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Abstract: Adaptive and partial singular value decomposition of sets of samples
of vector signals allows to perform filtering and signal separation. This tech
nique is applicable to all cases where many signals composed of many sourres
(signals of different stremgth and nnise) can be measured simultaneocusly. It
has been applied to the extraction of the fetal ECG out of many cutancous mea—
surements containing maternal, fetal ECC and noise.

1. ENTRODUCTION

Then the eergy of this set in the direction of a
unit veetor e can be defined as [1]:

In this paper we present an alternative way of sig-
nal filterine based on geometry along with its al-
gorithmic implementation and practical use. If a set
of measured signals contains contributions from
sources with different strengths, they can often

be separated by projecting onto subspaces of maxi-
mal and minimal energy. This technique has been ap-
plied successfully to filter or separate the fetal
electrocardicgram (ECG) from the maternal ECG in
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It is the sum of the squared lengths of the ortho-
gonal proiections of all a, onta e. The oriented

cutaneous measurements, and to Filter out 50 Hz
contributions, and to eliminate noise in the state
space realization.

A numerically reliable algorithm to perform this
separation requires the singular value decomposi-
tion SVD of the matrix of the measured signals.
Since both the classical SVD algorithm of Golub

and an adaptive SVD algorithm ASVD are too complex
for real time processing, a new and faster adaptive
algorithm is developped.

In the paper we first define the oriented energy of
a vector signal and derive a number of its proper-
ties {1]. Then the signal separation property is
derived and applied to the separation of the fetal
ECG from cutaneous measurements [2] . Third a nu-
merically reliable signal separation algorithm ba-
sed on SVD is presented. A new adaptive algorithm
based on the Chebyshev transformation is then pre-
sented which is much faster than the classical al-
gorithm of Golub [3] and the adaptive SVD algorithm
Asvp [4] .

2. ORIENTED ENERGY IN A SIGNAL VECTOR SPACE

Suppose that Amxn is a matrix, representing a set
of n vector samples a, from an m dimensional signal
space, with n>m :

A=1a, a, voneers an} ¢}
+++Supported by the Belgian I.W.O0.N.L.

energy in a subspace is equivalently, the sum of
the squared lengths of the orthogonal projectioms
of all a;onto that subspace.

For example Fig, 1 gives polar plots.of the orien-
ted energy of sets of vectors in a2 three dimensio-
nal signal space (m=3). In general, for higher di-
mensions, polar plots of oriented energy all have
the same properties: orthogonal directions of ex-
tremal energy and a maximum, a minimum, saddle-
points.

Fig. 1l: Plot of the oriented energy of a 3 dimen-—
sional signal.




Although these orientations can be computed from
the quadratic form of the autocorrelation matrix AA",
it is well known [1,3] that this squaring often
causes numerical problems. These can be avoided by
using the singular value decomposition, which is
recently receiving much attention in signal proces-—
sing and system theory.

It is shown in linear algebra, that every real ma-
trix A can be written as a product :

A = U I N

mXn  mXD mXn nxn
in which U and V are orthonormal matrices, and I is
a real pseudodiagonal nonnegative definite matrix.
The singular spectrum of A is the set of diagonal
elements ("singular values") of I. The number of
non zero singular values is equal to the rank of
matrix A. The left singular basis is the set of

column vectors of U. Conventionally the singular
values are ordered in decreasing order of magnitu-
de along the diagonal of I. The singular spectrum
gives 2 reliable tool for the rank estimation of a
matrix A, which is corrupted by inaccuracies. If
the renk r of this noisy matrix is less than m
(with m¢n), the last m~r singular values are not
zero. If the inaccuracies are random, these m-r
singular values all have about the same magnitu-
de. Their magnitudes are also smaller than those
of the first r singular values.

The algebraic properties of the SVD of A, relating
it to the oriented energy, can be easily proven,
and understood by geometrical intuition [2]
|. The energy in the direction of a left singu-
lar vector is egual to the square of the
corresponding singular value :
2
Eu_[A] = o {4)
i
2. The p dimensional subspace sP of maximal
energy is spanned by the first p column vec-
tors of U, and its maximal energy equals the
sum of the p firstsquared singular values.
So, the direction of maximal energy of A is
given by u s and the maximal energy of A is

agnal o 012. Also the plane of maximal
energy of A is spanned by (u],uz) and its

maximal energy is equal to 0]2 + 022.

3. The p dimensional subspace SPof minimum ener-
gy is spanned by the p last column vectors of

U, and its minimal projected ener-
gy equals the sum of the p last squared sin-
gular values, So, the direction of minimal
energy of A is given by ﬁm, and its minimal

energy is equal to ¢, » If the matrix A is

of rank r<m, then o= 0. The direction of mE

nimal non zero energy is then given by G .

Combining 2. and 3. we can say that the direction
of maximal energy in the (m—1) dimensional subspa-

ce orthogonal on U is given by u, etc.
1

3. DIRECTIONS OF EXTREMAL ENERGY AND SOURCE SEPA~
RATION

We are interested in separating sources of dif—
ferent strength or extracting some sources from
e measurement signals which are linear combina-
tions of the instantaneous valwves of the sources
corrupted by noise (Fig. 2)}. The technique is ba-
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sed on the following Theorem.

Fig. 2. The measured signals m e+ @, are

1, 2,
linear combinations of unknown sources

Bis Sy eex 8, corfupted by noise 0,0y

S
e
THEOREM
Given a measurement matrix M :
= +
Mext Texnsnxt Next

with e the number of measurement signaki,

t the number of vector samples,

n the number of source signals,

t>e>n

T,S,N matrices reperesenting respectively

transfer, source signals, noise signals.
Let the singular value decomposition of M be given
by :

M =1 b v

ext exn nxn nxt

() S S=diaglo. 0 .eeen. o]
s, 8 s
. 1 2 n
implying that source signals are not correla-~
ted with each other for zero shift in time ,
(2} ©_ 20 2 ciiinesnna>0_ > 0
8, s 5
1 2 n

1T =1
implying that columns of T form an crthonormal
set of basis vectors.
WA =g ?1
implying that noise signals are not correla-
ted, and that they all have the same enerpgy
level,
5) 8 8= 0

exn
implying that noise signals are not correla-
ted with the source signals.

Then (1)T I'= § &7 + onzl
(DU = T
T
35 = UM

The proof of this theorem is based on the unique-
ness of the eigenvalue decomposition of the matrix

M MT, and'will be omitted here. Statement (3) of

the theorem gives a solution to the inverse pro-
blem. To obtain this result, conditions () to

(5) must be, at least approximately be satisfied.
Conditions (2), (4) and (5) are quite easy to ful-
fil. On the contrary, it is not obvious that con-
ditions (1) and {3} are easy to satisfy. Instead
of a thorough discussion ot this matter, we ex—
tract the signal separation algorithm out of this
theorem.

459




D4, 4

SIGNAL SEPARATION ALGORITHM

1. Compute the SVD (6} of a block M of t samples
the measured data.

2. Compute the projection ﬁié uiTh of the measured

sinals onto the directions of extremal energy
Uiy Uy eesug which are the columnz of U, If the

condition of the theorem are approximaly satis-
fied this is a good approximation of the source
. ~ T,

signal 85 - ug Mé Qi
Of course ome can in practice often reduce conside
rably the computations. Sometimes one is only inte
rested in some source signala, then only the cor-
responding parts of the singular value decomposi-
tion have to be computed ( partial singular decom-
position). The singular value decomposition be-
tween two consecutive blocks may only slightly
differ, then an adaptive SVD algorithm will be
more effective. These computational aspects are
discussed in the next section.

In this section, for a better understanding, an
application of the method is described with a
simulation exsmple although the technique has been
successfully applied on measured signals. This
example concerns the measurement of a fetal vector
cardiogram with electrodes located on the skinm
(abdominal FECG). Consider for simplicity two sour
ces each with two signals : the maternal heart
with smx(t) and smz(t), and the fetal heart with

sfx(t) and sfz(t). Fig. 3. a represents a 4 sec.

interval (1000 samples) of the four gource sig-
nals.
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Fig. 3. a) Source signal, b) measured signals
(simelated), c) filtered -signals.
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Fig. 3.b depicts 8 simulated measurement signals,
obtained by making arbitrary linear combinations
of the sourae signals. Some white Gaussian noisge
is also added to the electrode signals. The form
of these measurement signals is quite similar to
real recording. Fif. 3.c gives the projections
of all 1000 measurement vector samples onto the
directions of extremal energy based on the first
250 samples resulting in ﬁl(t) to 35(t).

It is clear that, whereas in the measurement sig-
nals only the highest peaks of the fetal cardio-
gram can be seen, 33(t) and §A(t) allow the cb-

servation of much smaller features, and are prac-
tically free of maternal ECG. An additional bene-
fit is that these projections on the orientations
of extremal energy are independent of the physi-
cal orientation of the heart, which is of consi-
derable practical importance, Observe that in
this zimulation example no special care has been
taken to satisfy the conditions of the Theorem.

4, THE COMPUTATYON OF THE PARTIAL OR ADAPTIVE
SINGULAR VALUE DECOMPOSITION.

In this section we discuss some numerically reli-~
able algorithms for the SVD of real matrices. The
choice of a suitable algorithm for the computation
of the SVD depends upon the conditiom that are im-
posed. If one needs a full decomposition (i.e.all
gingular triplets) of a matrix of moderate dimen-
sions, Golub'e algorithm [3} is very pfficient

and numerically reliable. Fully tested and docu—~
wentated software is available. However, there
exist many applications in which the matrices in-
volved satisfy specific conditions: They may be
large and structured. such that the entries pre-
ferably remain unchanged during computatioms.
When they are of low rank only a Partial SVD i=
necessary. (e.q. model reduction techniques).

In other applications only the largest (Iznnorm

of a matrix), the smalleat (total LLS [6])or some
intermediate singular value {8) [2] are needed.
A supplementary aspect may be that the matrices
may be slowly time-varying. Hence, it is natural
to develop an adaptive algorithm that uses the
SVD computationsof aprevious time step as an ini-
tial value for updatimg the actual SVD. Both ob-
servations hold for many signal separation pro-
blems such as FECG. Two recently developped algo-
rithms are now briefly considered.

A. ASVD : The power method for SVD

This wethod, developped independently by Staar
[1] and Shlien [7] , and worked out in [5] can
be sumarized as follows :

Suppose that k first triplets of an mxn matrix 4
are already computed

L [ui ceveses w1 (7a)
v = [vl rereeer VY ] (7b)
tk # diag [Ul ""Gk] (7e)

then the k+l-th triplet is computed via an ite -
rative process:
(o)

l. Initial guess e uk

iteration i

2. vD LRI g at2E ) &
3oopt = latlh ] 9
Goupas = A gt (10
5. opay Has2it || an




6. If the test for convergence
2i+2 23
= || <€

s (12)

is satisfied start the recumion for triplet k+2
(deflate),
if net , go to 2.

In {5] it is proven that the number of multiplica-
tions " for triplet p is

np= (-1log €0 " log(gp/gp+i) / log (Up/op+l)(i3

where €m ia the machine precision andgp/gP mea-—

+1
sures the quality of the initial guess.
Also convergence rates, reductions in the orthogo-
nalization, initial guess strategies, deflation
techniques and acceleration algorithms are studied
in [5].
B. CHEBYCHMEV ITERATION

This is a very efficient technique based on the
recursion of the Chebychev polynomials.
From A= u.r.yt
one obtains

At = ponstivt (14)

One can prove that for every polynomial or analy—

tie function f of a matrix AAt

£(aA%) = v gzsh) vE (15a)
where f(EEt) = diag [f (Gi)] (15b)
Now the Chebyshev polynémials Tn(x) satisfy

T (x) = I (16a)

T, {x) = x (16b)

Tn+l(x)- ZxTn(x)—Tn_i(x) {16c)

and |Tn(x)| > {Tn_l(x)f > 1 xe(-00,-1Y(1,00)

(17a)
I G0l <t xe [-1,11 (17b)

If we now consider the following iterative proce-
dure, with v, the n~ th iteration vector

1, Initialize v,

= E
vy= £ (4A7)v, (18}
t
2. Iterate Vo™ 2£{AA )vn—vn_l (19)
3. Test for convergence
v v | <2 (20)

if not, go to 2.

The result of this iterative procedure is a vector
with components along those left singular vectors
of A of which the corresponding singular value of

f (AAt) is larger than 1. The largest, smallest or
intermediary singular values are computed by choo-
sing suitable f.

In [B], it is proven that the number of intera-

tions equels ,rrm—wﬂ
d” -1 21
> ) (@n

n== (log em+log(gp/gp+l)) /log (dp+

2
h d = f(c
where b { P)

it can be proven that this iteration is generical-
1y considerably faster than the ordinary power
method and CGolub's algorithm [3,4].Reliable refi-
nements, deflation techniques and combination with
previously developped acceleration techniques are
actually under study.
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5. CONCLUSION

A signal filtering technique has been described
which isnot based on the frequency content but
rather on the strength of contribution to multi-
ple signals. It has proven to be useful in eli-
minating maternal ECG in abdominal recordings

of the fetal ECG. An algorithm for adaptive
singular value decompositiom which can compute
efficiently a part of the SVD on-line
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