, we have that the excess standard misclassification error of good adversarial
training global minima can be smaller than O((2δ)dn), while their excess adversarial mis-
classification error are larger than O((4δ)dn). Such difference is because, for the adversarial
training global minima, their standard generalization performance would only be influenced
by the memorization of noise in the δ-ball around the input training data points, while
their robust generalization performance would be influenced by the 2δ-ball around the input
training data points. This explicitly demonstrates the existence of the robust generalization
gap.
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Since R(fc) is the misclassification error of the Bayes rule which also measures the
quality of the data distribution, this lower bound again demonstrates the importance of
the perturbation radius and the data distribution’s quality on the adversarial training as
is exhibited in [17, 19, 18]. Furthermore, comparing Equation (4.12) with Equation (4.13),
since C0 ∈ (0, 1] can be arbitrarily small, the excess adversarial misclassification error upper
bounds of adversarial training global minima we derived above matches the order of the
lower bound, showing that our construction is almost optimal.

Moreover, the above adversarial misclassification error bound results under the hinge
loss can be extended to the other commonly used loss functions for the classification tasks,
e.g., the logistic loss. We can also demonstrate that there still exist infinitely many adver-
sarial training global minima that can achieve arbitrarily small adversarial training error
and good robust generalization error. The details are specified in Appendix A.3.

5 Main Results on Regression Tasks

In this section, we extend our results in Section 4 to the regression tasks. Specifically,
under the over-parameterized regime, we first demonstrate the existence of infinitely many
adversarial training global minima that can achieve near-optimal rates of convergence for
the standard generalization, when the perturbation radius is small enough. Then, we also
show that there are infinitely many adversarial training global minima that can obtain good
robust generalization errors of the same order as the lower bound when the perturbation
radius satisfies some conditions.

5.1 Notations and assumptions

For regression under the least squares loss, the objective of learning is to find the target
function fρ, which minimizes the standard generalization error

E(f) :=
∫
Z
(f(x)− y)2dρ . (5.1)

We can write it in the style of the data generation process, i.e., y = fρ(x) + ϵ for any
data point (x, y) ∼ ρ, where the noise ϵ is assumed to have zero mean with E[ϵ] = 0 and
bounded variance with V[ϵ] = σ2.

The ERM algorithm under the least squares loss aims to minimize the empirical gen-
eralization error

ÊD(f) :=
1

n

n∑
i=1

(f(xi)− yi)
2, (5.2)

over the hypothesis space F
d⃗,L

.
The above definitions can also be extended to the adversarial training setting in the

regression task as what is done in Section 4 for the classification task. To defend against
the ℓ∞ white-box adversarial attack, our goal is to minimize the adversarial generalization
error Eδ(f) with

f δ
ρ (x) := argmin

f
Eδ(f) with Eδ(f) :=

∫
Z

max
x′∈Bδ,∞(x)

(
f(x′)− y

)2
dρ , (5.3)

11



where f δ
ρ (x) is denoted as the robust target function. Correspondingly, the adversarial

training implements the ERM algorithm that minimizes the empirical adversarial general-
ization error

Êδ
D(f) :=

1

n

n∑
i=1

max
x′
i∈Bδ,∞(xi)

(
f(x′

i)− yi
)2

, (5.4)

over the hypothesis space F
d⃗,L

. Moreover, we denote ∆
δ,d⃗,L

as the set of the global minima

of the optimization problem Equation (5.4) for adversarial training, i.e.,

∆
δ,d⃗,L

:=

{
f̂ δ
D : f̂ δ

D = argmin
f∈F

d⃗,L

Êδ
D(f)

}
. (5.5)

For regression, the required assumptions are weaker than that of classification in Sec-
tion 4.1. The reason is that in the regression task, we measure the squares loss within the
δ-ball, which can remain small if f is smooth. Whereas in the classification task, even if f
changes a little in the δ-ball, its sign can vary from −1 to +1 if its value is close to 0. Here
we only need the distortion assumption in Assumption 1 and the the regularity assumption
for fρ stated in Section 3.

5.2 Standard generalization analysis of adversarial training estimators
on over-parameterized FNNs

In this subsection, we study the standard generalization error analysis of the estimators
obtained by adversarial training on over-parameterized deep ReLU FNNs, and answer the
question of whether they can achieve good learning rates as the standard ERM estimators
on under-parameterized deep ReLU FNNs do.

Suppose that the target function fρ ∈ Wα
∞(X ) with α > 0. Denote ΨD as the set of

regression function estimators that are derived according to the data sample D with size
n. The classical statistical results [25] demonstrated that the optimal rates of convergence
that can be achieved by a learning algorithm is

inf
fD∈ΨD

sup
fρ∈Wα

∞(X ),ρX∈Φρ

E [E(fD)− E(fρ)] = Θ
(
n− 2α

2α+d

)
. (5.6)

With a truncated operator introduced for the estimator

πMf(x) :=


f(x), if |f(x)| ≤ M,
M, if f(x) > M,
−M, if f(x) < −M ,

recent works indicate that all the truncated estimators (with the truncated operator applied
on the estimators) obtained by the standard ERM algorithm on under-parameterized deep
ReLU FNNs can achieve near-optimal learning rates [38, 26].

Lemma 1 ([38, 26]). Suppose that the target function fρ ∈ Wα
∞(X ) with α > 0, there

exists some under-parameterized FNN structure F
d⃗,L

with L ∼ log n, d1 = O(n
d

2α+d ) ,

12



and d2, d3, . . . dL = O (log n), such that for funder
D = πM argminf∈F

d⃗,L
ÊD(f), i.e., any

truncated estimators of the standard ERM algorithm, we have

sup
fρ∈Wα

∞(X ),ρX∈Φρ

E
[
E
(
funder
D

)
− E (fρ)

]
≤ C1

(
n

log n

)− 2α
2α+d

, (5.7)

where C1 is a constant independent of n.

However, the generalization performance of the global minima of standard ERM algo-
rithms on over-parameterized deep ReLU FNNs is still theoretically unclear. The empirical
results exhibit that some ERM global minima on over-parameterized deep ReLU FNNs can
not only interpolate the training data but also achieve good generalization performance
[4, 50], the occurrence of such benign overfitting phenomenons are further theoretically
studied by many other works [3, 7, 31].

In this section, we try to further understand the standard generalization performance
of adversarial training on over-parameterized FNNs, extending previous work [31] from the
standard ERM algorithm to the adversarial training. Our result indicates that under the
over-parameterized regime, there do exist infinitely many adversarial training estimators
that can achieve zero adversarial training error as well as the near-optimal rates of con-
vergence for the standard generalization error, i.e., clean accuracy is promising, when the
perturbation radius is small enough.

Theorem 3. Suppose that the target function fρ ∈ Wα
∞(X ) with α > 0, and the marginal

distribution ρX satisfies Assumption 1. If perturbation radius δ < min
{

qX
3 , n

− 2α
(2α+d)d

− 1
d

}
,

then there exist infinity many adversarial training estimators f̂over
D ∈ ∆

δ,d⃗,L
with depth

L = O (log n), and width d1 = O (n), d2, . . . , dL = O (log n), such that

sup
fρ∈Wα

∞(X ),ρX∈Φρ

E
[
E
(
f̂over
D

)
− E (fρ)

]
≤ C2

(
n

log n

)− 2α
2α+d

, (5.8)

where C2 is a constant independent of n.

Remark 8. Under the over-parameterized regime, Theorem 3 states that there are infinitely
many adversarial training estimators of which the construction only depends on the data
sample D, such that no matter D is drawn from any distribution ρ satisfying the described
regularity condition, they can achieve the near-optimal rates of convergence for the standard
generalization error. However, this is different from Theorem 1, which describes that for
any distribution ρ satisfying the described regularity condition, there exist infinitely many
adversarial training global minima, of which the construction depends on both the data
sample D and the data distribution ρ, such that its standard generalization error bound is
Equation (4.12). This illustrates why the order of the two error bounds is different.

Remark 9. Recent works indicate that adversarial training might result in the robustness-
accuracy trade-off, i.e., adversarial training to get a robust network can lead to a drop in
the standard test accuracy [51, 44]. However, it is demonstrated in [47, 29] that for the
classification task, when the data distribution is separable, and the perturbation radius is
smaller than the separation distance, the robustness and accuracy are both achievable but
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the required network size suffers from the curse of dimensionality. Our result confirms this
claim for the regression task as well, by indicating that adversarial training is not only
a training algorithm that can help to achieve good robustness, but it can also achieve al-
most optimal standard generalization performance at the same time. More importantly,
our results demonstrate that linear over-parameterization with O(n log n) is sufficient to
achieve this statistically. Nevertheless, we only prove the existence of such good adversarial
training estimators, and it remains to answer the question of how these adversarial train-
ing global minima with good standard generalization performance can be obtained by some
optimization algorithms.

5.3 Robust generalization analysis of adversarial training on
over-parameterized FNNs

In this subsection, we further study the robust generalization performance of the adver-
sarial training global minima. The key idea of the proof is to utilize the following error
decomposition method.

Proposition 2. Let f δ
ρ := argminf Eδ(f). For any f , we have

Eδ(f)− Eδ(f δ
ρ ) ≤ Eδ(f)− E(f) + E(f)− E(fρ) . (5.9)

Moreover, we always have E(f) ≤ Eδ(f).

Proof of Proposition 2. We use the following error decomposition and the fact that E(fρ) ≤
E(f δ

ρ ) to get

Eδ(f)− Eδ(f δ
ρ ) = Eδ(f)− E(f) + E(f)− E(fρ) + E(fρ)− E(f δ

ρ ) + E(f δ
ρ )− Eδ(f δ

ρ )

≤ Eδ(f)− E(f) + E(f)− E(fρ) + E(f δ
ρ )− Eδ(f δ

ρ ).

Moreover, since ∀x ∈ Rd, y ∈ R, (f(x)− y)2 ≤ maxx′∈Bδ,∞(x) (f(x
′)− y)2 holds for any f ,

we get E(f) ≤ Eδ(f). Therefore, we further have E(f δ
ρ ) ≤ Eδ(f δ

ρ ). Thus we complete the
proof.

Based on the above error decomposition, we are now ready to bound the excess ad-
versarial generalization error of the good adversarial training global minima on over-
parameterized deep ReLU FNNs.

Theorem 4. Suppose that the target function admits fρ ∈ Wα
∞([0, 1]d) with ∥f∥Wα

∞([0,1]d ≤
B and α ≥ 2 being an integer, and the marginal distribution of the data satisfies ρX ∈ Φρ

in Assumption 1. If the radius of adversarial training satisfies δ < qX
3 ≤ 1

3n
− 1

d , then

∀C0 ∈ (0, 1], there exist infinity many adversarial training global minima f̂over
D ∈ ∆

δ,d⃗,L
,

with depth L = O
(
log 1

δ

)
, width d1 = O

(
δ−

d
2α−2 log 1

δ + n
)
, d2, . . . , dL = O

(
δ−

d
2α−2 log 1

δ

)
,

and non-zero free parameters O
(
δ−

d
2α−2 log 1

δ + n
)
, such that

E
[
Eδ(f student

D,θ,δ,τ,ϵ)− Eδ(f δ
ρ )
]
≤ C3

√
dmax

{
δ, ((4 + 2C0)δ)

d n
}
. (5.10)

14



Moreover, when n− 1
d−1 ≤ δ < qX

3 ≤ 1
3n

− 1
d , we have

E
[
Eδ(fstudent

D,θ,δ,τ,ϵ)− Eδ(f δ
ρ )
]
≤ C3

√
d ((4 + 2C0)δ)

d n . (5.11)

where C3 is a constant independent of d, n and δ.

This result suggests that for the over-parameterized deep ReLU FNNs, when the per-
turbation radius is small enough, there exist infinitely many global minima obtained by
adversarial training on these FNNs that can achieve good adversarial generalization error.
Moreover, the number of parameters to achieve such adversarial generalization error de-
pends on the smoothness of the target function, when α = O(d) is very large, the required
model complexity would be independent of d.

The two orders stated in Equation (5.10) come from two parts, one is from the mem-
orization of the noisy labels in the perturbation balls around the input data sample, and
another is from the robustness of the target function in the unseen parts of the data, which
only depends on the perturbation radius δ and the smoothness of the target function.
Moreover, when the perturbation radius satisfies some constraints, the order of the excess
adversarial generalization error upper bound of these good adversarial training global min-
ima in Theorem 4 matches the order of the lower bound, which is stated in the following
theorem.

Theorem 5. Suppose that the target function admits fρ ∈ Wα
∞([0, 1]d) with α ≥ 2 being

an integer, and the marginal distribution of the data satisfies ρX ∈ Φρ in Assumption 1. If

the radius of adversarial training δ < qX
3 ≤ 1

3n
− 1

d , then for any adversarial training global

minimum f̂over
D ∈ ∆

δ,d⃗,L
with non-zero free parameters O

(
δ−

d
2α−2 log 1

δ + n
)
, we have

E
[
Eδ(f̂over

D )− Eδ(f δ
ρ )
]
≥ ∥J̄ρ∥σ2(4δ)dn−

[
Eδ(f δ

ρ )− E (fρ)
]

≥ ∥J̄ρ∥σ2(4δ)dn− C̄1∥Jρ∥
√
dδ

(5.12)

where C̄1 is a constant independent of d, n and δ.

The minus term in the first line of the lower bound is an unchanged term, which only
depends on the intrinsic property of the data distribution. Moreover, since C0 can be
arbitrarily small in Theorem 4, the robust generalization error bound of the good adver-
sarial training global minima shown in Equation (5.10) matches this lower bound when

n− 1
d−1 ≤ δ < qX

3 ≤ 1
3n

− 1
d . Such lower bound also demonstrates the impact of the data

quality on the adversarial training, since the variance of the noise σ2 is included in the
bound.

6 Conclusion

In this paper, we try to answer the question of whether overfitted DNNs in adversarial
training can generalize in the over-parameterized setting, i.e., whether there exist adver-
sarial training global minima that can achieve both arbitrarily small training error as well as
good robust generalization performance. We study this question for both the classification
tasks and the regression tasks.
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For the classification tasks, when the data distribution is well-separated, of relatively
high quality, the perturbation radius is small enough, and the model complexity is large
enough, we prove the existence of infinitely many adversarial training global minima that
can achieve arbitrarily small training error as well as good robust generalization perfor-
mance. The requirement of the model complexity can be relaxed when the regularity
of the target function is larger or the data quality is higher. Our construction of such
adversarial training global minima is almost optimal since its robust generalization error
bound matches the order of the lower bound. We also demonstrate the existence of the
robust generalization gap since the robust generalization has a larger order than the stan-
dard generalization even for these almost optimally constructed adversarial training global
minima.

For the regression tasks, we first study the question of whether the robustness-accuracy
trade-off can be avoided, i.e., whether adversarial training harms the standard generaliza-
tion performance. Our results indicate that there are infinitely many adversarial training
estimators that can achieve zero adversarial training error as well as near-optimal rates
of convergence for the standard generalization error if the perturbation radius is small
enough, with only linear over-parameterization. Furthermore, we also study the robust
performance, where we also demonstrate infinitely many adversarial training global min-
ima with good robust generalization, which matches the lower bound when the perturbation
radius is not that small.

Acknowledgments

The research leading to these results received funding from the European Research Coun-
cil under the European Union’s Horizon 2020 research and innovation program/ERC Ad-
vanced Grant E-DUALITY (787960). This article reflects only the authors’ views, and the
EU is not liable for any use that may be made of the contained information; Flemish gov-
ernment (AI Research Program); Leuven.AI Institute. Fanghui is supported by UK-Italy
Trustworthy AI Visiting Researcher Programme.

Appendix

A Proof of Main Results in Section 4

A.1 Proof of Theorem 1

The proof of Theorem 1 follows the teacher-student network scheme to construct the ad-
versarial training global minima that both interpolates the training samples within the
adversarial perturbations and achieves good standard generalization performance. The
main proof techniques are the localized approximation [11, 12] and the product-gate prop-
erty of deep ReLU FNNs [48].

We first introduce the localized approximation approach. Let θ, a, b ∈ R with a < b,
denote the trapezoid-shaped function Tθ,a,b on R with a parameter 0 < θ ≤ 1 as

Ta,b,θ(t) :=
1

θ
{σ(t− a+ θ)− σ(t− a)− σ(t− b) + σ(t− b− θ)} , t ∈ R . (A.1)
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For x = (x1, . . . , xd) ∈ Rd, denote

Γa,b,θ(x) := σ

(
d∑

k=1

Ta,b,θ (xk)− (d− 1)

)
, (A.2)

it is in fact a two-layer ReLU net with the hidden width 4d. It can be easily shown that
0 ≤ Γa,b,θ(x) ≤ 1 for all x ∈ Id and

Γa,b,θ(x) =

{
0, if x /∈ [a− θ, b+ θ]d,

1, if x ∈ [a, b]d.
(A.3)

Moreover, in the following of the paper, for any x ∈ Rd and a ∈ R, we denote

[x− a,x+ a]d := x+ [−a, a]d. (A.4)

The following lemma indicates the product-gate property of the deep ReLU FNNs which
can be found in [48].

Lemma 2. For any ϵ ∈ (0, 1), there exists a deep ReLU FNN ×̃ϵ : R2 → R with depth and
free parameters O

(
log 1

ϵ

)
such that∣∣×̃ϵ(x1, x2)− x1x2

∣∣ ≤ ϵ, ∀x1, x2 ∈ [−1, 1]. (A.5)

Moreover, ×̃ϵ(x1, x2) = 0 if x1 = 0 or x2 = 0.

The following lemma from [48, Theorem 1] describes approximation rates of deep ReLU
FNNs for Sobolev functions with respect to L∞ norms.

Lemma 3. [48, Theorem 1] Let α ∈ N. Suppose that f ∈ Wα
∞([0, 1]d) with ∥f∥Wα

∞([0,1]d) ≤
1. Then there exists a deep ReLU FNN f̂ with depth L = O

(
log 1

ϵ

)
, width d1, . . . , dL =

O
(
ϵ−

d
α log 1

ϵ

)
, and non-zero free parameters O

(
ϵ−

d
α log 1

ϵ

)
, such that∥∥∥f̂ − f

∥∥∥
L∞([0,1]d)

≤ ϵ . (A.6)

We also need the following comparison theorem for the hinge loss studied in [2, 9],
which describes the relationship between the excess misclassification error and the excess
ϕ-risk.

Lemma 4. If ϕ is the hinge loss ϕ(t) = max{1 − t, 0}, then for any measurable function
f : X → R, there holds

R (sgn(f))−R(fc) ≤ Eϕ (sgn(f))− Eϕ(fc) . (A.7)

We are now ready to prove Theorem 1 based on Proposition 1, Lemma 2, Lemma 3,
and Lemma 4.
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Proof of Theorem 1. Note that the target function fρ = 2η−1 ∈ Wα
∞(X ), and fc = sgn(fρ).

Moreover, by Lemma 3, there exists a deep ReLU FNN f̂θ with depth L = O
(
log 1

θ

)
, width

d1, . . . , dL = O
(
θ−

d
α log 1

θ

)
, and non-zero free parameters O

(
θ−

d
α log 1

θ

)
, such that∥∥∥f̂θ − fρ

∥∥∥
L∞(X )

≤ θ . (A.8)

Denote c5 =
∥∥∥f̂θ∥∥∥

L∞(X )
≤
∥∥∥f̂θ − fρ

∥∥∥
L∞(X )

+
∥∥∥f̂ρ∥∥∥

L∞(X )
, we have c5 ≤ 2 since |fρ| ≤ 1.

We use f̂θ as the teacher network, and construct the student network fϕ
D,θ,δ,τ,ϵ which is the

adversarial training global minimum

fϕ
D,θ,δ,τ,ϵ(x) :=

n∑
i=1

yiΓxi−δ,xi+δ,τ (x) + c5×̃ϵ

(
f̂θ(x)

c5
, 1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
. (A.9)

When x ∈ [xi − δ,xi + δ]d, i.e., ∥x − xi∥∞ ≤ δ, we have Γxi−δ,xi+δ,τ (x) = 1. Moreover,

choosing τ ≤ C0δ < C0qX
3 , we further have Γxj−δ,xj+δ,τ (x) = 0 for all j ̸= i. Thereby,

1−
∑n

i=1 Γxi−δ,xi+δ,τ (x) = 0, we get ×̃ϵ

(
f̂θ(x)
c5

, 1−
∑n

i=1 Γxi−δ,xi+δ,τ (x)
)
= 0 by Lemma 2.

Therefore,
fϕ
D,θ,δ,τ,ϵ(x) = yi, when x ∈ [xi − δ,xi + δ]d . (A.10)

This suggests that Êϕ,δ
D

(
fϕ
D,θ,δ,τ,ϵ

)
= 1

n

∑n
i=1maxx′

i∈Bδ,∞(xi) ϕ
(
yif

ϕ
D,θ,δ,τ,ϵ(x

′
i)
)
= 0, thus

fϕ
D,θ,δ,τ,ϵ is indeed the global minimum of adversarial training with the surrogate loss

ϕ. Moreover, fϕ
D,θ,δ,τ,ϵ is a deep ReLU FNN with depth L = O

(
log 1

θ + log 1
ϵ

)
, width

d1 = O
(
θ−

d
α log 1

θ + n+ log 1
ϵ

)
, d2, . . . , dL = O

(
θ−

d
α log 1

θ + log 1
ϵ

)
, and non-zero free pa-

rameters O
(
θ−

d
α log 1

θ + n+ log 1
ϵ

)
.

We then bound the excess adversarial misclassification error of this adversarial training

classifier. By Proposition 1, we only need to bound two error terms: Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−

R
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
and R

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R(fc).

We first consider the second error term. By Lemma 4, we have

R
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R(fc) ≤ Eϕ

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
− Eϕ (fc) .

To bound Eϕ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
− Eϕ (fc), because of sgn

(
fϕ
D,θ,δ,τ,ϵ

)
∈ [−1, 1], we have

ϕ
(
y · sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
− ϕ (yfc(x)) = y

(
fc(x)− sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
.

It follows that

Eϕ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
− Eϕ (fc) =

∫
X

(
fc(x)− sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
fρ(x)dρX .

Denote

fϕ
D,θ,δ,τ (x) :=

n∑
i=1

yiΓxi−δ,xi+δ,τ (x) + f̂θ(x)

(
1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
.

18



Since δ < qX
3 , we have 1−

∑n
i=1 Γxi−δ,xi+δ,τ (x) ∈ [0, 1], then by Lemma 2, we have∥∥∥fϕ
D,θ,δ,τ,ϵ − fϕ

D,θ,δ,τ

∥∥∥
L∞(X )

≤ c5ϵ .

Notice that when x ∈ X\
(
∪i∈{1,...,n}[xi − δ − τ,xi + δ + τ ]d

)
, Γxi−δ,xi+δ,τ (x) = 0 for all i,

we have fϕ
D,θ,δ,τ (x) = f̂θ(x). It follows from (A.8) that∣∣∣fϕ

D,θ,δ,τ,ϵ(x)− fρ(x)
∣∣∣ ≤ ∣∣∣fϕ

D,θ,δ,τ,ϵ(x)− fϕ
D,θ,δ,τ (x)

∣∣∣+ ∣∣∣f̂θ(x)− fρ(x)
∣∣∣ ≤ c5ϵ+ θ . (A.11)

By choosing ϵ = θ = 2
3ζ, we have

∣∣∣fϕ
D,θ,δ,τ,ϵ(x)− fρ(x)

∣∣∣ ≤ 2ζ. Moreover, by (4.9) in

Assumption 3, we have |fρ| = |2η− 1| > 2ζ. Therefore, fϕ
D,θ,δ,τ,ϵ(x) has the same sign with

fρ(x), i.e., sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x) = fc(x), it follows that∫

X\(∪i∈{1,...,n}[xi−δ−τ,xi+δ+τ ]d)

(
fc(x)− sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
fρ(x)dρX = 0 .

Furthermore, due to τ ≤ C0δ and |fρ| ≤ 1, we have

n∑
i=1

∫
[xi−δ−τ,xi+δ+τ ]d

(
fc(x)− sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
fρ(x)dρX

≤
n∑

i=1

∥Jρ∥
∫
[xi−δ−τ,xi+δ+τ ]d

(
fc(x)− sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)
)
fρ(x)dx

≤2∥Jρ∥ ((2 + 2C0)δ)
d n .

Combining these two terms, we get

Eϕ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
− Eϕ (fc) ≤ 2∥Jρ∥ ((2 + 2C0)δ)

d n .

Therefore, we finally have

R
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R(fc) ≤ 2∥Jρ∥ ((2 + 2C0)δ)

d n . (A.12)

Next, we consider the first error term. Notice that

Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
=

∫
Z

max
x′∈Bδ,∞(x)

1{
y·sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x′)=−1

} − 1{
y·sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x)=−1

}dρ
≤∥Jρ∥

∫
X

∫
Y

max
x′∈Bδ,∞(x)

1{
y·sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x′)=−1

}
− 1{

y·sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x)=−1

}dρ(y|x)dx .

To bound this term, we divide X to two disjoint parts: ∪i∈{1,...,n}[xi−2δ−τ,xi+2δ+τ ]d and

X\∪i∈{1,...,n} [xi−2δ−τ,xi+2δ+τ ]d. We first consider the second part, as shown before, for
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any x ∈ X\∪i∈{1,...,n} [xi− δ− τ,xi+ δ+ τ ]d fϕ
D,θ,δ,τ,ϵ(x) has the same sign with fρ(x), i.e.,

sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x) = fc(x). Therefore, for any x ∈ X\∪i∈{1,...,n} [xi− 2δ− τ,xi+2δ+ τ ]d,

and any x′ ∈ Bδ,∞(x), we get sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x′) = fc(x

′). Furthermore, according to the

separated data assumption (4.8) in Assumption 2, fc will not change the sign in each L∞
ball with radius δ, i.e., for any x′ ∈ Bδ,∞(x), fc(x

′) = fc(x). Thus for any x′ ∈ Bδ,∞(x),

sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x′) = sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x). This indicates that∫

X\∪i∈{1,...,n}[xi−2δ−τ,xi+2δ+τ ]d

∫
Y

max
x′∈Bδ,∞(x)

1{
y·sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x′)=−1

}−
1{

y·sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x)=−1

}dρ(y|x)dx = 0.

As for the first part, we have

n∑
i=1

∫
[xi−2δ−τ,xi+2δ+τ ]d

∫
Y

max
x′∈Bδ,∞(x)

1{
y·sgn

(
fϕ
D,θ,δ,τ,ϵ

)
(x′)=−1

}−
1{

y·sgn
(
fϕ
D,θ,δ,τ,ϵ

)
(x)=−1

}dρ(y|x)dx ≤ ((4 + 2C0)δ)
d n .

Combining these two terms, we get

Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
≤ ∥Jρ∥ ((4 + 2C0)δ)

d n . (A.13)

Finally, by Proposition 1, we get

Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−Rδ(f δ

c )

≤Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
+R

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−R(fc)

≤2∥Jρ∥ ((2 + 2C0)δ)
d n+ ∥Jρ∥ ((4 + 2C0)δ)

d n .

Furthermore, since we choose ϵ = θ = 2
3ζ, fstudent

D,θ,δ,τ,ϵ is a deep ReLU FNN with depth

L = O
(
log 1

ζ

)
, width d1 = O

(
ζ−

d
α log 1

ζ + n
)
, d2, . . . , dL = O

(
ζ−

d
α log 1

ζ

)
, and non-zero

free parameters O
(
ζ−

d
α log 1

ζ + n
)
. Furthermore, we have the adversarial misclassification

error bound

E
[
Rδ
(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
−Rδ(f δ

c )
]
≤ 3∥Jρ∥ ((4 + 2C0)δ)

d n . (A.14)

Moreover, since τ ≤ C0δ can be arbitrarily chosen, we conclude that there are infinitely
many global minima fϕ

D,θ,δ,τ,ϵ ∈ ∆̃
δ,d⃗,L

that can achieve such adversarial misclassification
error bound. Thus we complete the proof.

A.2 Proof of Theorem 2

Proof of Theorem 2. Notice that according to the separated data assumption (4.8) in As-
sumption 2, we in fact have Rδ(fc) = R(fc), this further indicates that f

δ
c = fc. Moreover,
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by (4.9) in Assumption 3 that |η(x)−0.5| > ζ, we have max{η(x), 1−η(x)} ≥ min{η(x), 1−
η(x)} + 2ζ. Therefore, for any adversarial training global minimum f̂over

D ∈ ∆̃
δ,d⃗,L

with

non-zero free parameters O
(
ζ−

d
α log 1

ζ + n
)
, since it can achieve zero adversarial train-

ing error as is constructed in Appendix A.1, we have f̂over
D (x) = yi, when x ∈ Bδ,∞(xi).

Therefore,

E

[∫
x∈[xi−2δ,xi+2δ]d

∫
Y

max
x′∈Bδ,∞(x)

1{y·sgn(f̂over
D )(x′)=−1}dρ

]

≥E

[∫
x∈[xi−2δ,xi+2δ]d

∫
Y
1{yyi=−1}dρ

]

=

∫
xi

∫
x∈[xi−2δ,xi+2δ]d

η(x)(1− η(xi)) + (1− η(x))η(xi)dρXdρX

=

∫
xi

∫
x∈[xi−2δ,xi+2δ]d

min{η(x), 1− η(x)}(1− η(xi)) + min{η(x), 1− η(x)}η(xi)

+ (max{η(x), 1− η(x)} −min{η(x), 1− η(x)})min{η(xi), 1− η(xi)}dρXdρX

≥E

[∫
x∈[xi−2δ,xi+2δ]d

min{η(x), 1− η(x)}dρX

]

+2ζ

∫
xi

∫
x∈[xi−2δ,xi+2δ]d

min{η(xi), 1− η(xi)}dρXdρX

=E

[∫
x∈[xi−2δ,xi+2δ]d

∫
Y
1{y·fc(x)=−1}dρ

]

+2ζE

[∫
x∈[xi−2δ,xi+2δ]d

min{η(xi), 1− η(xi)}dρX

]
,

where the second equality is because η(x)−0.5 has the same sign with η(xi)−0.5 due to the
separated data assumption (4.8) in Assumption 2, thus the larger one in {η(x), 1− η(x)}
multiplies with the smaller one in {η(xi), 1− η(xi)}. It follows that

E
[
Rδ
(
sgn

(
f̂over
D

))
−Rδ(f δ

c )
]
= E

[
Rδ
(
sgn

(
f̂over
D

))
−R(fc)

]
≥

n∑
i=1

E

[∫
x∈[xi−2δ,xi+2δ]d

∫
Y

max
x′∈Bδ,∞(x)

1{y·sgn(f̂over
D )(x′)=−1} − 1{y·fc(x)=−1}dρ

]

≥
n∑

i=1

2ζE

[∫
x∈[xi−2δ,xi+2δ]d

min{η(xi), 1− η(xi)}dρX

]

≥
n∑

i=1

2ζ∥J̄ρ∥(4δ)dE [min{η(xi), 1− η(xi)}]

=2ζ∥J̄ρ∥R(fc)(4δ)
dn.

Thus we complete the proof.
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A.3 Robust generalization for adversarial training with logistic loss

Theorem 6 (upper bound under the logistic loss). Let α ∈ N, the surrogate loss function
ϕ(t) = log(1 + e−t) be the logistic loss. Under the same setting of Theorem 1, suppose that

η ∈ Wα
∞(X ), and the radius of adversarial training δ < qX

3 ≤ 1
3n

− 1
d . Then ∀C0 ∈ (0, 1],

there exist infinity many adversarial training global minima f̂over
D with depth L = O

(
log 1

ζ

)
,

width d1 = O
(
ζ−

d
α log 1

ζ + n
)
, d2, . . . , dL = O

(
ζ−

d
α log 1

ζ

)
, and non-zero free parameters

O
(
ζ−

d
α log 1

ζ + n
)
, such that the adversarial training error Êϕ,δ

D

(
f̂over
D

)
can be arbitrarily

small, and

E
[
R
(
sgn

(
f̂over
D

))
−R(fc)

]
≤ 2∥Jρ∥ ((2 + 2C0)δ)

d n, (A.15)

E
[
Rδ
(
sgn

(
f̂over
D

))
−Rδ(f δ

c )
]
≤ 3∥Jρ∥ ((4 + 2C0)δ)

d n, (A.16)

Proof of Theorem 6. The idea is to construct the adversarial training global minima ob-
tained by the logistic loss ϕLR based on the construction of those obtained by the hinge
loss ϕ in the proof of Theorem 1, i.e., fϕ

D,θ,δ,τ,ϵ(x) in (A.9). For β ∈ (0, 1) that can be
arbitrarily small, denote

fϕLR

D,θ,δ,τ,ϵ(x) = log
1

β
fϕ
D,θ,δ,τ,ϵ(x). (A.17)

Since fϕ
D,θ,δ,τ,ϵ(x) = yi, when x ∈ Bδ,∞(xi) as shown in (A.10), we have

ÊϕLR,δ
D

(
fϕLR

D,θ,δ,τ,ϵ

)
=

1

n

n∑
i=1

max
x′
i∈Bδ,∞(xi)

log
(
1 + e

−yi log
1
β
fϕ
D,θ,δ,τ,ϵ(x

′
i)
)

= log(1 + β) ≤ β.

(A.18)

Moreover, since log 1
β > 0, fϕLR

D,θ,δ,τ,ϵ(x) has the same sign with fϕ
D,θ,δ,τ,ϵ(x) for all x ∈

X . This indicates that Rδ
(
sgn

(
fϕLR

D,θ,δ,τ,ϵ

))
= Rδ

(
sgn

(
fϕ
D,θ,δ,τ,ϵ

))
, and the adversarial

misclassification error bound will be the same as in Theorem 1. Thus we complete the
proof.

B Proof of Main Results in Section 5

B.1 Proof of Theorem 3

The proof of Theorem 3 also follows the teacher-student network scheme. The ERM es-
timators on under-parameterized deep ReLU FNNs that possess good generalization per-
formance are considered to be the teacher network, and we construct the student network
by deepening the teacher network to ensure that it achieves zero adversarial training error
while still maintaining good generalization performance. We prove Theorem 3 based on
Lemma 1 and Lemma 2.

Proof of Theorem 3. Let funder
D = πM argminf∈F

d⃗,L
ÊD(f) be the truncated ERM estima-

tor on the under-parameterized deep ReLU FNNs in Lemma 1 with L ∼ log n, d1 ∼ n
d

2α+d ,
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and d2, d3, . . . dL ∼ log n. By Lemma 1, we have

sup
fρ∈Wα

∞(X ),ρX∈Φρ

E
[∥∥∥funder

D − fρ

∥∥∥2
ρ

]
≤ C1

(
n

log n

)− 2α
2α+d

. (B.1)

Taking funder
D as the teacher network, we then construct the student network based on

funder
D . Denote c1 =

∥∥funder
D

∥∥
L∞(X )

≤ M , define the student network

fstudent
D,δ,τ,ϵ (x) :=

n∑
i=1

yiΓxi−δ,xi+δ,τ (x) + c1×̃ϵ

(
funder
D (x)

c1
, 1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
. (B.2)

By writing fstudent
D,δ,τ,ϵ as

fstudent
D,δ,τ,ϵ (x) = σ

(
n∑

i=1

yiΓxi−δ,xi+δ,τ (x)

)
− σ

(
−

n∑
i=1

yiΓxi−δ,xi+δ,τ (x)

)

+ c1×̃ϵ

(
funder
D (x)

c1
, 1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
.

This is in fact a deep ReLU FNN with depth L = O
(
log n+ log 1

ϵ

)
, and width d1 =

O
(
n

d
2α+d + n+ log 1

ϵ

)
, and d2, . . . , dL = O

(
log n+ log 1

ϵ

)
. Notice from (A.3) that

Γxi−δ,xi+δ,τ (x) =

{
0, if x /∈ [xi − δ − τ,xi + δ + τ ]d,

1, if x ∈ [xi − δ,xi + δ]d.

When x ∈ [xi − δ,xi + δ]d, we have Γxi−δ,xi+δ,τ (x) = 1. Moreover, choose τ ≤ δ <
qX
3 , since 2δ + τ < qX , we further have Γxj−δ,xj+δ,τ (x) = 0 for all j ̸= i. Thus 1 −∑n
i=1 Γxi−δ,xi+δ,τ (x) = 0, then we get ×̃ϵ

(
funder
D (x)

c1
, 1−

∑n
i=1 Γxi−δ,xi+δ,τ (x)

)
= 0 by

Lemma 2. Therefore,

fstudent
D,δ,τ,ϵ (x) = yi, when x ∈ [xi − δ,xi + δ]d. (B.3)

This suggests that ÊD
(
f student
D,δ,τ,ϵ

)
= 0, and fstudent

D,δ,τ,ϵ is indeed the global minimum of the

adversarial training. What remains to show is that fstudent
D,δ,τ,ϵ achieves good standard gener-

alization performance as funder
D , i.e., the distance between the student network fstudent

D,δ,τ,ϵ and

the teacher network funder
D is small. Denote the intermediate term for error decomposition

fD,δ,τ (x) :=

n∑
i=1

yiΓxi−δ,xi+δ,τ (x) + funder
D (x)

(
1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
. (B.4)

Since δ < qX
3 , we have 1−

∑n
i=1 Γxi−δ,xi+δ,τ (x) ∈ [0, 1], then by Lemma 2, we get∥∥∥∥(fstudent

D,δ,τ,ϵ − fD,δ,τ

)2∥∥∥∥
L1(X )

≤
∥∥∥∥(fstudent

D,δ,τ,ϵ − fD,δ,τ

)2∥∥∥∥
L∞(X )

≤ c21ϵ
2. (B.5)
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Notice that when x ∈ X\
(
∪i∈{1,...,n}[xi − δ − τ,xi + δ + τ ]d

)
, Γxi−δ,xi+δ,τ (x) = 0 for all i,

we have fD,δ,τ (x) = funder
D (x). It follows from τ ≤ δ that∥∥∥∥(fD,δ,τ − funder

D

)2∥∥∥∥
L1(X )

=
n∑

i=1

∫
[xi−δ−τ,xi+δ+τ ]d

(
fD,δ,τ (x)− funder

D (x)
)2

dx

≤ (c1 +M)2 4dδdn.

(B.6)

By the assumption that ∥Jρ∥ < ∞, we get∥∥∥fstudent
D,δ,τ,ϵ − funder

D

∥∥∥2
ρ
=

∫
X

(
fstudent
D,δ,τ,ϵ − funder

D

)2
dρX

≤2

∥∥∥∥(fstudent
D,δ,τ,ϵ − fD,δ,τ

)2∥∥∥∥
L1
ρX

(X )

+ 2

∥∥∥∥(fD,δ,τ − funder
D

)2∥∥∥∥
L1
ρX

(X )

≤2∥Jρ∥
∥∥∥∥(fstudent

D,δ,τ,ϵ − fD,δ,τ

)2∥∥∥∥
L1(X )

+ 2∥Jρ∥
∥∥∥∥(fD,δ,τ − funder

D

)2∥∥∥∥
L1(X )

≤2∥Jρ∥
(
c21ϵ

2 + (c1 +M)2 4dδdn
)
.

(B.7)

By choosing ϵ = n− α
2α+d , and since δ < min

{
qX
3 , n

− 2α
(2α+d)d

− 1
d

}
, we have∥∥∥fstudent

D,δ,τ,ϵ − funder
D

∥∥∥2
ρ
≤ ∥Jρ∥c2n− 2α

2α+d , (B.8)

where c2 = 2c21 + 2(c1 +M)24d. Combining with (B.1), finally we obtain

sup
fρ∈Wα

∞(X ),ρX∈Φρ

E
[
E
(
fstudent
D,δ,τ,ϵ

)
− E (fρ)

]
= sup

fρ∈Wα
∞(X ),ρX∈Φρ

E
[∥∥∥fstudent

D,δ,τ,ϵ − fρ

∥∥∥2
ρ

]
≤ sup

fρ∈Wα
∞(X ),ρX∈Φρ

2E
[∥∥∥fstudent

D,δ,τ,ϵ − funder
D

∥∥∥2
ρ

]
+ sup

fρ∈Wα
∞(X ),ρX∈Φρ

2E
[∥∥∥funder

D − fρ

∥∥∥2
ρ

]

≤C2

(
n

log n

)− 2α
2α+d

,

(B.9)

where C2 = 2c2∥Jρ∥+ 2C2
1 . Moreover, since τ ≤ δ can be arbitrarily chosen, we conclude

that there are infinitely many fstudent
D,δ,τ,ϵ ∈ ∆

δ,d⃗,L
that can achieve near-optimal rates of

convergence for standard generalization error, where the depth L = O (log n), and width
d1 = O (n), d2, . . . , dL = O (log n). This completes the proof.

B.2 Proof of Theorem 4

To prove Theorem 4, we need the following lemma from [23, Theorem 4.1] which describes
approximation rates of deep ReLU FNNs for Sobolev functions with respect to weaker
Sobolev norms.
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Lemma 5. Let α ≥ 2 be an integer, B > 0, and 0 ≤ s ≤ 1. Suppose that f ∈ Wα
∞([0, 1]d)

with ∥f∥Wα
∞([0,1]d ≤ B. Then there exists a deep ReLU FNN f̂ with depth L = O

(
log 1

ϵ

)
,

width d1, . . . , dL = O
(
ϵ−

d
α−s log 1

ϵ

)
, and non-zero free parameters O

(
ϵ−

d
α−s log 1

ϵ

)
, such

that ∥∥∥f̂ − f
∥∥∥
W s

∞([0,1]d)
≤ ϵ. (B.10)

We are now ready to prove Theorem 4 based on Proposition 2, Lemma 5, and the proof
of Theorem 3.

Proof of Theorem 4. By Lemma 5, choose s = 1. There exists a deep ReLU FNN fθ with

depth L = O
(
log 1

θ

)
, width d1, . . . , dL = O

(
θ−

d
α−1 log 1

θ

)
, and non-zero free parameters

O
(
θ−

d
α−1 log 1

θ

)
, such that

∥fθ − fρ∥W 1
∞(X ) ≤ θ. (B.11)

Denote c3 = ∥fθ∥L∞(X ) ≤ B+1. Similar as the proof in Theorem 3, we use fθ as the teacher

network, and construct the student network fstudent
D,θ,δ,τ,ϵ which is the adversarial training global

minimum

fstudent
D,θ,δ,τ,ϵ(x) :=

n∑
i=1

yiΓxi−δ,xi+δ,τ (x) + c3×̃ϵ

(
fθ(x)

c3
, 1−

n∑
i=1

Γxi−δ,xi+δ,τ (x)

)
. (B.12)

Choose τ ≤ C0δ < C0qX
3 . Same as the proof of Theorem 3, we have the property that

fstudent
D,θ,δ,τ,ϵ(x) = yi, when x ∈ [xi − δ,xi + δ]d. (B.13)

Therefore, ÊD
(
fstudent
D,θ,δ,τ,ϵ

)
= 0, and fstudent

D,θ,δ,τ,ϵ is indeed the global minimum of the adversarial

training. Moreover, fstudent
D,θ,δ,τ,ϵ is a deep ReLU FNN with depth L = O

(
log 1

θ + log 1
ϵ

)
, width

d1 = O
(
θ−

d
α−1 log 1

θ + n+ log 1
ϵ

)
, d2, . . . , dL = O

(
θ−

d
α−1 log 1

θ + log 1
ϵ

)
, and non-zero free

parameters O
(
θ−

d
α−1 log 1

θ + n+ log 1
ϵ

)
.

We then bound the adversarial generalization error of this adversarial training global

minimum. By Proposition 2, we only need to bound two error terms: Eδ
(
fstudent
D,θ,δ,τ,ϵ

)
−

E
(
fstudent
D,θ,δ,τ,ϵ

)
and E

(
fstudent
D,θ,δ,τ,ϵ

)
− E(fρ). We first consider the second error term, since the

construction of the student network fstudent
D,θ,δ,τ,ϵ from the teacher network fθ is the same as in

the proof of Theorem 3, from (B.7) we have∥∥∥fstudent
D,θ,δ,τ,ϵ − fθ

∥∥∥2
ρ
≤ 2∥Jρ∥

(
c23ϵ

2 + (c3 +M)2 (4δ)dn
)
.

Moreover, from (B.11), we have

∥fθ − fρ∥2ρ ≤ ∥Jρ∥
∥∥∥(fθ − fρ)

2
∥∥∥
L1(X )

≤ ∥Jρ∥
∥∥∥(fθ − fρ)

2
∥∥∥
L∞(X )

≤ ∥Jρ∥θ2.
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It follows that

E
(
fstudent
D,θ,δ,τ,ϵ

)
− E (fρ) =

∥∥∥fstudent
D,θ,δ,τ,ϵ − fρ

∥∥∥2
ρ

≤ 2
∥∥∥f student

D,θ,δ,τ,ϵ − fθ

∥∥∥2
ρ
+ 2 ∥fθ − fρ∥2ρ

≤ 2∥Jρ∥
(
2c23ϵ

2 + 2 (c3 +M)2 (4δ)dn+ θ2
)
,

(B.14)

We then bound the first error term, denote c4 =
∥∥∥fstudent

D,θ,δ,τ,ϵ

∥∥∥
L∞(X )

≤ 2c3 +M ,

Eδ
(
fstudent
D,θ,δ,τ,ϵ

)
− E

(
fstudent
D,θ,δ,τ,ϵ

)
=

∫
Z

max
x′∈Bδ,∞(x)

(
fstudent
D,θ,δ,τ,ϵ(x

′)− y
)2

−
(
fstudent
D,θ,δ,τ,ϵ(x)− y

)2
dρ

≤(2c4 + 2M)

∫
X

max
x′∈Bδ,∞(x)

∣∣∣fstudent
D,θ,δ,τ,ϵ(x

′)− fstudent
D,θ,δ,τ,ϵ(x)

∣∣∣ dρX
≤(2c4 + 2M)∥Jρ∥

∫
X

max
x′∈Bδ,∞(x)

∣∣∣fstudent
D,θ,δ,τ,ϵ(x

′)− fstudent
D,θ,δ,τ,ϵ(x)

∣∣∣ dx.
To bound this term, we divide X to two disjoint parts: ∪i∈{1,...,n}[xi − 2δ− τ,xi +2δ+ τ ]d

and X\ ∪i∈{1,...,n} [xi − 2δ − τ,xi + 2δ + τ ]d. We first consider the second part, for any x

belongs to the second part, we have fstudent
D,θ,δ,τ,ϵ(x

′) = fθ(x
′) for any x′ ∈ Bδ,∞(x). Moreover,

by (B.11), the derivative of fθ − fρ is bounded by θ, thus

∥fθ∥Lip ≤ ∥fρ∥Lip + ∥fθ − fρ∥Lip ≤ B + θ.

Therefore, we have∫
X\∪i∈{1,...,n}[xi−2δ−τ,xi+2δ+τ ]d

max
x′∈Bδ,∞(x)

∣∣∣fstudent
D,θ,δ,τ,ϵ(x

′)− fstudent
D,θ,δ,τ,ϵ(x)

∣∣∣ dx
=

∫
X\∪i∈{1,...,n}[xi−2δ−τ,xi+2δ+τ ]d

max
x′∈Bδ,∞(x)

∣∣fθ(x′)− fθ(x)
∣∣ dx

≤
∫
X\∪i∈{1,...,n}[xi−2δ−τ,xi+2δ+τ ]d

max
x′∈Bδ,∞(x)

∥fθ∥Lip∥x− x′∥2dx

≤(B + θ)
√
dδ.

For the first part, we have

n∑
i=1

∫
[xi−2δ−τ,xi+2δ+τ ]d

max
x′∈Bδ,∞(x)

∣∣∣fstudent
D,θ,δ,τ,ϵ(x

′)− fstudent
D,θ,δ,τ,ϵ(x)

∣∣∣ dx
≤2c4 ((4 + 2C0)δ)

d n.

Combining these two terms, the second error term can be bounded by

Eδ
(
fstudent
D,θ,δ,τ,ϵ

)
− E

(
fstudent
D,θ,δ,τ,ϵ

)
≤ (2c4 + 2M)∥Jρ∥

(
(B + θ)

√
dδ + 2c4 ((4 + 2C0)δ)

d n
)
.
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Finally, by Proposition 2, we get

Eδ(fstudent
D,θ,δ,τ,ϵ)− Eδ(f δ

ρ ) ≤ Eδ
(
fstudent
D,θ,δ,τ,ϵ

)
− E

(
fstudent
D,θ,δ,τ,ϵ

)
+ E

(
fstudent
D,θ,δ,τ,ϵ

)
− E(fρ)

≤ 2∥Jρ∥
(
2c23ϵ

2 + 2 (c3 +M)2 4dδdn+ θ2
)

+ (2c4 + 2M)∥Jρ∥
(
(B + θ)

√
dδ + 2c4 ((4 + 2C0)δ)

d n
)
.

By choosing ϵ = θ =
√
δ, fstudent

D,θ,δ,τ,ϵ is a deep ReLU FNN with depth L = O
(
log 1

δ

)
, width

d1 = O
(
δ−

d
2α−2 log 1

δ + n
)
, d2, . . . , dL = O

(
δ−

d
2α−2 log 1

δ

)
, and non-zero free parameters

O
(
δ−

d
2α−2 log 1

δ + n
)
. Furthermore, the adversarial generalization error bound is

E
[
Eδ(fstudent

D,θ,δ,τ,ϵ)− Eδ(f δ
ρ )
]
≤ C3

√
dmax

{
δ, ((4 + 2C0)δ)

d n
}
, (B.15)

where C3 = 2∥Jρ∥
(
2c23 + 2 (c3 +M)2 + 1

)
+ (2c4 + 2M)∥Jρ∥ (B + 1 + 2c4). Moreover,

when n− 1
d−1 ≤ δ < qX

3 ≤ 1
3n

− 1
d , we have

E
[
Eδ(fstudent

D,θ,δ,τ,ϵ)− Eδ(f δ
ρ )
]
≤ C3

√
d ((4 + 2C0)δ)

d n. (B.16)

Moreover, since τ ≤ δ can be arbitrarily chosen, we conclude that there are infinitely many
fstudent
D,θ,δ,τ,ϵ ∈ ∆

δ,d⃗,L
that can achieve such adversarial generalization error bound. Thus we

complete the proof.

B.3 Proof of Theorem 5

Proof of Theorem 5. For any x ∈ [xi−2δ,xi+2δ]d, notice that Bδ,∞(x)∩ [xi−δ,xi+δ]d ̸=
Ø. Moreover, for any global minimum of adversarial training f̂over

D ∈ ∆
δ,d⃗,L

with non-zero

free parameters O
(
δ−

d
2α−2 log 1

δ + n
)
, since it can achieve zero adversarial training error

as is constructed in Appendix B.2, when x ∈ [xi−δ,xi+δ]d, we always have f̂over
D (x) = yi.

Therefore, ∫
x∈[xi−2δ,xi+2δ]d

∫
Y

max
x′∈Bδ,∞(x)

(
f̂over
D (x′)− y

)2
dρ

≥
∫
x∈[xi−2δ,xi+2δ]d

∫
Y
(yi − y)2 dρ,

it follows that

Eδ(f̂over
D )− E (fρ) ≥

∫
x∈∪i∈{1,...,n}[xi−2δ,xi+2δ]d

∫
Y
(yi − y)2 − (fρ(x)− y)2 dρ

=

∫
x∈∪i∈{1,...,n}[xi−2δ,xi+2δ]d

(fρ(x)− yi)
2 dρX ,
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thus

E
[
Eδ(f̂over

D )− E (fρ)
]

≥E

[
n∑

i=1

∫
x∈[xi−2δ,xi+2δ]d

(fρ(x)− yi)
2 dρX

]

=
n∑

i=1

∫
xi

∫
x∈[xi−2δ,xi+2δ]d

∫
yi

(fρ(x)− fρ(xi))
2 + (fρ(xi)− yi)

2 dρ(yi|xi)dρXdρX

≥
n∑

i=1

∫
xi

∫
x∈[xi−2δ,xi+2δ]d

σ2dρXdρX

≥∥J̄ρ∥σ2(4δ)dn.

Moreover, notice that

Eδ (fρ)− E (fρ)

=

∫
Z

max
x′∈Bδ,∞(x)

(
fρ(x

′)− y
)2 − (fρ(x)− y)2 dρ

≤(2B + 2M)

∫
X

max
x′∈Bδ,∞(x)

∣∣fρ(x′)− fρ(x)
∣∣ dρX

≤(2B + 2M)∥Jρ∥
∫
X

max
x′∈Bδ,∞(x)

∣∣fρ(x′)− fρ(x)
∣∣ dx

≤(2B + 2M)∥Jρ∥B
√
dδ.

Therefore, take C̄1 = (2B + 2M)B, and use the fact that Eδ(f δ
ρ ) ≤ Eδ(fρ), we have

E
[
Eδ(f̂over

D )− Eδ(f δ
ρ )
]
= E

[
Eδ(f̂over

D )− E (fρ)
]
− E

[
Eδ(f δ

ρ )− E (fρ)
]

≥ C̄1σ
2δdn−

[
Eδ(fρ)− E (fρ)

]
≥ ∥J̄ρ∥σ2(4δ)dn− C̄1∥Jρ∥

√
dδ.

Thus we complete the proof.
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Theory of Nonparametric Regression, volume 1. Springer, 2002.

[26] Zhi Han, Siquan Yu, Shao-Bo Lin, and Ding-Xuan Zhou. Depth selection for deep
ReLU nets in feature extraction and generalization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(4):1853–1868, 2022.

[27] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. In
Advances in neural information processing systems, 2019.

[28] Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation.
arXiv preprint arXiv:1810.09519, 2018.

[29] Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, and Liwei Wang. Why robust
generalization in deep learning is difficult: Perspective of expressive power. Advances
in Neural Information Processing Systems, 35:4370–4384, 2022.

[30] Binghui Li and Yuanzhi Li. Why clean generalization and robust overfitting both
happen in adversarial training. arXiv preprint arXiv:2306.01271, 2023.

[31] Shao-Bo Lin, Yao Wang, and Ding-Xuan Zhou. Generalization performance of
empirical risk minimization on over-parameterized deep relu nets. arXiv preprint
arXiv:2111.14039, 2021.

30



[32] Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, and Tuo Zhao.
Benefits of overparameterized convolutional residual networks: Function approxima-
tion under smoothness constraint. In International Conference on Machine Learning,
pages 13669–13703. PMLR, 2022.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Machine Learning, 2018.

[34] Ramchandran Muthukumar and Jeremias Sulam. Adversarial robustness of sparse
local lipschitz predictors. SIAM Journal on Mathematics of Data Science, 5(4):920–
948, 2023.

[35] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang.
Adversarial training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

[36] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep
learning. In International Conference on Machine Learning, pages 8093–8104. PMLR,
2020.

[37] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. Advances in Neural
Information Processing Systems, 31, 2018.

[38] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with
ReLU activation function. The Annals of Statistics, 48(4):1875–1897, 2020.

[39] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.
Are adversarial examples inevitable? In International Conference on Learning Repre-
sentations, 2019.

[40] Lei Shi. Learning theory estimates for coefficient-based regularized regression. Applied
and Computational Harmonic Analysis, 34(2):252–265, 2013.

[41] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is
robustness the cost of accuracy?–a comprehensive study on the robustness of 18 deep
image classification models. In Proceedings of the European conference on computer
vision (ECCV), pages 631–648, 2018.

[42] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[43] Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Journal
of Machine Learning Research, 24(123):1–76, 2023.

[44] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. In International Conference
on Learning Representations, 2019.

31



[45] Holger Wendland. Scattered Data Approximation, volume 17. Cambridge university
press, 2004.

[46] Jiancong Xiao, Yanbo Fan, Ruoyu Sun, and Zhi-Quan Luo. Adversarial rademacher
complexity of deep neural networks. arXiv preprint arXiv:2211.14966, 2022.

[47] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and
Kamalika Chaudhuri. A closer look at accuracy vs. robustness. Advances in neural
information processing systems, 33:8588–8601, 2020.

[48] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural
Networks, 94:103–114, 2017.

[49] Dong Yin, Ramchandran Kannan, and Peter Bartlett. Rademacher complexity for
adversarially robust generalization. In International Conference on Machine Learning,
pages 7085–7094. PMLR, 2019.

[50] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning (still) requires rethinking generalization. Communications
of the ACM, 64(3):107–115, 2021.

[51] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International Conference on Machine Learning, pages 7472–7482. PMLR, 2019.

[52] Tong Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 32(1):56–85, 2004.

[53] Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Francesco Locatello, and Volkan Cevher.
Benign overfitting in deep neural networks under lazy training. In International Con-
ference on Machine Learning, pages 43105–43128. PMLR, 2023.

32


	Introduction
	Related Work
	Problem settings and common assumptions
	Main Results for Classification
	Problem settings and notations
	Assumptions
	Generalization analysis of adversarial training global minima on over-parameterized FNNs

	Main Results on Regression Tasks
	Notations and assumptions
	Standard generalization analysis of adversarial training estimators on over-parameterized FNNs
	Robust generalization analysis of adversarial training on  over-parameterized FNNs

	Conclusion
	Proof of Main Results in sectionclass
	Proof of theorem3
	Proof of lowerbound2
	Robust generalization for adversarial training with logistic loss

	Proof of Main Results in section3
	Proof of theorem1
	Proof of theorem2
	Proof of lowerbound1


