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Abstract: New algebraic results are obtained that describe the
relation between the structure of rank deficient Hanke! matrices
of finite dimensions and their singufar value decomposition.
Use is made of the ‘non-conventional' matrix caleulus of
Khatri-Rao and Kronecker products. One of the important
results is the parametrization of all rank deficient Hankel
matrices of finite dimensions that share (a subset of) the same
sel of minimal system poles. The results are illustrated with a
clarifying example.
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1. Introduction

Hankel matrices play an important role in the
analysis and realization of linear systems. Al-
though a lot of their algebraic properties are known
for quite a long time (8], it is only since the
introduction of the now well known realization
scheme of Ho and Kalman [7] that their system
theoretic importance has been established. An im-
portant step was the introduction in the realiza-
tion context of the singular value decomposition
of the Hankel matrix of Markov parameters [13].
Moreover there exists a close connection hetween
the singular value decomposition and the concept
of balanced realization, introduced in [11}, where
it was demonstrated how the singular values and
vectors of Hankel matrices of finite and infinite
dimensions can be used as quantitalive measures
of controllability and observabitity, This connec-
tion is exploited in {4} to solve the celebrated

model reduction problem with Hankel norm using
state space methods only.

In this paper, some new numerical-algebraic
results will be established that describe the link
between the Hankel structure and the singular
value decomposition. The main result is a parame-
trization of all rank deficient Hankel matrices of
finite dimensions that have a preseribed set of
minimal system poles. Use is made of the matrix
calculus of Kronecker and Khatri-Rao products.

The motivation for this research arises from the
important relation between the singular values of
the Hankel matrix and the degree of controllabil-
ity and observability of a system as described in
{11} If for a system of minimal order », the
smallest singular value is small with respect to the
largest one, then there exist states that are difficult
to control and to observe in terms of ‘energy’ [11].
Hence, in the design of linear systems, it might be
interesting to optimise the Hankel matrix, which is
the product of controllability and observability
matrices of the system, such that it is as orthonor-
mal as possible. In this way, the energy to control
and observe states may be minimized while the
desired minimal system poles are specified (e.g.
pole placement). This will be the subject of a
forthcoming publication, In this paper, we will
take more specifically a closer look at the follow-
ing problem:

Given a system matrix 4 [» X n). Parametrize
all Hankel matrices H,, of given dimension p > #
and ¢ > n that are filled with Markov parameters
H,=c"-P* . b where (P, b, ¢) are all possible
state space models with P similar to A.

The results 1o be presented are restricted to
Hankel matrices with scalar data (single input,
single output systems). It is however expected that
the generalization to multivariable systems poses
no considerable difficulties. This paper is organized
as follows: In Section 2, the definitions and the
properties of the numerical tools that will be used
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to analyse the Hankel matrices, will be presented
(the singular value decomposition, Kronecker and
Khatri-Rao products). In Section 3, the main
results of partial realization theory are sum-
marized. In Section 4, these results are restated
with emphasis on the singular value decomposi-
tion of the Hankel matrices. It is shown that there
is a one-lo-one correspondence between the vector
space generated by the left and right singular
vectors and the minimal system poles. Section 5
contains the main contribution of this paper: With
the aid of the Kronecker and Khatri-Rao prod-
uct, some intriguing new properties of Hankel
matrices are explored: This leads to a characteri-
zation of all possible rank deficient Hankel
matrices of prespecified dimensions with a pre-
specified set of minimal system poles. This is
illustrated with a numerical example in Section 6.
The conclusions can be found in Section 7.

2, Notations; the singular value decomposition;
Khatri-Rao and Kronecker products
2.1. Notations and conventions

The following notations will be used throughout
the paper:

A m X n matrix.
m

! transpose.
0] Khatri-Rao product.
® Kronecker product.
A(A) eigenvalue set of A
J(A) Jordan form of A.
rank(A4) rank of A,
T, n X n identity matrix.
ker(A) ={xeR"|A - x=0}

cor( A) corank(A) = min(m,n) — rank(A).

4 matrix A4 with first row omittted.

A matrix A with last row omitted.

vec(A) store all columns of A4 in a long
column vector,

vecd(A) store the diagonal elements of 4 in

a column veclor.
A first omit row, then transpose.
[A B concatenated matrix, If A4 is m Xn
and B is mxp then [4A B]is mX
{p+n)
Moreover, the following conventions are made:
— Small letters a, b, ... are used for cofumn vec-

tors. Row vectors are denoted as the transpose of
a column vector.

_ Since the Jordan form of a matrix is only
unique up to an ordering of the Jordan blocks, the
expression J(S)=J(T') where § and T are square
matrices, indicates that S and T have the same
Jordan structure.

_ SVD is the abbreviation for Singular Value
Decomposition,

2.2, The singular value decomposition

The SVD has become a key tool in the analysis
and solution of many problems in numerical lin-
ear algebra and system theory [5,9]. The reason for
this is that powerful algorithms have been devel-
oped with very robust and numerically reliable
performance. Here only the main result will be
stated.

Theorem 1, The Autonne—Eckart—Young theorem
restricted to real matrices, Every real p X g matrix
A can be decomposed in three real matrices U, X
and V-

A =U- -3 -V (1)
pXq  pXp pRg  g%4
with the following properiies:
— U and V are unitary:

U‘-U=1me-U‘, V'-V:I‘I=V-V‘.

— 3 is p X q pseudo-diagonal:

5ol
0o 0
where Z, is a diagonal r X r matrix with diagonal

elements 6, > 0,2 +-+ = 0,> 0 where r is the alge-
braic rank of the matrix A,

Proof. See [5). O

The column vectors u,, i=1,...,p, (v;,j=
1,....q) of U (V) are the left {right) singular
vectors while the diagonal elements of X are the
singular values of the matrix. If U, (V) is the
p X r {gxr) matrix consisting of the r first col-
umns of U (V) and =, is the upper r Xr matrix
of X, then the singular value decomposition of A
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can also be writfen as

A=U 2% - V'=uUuy. 3 W

rxq PRg  pXq g%Xq PXRr ¥rXr rXg
t _ st .
where Uy - Uy = ¥V = 1. (2)

For further properties, we refer 1o [3,9).
2.3, The Kronecker and Khatri-Rao product

There are numerous applications of the
Kronecker product in various fields including sta-
tistics, economics, optimisation and control. One
of the major advantages of the matrix calcules of
Kronecker and Khatri-Rao products is that it
simplifies considerably complicated calculations,
e.g. derivates of a matrix with respect to another
matrix. In this paper, the Kronecker and
Khatri-Rao product will be introduced for the
same purpose.

Drefinition 1. The Kronecker product of a matrix
A (pXxg) and a matrix B (m X »n), denoted by
A ® B, is the (p-m) X {g-n) matrix defined as

an'B  apB a1, B

a, B a,B ay, B
A®B= .

a8 a,-B ... a,-B

Definition 2. The Kathri-Rao product of two
matrices G {s X ¥) and F {f X ) (with the same
number of columns 1), denoted by F ® G, is the
(s-1) X v matrix defined by

FOGz[f]®gl f2®g2 fu®gu]

where f; and g, i=1,..., u, are the columns of F
and G.

The Kathri-Rao product is nothing more than
the Kronecker product column wise.

Example. Consider

3001
F=[2 -1

11 o
’ G_[o 2]‘

0 2

HRRREIRE]

FOG=

HHEH
SRHIREHIE
ool 2 [8]

For a complete survey of the properties and
important applications of this matrix calculys in
linear system theory, we refer to [1] and [6]. Here,
only the properties that will be used are men-
tioned, without proof. Let 4 be an m X n matrix
with columns a;. Then an important vector valued
function is

OO O W
f
BON oD

a,

a,
vee(Ad) =
{imndyxi

a

n

obtained by storing the columns @, of 4 in a long
column vector. For A being square m X m, let
vecd( 4) be an m X 1 vector containing the diago-
nal elements of 4. 4, B, C, D are real matrices of
appropriate dimensions.

Property 1. Mixed product rule for the Kronecker
product.

[1®@B}-[C®D]=[4-C]®][B-D].

Property 2. Vector function of a product.

vec[A D B]=[B'®A]-vec(D).

Property 3. Mixed product rule for the Khatri—Rao
product.

[4@B)-[COD]=[4-C)O[B-D].

Property 4. Vector function of a product with a
diagonal matrix.

vec[A-D B} =[B'© A]: veed( D)
if D is square diagonal.
Corollary 1. Vector function of the singular value

decomposition. Let the SVD of Abe A=U-3 - V'
Then

vee(d) = [FOUY- vecd(2).

Property 5. Singular value decomposition of the
Kronecker product. If A=0,-2, V! and B=
Uy, 2y V) are the SVIYs of A and B, then the
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SVD of A® B is given by

A®B=(Uer® Ub)'(za®‘2b)‘(V;J® Vb)i'

Corollary 2. If rank(A)=r, and rank(B)=ry,
then

rank([A @ B])=r,-rp.

3. Properties of Hankel matrices of linear systems

In this section, a brief summary is given of the
now well known properties of Hankel matrices in
the context of (partial) realization theory, but also
some new insights are presented that will be ex-
ploited in Section 4.

The discrete time invariant single input, single
oultput system with state space description '

Xpo1= A o xpg + b o-ouy, 3
axl XM sy #XD g5
Ve = ¢ - oxp + odoouy, (4)
1x1 ¥ oaxy TXE gk

will be denoted by (A, b, ¢, d). It has a set of
Markov parameters ho=d, I, =c' A" b,
which are the samples of the impulse response of
the system. The transfer function H{z) of the
system (3) equals

H(z)=¢(z-1—-4) - b+d.

The extended observability and controllability
matrices I, and A, are defined as

Ct

A

= A, 42
I,=}1 ¢-4 :

PARY L

A, =1b A-b A*-b A1 b, (5)
For p = ¢ = n, these are of course the observabil-
ity and controllability matrices of the system (A,
b, ¢). Throughout the paper, it will be assumed
that the triplet (A, b, ¢) is minimal, i.e. rank(I})
= rank(4 ) = n, which is equivalent with the sys-
fem being completely observable and controllable,
An important structured matrix in linear algebra
and its applications is the so called Hankel matrix
which can be defined as follows:

Definition 3. Given a vector f with components
11, 15,..., 1x), the rectangular p X g (with(p + ¢
— 1)< K) Hankel matrix constructed from the
elements of 7 is defined as

flpq(i! J') = (i+j71'

Now let us introduce some conventions: If H is
a pxgq matrix, then H (H) is the (p— 1) X g
matrix constructed from H by omission of the
first (last} row. In the expression H' (H") the first
(fast) row is omilted before the transpose is taken.

The specific structure of a Hankel matrix also
reveals itself in any possible factorization of the
matrix:

Theorem 2. Factorization structure of Hankel
matrices of finite dimensions. Let H,,, be a rectan-
gular p X q matrix that can be factored as H,, = X~
Y'where X and Y are arbitrary matrices. Then H,,

is a Hankel matrix if and only if

X y'=X.Y\

Proof, Follows immediately from the Hankel
structure, [

A fundamental tool in the analysis of linear
systems is the Hankel matrix, constructed from
the Markov parameters of the linear system (3):

HP‘i(i‘ i) =l =c- A,
i=1,....,p; j=1,...,4q.

(6)

The following properties of this Hankel matrix
can be considered as classical in realization theory
of linear systems:

Lenmna 1. Factorization property of Hankel
matrices from Markov parameters, lLet h, = ¢"-
A=V b be the Markov parameters of a single input,
single output linear system and H, (i, jy=nh
a p X g Hankel matrix. Then

H,, =I,-4, (7)

i1

Proof. Trivial. O

Lemma 2, Rank property. Let h, =c¢'- A*7' . b be
the Markov parameters of a single input, single
oulput linear system and H, (i, jy=h; ;_, apXxq
Hawkel matrix with p=n and gz=n. Then
rank(f, ) = n.
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Proof. Follows from Lemma 1 and the minimality
of (A4, b, ¢). O

The second lemma indicates that the rank of a
Hankel matrix of Markov parameters is always
equal to the dimension of the observable and
controllable part of the state space, if the dimen-
sions p and g are chosen large enough (p.g=n)
A unique correspondence between a linear system
defined by a transfer function H(z) and a Hankel
matrix only exists for Hankel matrices with in-
finite dimension. Indeed, the transfer function
H(z) is uniquely represented by the corresponding
infinite sequence of Markov parameters. When
dealing with the correspondence of a finite dimen-
sional Hankel matrix of a linear system H(z),
uniqueness of the realization can only be achieved
by posing extra conditions on the extension of the
sequence of Markov parameters 1o infinity, e.g.
the extra condition of minimality of the partial
realization of the finite sequence. As a result, the
problem of minimal partial realization is involved
(2,12).

Let H, be a pXg Hankel matrix of rank n
where n<p and n<gq. Define H, to be the
{(p — 1) X g submatrix of H_, consisting of ils first
21 rows and H, the p X {(g— 1) submatrix of
H,, consisting of its first ¢ — 1 columns.

Lemia 3. If

rank( H,_} = rank{ #,) = rank( H,) = n,
then the e]emems of H,, are Markov parameters of
a linear system of minimal state space dimension n.

Proof. See e g, [2,12]. O

Note that the condition of rank deficiency of a
finite Hankel matrix is not enough to guarantee a
unique solution to the corresponding minimal
realization problem. The necessary and sufficient
condition hereto is the rank condition on the
submatrices H, and H, in Lemma 3. This crite-
rion is well known in the analysis of the minimal
partial realization property as the ‘(partial) realiz-
ability criterion’,

rank( H,, ) = rank( H,)
=rank(H,}=n with p, g>n. (8)

It will be assumed throughout the paper that this
partial realizability criterion is satisfied.

4. Singular value decomposition and the Hankel
structure

In this section, the siructural relations between
the SVD and the Hankel structure of rank defi-
cient Hankel matrices of finite dimensions are
explored. They will provide the necessary insights
that will lead fo the new results to be presented in
Section 5. The matrix (H H) is a (p—1DXxQ2q)
matrix constructed by concatenation of Hand H.

The singular value decomposition provides a
factorization of the Hankel matrix so that the
following property is easy to prove.

Corollary 3. Let H,,, be a rectangular p X g matrix.
Let the SVD of Hpq be H, =U-Z: V"' Then H,,

is ¢ Hankel matrix if and only if

Uzs-v=03y\ (9)

Proof. Choose for X and ¥ in Theorem 2: X = {J
and Y=JF-.3'"

Hence the structure of the Hankel matrix re-
veals itself in the SVD. From now on, the symbol
H,, will be used exclusively to denote a pPXaq
rectangular Hankel matrix. In Theorem 3, the
specific structure of rank deficient matrices will be
translated into a condition on the rank of some
concatenated matrices that are constructed from

the singular vectors.

Theorem 3. Let H,, be a pXq Hankel matrix of

rank nwith p > w and ¢ > n and SVD

H,= U - 2 . !

7 ¢,
rd PXH  RXn  aXy

and submatrices H, { first p—1 rows) H, (first
q 1 columns) satisfying

rank( H,,) = rank( H,) = rank( H, ) = .

Then

rank(U U)= rank(¥ ¥)=n, (10)

Proof. From Corollary 3

w o3 8 n]e
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Now define s—rank(U U). From the SVD of
H,, it follows that H, = U-2" V't and from the
rank condition rank(H,)=n, it follows that

rank(U) = n. Hence, sz #. Then

dim ker[((_] 5) . [é ﬁ%” =2n—3,
Now define rank(¥’ ¥)=t. From the SVD of H,_
it follows that H, = U-Z - ¥* and from the condi-
tion rank(H,)=n, it follows that rank(})=n.
Hence, { = n.

Since the column space of the matrix (Vv ¥y
belongs to the kernel of the matrix

w o5 sl

we have that 2n — s 2tz n sothatboth2n — s> n
(or s <n) and 5= n have to be satisfied. Hence
;= or rank(U U)=n.

The proof for rank{}/ V)= n is of course simi-
lar. O

An immediate consequence of Theorem 3 is the
special shift structure of the left and right singular
vectors of the Hankel matrices, which is well
known and explored in realization theory to ob-
tain a state space model from the Markov parame-
ters [7,10,13}:

Corollary 4. Let H,, be a p X q Hankel matrix of
rank # with p> nand g> nand SVD

H = U-3% V'

ra pXn n¥Xn nXg

Then U and V have the following structure (which
will be called shift structure);

11 v
w8 - T
U — Hl' SZ , V — U‘ ) TZ
pXn . gxXu .
wt- 8P Tt

where « and v are botl n X 1 vectors ani where §
and T are the unique solution of U-S=U, V- T=
7. Moreover, 2 -T= 82,

The matrices S and 7 will be called shift
matrices.

Proof. From Theorem 3 and the partial realization
condition (8) it follows that there must exist unigue

square n X n matrices § and T such thai
U-$S=U and V- T=V. (11)
S and T are given by

s=(u-u) " -uT

and

T=(vv) vV

If ' and o are the first rows of U and V, the
specific shift structure follows immediately from
(11).

From Corollary 3,

U-s-vt=U-2-¥V.

Hence

sovty(rer)=(ueu) Ut Uy

sothat 2-T=§-2. 0O

Corollary 4 specifies completely how to obtain
a state space realization of a set of Markov param-
eters of a discrete system if the partial realization
condition is satisfied. The eigenvalues of the shift
maltrices § and T are of course the controllable
and observable poles of the system. More details
can be found in [7,10,13]. An important remark is
the fact that the shift structure is a property of the
column space of the matrices U and ¥ and not of
the specific choice of basis in that space:

Lemma 4. Let U be a p X i marix (p > n) or rank
n with shift structure:

u'

w- S

U ={ u« 8
pXn B

ut.§e7!

satisfying rank(U) = n and let P be an n X n non-
singular matrix. Then the matrix (U< P) is also a
matrix with shift structure with a shift matrix that Is
similar fo §.

Proof. Since U+ 8§ = U, it follows that U S- P =
U- P and because P is nonsingular

(U-PY-(P~'-85-PY=(U-P).
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Hence the matrix {U- P) has shift structure with
shift matrix P~ -5 P which is similar to S and
hence has the same Jordan structure. O

The interpretation of Lemma 4 is straightfor-
ward: With the column space of a matrix I/ with
shift structure, one can associate a set of eigenval-
ues that only depend on that vector space and not
on the choice of basis in that space.

5. A parametrization of all Hankel matrices of
systems with the same set of controllable and ob-
servable poles

In this section, a parametrization is obtained of
alt rank deficient Hankel matrices of finite dimen-
sion which have the same set of minimal system
poles (or a subset of it}), The key observation that
will be exploited 1s Lemma 4 which states that the
minimal system poles depend only on the vecior
space spanned by the left and right singular vec-
tors of the rank deficient Hankel matrix. The
parametrization will be obtained by considering
all possible bases in those vector spaces and yet
still respecting the Hankel structure. In Corollary
4, it was shown that the singular vector matrices U/
and ¥ of rank deficient Hankel matrices have shift
structure, In Theorem 4, it will be shown how the
singular values of rank deficient Hankel matrix
are uniquely determined by the singular vectors,

Theorem 4. Let' H,,/"be a rectangular matrix of

rerk nowith n < p and n < g and with SVD

H,= U- 3.V,
BpXn aXn nxXyg
Py

Then H,, is a Hankel matrix if and only if the
singular values are the solution to the set of linear
equations

[VOU-VOU] - veed(Z) = 0.

Proof. The theorem follows immediately from
Corollary 3 and the properties of the Khatri—Rao
product. O

If the singular vectors of a matrix are known
and il that matrix is to be of Hankel structure, the
singular values are the solution to a set of linear
equations, of which the data are determined by

the components of the singular vectors. In the
next two theorems, it is investigated which Hankel
matrices could be constructed from two available
matrices U ( p X n) and ¥V (g X n) with shift struc-
ture and with shift matrices that have the same set
of minimal system poles. The motivation arises
from Lemma 4 and Theorem 4; If U and V
contain the left and right singular vectors of a
Hankel matrix H,,q, then the vector with singular
values vecd( Z) belongs to the kernel of the matrix
[V QU - ¥ OU] If now the orthonormal matrices
U and V are modified into U+ P and V- ) where
P and Q@ are unitary, then from Lemma 4 the
minimal system poles remain unchanged. In order
to obtain a Hankel matrix having singular vectors
U-P and V- @, according to Theorem 4 the ‘new’
singular values contained in the vector vecd( )
will have to satisfy

[(V-0)yo(u-P)- (¥ -0)o(U- P)]
veed(Xp,) =0

or

[Feu-¥reU] - [QOP) vecd(Z,,) =0
(property 3) or

[Veu-vel| ve(P -2,, 0)=0
(property 4). Hence, any vector vec(X) of the
kernel of the matrix [F@U— V® U} where X is

an nXn matrix with SVD X=2-% .Q_ will -
generale a Hankel matrix I/- X - V' with SVD

(U-P)-3,-(V-0,).

Hence, the kernel of the matrix [V U — Ve U]
plays a crucial role:

Theorem 5. Let U (pXn) and V (gxXn) be
orthonormal matrices with shift structure and with
shift matrices § and T defined from U+ S = U and
V-T=V such that J($)=J(T)=J. Then

COI‘[T/®Q—K® U] =H.

Proof. Let § and T have eigendecompositions
S=X-J-X"' and T=X,-J-X L.

Then with the properties of the Kronecker prod-
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uct, it follows that

[FeUu-rveU]
={(r-T)eu-ve(U-s)
=[¥FeoU] -[T®I,,~IH®S]

I

(reul-[(x,-7-x o1,
—ILe (X, -7 X

=[VeUl [Xx oX]

qJel,-1,0J]-[xex] .

The matrices [V @ U], [ X, ® X} are nonsingular. [t
is easily verified that
cor[J@1,—I,®J}=n. O

1t will now be proved that every vector vec( X'),
where X is an n X n matrix, in the kernel of the

matrix [V ® U~ ¥ ® U] can be associated with a
Hankel matrix.

Theorem 6. Let U (pxan, p>n) and V (g X n,
q = n) be orthonormal matrices with shift matrices
S and T such that J{(SY=J(T)=J. B

Let vec(X) be a vector in the kernel of [VOU
-VelUl
[?@Q—f@[_f] vee(X) =0
where X is an n X n matrix. Suppose rank(X)—r
and that X has SVD

X =P -3 0.

HxXa nxXr rXr  pwy

Then the matrix H=U- X- V" is a Hankel matrix
of rank r, of which the r minimal system poles are a
subset of the eigenvalues of J, with SVD

H=(U-P)-2-(V-0Q).

Proof. Using the properties of the Kronecker and
Khatri~Rao product,

veo(P-%-Q')=0 (SVDof X),
I?@Q—Z@ 5] (QOP)-vecd(Z) =0,
[(V-Q)ou-P)-(¥-0)O(U P)|

-veed(2) =0,

[(V-0)o(U- P)] - veed(2)

={(7-0)O(U- P)] - veed(),
(U-P)-2(Q"7)=(U-P)-2-(Q" 1').
From Theorem 2 it now follows that the matrix
H=(U-P)- Z-(V-Q)

is a Hankel matrix, Morecover, if rank(X)=r,
there exist a S, and a 7, such that

(U-P)-S,=(U-P)=(U-S)P

and

(¥-0) T=(V-@)=(¥-T) Q.

Let S, and 7, have the eigenvalue decompositions
S,= X, JX71 and T=X,J- X!

where J_ and J, are the Jordan form of §, and T,
Then

(P-X,)-J=S-(P-X,)
and
(Q-X)J=T(Q-X)

so that the diagonal elements of J, and J, are also
eigenvalues of § and T 1t then follows that J, = J,.
(]

Theorem 6 provides a parametrization of all
Hankel matrices with a given set of minimal sys-
tem poles. This set of minimal system poles de-
termines the column and row space of all Hankel
matrices with those minimal system poles. Once
such a basis for this columm and row space are
known in the form of two matrices I/ ( p X n) and
V (g > n), all vectors vee( X'} in the kernel of the
matrix [V ® U — V' ® U] result in 2 Hankel matrix

H=U-P.3.-Q" V'

where P-2- Q' is the SVD of X. Clearly, the
transformations U - U-P and V— V-0 corre-
spond to a change of basis in the colomn and row
space. Theorem 6-can also be interpreted in terms
of the zeros of the transfer function

G(z)=c' (z-I—A)""-b+d.

For single input, single output, the denumerator
of G{(z) only depends upon ecigenvalues of the
matrix A. The choices for other Hankel basis
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U—U-P and V= V- correspond to a change
of the vectors b, ¢ while the eigenvalues are fixed.
Hence, the basis transformations correspond to
assigning a new set of zeros to the transfer func-
tion G(z). When X is an s X n matrix such that

[Veu-veU] ve(X)=0,

then for rank{ X)=n, no pole-zero cancellations
have occurred. This is the generic situation. How-
ever, if rank{ X) = r < n, then the new assignment
of zeros caused »n — r pole—zero cancellations.

6. An example

Consider the 4 X 4 system matrix

09 1 0 0
0 69 0 ]
0 0 07T -06
0 0 0.6 0.7

A=

with a double eigenvalue 0.9 and a pair of com-
plex conjugated eigenvalues 0.7 &+ 0.6. In order to
parametrize a#l possible 8 X 6 Hankel matrices of
rank 4 (or less), having this set of minimal system
poles (or a subset of it), the following procedure
can be applied: Generate an 8 X 4 orthonormal
maltrix {7 and a 6 X 4 orthonormal matrix ¥, both
with shift structure, Hereto, choose a ‘generalor’

wi=[1 1 1 1]

{which has components along all eigenvectors of
A) and iterate to construct the 8 X 4 matrix

w!

wte A4
whed?
w47
wio 4?
w'- A°
wte A9
w' A7

W=

[ 1.0000  1.0000 1.0600 1.0000 |
0.9000  1.9000 13000 0.1000

0.8100  2.6100 0.9700 —0.7100
_ 107290 3.15%0 0.2536 —1.079%0
T 06561 35721 ~0.4703  ~0.9071

0.5905 38710 —08735 —0.3528

—0.8231 0.2771
—0.409% 0.6879

6.5314  4.0744
| 0.4783  4.1984

The desired orthonormal matrices /' and ¥ can
now easily be constructed by orthogonalising the
columns of (parts of) the matrix W (e.g. with a
QR factorization {5]). For V/, take the first six
rows of W and do a QR facterization. For U/, do
a QR factorization on the complete matrix W. U
and V are now orthonormal matrices and it fol-
lows from Lemma 4 that both I/ and V have the
desired shift structure,

Compute the 35 X 16 matrix [F@U— ¥ ® U].
It can be verified numerically that the rank of this
matrix is 12 (as is predicted by Theorem 5). Let a
basis of the kernei of this matrix be generated by
the columns of the 16 X 4 matrix V;:

[Veu-veUl -¥=0.

Then from Theorem 6 it follows that any linear
combination of the colummns of ¥, of the form
V, - x =vec(X), where x is an arbitrary 4 X 1 vec-
tor, generates a vector vec(X), such that X is a
4 X 4 matrix with the property that H,=U- X I
is a Hankel matrix. The kernel of the matrix
[VelU - V®eU] generates all Hankel matrices
with the prespecified set of minimal system poles
{or at least a subset of it, if pole—zero cancella-
tions occur). There is still some freedom left to
pick those Hankel matrices that besides the pre-
specified poles have some other desirable proper-
ties, e.g. prespecified zeros. This freedom will be
used in a subsequent publication to make the
Hankel matrix as orthogonal as possible.

7. Conclusions

In this paper, new algebraic results that estab-
lish the relation between the structure of rank
deficient Hankel matrices of finite dimensions and
their singular value decomposition have been de-
rived. There exists a close system theoretic connec-
tion between minimal system poles and certain
vector spaces generated by Hankel bases. Using
the properties of the Kronecker and Khatri-Rao
product, a parametrization was obtained of all
rank deficient Hankel matrices of finite dimen-
sions given a prespecified set of minimal system
poles. In a future paper, the problem of optimali-
sation of the Hankel matrix will be considered
with respect to orthogonality. it will be demon-
strated how the results of the present paper can be
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used in optimal design of systems: Starting from a
set of desired minimal system poles, controllabil-
ity and observability will be optimised using the
parametrization of Hanke! matrices from Theorem
6.
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