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Absiract: Given a set of noisy data yy,..., y,,, measured at equidistant points on the time axis, find »n (# <im)
exponents b, and coefficients ¢; such that I; ¢; exp(b;t) yields a good approximation of the data. We study two
algorithms for the reconstruction of the exponents and coefficients. We show that the error in the reconstructed
exponents is of the order of the gap ¢,.,/(g, — 6,,) between the smallest accepted singular value o, and the targest
rejected singular value ¢, of a Hankel matrix constructed from the data. Moreover, we provide a statistical analysis,
which gives some insight in the optimat choice of the dimensions of the Hankel matrix to be used, given a fixed
number of datapoints, and we illuminate this by several clarifying examples.
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1. Tivtroduction

An important problem in experimental sciences is the fit of a weighted sum of exponentials
n

f(1)= % e exp(byr) (L)
i=1
with unknown exponents b; and coefficients ¢; to a given set { Yli=0:2m—1} of 2m (m > n)
noisy data points obtained from some experiment.

The first solution to the problem of fitting experimental data by a sum of real exponentials is
due to De Prony [6). Variations on his method are described in several books on numerical
analysis [10] (“problem of ‘weighted moments’”). The problem occurs in fitting radioactive
decay measurements (see ref. in [12]), transmission function analysis in atmospheric research [15]
compartmental analysis [8], electrical network analysis (Heaviside’s expansion theorem [10]),
analysis of human lung exhalation and chemical rate constant estimation (see ref. in {12] and
[15]). In many of these applications, the amplitudes ¢, are expected to be positive. In [15] a
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survey of various methods is given. Some fundamental theorems guaranteeing existence and
uniqueness of positive sums of a “best fit’ (provided the number of exponents is not constrained
a priori) are treated by Cantor and Evans {2]. Algorithms based upon these results are described
in {15] and [7}. In [12] a non-linear weighted least squares approach is studied while in [12] the
problem is considered as a separable non-linear least squares problem, since it is linear in the
amplitudes ¢, once the exponents b; are known. A Remes type algorithm is developed in [1] while
a Padé-approximant approach together with conditions for existence and uniqueness are dis-
cussed in [13].

As pointed out by several authors {10,15,12] the fit of data by a sum of exponentials and in
particular by real exponents may be very badly conditioned; small changes in the data can cause
a large change in the best-fit parameters. Varah [14] illuminates this by plots of the landscape of

the Euclidean distance in several examples
m

I, )= X (3=1(1)), (12)
j=0
which show very flat valleys and very steep slopes and in which the minimum seems badly
determined. This suggest that minimization of the object function (1.2) is a difficult task, which
is aggravated by the fact that J is invariant for interchanges of pairs of unknowns (,, ¢;), which
may cause endless loops in an iterative minimization procedure; moreover, such a method always
poses the problem of a suitable starting point.

For the case, where the data are sampled at equidistant time intervals (¢;= 1y +jd, j=
0,..., m) the values f(t,) of the model admit a description as outputs of an n-dimensional linear
system. Reliable reconstructions can be made by the algorithms of Zeiger and McEwen [16) and
Kung [9]. In both algorithms the data are put into a Hankel matrix which is decomposed in
signal and noise parts via a singular value decomposition. In the first algorithm the unknown
exponents emerge as the eigenvalues of the restriction of the shifted Hankel matrix to the signal
space and in the second as the eigenvalues of a matrix defined by shifts in the orthogonal
projection onto the signal space. The coefficients can either be derived directly from the
eigenvectors or indirectly from a linear least squares problem, the latter usually resulting in a
somewhat smaller residue. The nonlinear part of the approximation problem is in this approach
reduced to a singular value probiem and an eigenvalue problem, which are both well-conditioned
and which can be solved nowadays by reliable and fast algorithms. This method is easily
implemented and works well in the presence of noise.

In our opinion the assets of this algorithm over some Newton-like method are:

(1) shorter computation time;

(2) no need to provide a suitable starting point for the iteration;

(3) less chance of breakdown if two exponents are near to each other;

(4) the algorithm provides a good answer to the question whether the quality of the data

justifies a fit by a sum of —say—three exponentials.
Finally, we remark, that this algorithm works equally well in the (less sensitive) case of complex
exponents, and that it can be competitive with FFT, if only the main modes are to be
determined, since it requires much less data points for an accurate estimate of this mode.

The aim of this paper is to show, that the error in the computed exponents is of the order
O(o,,,/(0, — 0,,)), the quotient of the largest noise singular value and the gap between the
signal and noise singular values of the Hankel matrix. A necessary condition for such an estimate
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is that the last column of the shifted Hankel matrix on (..., ¥;,,—;) does not contain
significant extra information on the signal, that is not already contained in the remaining
columns or, in experimental terms, that the phenomenon to be modelled has been measured
during a sufficiently long time. It does however not imply that the signal has to have died out.
The key that leads to our error estimate is the observation that the singular vectors of the Hankel
and shifted Hankel matrices are approximately parallel. Our error estimate is much better than
Kung’s [9], since the constant in the order term does not contain the (rather large) norm of the
psendo inverse of the Hankel matrix.

The error estimate is given in terms of the gap between the singular values. If a set of data can
be modelled accurately by a sum of n exponentials (# being small w.r.t. the number of data) the
data vectors have to span approximately an n-dimensional subspace. Hence the matrix consisting
of those vectors can be approximated well by a matrix of rank » and not by one of smaller rank,
This implies that there is a gap between the signal and noise singular values.

2. The algorithms of Zeiger~McEwen and Kung

Let us assume, that we are given the outputs { y, }7_, of the non-degenerate n-dimensional
linear system

Xp o =Axg, xd=(1,...,1), (2.1)
Y =clxy, e #0, i=1,...,n
with x;, and ¢ in R" and with 4 a diagonal matrix. In this section we describe the realisation

algorithms of Zeiger-McEwen [16] and Kung [9). Let I be the p X ¢ Hankel matrix with p > n,
qg=>n
Yo T Ya—1
H:= , Hf,j: ik i—1 (2'2)
Y1 7 Voig2

whose rows and columns consist of consecutive outputs of the system (2.1). Since

yk = CT."k = CTAkx-O,
the Hankel matrix admits the factorization into an observability matrix F and a controllability
matrix G,

c'd 1
H= 5 (el Axg) - [ AT xy) = FG. (2.3)
Py L
If the system (2.1} is non-degenerate (the geometric multiplicity of each eigenvalue of A is one
and ¢ has no zero components), both factors in (2.3) are of full rank ».
In the approach of Zeiger and McEwen [16] the system matrix A can be reconstructed, using

the fact, that the shifted Hankel matrix H with entries H, =y, 4+, satisfies the analogous
factorisation

H = FAG,
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where F and G are as defined in (2.3). Since F:R" = R” and G:R? - R" have full rank, any
factorisation H = FG with F:R" - R? and G:R?— R" satisfies

I, = F*HG* = F*FGG", (2.49)
where F* denotes the pseudo-inverse of F. This implies that the matrix M,

M:=F*HG" = F*FAGG" (2.5)

is similar to the system-matrix 4. The factorization can be obtained from the singular value
decomposition H = U3V, So we find

M=3"2yTgyx1/? (2.6)

as a suitable reconstruction of the system-matrix.

In the approach of Kung [9] the system matrix is derived from the shift properties of the rows
and columns in the left and right factors F and G in (2.3) respectively; e.g. the jth row of F
multiplied by A yields the (j + 1)st row. If we denote the first and last rows of ¥ by ¢¥and d7
respectively and if we partition the matrix F in two ways,

r— CT — E’-’
r={5) () 0
then the lower and upper parts F, and F, are both of full column rank » and satisfy the relation
F,=FA. (2.8)

For any left factor ¥ in the factorisation H = FG with F:R">R” and G:R7—>R" we find
analogously, using (2.4),

F=F,GG*=FAGG* = F(GG") 'AGG* = F,M, (2.9)
where M is similar to A; hence M can be computed from the equation

M=F'F.
In particular, we can use the factorisation, given by the SVD H = USVT where the columns of
U form an orthonormal basis in the range of H. We find

M=U'U~(U'v,) U,

dd"
1—-d'd
where d7 is the last row of U. The assumption that (2.1} is non-degenerate, implies that both
factors F and G in (2.3) have full column rank ». Because p > n, this applies equally well to the
parts F, and F, in the partitions (2.7) and hence also to F, and F, in (2.9) and to U, and U, in
(2.10). Since the columns of U are orthonormal, we can extend U to an orthogonal matrix
(U|U,). If d has length one, the last row of U, is zero and the orthogonality of the extension
implies, that d must be orthogonal to the remaining rows of U, and hence rank (U,) < n. So we
find that the denominator 1 — d7d in (2.10) cannot vanish.

Formula (2.10) offers an easy way to reconstruct a system matrix for (2.1). Given a system
matrix, the coefficient vector ¢ can be determined from { y, } by a linear least squares fit.

= (£,- dd™) U~ (I,, - )Uf U, (2.10)
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3. Error estimates and noise

Let us now assume that { y };"_, are the outputs of the system (2.1), perturbed by noise. We
shall consider the question how close an approximation to a system-matrix can be obtained by
both algorithms. For comparisons we denote by { §,}7, the unperturbed outputs, and more
generally we shall denote by X the unperturbed counterpart of the object X. So we have the
perturbed, unperturbed, and noise Hankel matrices H, H and W,

H=H+W, |\W|<¢ H=H+W, |W|<ec (3.1)

In general the rank of H will be larger than n and we have to approximate it by a best rank n
approximation. We can partition the singular value decomposition

2 0\t

H=UZV"= (U, |U.
(ll 2) 0 E V2T

(32)

in such a way, that 2, contains the » largest singular values, and we can approximate H by
U, Z,V,". The reconstruction of Zeiger and McEwen is then given by

M=ZX\V2UuTHY, 2 V2 (3.3)
and Kung'’s realisation by
ddf
M=1I+ T—dd Ui Uy (3.4)
151

where d] is the last row of U,.

Both methods of approximate realisation yield an approximate system matrix M, whose error
can be estimated by the norm of the noise matrix W and the gap between the singular values of
2 and 25,

Theorem. For each of the approximate system matrices M (3.2)-(3.3) a similarity transformation S
and a constant C exists, such that

| M= SAS™H| < CUIW || +0,41)/(0, = 0,11, (3.5)
where {6} denote the singular values of H, ordered in decreasing order, provided |W || +o,,, <
2(0 n+1)
Proof, As is well known, we have

|77 - U,z

n-+1s

moreover the SVD of H can be chosen such that
AN OAVE Al
0 o/{PT

with l:’, satisfying

W +o,
”U1 ” W One1 _

Oy — Oyt
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Obviously the same estimate holds for the errors in the parts d,, Uy, and Uy, in the partition of
U eg

A

Ule.f - U

“

“dl ~d d]T_JT

|“” 0
d}deﬂT

This immediately establishes the validity of (3.5) for Kung’s realization (3.4), provided || d, || is
bounded away from 1. As is easily seen from (3.2), we have

d, = Ef]VlThp

where h'}," is the last row of H. If all eigenvalues of the system matrix A are inside the unit circle
(decaying exponents) and if the signal is measured for long enough time, ||, || can easily be
made smaller than (say) 3, yielding € < 3 in (3.5).

The proof of the validity of (3.5) for realisation (3.3) is more involved and we refer the reader
to [3] for the details. The basic idea is to insert in (3.3) the SVD of the shifted Hankel matrix H,
split into parts analogously to (3.2), .

M= EV2UMOE VIV EDY + 37 VAU O,E VBV

The second term is in norm smaller than &, ;/0, and can be neglected from the outset. The first
part can be factored as KL,

K= 37 PUTTEY, L= ST

Under the condition that the gap between the columns of U; and the last column of H is small
(the tail of the signal { y,}¥_, does not contain essentially new information), the (i, j)-terms
with i>j of UTU, are small enough to annihilate the possibly large factor o; */?5}/? in the
(i, j)-term of K, and analogously for L. Standard error estimates for spectral projections then
yield the estimate (3.5) for realisation (3.3). O

Remark. In practice the value of |{d, || is easily monitored, such that appropriate action can be
taken, in case it comes close to one.

4. Statistical analysis of Kung’s algorithm and some numerical experiments

In this section we provide some more insight in the influence of additive noise for Kung’s
algorithm, leading to some important considerations on the choice of the optimal dimensions
( p.q) of the Hankel matrices for a given number m = p + ¢ of data with respect to the accuracy
of the results. Concerning the noise we shall assume
— the noise is additive ( y, = §;, + w,), has zero mean and variance o’

— the noise samples are interindependent (E(w,w,) =0} and do not depend on the data

(E(w$,) = 0). .

This implies that the noisy, exact and pure noise Hankel matrices H, H and W (ci. 3.1) with
H=H + W satisfy E(I;’TW) = () and hence

E(H'H)=H"H+ E(WW). (4.1)
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Because npise sarr’}ples are uncorrelated, we have E(WTW) xpozfq. Using the SVD of H,
H=U2V, with 2,:R" - R", we find

E(H™H) = (0, 0,) 3 +§.,21,, po%“" 2: (4.2)
a
ol
50
40
30p
20
10 |
25 3;) 35l 4:3 A; -

I 1 1 :

25 a0 35 40 45

Fig. 1. Singular values of the p X (50— p) Hankel matrix of rank 3 on the exacl data y, =5 (0.95% +6(—0.85)% +
10(0.77)*, k =0,...,48 as a function of the number of rows p. (a) all threc singular values. (b) third singular value
enlarged.
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Due to the law of large numbers, the singular values of H'H will satisfy
02=6*+po?, i=1,...,4q, (4.3)

provided p in sufficiently large in comparison to g. Moreover, if the gap between 82+ po? and
po? is large enough, i.e. if §7/po® > 1, then the left singular subspace spanned by the columns
of U, is well-determined. Hence, increasing overdetermination (i.e. an increase of p) may
increase the accuracy of U, which is of crucial importance in Kung’s algorithm, where only the
left singular vectors of H are used, as was argued by De Moor and Vandewalle [5].

In most practical situations the exponents to be recovered are negative (the system is stable,
y, — 0 for k — o0) and hence the amount of meaningful datapoints in the sequence { y,} is
limited. Suppose now that we have m + 1 datapoints { y; } 7., available. Those can be put into a
p X g Hankel matrix H,, with p + ¢ =m. Kung’s algorithm requires only p > g > n (and not all
three equal) and we can ask the question which choice is best. The statistical analysis presented
above suggests choosing p as large as possible. However, the relative gap

(62(p, q) +pa*) " — p'/%) /(p %) (4.4)

may play an antagonistic role.

We have studied both aspects in a number of simulations using Pc Matlab [11] and we have
observed the following phenomena:

(1) The singular values of the Hankel matrix H,, on i + 1 ‘exact’ datapoints decrease if p is
increased ( p > ¢, p + q=m), the smallest one quite strongly as can be seen in Figs. 1(a) and (b).
See also the remark at the end of this section.

35 40 45 50 53 60 55

Fig. 2. Singular values of a pure noise p X{(70— p) Hankel matrix, where the noise is distributed normally with zero
mean and unit variance, as a function of the number of rows p = 35,...,67,

-
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(2) The singular values of the pure noise Hankel matrix W,,on m+ 1 noise samples decrease
wezkly if p is increased (p > ¢, p + g = m) until their existence ends by lack of dimensions. The
rernaining ones come close to each other, making the noise spectrum approximately isotropic; an
example is displayed in Fig, 2.

F—— i L 1

25 30 35 40 45

Fig. 3. Singular values except largest two of the p X (50— p) Hankel matrix on the noisy data (4.5) as a function of p
for p=125,...,46 for three values of the noise multiplier. (a) noise multipfifier 0.01 (b) noise multiplier 0.025 (¢) noise
multiplier 0.05.
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25 30 35 40 45
Fig. 3. continued.

Both phenomena have an opposite effect. In our simulations the deteriorating effect of the
quick decrease of the smallest signal singular value o,( p, g) for increasing p on the accuracy of
the approximate signal space spanned by the columns of U; was much more important than the
advantage of increasing overdetermination. For that reason, we conclude that the choice p =g is
most available.

As an example we display the results of the following simulation. We generate 49 datapoints
(k=0,...,48)

ypi=5 % (0.95)% + 6 % (—0.85)" + 10 % (0.77)" + w,, (4.5)
where the noise term w,, is given by
w, = p * y, * (random number),

and the (pseudo) random number is normally distributed with zero mean and unit variance. For
the noise multiplier p we have chosen three values, namely 0.01, 0.025 and 0.05. In the first two
cases we observe for p =25 a substantial gap between the smallest signal singular value o, and
the largest noise singular value o, plotted in Fig. 3; this gap diminishes for increasing p as does
the accuracy of the corresponding reconstructed exponents in Fig. 4. In the case of noise
multiplier p = 0.05 the gap between o, and o, in Fig. 3(c) is so small, that the third exponent is
hardly recoverable; in Fig. 4(d) we see indeed that the error in the third exponent is quite large
for all values of p. On the other hand, the gap between o, and o, remains quite large, such that
the first two exponents emerge with a much smaller error. This effect was indeed predicted by
the error analysis in Section 3. If p increases the errors in first and second recovered exponents
remain more or less constant, until the number of columns (= 50 — p) becomes too small and the
error increases drastically.



P. de Groen, B. de Moor / Exponeniial fitting 185

Remark. In simulations we have already observed that the singular values of the Hankel matrices

H,, , on the same data set {y,,..., -2}, generated by a sum of decaying exponentials,

decrease if p>m — p and p increases. For their sum of squares, which is equal to the Frobenius

L4~
124,
10p
|
o
L
25
24
b
L
|
5
4)-
b
2“,_/—/—-/
1+
PR P\ ‘
25 30 a5 49 45

Fig. 4. Relative error in percents in the exponents reconstructed from the p X (50— p) Hankel matrices on the noisy

data (4.5} by the algorithm of Kung, plotted versus p for three values of the noise multiplier. (a) noise multiplier 0.01.

(b) noise multiplier 0.025. (c') noise multiplier 0.03, third exponent. (c?) noise multiplier 0.05, first and second
exponent.
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Fig. 4. continued.

norm of the matrix, this property is obvious; however, we do not know whether it is true for each
singular value individually. For more general data sets, ¢.g. randomly generated data, this is no
longer true, as can be seen in Fig. 3(c).
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5. Conclusions

In this paper error estimates were derived for the fit of a sum of exponentials to a set of
equidistant noisy data using the algorithms of Zeiger and McEwen [16}, and Kung [9). We have
shown that, if we recover n exponents from the data, the error in those exponents is of the order
0,+1/(0, = 0,,1), where {0;} are the singular values of the associated Hankel matrices. Although
in experiments, described in De Moor and Vandewalle [5], de Groen [3] and in this paper, this
bound appears somewhat pessimistic, it nevertheless yields a good criterion whether or not it
makes sense to try a fit by a sum of n exponentials,

Moreover, we have made a study of the accuracy obtainable for a given set of data, If we vary
the dimensions of the Hankel matrix constructed with these data. We have given an argument for
strong overdetermination and another against it. From experiments we have concluded that (for
the case of a sum of real exponents at least) a square Hankel matrix is preferable in general.
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