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Abstract:

In this paper we nresent an algorithm ASVD for the comnutation of the
singular value decomnosition (SVD). The method nrésented is a nower
method for calculating the largest trinlets of the SVD of a matrix A
when multiplication is "cheaon". The method used bears a lot of simili-
tude with the power method for findinc the eigenvalues of a svmpetric
matrix M. The triplets are found one after another and also somre defla-
tion techniques (orthogonalization) are used. The algorithm can take
profit of the SVD of slightly different matrices and it is based on the
geometric proverties of the SVD. Tests have shown that it is more
efficient than Golub's algorithm if only the déminant part of the SVD
of a lbng sequence of slowly varving ratrices is needed. Also storace
efficiency is obtained whenever the matrices are structured.

The paper describes the basic ASVD alcorithm, its numerical pronerties
using the shift mechanism, an acceleration method, a comnuter imrnlemen-
tation and its use in adantive state space realization of noisv irmulse
responses. It is expected that the new ASVD algorithm and its ranv stra-
tegies will be useful in the domain of sianal nrocessing, syvstem theorv
and automatic control, where SVD is becoming more and more an immortant
concept.

l. Introduction.

In signal processing, automatic control as well as in system theory,
the singular value decomposition (SVD) is used increasinaly (1-12)

as well as for its conceptual as its numerical qualities.In order to com-
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pute the SVD, one always recommends the use of Golub's alcorithm (2, 11,
13, 14), which is very efficient for the complete hich nrecision SVD

of a single full rank matrix. It is however the experience of the
authors (3,4) that this alcorithm is computationally too involved for
most signal and system applications. In the context of adaotive state
space realization for example (4), the SVD of a long sequence of slowly
varying large block Hankel matrices of low numerical rank has to be com-
puted. In general there exist many signal and system apnlications where
only a small set of singular values are of interest (e.g¢. all those lar-
ger than a certain noise level), or where the required accuracy level

of the singular values is limited (e.g. because the data are rather in-
accurate), or where a good estimate for the SVD exists (e.a. from a
slightly different matrix). It's the purpose of this vaper to nresent

a new algorithm for the SVD which, unlike Golub's algorithm, can bene-
fit from these restrictions. The adaptive singular value decomnosition
algorithm (ASVD) converges one after another to the sincular values and
vectors in an iterative matrix multimplication process.

In section 2 we describe the basic algorithm and the convercence theo-
rems. The numerical properties are analyzed in section 3 usinc the shift-
mechanism, which is easy to visualize. This avoids many unnecessary com-
putations in the iteration cycle. When the convergence is too slow, a
special acceleration step can be applied (section 4). A strateov to ex-
ploit these speed upsis developped, implemented on a comnuter and eva=-
luated in section 5. The use of this algorithm for adaptive realization
is given in section 6. In the last section we nresent the conclusions
and emphasize that the basic algorithm allows for many different stra-
tegies which should be selected according to the application at hand.
The most general description (3) of this algorithm allows for a paral-
lel data flow or analog computer implementation since each of the sin-
gular triplets of a singular value, a left and a right sinoular vector
can be computed simultaneously. Here we will only present the recursive
version where the triplets are computed one after another. This allows
to obtain more useful convergence oroverties and is valid for all im-
plementations on Von Neumann machines.

In computing the singular value decomposition of a matrix A, it is use-
ful to keep in mind that the ASVD aloorithm essentially follows certain
trajectories of the discrete time system Xy ™ At.A.xk. One should how-
ever be careful to distinguish the computation performed by ASVD from
all the techniques which compute the SVD of a matrix A from the eicen-
value decomposition of At.A . It is known that the squaring nerformed

in At.A is numerically dangercus. It is stressed that the numerical
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qualities o ASVD are sound.

2._The basic ASVD algerithm.

- - e -

Before presenting the algorithm, first the notion of sincular value de-

composition is recalled (1-3, 11, 13) and some notations are introduced.

Theorem 1. For any real mxn matrix A of rank r there exists a real fac-

torization A=U.T5¢ .V . (l1.a)

where U and V are square orthonormal matrices and I is a
pseudodiaaonal mxn matrix

diaaf{o, 0, . . 7.) o]
i = 172 r (1.0)
0 o)

with the sinogular values o5

9, > 0y 3¢ « o« 20 (l.c¢)

r
The colums of uy of U (resm. rows vj of V) are called the left (resp.
right) singular vectors. ?he set (ui, Oy Vi) is called the i—t@ sinou-
lar triplet. The spaces Sé = Span(ul, . o e ui) c rR® (resp. S%

= Span(vl, e e vj) ¢ R") are called the i-th principal left (resn.
j=th principal right) singular subspaces. For the unigueness properties
and the energy properties (14) of the SVD we refer to the literature.

In order to understand the ASVD algorithm it is crucial to realize that
any linear map A:x —>y = A . x is the result of 3 linear overations
yv=0. (I . (V.x)) : an ¢ thonormal transformation V, a scalina of
the axes I and another orthonormal transformation U. Let the vector x

be described with respect to the orthonormal basis Vyr s -+, VvV, as

n
x =L h,.v, (2.a)

then from theorem 1 x is mapped by A into

r

= a
y A . x ( ..hi).ui (2.b)

=
i=1" i
In other words, each of the coordinates in the V-bases is scaled with a
singular value and reconstructed in the U-bases. Clearly, the components
with the lowest index are more amplified than those with the larcest.

t
Analogously A~ maps

1959 (3.a)
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into T

£=a%.s =2 (0, .a).v, (3.b)
Again the components a; with the lowest index are more amolified than
those with the largest. The net result is that successive multiplica~—
tions on the left with A and at forces a startino vector towards the
singular vector with the areatest singular value. Based on these ideas
it is quite natural to describe the basic ASVD algorithm as follows:

Computation of the R dominant triolets (u,, o,,v.) of matrix A:
- - e 4

Fer i =1, 2, . . ., R perform the following nrocess until it has con-

Step_l: Set n=0, choose a vector eio)

Step 2: Set n=n+l. Obtain the vector f‘ n) as a result of the multiplica-

tion A .e(n 1), orthoconallzatlon with resmect to S:L -l and

as initial guess for u, -

normalizatlon.
Step_3: Set n=n+l. Cbtain the vector e{n) as a result of the multiplica-

tion A. f(n L , orthogonalization with resmect to Sl ! and
normal;zatlon. f n) is the lencht ¢of the vector before normaliz.
Step_4: Verifywhether the changes e(n b_ in-3)’ sin)- sin_l),
(n) in 2) are suff1c1ently small. If not, return to Step 2.
If so the i-th singular triplet is obtained as
u; = ein—l), g, = sin), v = fin) (4}

The convergence of this process for sufficiently larce n to the correct
values (§) is guaranteed for almost all initial values by the followinc
theorem and its corollary under the assumption of infinite orecision

arithmetic.

" Theorem 2. For any mxn matrix with SVD (1) .and for the vectors deter-

mined in the basic ASVD alcorithm, one has:

P . t P 5
Ye € SU : (A7.e) € SV (5.a)
P . p
¥fesS;: (A.f) e 5y (5.b)
(0) _ § . (n) _ § n, ,/F ,22n
®p  Tizp MiVi ®p  Timo P iVi/Vizp My (5.2)
(n.) E 2 2n £ 2 2n-2 -
V/ i=p hi i (5.4)
Proof: use the nroperties of the SVD and (3)&(4) (3,16,17)
Corollary_ 1l: If Gp > Gp+l > cp+2 then the basic ASVD alocrithm satisfies:
with e(o) = g h,v h_#0 #0 and for sufficiently
o] i=p 1747 77! n+l ==
large n :
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R ]zu (n)l -Qﬂ (22t (6.a)
P P o

(n) 1 Pp+12 °2+1 Ip+1, 20 (8.b)
ooy Tz s T

B e e SR S v d ; -
T el 1600 24.80  52.08  se.se sb.08 M.0b €00 179.08  196.08  100.08  248.88 I30.00  129.90

.The error A = e(n)- u_ll decrea- Fig.2. Both the error 4 = (")—u
. n p p n Pl

- ses exponentially in terms of the on the singular vector u and the
number of iteration cycles. The P
rate however strong]y depends on
the ratio op+1/c

error on the singular.value
decrease exponentially but the
singular values converge twice as
For thdse cases where this ratio n fast as the vectors.

approximates 1, the acceleration

step of section 4 is needed.

To conclude this section let us remind that the basic ASVD algorithm
computes the triplets one after another. Unlike the Golub aloorithm
one can compute some singular trinlets and one can use estimates for
the singular values and vectors from nearby matrices and most of all
one need not modify the matrix. Hence it is quite useful for sparse
or structured (Hankel, Vandermonde, Toeplitz,. . .) matrices.

o e e o e e o o T e o e s e o T 8 e e e S48 e e s T Tt . > Y o o o s Dk o s < e e P o a0 S o o

Here we want to analyse the convergence of ASVD with floating point
arithmetic. (i.e. finite precision). From (2)&(3) and thecrem 1, it is
clear that the convergence can be easily analyzed if all vectors are

represented in terms of the sincular basis Upr o e ur or v 'V

in " r
and if one combines the two smaces such that ¢i=ui=vi. Thouch this re-
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presentation of the vectors can only be aiven when the singular vectors
are known, also for floating point arithmetic much insicht in the

mechanism and gocd strategies are based upon this reoresentation.

(n} {n)

Any vector e ' or £ can be described as

o 14

! X ’ 7.
L (7.3)
After a multiplication with A or At each component i is scaled by Oy

I uag d
i=l ii i 7.5

When the coordinates' in the Qi-basis are reoresented on a locarithmic
scale one sees that the multiplication causes for each coordinate 1 a
shift by log(ci). The normalization then causes a shift of all comno-
nents until the sum of the coordinates squared is 1. The flcating noint
representation of the vectors (single precision & or double 16‘decimals)

then requires us to look at a window of 8 or 16 units (fig.3).

Y INDOW

¢r_r_________.JﬂlllIIIlIll
o _#nn_
A B
¢1' 1 ¢ f 1
| immnunvess TR
¢2 (P 1113 Fill I 1} L]’ ¢; EﬂiW!:FFrT1
4 = % -
a & = s 8o © 1
o ] MIFETTT]
® -1 ZEEFTED
r ¢r
C : D

Fig.3.The shift mechanism of ASVD. Each figure describes in loaarithmic scale the com-
ponent of ’i at a certain step in the converaence. As the aloorithm proceeds the

pattern moves from (A) to (B), (C) and (D). The black bar denotes the nrecision
of the approximation of the singular vector. In each step the accuracy is in-
creased with 10910(01/02).

Conclusion: The net effect of a multinlication followed by a normalization is

. et e e e e - - s W - .- N e o -

e t n > o e e Dt > e " . > " - - - -

'scale _shifted by loa(o,/o;)._
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In order to have a nractical and efficient algecrithm, a number of issuns
nhaveito be solved.

First, the computation of the p-th triplet can be greatly speeded up by
making a good estimate for the p-th triplet during the convergence of
the (p=1)-th triplet. The (p-1)-th convergence pattern may provide a

good initial guess for the p-th triplet by taking the normalized dif-
{(n+2) (n)
e

ference l(n) _ e .1 ~ ep-1
p 2 (n)
p-1 p-1

It is in general not optimal to take the value at the beginning of the

iteration nor at the end (fig.4).

e ol X

Fig.41 The error ﬂ]én)- up]'of the estimate
lé") of the p-th singular vecter
taken at the n-th step in the itera-
tion of the {p-1)-th triplet.The
optimal instant appears when the

BECNEDMETCTEE LRSS triplets p+l, p+2, . . have disap-

peared out of the window of finite

precision.

Secondly, since the orthogonalization (Gramm-Schmidt or rather modified
Gramm-Schmidt, (16-17)), is time consuming, one may wonder what happens
to the convergence pattern of the p-th singular triplet if not during

each step an orthogonalization is performed but every t stems (£fig.5)

o

| i |

oFaYoradodoiododadodolo

OO A0

! :L Fig.5.The error on
!i the p-th singular vec-
\ =1 Y tor by performing
= ASVD and orthogonali-
thJ EE zing:
= =
.00 .08 180.00  740.08 128.00 400 _. o0 10.00 180.00  240.88  179.30  499.90 ( A ) every 16 ste ps.

(A) (B) (B)every 17 steps.
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During the t steps between any two orthogonaliztions, a gradual devia-
tion from the standard pattern (fig.l1-2) occurs, which is completely
eliminated by the‘orthoqonalizaticn. However, if too few orthogonaliza-
tions are performed, accuracy is lost (£ig.5B). Again, this can be ex-
plained and analyzed by the shiftmechanism.
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Fig.6. Analysis of the omission of some orthogonalizations in the iteration of
the p-th triplet. After orthogonalization (A) the first p-1 contributions
are at machine precision. The contributions of the p-1 first triplets
grow faster (B&C). If one does not wait with the orthogonalization until
the (p+l)-th contribution has disappeared (C) there is no los of accuracy.
This condition has allowed to generate a period of t=16 for the example
of fig.5. which in that case is the best possible.

4. An acceleration method.

e e - e v

From thecorem 1 and fig.l it is clear that the convergence for the p-th

triplet is rather slow when ¢ /dD is close to 1. In this respect it

p+l

is nice to remember that for 9ot

= g, only the left (resp. right) sin-
gular subspaces of the two singular vectors are unique. Then the left

(resp. right) singular vectors can be freely chosen as orthogonal vec-

tors in this subspace. Since for g /cD close to 1 the basic ASVD al-

p+l
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gorithm has more difficulty in separating the p-th triplet from the
(p+1l)=-th, it is more appropriate to iterate together on the p-th and
the (p+l)-th triplet. This is the basic idea of the acceleration algo-
rithm. Let ¢p and ¢p+l

be the two singular vectors and let e, and e,
be two estimates of these singular vectors that are in the same two-

+1

dimensional subspace as ¢p and ¢p+1' This subspace is drawn in fig.7.
t

. € .t t _
along with the vectors A ey A .ep+l, fp— a .ep/"A .ep" and A.fp.

Fig.7. Geometric configuration
used in the acceleration
me thod.

‘o U0

Applying simple geometry and the basic properties (1)&(2) of multipli-

cation with A or At one can set up (16,17) 4 nonlinear eguations which
= t = t =

relate the known parameters s, -IlA .ep“ ) Sy = "A .ep+1a , ty o= “A.fp"

thuMMmpumaus%,

and the angles a, and a,. These non-

o}
T p+l 1
linear equations can fortunately be solved analvtically (16,17). Hence

no further iteration is needed.

-3 I

s

a6§ Fig.8.Curve 1 describes the exponential de-
d73 crease of the error during the iteration

-8+ of the basic ASVD algorithm. In curves

=94 2, 3 & 4 one acceleration step is per-
-10 formed respectively at n=40, 80 & 160.
'113 Clearly, the acceleration has less ef-
'%%! fect when it is done too soon (curve 2)
e or too late (eurve 4). Also it may hap-
- 147 pen that the convergence after an ac-
-15% celeratton is faster (curve 3) than be-

fore. Based on the shift mechanism this
implies that after an acceleration the
contribution of the (p+2)-th triplet
dominates that of the (p+l1)-th.

A detailed analysis has shown that a single acceleration is best per-—

formed when the contribution in ¢ after the acceleration with respect

n+l
to that before is minimal(l16). In some implementations it can be worth
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to do an acceleration in each step. Of course one acceleration step re=-
quires three matrix multiplications while a regqular ASVD step only onre.

P A~ bR g~ =t —pb et )PP A A=

3as2d on the basic ASVD scheme many different versions of the algorithm
wich different trade offs between accuracy and efficiency can be genera-
ted. In order to dispose of a fully automatic program also technigues

for computing o4 g en u /u o in each tridlet have been de-

p+1 ! Yp+2 p+l
velopped. A practlcal algorlthm has been lmplewented on an IBM 3033
computer and the preliminary tests are promising. A first test example
is a 10x10 matrix with singular values: g, = 20.314622, g, = 17.564908,
04 15.298623, o, = 13.812922, o5 = 11.690173, o, = 10.182562,

04 6.714472, gg = 2.633963, a4 = 2.382086, 9,4 = 2.176375.

The convergence pattern of some typical triplets are given in fig.9

(triplets 1, 2, 3, 7, 8). Typically the above described version of

the ASVD algorithm requires for the computation of 3 singular triplets
of a single 10x10 matrix as much time as Golub's alcorithm.

Let us now evaluate what happens for a set of slightly different matri-

ces.

The state space realization problem aims at finding a state space des-
cription for a system which is known by its impulse response. This pro-
blem often occurs in system theory and can also be a part of an identi-
fication. Algorithms to solve the state space realization problem have
already been found in the sixties but have never been worked out in re-
liable software. Reasons for this are that the numerical gqualities of
these algorithms are not good (10) and that in practice the impulse res-
ponses are corrupted by noise which is also represented (4) in the state
space realization. In order to tackle both problems Zeiger and Mc Ewen
(8) proposed to find an approximate realization and to use the singular
value decomposition. This has later on led to more general algorithms
(3, 6, 7, 9) and the formulation of the problem as model reduction.

Such algorithms basicaldy perform the sincular value decomposition of
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Fig.q . The convergence[!egn)—uin
for the iteration of triplets
i=1, 2, 3, 7, 8. Remark the
effect of an acceleration in
triplets 1.2 , 3,8 and of an

orthogonalizartion in 2, 3 ,6.
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2 block Hankel matrix: [H(1) H(2) . . . . . H(® p
H(2) H(3) . . . . . H(MFL)
LH(N) H(N+1) . . . . H(M+N-1)
where‘H(l) . . H(M+N-1) are the lxm sample matrices of the impulse res-

ponse of a system with m inputs and 1 outputs. Theoretically, for suffi-
ciently large M and N, the rank of this matrix determines the degree n
of the system. However, for noisy impulse responses the Hankelmatrix
will be of full rank and hence the degree will be excessive. So, using
the SVD (3, 6-9) only the;singular triplets,which can be distinguished
from the noise,should be considered. -In (4) it has alsoc been observed
that the number of samplés, which is theoretically irrelevant as long

as n < M,N dramatically affects the singular values and hence the amount
of noise which can be tolerated (several orders of magnitude, fig.10)

SINGULAR VARLUZS
LOGLSYY

2 r.
i g -7"
o L

T $Verit
-8 P .
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Ky e -14 + —
//‘ ~180—356 80 120 160 200
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0
8
s 1 10 » 1 3] @ Sampim

Fig.10. The singular values of two Hankelmatrices in terms of the number of samples

of the impulse response. Remark that the last singular value emerges.
Although the experiments with this algorithm were quite promising (4)
the on-line implementation with the Golub algorithm is quite time con-
suming and requires much storace. The ASVD algorithm was derived (3)
with the aim of solving both problenms. First of all, in an identifica-
tion context, only few of the singular triplets of the Hankelmatrix
have to be calculated. Using the link between energeﬁical concepts and
SVD (3) a so called noise criterion can be derived, which determines
the number of triplets to be calculated:

2 2 2 . 2 2
o] > 052 . .. .20, K.Rg.0, 2 O 1"
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where K is a dimension dependent parameter, R, is the minimal energy
ratio (3) and ¢, = (known noise %) . (max || ||F, k=1,K)).

In this way, the problem of determing tﬁe degree n of the system is
reduced to a numerical rank problem. The degree is automatically deri-

ved from the partial SVD of the involved Hankelmatrix. An examnle is
shown in fig.ll.

r

sing.waarde

Loa diala

B

L baganl

-

e
..nml‘ L L i hidsal

-

; et - ————r— — e T
0.02 0.1 ! [

Fig.1l1.The impulse response of a monovariable 6th order system is stored in a 12x12
Hankelmatrix and poisened bv several noise sequencies with increasing energy
( standard deviation). 12 singular values are piotted against the
noise %. The noise criterion is plotted in dotted lines with R,=2. Hence up
t00.1 % of noise the degree is determined correctly to be 6, Qetween 0.1%
and 1% the best model degree is 5 and up to 10% the degree is 4. In the neigh-
bourhood of the noise criterion singular values cluster together. In those
triplets the use of the acceleration algorithm is unavoidable.

Secondly, for on line identification the SVD of a sequence of slightly
varying matrices has to be calculated. Making use of the recursivity of
ASVD, one can take the SVD of a previous time step as a starting point
for the calculation of the SVD at the present time step.(Fig.l2).
Thirdly, the considerable gain in storage of ASVD with respect to the
Golub algorithm is based upon the fact that Golub's algorithm operates
on the Hankelmatrix entries while ASYD only requires the storage of
H(l), . . . . , H(M#N-1).(Fig.13)

We may conclude that these partial results for adaptive realization with
the ASVD algorithm are promising. Time saving proverties are obtained by
making use cf the modular structure and the recursivity and by applying

acceleration algorithms. Storage gain is obtained by exploiting the
structure of the Hankelmatrices involved.
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relative PUxtime
3

Fig.12. A set of 17 slightly varying
10x12 Hankelmatrices is considered of
which the first and the second are equal.
The upper curve is the time required for
the calculation of 10 triplets of the SVD
of each matrix with ASVD when no infor-
mation of previous time steps is used.
The other curves plot the time required
for the SVD with ASVD when the starting
vectors for timestep T are the singular
vectors of timestep T-1. The curves mar-
kedwith A, are the results when the im-
pulse reséonse is changing rather stow-
ly. The curves A, correspond to faster
I S R A S B A IV changes. Other gpeed improvements are
: wey Still possible since none of the speed
refinements of the previous sections are
used here in order to show only the time
saving by making use of the recursivity.

LXX . }
% Me 30
Mai0

Fig.13. The storage gain obtained by ASVD
with respect to the Golub algorithm
for MxN matrices.

7. Conclusions.

ASVD is a recursive algorithm which gradually computes the dominant con-
tributions -in the SVD of a matrix A. The method bears a lot of simili-
tude with the power method for the symmetric eigenvalue problem (21-22)
Deflation techniques, similar to those described in Wwilkinson (21) and
Parlett (22),as well as acceleration methods are used.

The main advantages of the ASVD algorithm are: (i) Its natural and di-
rect link with a basic property of SVD and hence its transparency for
the potential user. (ii) Itssimplicity, the only building blocks being
the matrix-vector product, orthogonalization and normalization. (iii) Its
complete recursivity. Any earlier approximation cuts down the remainino
computation cost.(iv) Its modularity, and hence its flexibility for non-
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conventional implementations. (v) The fact that matrix A 1s not altered
during the algorithm, and hence the storaage efficiency in the case of
highly structured or sparse matrices. (vi) Its numerical reliability
(backward stable algorithm) and an easy understandinc of the convercence
by the shift mechanism.

Its main weak points are: (i) The alcorithm is not competitive with Go-
lub's algorithm for a single complete high precision SVD of a full rank
matrix on a conventional machine. ({ii) Convercgence may be very slow for
two triplets associated to very close singular values, 1f appropriate
acceleration algorithms are not executed. Such full nroof acceleraticn
rules are not yet available for clusters of more than two singualar va-
lues.

Some tests have already shown that ASVD can be competitive with the Go-
ilub algorithm when only the dominant triplets of a seguence of large
matrices are needed. Such situations arise in realization and identifi-
cation, signal processing (12) and control theory: e.g. Quasi-Nyquist
loci {20). For the Quasi-Nyquist loci the complex version of this algo-
rithm is feasable and under consideration. Further work will be directed
towards the evaluation of other strategies which may be less accurate
but faster. In the case of the state space realization this may provide
a unification of all vecursive algorithms and allow a better trade off
between speed and accuracy-
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