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Abstract. Many problems of practical CAD importance in eystems, modelling and contrel
can be formulated mathematically as a problem in signal decomposicion where the signal
is modelledasafinite number of independent elemenctary signals which are additively
combined and corrupted by an additive zero mean white noise source. In this paper the
paramecters of a sequence of real valued and equidistant data of the form

a Bik i(YiR + 61)
= E a e e +
k=0, N

vhere {nk} is a wvhite zero mean noise sequence, are estimatad using a reslization
O,N ' ' -

technique, based upon the singular value decocposition of certain mazrices. Firsc, se-

veral pessible practical combinations of the parameters o5 31, Y and éi are conside-

red with respect to their praccigal application. Secondly, the signal is modelled using
a time-invariant autoncmous state space model. Furthermore, scoe theoretical results
are established which lead to a state space realization procedure that estimares the
unknovn parameters in a numerically reliable way. When the dzca are noise corrupred,

it is shown that the techniques used still deliver remarkably reliable rvesulcs, that
however can be shown to be nearlyoptimal im a least squares sense,Furthermore, some mu-..
merical simulations revezl the reliability and possible interactive development of the

algorithm. . . ¢

Keywords. Computational methods, Harmonic anmalysis, Numerical methods, Parameter esti~
mation, Signal processing, Singular value decompositiom, Spectral analysis, State spa-
ce method, Sum of exponentials.

1NTRODUCTION
Let's consider a sequence .of equidistant, real data.
valued data, generated by.the following expres - Sénce the data 'y, are assumed to be rezl,
sion the parameters ¢,,3,,Y.,8,, must occcur
[ LA L S
in conjugaced pairs, i. e, for each qua~
druplet { «;, 8., ¥;, §;4) there is a
B.k  J{y.k+ 83) . .
n i i 1 corresponding one {(a,,B,,-Y,, -6.)
¥ E a.e - e ‘ {1) itos x
k - & _ For 1= 1., nf2 we put
: k= 0, N az-.Zuzz - 2u2£_1
where a;, B;, Y; 85, e IR by By =825

The n terms of the sum can be considered as
“"elementary signals', each of them is charac-
terized by four parameters : the amplitude
o, a demping factor Bi’ a pulsation Y that

corresperdsvith an oscillation frequency
8, -Til2n and a phase 6& (in radians).

Then the following special cases can occur b
1, v 61- o for i = },.. ,n then

— (3
2T as Yaa-g
b 020 422
Then using Euler's formula the summztion

(1) is written as a sum of cosinoids
with varving amslitudes.

nf2 bk

Y=L ae cos {wekey,)  (4)

=i . : .
n Sik “hen b,<0, the correspondinz elementary signal i
yk = I aze () is a sun of n real damped, When bz-o. the elementary signal is a
imi .
. ur .
exponentials. puze cosine

. -Yii o for i = 1, n; the n_is even fot real
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ITI. Not-all ¥, # 0o for i = l,n i.e. there are
some i for which y.= &.,= o . The general signal
(1) nov becomes a mixed sun of real exponentials

A compact fermulation of the problem is the fol-
lowing . - . :



For a given n, minimize over ail a;,B{.v;+¢; € IR

N : n Bik j(Yik + 51 2
L Yy [ (F a; e e “¥i !
k=0 =t

for a given set of N +1 real valued and equidia-
tant y, and for a known set of weights w, . The de~
termination of the optimal "n'™ is considered fur-
theron. Signals of the general form (1) occur fre-
quencly in various applications. In fact, the gene
ral solution to any phenomenon described by & sys—
tem of linear differential equations with constant
coefficients is of the form (1)

For the discussion of the statitistieal question,
vhether it is justified to approximate a given da-
ta series by an exponential sum of the form (1),
we refer to the literature {Ruhe, 1980]

Although this contribution presents a unifying ap-
proach to the several 'special cases' I, II, III,
generally, they are treated separately., Here we
also stress che numerical aspects and the noise re-
jection qualities of the algorithm . The first so-
lution to the problem of fitting experimental data
by a sum of real exponentials is due to de Promy

{ 1795 ] . Variations on his method are described
in several books on numerical analysis [Lanczos,
1957 1 ('problem of "weighted moments' '}, The pro
blem occurs in fitting radioactive decay measure-
ments (see ref. in [ Ruhe, 1980])), transmission
function analysis in atmospheric research [Wiscom—
be, 1977)] compartmental analysis {Jacquez, 1972],
electrical network analysis (Heaviside's expaasion
theoren [Lanczos, 1957], -analysis of human lung
exhalation and chemical rate constant estimation
(see ref in {Ruhe, 1980} and [ Wiscombe 19771},

In many of these applications, the amplitudes ac
ave expected to be posaitive., In [Hlscombe. 1977 ]
a survey of various methods is given. The funda-

mental theorems guarancaeing existence and unique-~-

nessof positive sums of a "best fit' are treated
by Cantor & Evans {1970). Alge "thms based upon
these results are described in [Wiscombe, 1977}
and [Evans, CGragg, Leveque, 1980 ] . In [ Ruhe,
1980] a non linear weighted least mjuares approach
is studied while in {Ruhe, Wedin 1977} the pro-
blem ie considered as a separable non-linear least
squares problem since it is linear in the amplitu-
des a; once the exponents Bi are known. A Remes~

type algorithm is developped in [Braess, 1970]
while a Padé-approximant approach together with
conditions for existence and uniqueness are dis-
cussed in [Sidi, 1982],

The case of fitting data by a sum of cosines is
handled in [Lanczos, t957) as the famous 'search
for hidden pericdicities'. Hovever, more general~
ly, the problem belongs to the domain of spectral
analysis [Ray, Marple, 19811, where so called 'mon
traditional approaches' can perform much better
then the Fast Fourier transforms in high resolu-
tion spectrum estimation with application to beam-
forming, direction finding, array signal pro-
cessing and other areas. An excellent survey of
various spectral estimation methods together with
some 300 references, is given in [Kay, Marple,
1981]. The singular value decomposition as a key
tool is used in [Tufts, Kumatesan,!982] to obtain
least squares approximationstof limited rank of the
signal correlation matrix estimate. In [Kung,198i]
a Toeplitz approximation method is presented which
inspired this work.

The case of exponentially damped sinusoids is con-
sidered in [Rumaresan, Tufcs, 1982} where also the
singular value decomposition of a matrix shows up.

Speclal care has to be taken with respect to the
sometimes ili-conditioned nature of the 'sum of
real exponentials’-problem., The parameters that
describe the signal, are badly determined by the
data. If these are perturbed by a small amount,
there may be quite a large charge in the best-fit
parameters. In {Lanczos, 1957] it is shown how se-

veral different exponential sums can approximate
the same data series equally weil, The fact that
large variations are produced in the resulecs by
amall variationg in the daca, is found in all me-
thods and is an intrinsic property of the problem
itself. It is customary to blame this-ill-condi~
tioning on the non orthogonalicty of the ser of ex-
ponential functions [Lanczes,1957). However, a de-
tailed sensivity analysis in [Ruhe, 1980] and
[Wiscombe, 1977] illuminates the nature of the
ili-conditicning more precisely.

This work fits in a general trend towards numevi-
cally reliable software for sysctems and control,

STATE SPACE MODEL AND SOME USEFUL
PROPERTIES.

The problem of determining the parameters of the sig
nal (4) , can be reformulated mathematically as a
linear system realization problem.The signal of
the general form (1) can be modelled by an autono-
mous linear state space model of dimension n

xk+L-'A' xk
¥~ Ce X (6)
Where B}+ le
e (5
0
A= t., (7}
. B
B I e
. js ié
¢ = [ae oL ae ™ (8)
x= (11 ... 0f (9)

Proof .va1ou3 by repeated subatxtutxon.

The key ob ‘tvation to understand the solution
presented further, is to recognize that the ge-
neral signal (§) is the homogeneoussolution to a
constant coefficient linear différence equation,

fl
NTE kel keongH (10)

For a derivation of this expression we refer gg

[Ray, Marple, 198i]

The coefficients a; are telated to the elementary

signals by Vieta's polynomial root theorem. From
(10), it directly follows that the pxq Hankelma-
trix with p, q> n, consisting of the p + g -~ |
first data Yier must have a rank equal to n.

yo yl Fg osee yq‘_l
Yy ¥y eerens Yq
L4 T -
R =], (11}
Pg .
yp_l verras Yp+q~2
s —
and
rank [H ] =n (t2)

Proof : Any n-th column (m > n) can be written
25 a linear combination of the n preceding columrs
using (10) ,
Further more, from the state space model (6) ic
follows that. :

k-1

ykf c.A™ . Xo ) . (!3)

This leads to a decomposltlon of the Haﬂkelmatrxx

H
pq



B 2l
yo...: yq_l [&x ‘CAx caes CA X
_— i LfOAX e
29
Yol .y el Tl AP
L Yo
c 1
L
e g e A RN (1%)
eaP!

defining che matrices T(pxn) and A{nxp) thac are
both obviously of rank n.
rank (Hp ) = rank ' = rank A = n (13

Now a new Hankelmatrix §_ is defined which is de-~
rived from the previous 3de by shifeing it over
one colum ¢o the righe, while insarcing one new
date sample y

prq-l -
b2 yz..:...yq
Ya ot -
2 A ' a6
g .. ,
y Cees Yp+q—!
vhere agaxn due to {10}
rank (? ) - n (17}
Using (12) and (13), it's easy to prove thact
« Prae (18)
and :he least squares escimace of A is compurad as
+* +
a=th q La
04 (t9)

+ .
where [T and A" denote the pseudo-inverse .

DERIVATION OF THE ALGORITHM.

Following {Zeiger, 'Mc Ewen, 1974] and {Kung, [978)
the singular valuedecomposition of the data HankKel~
matzTix qu is used [Klema, Laub, 1980}

-to estimate the (numerical)- rank and cheén the nup-

ber of elementary signals to model. -
-to obtain numerically reliable estimation of the
mactcvices [, A, A and C.

Suppose the (parcial) SVD of 4 is given by

Pq
g = u. £.v° (20)
P2 oxn nxm nxq

than the 'balanced realization technique' computes

' and A up to an nxn similarity transform T, uhlch

is to be decermined furtheron.

e Ty, 51/2 21

and
1 la - gHE gt (22)

The leasc-squaras estimacerof A, up co the simila-
ricy transformacion T, is computed using ({9 as

7l -t ﬁ;u . (T” A
. E-i/Z.Uc_ T .. E—Ilz (23)

¥ow the similaricy transfg%macxon macrix T is com-

putad by taking inco consideraction chat

1) che systemratrix A of the stace space model(6)
is diagonal and ’

2) the first column of the matrzix & (14) is given
by (9) -1

Since A and T ".A.Y are similar, tﬁey shars the

same e1genva‘ues So ¢ondizion l} is fulfilled bv

computing the exgenvalues and ~vectors of

I.A T. - -
Le: X be the nxn macrix containing as columvectors

: Y ) :
the zigenvectors of T .A.T. and \ be the diagonal
nxn macrix wich che eigenvalues, then claarly

At - ! {24)

and using (i8) -
2 -t

o= (e .t haty. R
s 1/2 -1 12 -
LI ¢ DR O B SR S
g -
T A T W SRR
(23)
Now let ¢ danote tha {(complex) first column of
x“l.zllz.vc -
t 1E N
K ;
e=f. | - k7t ete (26)
:n Q

. -1 . ;
Define by D "the complex diagonal nxn marzix con-
taining the inverse entrias of ¢

|
D o- ?l._' ) (27)

t—
1
_l - .
i, [t (28)
i
t
Hence
r
-1 of W12 e § H
DX LETRYTL L |
) . (29)
o 1
and (24) is to be modified as
E w.sx0y a0 208 Goy
which firally results in th: parameter estimatiom
8, + jv
H 1
e ' .
A=A m ‘. .e8n+lYn (3
. 1/2
and € as the first row of U.L .X.D.6 38
1/2 % )

cC=(10...01.U.Z X.D = {ale ..une'

(32)

In conclusion of this section we summarize the
algorichm _

=y
Step t : Construct the matrices H  and H
= Pq e
{eq. 11,16)
Step ¢ Compute SVD of H q {eq. 20)

Step 3 : Compute X.A from (23), (24) via an
eigenvalue decomposition.

Step 4 : Daternine all pavameters from (31Y, (32).

COMPUTATIONAL CONSIDERATIONS

Wa now consider some computational refipnements.

The siarular value decomposx:lon (20) and the com-
plet eizenvalue decomposition (264) can be codpucad
using fully cested standard subrouciaes.

In the special casé of real exponentials and whea’
3quare Qanke}matrlces are used {p=q}, the reali-
zed macrix T ".A.T can be provan to be syzmeczic
‘and definite positive, making it's eizeavalue de-,
composition well condicioned [Wilkinson, 1965)




In the other cases and using squara Hankelmatrtices
the realized macrix T°',A.T is symmecric when che
absolute value of icts antfies are considared,
The diagonal matrix (27) is ccmpuced as the com-
nlex solution o che ser of squations de:ined by
(29) ” rl

xe=zHryt o s

i
(33)

Q

£quarting real and imaginary parts of (33)
X =X + jX,
S i
t =+ ey

X -X, < Ellz
r i

Xi Xr &

Vot

"
O ey —

(34)

This sec can be solved by another SVD. Despite che

addirional computarional requiremencs, the condi-

cion of (34) can be monitored,

Having calculated the matrices A (31) and C (32)

the parameters a,, 8., Y,, §,, are compucad as
PRSI LS

follous

A = diag (X;) thea 8, -IAi| (35)
&, = arg (A
jé 8 38,
C - foe . a e ") then a;~fa;e ol
i,

§,= arg (a2 Yy(36)

INFLUENCE OF THE HOISE : SUBOPTIMALITY

So far, we only considered che case in which

1 . the datz ware Xnown Lo be exaetly represer
table by a finite sur =f elementary sig—
nals {1)

and II. no noise corrupted the data.

However, vwhen the daca are additively corrupted by

noise with variance o2, several effects that are

difficult cto separate, cause the method presented

here to be suboptimal in the sense defined by (5).
If n elementary signals are involved causing the

noiseless Hanleleatrix Hpq to have u singular valuas

to be non-equal to zero

3 3 ... >
0’1402, ,G“ 0

and (min (p q) - n) to 2qual zero, the noise cor=~
rupcad version of this Hankelmatrix will have all
its sxngular value 0.different from zero. It is
- proven in [Anderson.xl903] that, asympbtically, as
N—o0o, the eigenvalues of a percurbed covariance
matrix behave like .~
X, =, + dz
i i " 3
‘and for L = + 1, min {p,q) Ai =g
and also sowe likelihood ratio criterions are pro-
posed in order to obtain the best rank estimation.
A similar approach is followed in {Kung, 1981]
where, due to the same criteriom (37) the ambienc
space is divided into a n-dimensional sigmal sub-
space and a (win (p,q) ~ n}] - dimensional noise
tubspace. Another reliable rank criterium is deri=~
ved [ De Moor, 1984] and {Scaar, 1982], Only those
s:ngular values are recained thar sarisfy

for i =4, n a7

> /’(R *1}) wax {p,q) . 7 . (38)

whera R i3 a user deflﬂed maximal minizal sxgnal
to noisé rario (SNR).

The corresponding singular vectors form an estima-
.te of che sigral subspace.

It is obvinuwthae if one of the signal components
falls below the level of accuracy of the date
poiats it is cowpletely unrecoverable. This is an

2var presenc caveat in the problao of separating
elamencary signals.
~1f the pumerical rank a is astimaced, using onz of
the preceding criterions, the noise cortupead Han—
%alpacrix of full rank I3 approximacad in a lezas:
squares sens2 by a matrix computad frem che parcial
SVD (20), accovding zo the theory developned in
[Zekart, Young, !536}. ~ouaver, this maerix gana-
rically shows no locger the Hamkalstruciurs and
hance does not reprasanc a n-th order 11near systen
(6). Alchougih this problem is not yet solved for
the least squares case with Frobenius-zorz, the ap-
proximation,cbcained using che meched hers prasen-
ted, can be shown to be closa to optimal [Xung,
1978,1981]. This is due to the well Yknown insensici
vity of the singular vector subspaces to perturba-—
tions in the data {Wilkinsom, 1963].
-Although the ‘singular value deccaoposition is well
conditiconed , the singular veccors and valuas dif-
fer from the original ones due to the nolise,
Usually, the effect on che singular vectors is neg-
lecced, not only because of the insensicivicy of
the signal asubspace but also bacause the affact of
the perturbaticon is rather complicated, as is showm
by a first ordar perturbation analysis of che SVD
in {De Moor, 1984].
Concerning the perturbations of the singular valuss
practical tests have shown that an improvemenc in
the rasules (reduction in bias) is co be expecctad,
when che parcial SVD (20) is replacad by

?{Pq = U, [£-5 1.V" (39)
where § is a dxagcnal matrix.
§ = diag ( 0)

Here c is an estimate of the supposed isocropicz
nolse singular values.

(maximum likehood estimace { Anderson, 1963},
arithifetic mean {Kumare;an, Tufrs, 1982) 3.

We conclude that the noise causes the algorithm to
be subopti~-~l but on the other hand, the partial
5VD increa..s the signal to noise ratio dramaticai-
ly because the date are projected into thé sigmal
subspace. The noise compensation procedure produces
a vreduction in bias of the estimates,

NUMERICAL RESULTS

In this section we present some striking numerical
results that illustrate the power of the algorithm,
I. Fitting a sum of exponentials.
In {Wiscombe, Evans, 1977] it is reportad that all
knovn methods experience greatdifficuley in recon-
structirg a particular exponential sum, given data
sampled frcm that sum. The ability of our algorithnm
is however excellent in doing this job, even if the
data are only accurate . to 2 decimal digits (roun-
ded}. 97 data points of the sunp

G. 01k 0.1k

-0le " +0.3 e -

Yk + 0.6 e
¥ L%

1t oAbyt oy by
vere generated for k=0,96 and stored in 48x48 Han-
kelmatrices,
Sruns with the algorithm using untcunded data and
data rourded ©5,%4,3 and 2 decimal digits vere per-
formed . on anIBY 3033 machine with 24 bit manrissa
and 7 bit exponent. Following quantities were cca-
pucted : coefficiencs ard exponents ®, relative

deviation defined as 100. (R __ .. . =x Xoxace) /

- at.b ke,

Xaxact? and the error measures
e . ~max by -7 |
T 3<k<96 ¢
36 2 1/2
® s -[a-f e = 9 17 ] //,//’96



56
- 3 | -
ey (1po/g6k L by

o !
D) / I
i=1 R

where‘?k depoces the escimate of zhe k-th value of

che suz.
The results ave tiscad in rablas 1-3

TABLE 1 ACCURACY OF SSTIMATED PARAMETERS

Ix 2
6D 5D 4D 1D 2D
a; | -o.01l =0.02  =0.3 ~0.4 0.6
b, | -0.000t 0.0003 0.0004 -0.00f -0.008
32 0.006 0.01 0,06 -0.09 0.1
b, | 0.0004 " 0.0006 0,002 0,0l -0.07
ay | -0.c006 0.cOl 0.002  0.07 -0.1
5, | -0.0006 -0.c002 0.0003 0,1 -0.3
TABLE 2 ERROR MEASURES
! 60 5D 4D 3D 2D

|
2 ns 0.21E-06 0.23E-06 0,.472-06 0.39E-05 0.35E-04
2y 0.24E-02 0.335-02 0,41E-02 0.12E-01 0.95E-0l
€oax 0,36E~05 0.38E-05 0.12E~04 0.17E-03 0.26E-02

TABIE 3 SINGULAR VALUES OF THE 48x48
HANKELMATRICES

6D 50 4D i . 2D

9, £.31% §,319 4,318 . 4.319 4,315
o, |0.89%0 0.89%  0.890 ° 0.890  0.889
0.256  0.256  0.256  0.256  0.257
g, lmo7? -4 -4 3 ae7?

) 10 N0

Comparing the resulcs lisced in ¢able | and 2 te
those reported in [Wiscombe, Evans, 1977]), ic can
be stated thac che algorithm,ue proposed, obtaias
the same lavel of accuracy. Table 3 confirms the
fact that the singular values are quits insensiti-
ve . to perturbation in the data.

It's interesting to note that che choice of the
Hankelmatrix dimensiomsis quite arbitrary as long
as the minimal dimension is larger than the number
n of elementary signals. Sevaral tests on matrices
vith large varying dimensions, could deteet no
significant difference in the accuracy of the es~
timate. -~

11. Sum of {damped) cosines.
In order to illustrate the reliabilicy, 91 data
were sampled from the four term damped cosine se-
ries

yk-zt.(o.s)F 05 {0.2%+0.7)+7. (0.8)Kcos (0. 1k+0.5)
+38. (0.4)%cos (0. 45k+0.8) +20. (0.9) <cos (0. 3k+0.9)

.9 '
13
w E a, B8, cos ( v.k+ 4.}
. ii i i
Cimi ‘
The data were gorad in a 43X45 Hankelmacrix wich
singular spectrum

-sl.oa;'c£-9.83|; a,%6.328; o
7-o.wt.’ta-m; 5=0,1857E-01
and che rezaining ones all sz=allar then 9.13E-03.
This leads %0 the obvious dacision thac che Hankel-
matixXrank must be 8.

Full precision accuracy resulcs are listad in
Table & and 5 . -

Gt'99.68; l\ =3.317;

2 5

0,70.2933; @

TABLE 4 ACCURACY OF ESTIMATED PARA-
METERS IN 7

33~|8.5!I; cﬁ-lS.Zld; 05-6.8939; 06-6.1657; c

oo 2 3 4
a. 0.09 0.3 0.0 0.1
3i ~-0.003 -0.38 0.005 -0.003

; 0.93 -0.2 0.04% -0.0t

Si -0.4 1.1 .05 Q.05
The arror measures are | -

@ = 0,208E-04

rms ]
ey, = 0.397

e = 0,643E-03
max

These results are excellent,ctaking inco considera—
rion that machineprecision corresponds to 6 3 7
decimal digits.

1II. Even the idencification of so-called "unseca-
ble" signals causes no problem as long as overilow
ts avoided.

Sampled data from the sum :

« 10. (1. 1)%.cos(0.4% + 0.6)

£
+7.00.9% cos(0.2% + 0.4)

2 K
-iEi ui Bi cos (Yik+¢i)
were addicively cortruptad with a pseudorandem whi-
te, zerd mean, Gaussian noise sequence with vari-
ance g=} .,
51 data samples were used and the Hackelmacrix di-
mensiors were 25x25.
The singular values are ¢

=3434.5; 0, »2108,5;

l 2

-
e

?
From g,on, the singular values reach a saturation
level,’indicating thact the noise level is reached,
The accur: : of the estimates, taking a rank esci-
wate of a=4, ia listed in Table 5.

TABLE 5 ACCURACY QF ESTIMATED PARA-
METERS IN 7

i H 2
o 0.005 0.6
Bi -0.7 2.3
YI 0.005 ©-6,7
61 -1.5% 33.0

Remark thac the errors for the second signal are
larger than that of the first_because the firsc
signal contribution is larger than the second and
this is less perturbed by the noisa.
The error measurss are !
e = 0,814
rms

e - 5.178

Z

e =25,1

max
The last error being caused by the amplification
of the misfitting due to the instability.

IV. In the following exaople the effect of addi-
tive white noise of increasing variance is inves-
tigated, using the sum :

¥y 10.{0.95) “cos(0.2% + 0.3)

+ 12(0.85)%cos (0. 4% + 0.3)
4] daca were generated and 20x20 Hankelmacrizes
were usad. .
The signal-to-noise racio SR is defines as
. &
SR = |0 log [(

0 a2y, 2
Loy )/4!0 ] [43]
=0 .

The errvor measures are lisced in Table &.



TABLS & E3RORS 45 A FUNCTION
ST THE GOISE LEvel
1
g SNR(dB) 2 s ez nax
¢ 1o - 0.43E-05 0.35Z-02 O.375-04
i 1 a.000t 54 0.588-03 0.513+00 0.328-02
1 1 g.cc0s 47 3.152~02 1.&4 0.183-01
304 0,001 a4 0.225-02 1.5 0.26E-01
4 i 0.005 37 0.47E-02 3.6 0.575-01
5 10,01 34 0.578-02 5.1 0.80E-01
6 | 0.05 27 0.15E-01 11.6 0.18
1| oot 24 0,208-01 16.7 0,26
8 | 0.5 17 0.49E-01 46.5 0.67
3 1 1.0 14 0.728-01 71.2 0.98
e} 2.0 1 0.84E-01 78.7 1.36
1} s.0 ? 6.12 80.0 2.54

To conclude this section, we now zention some of
the software aspeccs.

The program is wricten inm FORTRAN. It's up c3 the
usar to choose bYetween a fitzing of the data I)by
a sum of real axponencials Iﬂ by real cosines or
I1I} a combinaticn of cha two. A list of the compu-
tad singular values is shown to lec the user deci-
de whether the numerical rank is to be determined
automatically (using one of the rank criterions)
or not. We want o siress here that this is che
only decision szep in the algorithm ia contrasc
wich e.g. convergence and coalesce decision to be
made in che method of [Wiscombe, Bvans, 977}, At
a simple request intermediata results ara printed
together wich all kinds of a’ posteriori indicators
of the numerical reliability ( condition-numbers,
scaling faccors, firsc-order perturbatioo amalysis
using cthe escimated Jacobian ecc,.)

CONCLUSIONS
A numezically weiiable alzotith; £of the waliwac
tion of the parameters of a  aplex sum of exponer
tials is derived. The data must be equidistant and
may te corrupted by noise. The method is based
upon the balaced realization technique of a linear
state space oodel.
The key tool is che singular wvalue decomposition.
It guarantees a reliabla astimation of the mumber
of alementary signals and of the parameters.
Although the nolse causes the algorithm to be sub-
optimal, some practical examples prove the method
to have a more than sufficient degree of accuracy.
Further research will concantrate upon a detdiled ;
sensitivity analysis, extending the algoritham for -
complex valued data and taking into consideration-
a possible adaptive scheme based 'upon adaptive
singular value decomposicion techniques.
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