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Abstract

I[n this paper, a survey is presented of some recently ob-
tained results in the problem of identifying linear relations
from noisy data. Starting from a geometrically inspired def-
inition of noise and linear relations, the mathematical prob-
lem is formulated. Existing identification techniques, such
as (total) linear least squares, factor analysis and princi-
pal component analysis, are classified within the provided
framework. Some existing results describing special cases
are summarized. Finally, new geometrical concepts are de-
fined and used to characterize the global solution set : the
set of all linear relations that are compatible with the data
and the modelling assumptions consists of a collection of
convex polyhdral cones. This leads naturally to a funda-
mental uncertainty principle of mathematical modelling.

Keywords : Factor analysis, (total) linear least squares, maximal
corank, Wilson - Ledermann hound, Frisch scheme, comiunali-
ties.

1 Introduction

[dentification of mathematical models from noisy data is one of
the enduringly central problems in system theory and statistics
and has profound implications in all branches of applied sciences
such as electronics,mechanics, time series analysis, econometrics,
hiometrics, psychometrics... One of the hasic questions is : Can
nbserved values of a finite family of variables be ‘ezplained’ by some
underlying linear relations between the variables? Using elemen-
tary linear algebra, the answer is trivial when the data are noise-
free. The noisy problemn however is highly non-trivial hoth from
the conceptual as from the mathematical point of view. Noise may
mean one or all of many things: inaccuracy of the model, mea-
surement errors, unknown effects, non-linearities (when dealing
with linear models), any causal or random factors which cannot
be modelled, of which no further information is available, etc....
This indicates that the origin of the noise may not be clear: s it
due to our ignorance of infinitely precise data or equivalently, is
‘noise’ the manifestation of our lack of complete information which
is caused by the limited precision of our measurement equipment?
Or are the phenomena that we can observe in Nature so complex
that they cannot he modelled by something as simple as linear
relations, although good approximations might exist? The first
question corresponds to the classical view of descriptive modelling:
Nature operates consistently according to some universal laws and
ours is the task to discover these. However, as is indicated in [23],
the cornerstone of the philosophy of science is falsification rather
than deduction. Models and laws are postulated, hased on criteria
like simplicity, esthetic appeal or by parallels with other disci-
plines and applications. It is only later that one finds out that
they could also have been deduced from already existing knowl-
edge. Therefore, the following statement is fundamental in that it
really defines what is meant by noise (in any application !):

Noise = what is not explained by the model.

Hernce, once the class of models has heen fixed, at the same time,

the notion of noise is well defined. If it is the user’s desire to

model the phenomenon under study by linear relations that are to
be discovered in the data, one has inumediately :

Noise is absence of linear relations.

Remains the question : How to define linear relations ? First, ob-
serve that linearity is not really a question of fact nor of evaluation,
but a self-imposed limitation on the types of operations or devices
that are to he used. One of those tools that are to be chosen is the
metric. Many mathematicians believe that they have freedom in
the choice of a metric for their mathematical model. This is true
for pure mathematics (where the choice of norm can he dictated
by pure ‘intellectual’ motivations such as for instance solvability
of the problem) but it may no longer be true for the mathematical
modelling of real processes. In a lot of cases, there are physical
invariants that imply the use of a certain metric (as an example
consider the theory of special relativity with its indefinite metric).
Taking into account the necessary invariance principles that a met-
ric should satisfy, there are strong indications that for the purpose
studied in this paper - the identification of linear relations from
noisy data -, the ordinary Euclidean metric is appropriate [17] as
defined in the usual way: If z,y are real vectors with components
zi, yi then the inner product is the real number 2,4, +... + L
Two vectors are orthogonal if their inner product equals 0 and the
geometrical concept of an angle can be defined. Formally, one can
now state that :

Orthogonality = absence of linear relations.

When 2 vectors are not orthogonal, at least part of one can be
explained to be ‘proportional’ to the other. An intuitive repre-
sentation of a linear relation is provided in the following vector
scheme :
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The vector z is ‘linearly’ related to the vectors a and 6 via their
‘orthogonal’ projections z, and z, upon the vector z. Let us
now consider the problem of identifying linear relations between
measured data. Suppose n variables are measured over m time
instants. The measurements are aggregated in a m x n matrix
A. It is assumed that the number of measurements exceeds the
number of variables, m > n, so that the matrix A has more rows
than colunmns. This assumption of overdetermination is of course
necessary since otherwise the problem would be trivial. An ex-
isting linear relation would reveal itself via an n-vector z that
belongs to the kernel of the matrix A: Az = 0. The number of
independent linear relations is indicated by the algebraic rank r
of A. The corank of A is defined as n — rank(A). The corank
equals the number of linear relations hetween the variables. Now
when the data are really measurements on sonte multi-channel
phenomenon, generically there will be no linear relations hetween
the data : rank(4d) = n  or corank(A) = 0. A fundamental
assumption is that the noise corrupts the data in an additive way
(this is not only a matter of taste, hut also of simplicity). The



measured matrix A can then be written as: 4 = i + A, where
~ denotes the ohtained model of the data and - denotes the ol-
tained model of the noise. The noise variables cannot be linearly
related with each other. Because, if they were, they would satisly
linear relations, hence contradicting the very definition of noise as
absence of linear relations. Hence : A4 = diagonal. There can
also exist no linear relation hetween the noise and the exact data,
Atd = A4 = o
Gramumians as:

hence : Define the measured, exact and noise

D=4 D=A'4 £=.44
Ohviously, £ is positive definite and & is nonnegative definite. ¥ is
diagonal with nonnegative diagonal elemenents. The mathemat-
ical problem formulation of the identification of linear relations

reduces to :

The Frisch scheme :
Given a positive definite n x n matrix 3. Find all nonnegative
diagonal matrices T and all n-vectors z such that:

1. © = T - ¥ is nonnegative definite

2. corank(E) is maximal

3. Zr=0
The maximisation of the corank is essential: One is interested in
the marimum number of linear relations. These linear relations
are described by the vectors z. In fact, the maximisation of the
corank is crucial, as we will see furtheron, in order to make the
identification problem well defined. For several reasons, the ahove
problem is called the Frisch schemein honour of the 1969 Eco-
nomics Nobel prize winner Frisch [10]. Of course, the problem
looks very similar to what happens in statistics, where also con-
cepts such as uncorrelatedness and statistical orthogonality are
exploited to facilitate the identification problem. In fact, it was

. Wold who used the idea of regarding random variables as elements

of a metric space with the distance between two elements as the
variance of their difference. This geometric interpretation made it
natural to interprete least squares estimation as projection onto a
subspace. In the [ramework of stochastic processes as introduced
hy Kolmogorov [12], it is possible to split a process in a unique
deterministic process and one that can be written as linear combi-
nations (moving average ) of a white noise process, which itself is
a process with uncorrelated components. Both processes are un-
correlated. This is the so-called Wold decomposition and it may
be interesting to mention that Wold was influenced by the work of
Frisch [12]. There is indeed a hig similarity between the character-
istics of the Frisch scheme and the Wold decomposition. However,
the Frisch scheme provides a conceptual framework, hased upon
the Euclidean inner product, that takes explicitly into account the
double finiteness of the number of data ( finite number of sample
realizations and finite number of data in one realization). Hence,
no so-called statistical ‘sampling’ problems occur. Moreover, as
will be shown, this formalization leads in a straightforward way to
a quantification of what could be called the uncertainty principle
of mathematical modelling.

This paper is organised as follows: First, some classical identifi-
cation schemes will be discussed in terms of their properties with
respect to the Irisch scheme (section 2). Attention will be paid to
the characterization of both, all diagonal matrices T and all vec-
tors r that fulfill the requirements of the Frisch scheme (section
3). It will be discussed how the ‘volume’ of the polyhedral cones
that characterize the solutions, are measures of the incompatibility
of the data with the imposed linear static model. Moreover, the
polyhedral cones serve as a characterization of the fundamental
non-uniqueness of the solutions to the problem. In section 4, we
discuss a new geometrical framework in which the requirements
of the Frisch scheme are discussed one hy one. New geometrical
notions are introduced such as orthant and null invariance, It is
expected that this [ramework will Jead to a general solution of the
Frisch scheme. A major drawhack of the Frisch scheme will he
discussed in section 5. As a [unction of n, there is an upper hound
(the Wilson-Ledermann bound) on the generically achievable max-

imal corank of the problem, even when some other information as
for instance the singular values strongly suggest a higher corank.
This solves at the same time some important stability questions
concerning the Frisch scheme. Some conclusions can be found in
section 6.

2 Remarkable relations with classical iden-
tification schemes

In this section, we will analyse some ‘classical’ linear identification
schemes with respect to the requirements of the Frisch scheme. For
a unification theorem, in which it is shown that linear least squares
and total linear least squares are special cases of one and the sanle
identification approach, the reader is relerred to [8].

2.1 Linear least squares

The classical least squares approach applied to the available m x n
data matrix A (m > n) would proceed as follows:

¢ Choose a column a* of the matrix 4 and denote the remain-
ing m x (n - 1) matrix by Ay.

o Regress all remaining variables with respect to the chosen
one. This is achieved by the ¢lassical expression:

rrpse = (AL A) " Afax

where 2151 represents the linear relation obtained via this
least squares solution.

* Obviously, there are n such least squares solutions,

It is not so difficult to prove the following observation:
Theorem 1 Least squares solutions

The columns of the matriz S = T which is the inverse of the data
Gramian B, contain the n linear least squares solutions (each up to
a normalizing constant). Let s* be the k-th column of § with k-th
eIcmerE{ sk and Ty, the diagonal matriz with only I nonzero element
1/sf, 8 = diag(0,0,...,1/s44,0,..0). Then (T - £4)s* = 0 and
the matriz & — T, is nonnegative definite.

Proof : see [13][14][16]. o

The interpretation of this result is straightforward: In the least
squares scheme, the choice of the k-th column as regressor is equiv-
alent with the statement that only the measurements on the k-th
variable are noisy while the remaining measurements are noisefree.
The noise energy of the k-th channel is then proportional to 1/sk
where sﬁ is the (k, k)-th element of £~!. However, by no means
this identification scheme provides a well motivated choice for k
(unless it is known a priori that only the k-th colunn k is noisy ).
Moreover, if a choice has heen specified, the solution is unique.

2.2 The Total Linear Least Squares Solution

Let the real m x n matrix A contain measurements with m > n.
The task is to find linear relations among its columns. Generically,
the matrix A will be of full column rank : rank(A) = n . The
total linear least squares then proceeds by finding the matrix A
that is closest to A in Frobeniusnorm, such that A is rank defi-
cient. Remark that in the statistical conununity this solution is
often referred to as ‘orthogonal regression’. The answer to this
problem is given by a result of Eckart-Young [9] and consists of
computing the singular value decomposition of A4 and removing
the dyadic decomposition term corresponding to the smallest sin-
gular value (which will be unique generically). The unique linear
relation is then obtained as the right singular vector correspond-
ing to this smallest singular value (8] [11]. Observe that the term
which is removed from the dyadic decomposition in fact models the
noise: it is a rank one matrix, hence the noise model is very struc-
turec: There are n — 1 linear relations among the noise variables
! Hence, the total linear least squares scheme certainly violates
the requirements of the Frisch scheme. Moreover, the solution is
again (generically) unique,



2.3  The noise covariance matrix is the identity ma-

trix

The Frisch scheme has at least one solution. Simply compute the

siallest eigenvalue \, of & with its corresponding eigenvector v,,,

Take the noise covariance matrix & = Andy where I, is the n x n

identity matrix . Then, is is easy to prove that:

I. £ - ¥ is nonnegative definite

2. corank (X - © } = 1 (generically)

JAS -, =0

Remark that this scheme provides the same linear relation as in the
case of total least squares. The model of the noise however is now
wore realistic : the matrix © is not rankdeficient and all noise
‘energies’ (the diagonal elements of © ) are equal. The column
vectors of A and A are undetermined in the sense that there exists
infinitely many models for 4 and 4. Although the linear relation
is unique. at least the models for the ‘exact’ data and the noise
are not.

3 Characterizations of the maximal corank

In this section, we will first descibe conditions that are to be sat-
isfied for two extremes of the Frisch scheme: the maximal corank
I and the maximal corank n — 1. Also some tools that allow to
estimate intermediate cases are described (section 3.2). We also
give some insight in the characterization of the allowed diagonal
elements of the noise model matrix & (section 3.3).

3.1 Extreme maximal corank conditions.

3.1.1 Maximal corank n -1 : The Spearman case

Factor analysis, which is a classical data analytic investigation
tool. can he converted into the same problem formulation as the
Frisch scheme [1] [15] [22]. The older factor analysis literature
concentrated on studying conditions for the maximal corank of
(S-S} toheequal ton -1 , while (£ ~ £) remains nonnegative
definite. Matrices © possessing this property are called Spearman
matrices. A long story. starting from the heginning of this century,
is sununarized in :

Theorem 2 Spearman matrices
4 positive definite irreducible matriz

and only if, after sign changes of rows and corresponding columns,

is @ Spearman matriz if

all its elements 0, are positive and salisfy:

TikGjl = Oadir =0 Ouoji - giioj, <0 (1)
for all quadruples (i # j k1] # k, Lk £ 1)

Conditions | express the vanishing of the so-called tetrad differ-
enc |. Hence. if the data 4 are such that A'A is a Spearman

matrix, then the maximal corank of the Frisch scheme is n — 1:

There exists a diagonal matrix £ such that T — £ js nonnegative

definite and such that there are n — 1 linear independent linear
relations. Hence the underlying phenomenon is extremely simple

since it can be described by n—1 simultaneous, independent linear
relations.
3.1.2 The maximal corank=1 case

Having described one extreme, we now turn our attention to the
ather extreme which was proved by Koopmans and Reijersol (16]
[20] [21].

Theorem 3 The maximal corank=1

The mazimal corank of the Frisch scheme is 1 if and only if the
' is elementwise (sign-similar to ) a strictly positive
matrir, If ©71 is elementwise posilive, the solution set of vectors
that satisfy the requirements of the Frisch scheme, is the polyhedral
cone generated by the n least squares solutions.

matlrir ©°

Proof : For a proof using the celebrated Perron Frobeniustheo-
rei for nonnegative matrices see [13] [14] [15]. For a prool that
does not invoke this theorem . see [1] including also references to

other proofs. o

A symmetric matrix is sign-similar to an element wise positive one,
il by appropriate sign changes of rows and corresponding coluiuns
all elements can be made positive. It is an easy exercise to prove
that a symmetric matrix is sign-similar to an elementwise positive
matrix, if and only if all its column vectors belong to at most two
orthants [5]. This theorem covers hoth a quantitative and quali-
tative aspect of the uncertainty principle. Qualitatively, it states
that, even if there is maximally only one linear relation ‘hidden’
in the data, the solution is intrinsically non-unique. All vectors
that are nonnegative linear combinations of the least squares vec-
tors are candidates to describe the linear relations. The maximal
corank is 1 if and only if by appropriate sign changes, all least
squares solutions can be brought to the first orthant. However,
also quantitatively this result is very attractive: Experiments have
shown that the cone spanned by the least squares vectors shrinks
to a single point when the data tend towards the noise free case.
On the other hand, when more noise s artificially added (worse
signal to noise ratio), the polyhedral cone generated by the least
squares solution enlarges. Hence there is a direct relation between
the amount of noise on the data (which could be both model mis-
match and measurement inaccuracy) and the uncertainty in the
solution set, characterized by the ‘volume’ of the cone. If the noise
energy is increased,the least squares solutions reach orthant planes
and the situation changes. This is now described,

3.2 In between the extremes

The following theorem, proved by Kalman in 1982 [13] [14] , allows
to check whether the maximal corank is larger than one .

Theorem 4 When ©! is not sign-similar to an elementwise strictly
g 1
positive matriz, then the mazimal corank is larger than 1.

Proof : The proof, which is constructive, can be found in [13] [14)
]

Hence, it suffices to check if the columns of £-! belong to more
than two orthants. If so, then the maximal corank of the problem
is certainly larger than or equal to 2. The direct characterization
of the maximal corank of a matrix from its properties, is at this
moment still terra incognita . However, there exist some results,
as for Metzler matrices:

Definition 1 Metzler matrix
A matriz M with elements my; is a Metzler matriz if mg; > 0 for
all i # 5.

There is a close connection hetween Metzler matrices and the
Perron-Frobeniustheorem for nonnegative matrices [19] :

Lemma 1 Let M be a Metzler matriz . Then — M~ erists and is
a positive matriz if and only if M has all of its eigenvalues strictly
within the left half of the complex plane.

Proof : [19]

[m]

Hence , it is straightforward to prove the following corollary:

Corollary 1 If the matriz £ is such that — Y is (sign simalar to)
a Metzler matriz, then mazimal corank(S) = 1 .

This is the case if the columns of & belong to n different orthants.
The following theorem is due to Reiersol [20] and is a kind of
generalization of the inverse positiveness condition of the maximal
corank=1, as descirbed in theorem 3.

Theorem 5 The Reiersol tree procedure

Let 'H; denote all subsets of the set of n variables and let Sn,
denole the submatriz of the matriz % corresponding to the variables
in H;. If k is the mazimum order of any submatriz Sy, which is
inverse-positive elementwise (or sign-similar to it),
corank(T - £) < n - (k-1)

then marimal

Proof : [1] [21] 0



As an example | consider the matrix :

| 3 0 [

3 8 -1 31

E= 0 -1 4 31
-1 -3 3 6 1

1 1 1 13

Now verily that all 2x2 submatrices are (sign-similar to) an inverse
elementwise positive matrix. However, the atrix formed from
columns and rows 2, 4, 5 is inverse positive as well. None of all
possible 4 % 4 matrices is inverse positive (or sign-similar to it).
Hence maximal corank - 3!

3.3 Some results on the allowed diagonal elements

of ¥.

In [3] [6]. one finds the following result on the maximal allowable
amount of noise that can he present in one variable:

Theorem 6 The maximal noise theorem
Let the 1-th diagonal element of © be &;. Then:

0 = o; < det(Z)/det(E;)

where T, is the matrix oblained from T by deleting its i-th row and

column.

Proof: Follows directly from the requirments of the Frisch scheme
and a well known theorem on the determinant of a partitioned ma-
trix [3]. 8]

Remark that the maximum for &; is reached for the i-th linear
least squares solution, as in theorem 1. If s is the i-th element of

-1 then it is easy to prove that:

1/s! = det(Z)/det(Z;)

Also. a geometrical characterization is provided of the matrices ©
that are such that corank(S - £) = 1and £ - $is nonnegative
definite.

Theorem 7 The family of all the noise matrices & leading to a
corank [ solution of the Frisch scheme and which is parametrized
by the n diagonal elements &; of © is a continuous and conver hy-
persurface. Its intersection with any plane parallel to a coordinate
plane is an hyperboln concave toward the origin,

Proof : see [}]. o

4 Towards a general solution of the Frisch
scheme

In the previous section, a summary was given of some special cases
of the Frisch scheme. In this section, we summarize a new geomet-
rically inspired framework, of which the authors conjecture that
it will lead to the general solution of the Frisch scheme, since al-
ready a lot of promising results and insights have been obtained.
The geowmetrical tools that are developed are orthant invariance
and null invariance. It will be demonstrated that these are nec-
essary properties that have to he satisfied by any vector that is a
solution of the Frisch scheme. A nice thing is that the algorithms
needed to compute the vectors satisfying these properties, have
been developed recently (8] .

4.1 Orthant invariance

An orthant of the n dimensional vector space R™ will be charac-
terized by a diagonal matrix E with +1 and -1 along the diagonal

E = diag(=1). The nonnegative (first) orthant is denoted by
the n « n unit matrix /,. A vector x is said to belong to orthant
E: » 2 Eif the vector Ex belongs to the first orthant : Ex € I
A vector z £ E is orthant invariant for the matrix T if Sz € E.
It is reallv verified hy inspection that:

Theorem 8 Al solutions » of the
rariant,

Frisch seheme are orthant in-

Define the vector y = Ez. Il ¥ € E and r is orthant invariant.
also y € E and equivalently : Ey = (ESE){Ex) where now hoth
(£2y) and (E£r) are nonnegative vectors. T'his observation permits
to compute explicitly and characterize geometrically all orthant
invariant vectors of the matrix ¥ :

Theorem 9 In orthant E, the orthanl invariani veclors can be
obtained from the nonnegative solution of the set of linear equa-

tions:

( ESE 71,.)[‘;;]:0

Hence. the solution set is a convez polyhedral cone .

For algorithins and proofs, the reader is referred to [5] (6] [7] [8]).
Geometrically, the solution of the ahove problem is the intersection
of the kernel of the matrix [(ETE) (-1I,)] with the first orthant,
Hence one can expect that the "houndary® vectors {the vertices of
the polyhedral cones), will contain zero components. The behavior
of these zero components is now investigated.

4.2  Null invariance

A second straightforward observation will appear to be crucial
in the computation of the maximal corank. Suppose that the i-
th component z; of a solution vector z is zero : z; = 0. This
implies that also the i-th component of the product Sz will he
0 will be said to
be null invariant for component i with respect to the matrix & if
from z; = 0 it follows that (Zz); = 0. Then we have:

zero. The vector z with zero component o

Theorem 10 Null Invariance

All solution vectors of the Frisch scheme with a zero component
are null invariant for that component with respect to the matriz
.

So far, two necessary properties have been derived: any potential
solution vector has to be orthant and null invariant. The impor-
tant role of zeros in the solution vectors is also highlighted by the
next observation.

4.3 Recognition of the maximal corank

Temporarily, we return to the problem in terins of the matrix A
instead of the ‘covariance-Granunian® formulation, If the exact
matrix A is of rank r, then there exist n — r linear independent
solution vectors which will be denoted by 2y...2,_.. Define the
n X (n—r)matrix X = [21...2,_, ], then ohviously, AX =0 .

Lemma 2 Lel A be a m x n matriz (m > n), rank(A)=r. Let X
be anx (n—r) matriz, rank(X ) = n— r such that AX = 0. Itis
always possible to find a non-singular (n=r) % (n—r) matriz P
such that each column of the matriz X P contains n — r — 1 zeros.

This property implies that, if the maximal corank of the identifi-
cation scheme is n — =, then there will always exist n — r linearly
independent solution vectors each with n — r — 1 zeros. These
vectors are of course to be found among the orthant null invariant
vectors of 5.

4.4 Allowed vectors.

The properties of orthant and null invariance are necessary for a
solution vector hut not yet sufficient. In other words, there exist
orthant null invariant vectors that are no solution to the problem,
simply because the corresponding diagonal matrix ¥ is such that
the difference T ~ © is not nonnegative definite. The diagonal
matrix corresponding to an orthant null invariant vector z can he
computed by the following scheme: If z is orthant null invariant

with components z;, then:
o if2; = 0, set d; = 0 (i-th diagonal element of £).
o if r; # 0, compute y = Bz, set &; = y,/z;.

An orthant null invariant vector x will be called allowed if the

difference matrix £ — T is nonnegative definite. While this last re-
quirement of allowedness has not heen solved yet in full generality,



it hias heen solved Tor some ‘special” cases (corank | Tor instance).
The geometrical framework however permits to find some more
allowed vectors, lHereto, we confine now the attention Lo some

remarkable properties satisfied by the least squares vectors.

About vectors that are convex combinations of
least squares vectors

4.5

In theorem 1 it was shown that the columns of the inverse matrix
-1 are the linear least squares solutions to the problem. Theo-
rem } states that whenever the inverse matrix £7! is (sign-similar
to) an elementwise positive matrix, all linear least squares vectors
can he brought by appropriate sign changes into one orthant. The
solution set of vectors that satisfy the Frisch scheme conditions is
then the convex polyhedral cone generated by the least squares
vectors. I 7! is not (sign-similar to) an inverse-positive elemen-
twise matrix however, the least squares solutions can never be
‘moved” into one orthant. If now two least squares vectors helong
to two different orthants, the line segment that connects these two
vectors must have an intersection with at least one ‘orthant’ plane.
The corresponding intersection vector hence will have at least one
zero. The following theorem states the conditions for such a vector
to he allowed [5].

Theorem 11 Let E be a diagonal sign matriz. Lel s and s/ be
the i-th and j-th column of the matriz ES™YE. Let 2 be a convex

combination of s' and s/, such that rj, = 0 where :

r = as' sp— S

If r s orthant null invariant, then v is allowed if and only if

+(l-a)s! with a= .si/(

,e-’) = g:‘ - 0.
Proof : see [5] u]

This theorem gives at least heuristically the reason of the im-
portance of the inverse positiveness of the matrix £. If £-! s
elementwise positive (or sign-similar with an inverse positive ma-
trix). then it is impossible to find a convex combination z of two
least square vectors that is allowed. Hence, there does not exist
an allowed vector with at least one zero. Lemma 1 then suggests
rthat the maximal corank is 1, which as theorem 3 demonstrates is
indeed the case. A similar result has been derived in [5] .

4.6 The global solution set of the identification

The solution set consists of those vectors z that are orthant null
invariant and allowed with respect to the matrix . As a special
case. the linear least squares solutions as derived in section 2.1.,
belong to this class of vectors. They play a prominent role in the
maximal corank = | case. However, they play also a fundamental
role in the description of the corank higher than 1 solution set. It
is conjectured by the authors that in this case, the general soution
set is a collection of polyhedral convex cones. Their vertices are the
least squares solutions and allowed orthant null invariant vectors
with zero components. The maximal corank is n — » if there exist
maximally n — » linear independent allowed orthant null invariant
vectors each with n — r — 1 zeros. In order to prove completely
and rigorously this statement, important partial results have been
obtained [5] [6] [7]. Recently, the authors have proved that the set
of allowed orthant null invariant vectors is closed and hounded.
This supports the strategy of first computing orthant invariant
vectors, restricting this set to orthant null invariant vectors and
then in a third stage. throwing away the non-allowed vectors.

4.7 Example

As an example of the newly defined geometrical concepts. consider
the data matrix T:

- o
i

L
LI )

2

8

It can he checked that the inverse matrix ! is not sign similar
to an elementwise positive matrix, hence the maximal corank is 2,

One can find a geometrical impression of the allowed solution set

infigure Lo There are 6 polyhedral convex cones that are generated
by linear least squares vectors and allowed orthant null invariant
vectors with one zero, which are each a convex combination of wo
least squares vectors {only 3 of them are depicted in figure 1, the
other three lie in the opposite orthants). The representation of
the solution in terms of the diagonal elements o

in figure 2.

2 can he found

Figure 1: Polyhedral salutlon cones of the Frisch Scheme for 3
variables and corank=2

M
\ﬁlll\}‘. }l\\ i “‘

Figure 2: The set of allowed diagonal elements of the noise covari-
ance matrix.

5 The genericity of the solution and its
stability

As must be ohvious by now, the solution of the Frisch scheme
is nothing else than trying to reduce the rank of © as much as
possible by only changing its diagonal entries while maintaining

nonnegative definiteness. Recently [22], Shapiro has proved that:

Theorem 12 With probability one, the rank of & — £
reduced below the so-called Wilson-Ledermann bound :

cannof be

@(n)=[(2n+1) - V8n + 1]/2

Proof : A complete and general proof can he found in [22]. D

A proof by Baratchart and Kalman, using Thom’s topological
transversality theorem has heen announced [15]. For a derivation
of the Wilson-Ledermann formula, see [15] [18 ] [21] [24]. Hence,

@(n) can be considered as almost surely a lower bound on the re-
duced rank of E. The sel of symmetric n x n matrices for which
the rank can be reduced below the Wilson-Ledermann hound d(n)
is thin, or to be nore specific, it has Lebesgue measure zero. Now,
with respect to the modelling purposes of the Frisch scheme, this
observation has important consequences. Suppose that one per-
forms the following simulation experiment. Start from an exact
mxn, (m > n)matrix A of rank r and add some randoimn noise to
it in the form of a noise matrix A so that the elementwise signal-
to-noise ratio is really very high. Then generically, one will not
he able to recover the exact rank r from the measurement matrix
Y= A'A, where A =
bound ¢(n).

A+ A, if ris smaller than the Ledermann



n 2 3 45 6 7 8 9 10 11 12
o(n) 1 1 : 345 6 6 7 8

[

Hence. for instance [or the case n = 10. the maximal coranlk that is

generically obtainable, is 4. However, especially when the signal
to noise ratio is high, some other measures such as for instance
the singular values of A (or the eigenvalues of ©), may indicate
that the matrix is very close (in Frobeniusnorm) to one of rank r.
This genericity result obviously represents a severe requirement for
the Frisch scheme to he useful in realistic identification problems.
One has to have some a priori knowledge of the expected (co-
Jrank, in order to chose an appropriate number of measurement
channels. Because, if one chooses the number of measurement
channels n too high, also the Ledermann bound may become too
high so that a low rank can not be achieved generically. It also
inunediately follows that a reduced rank less than the Ledermann
bound, cannot be stable in the sense that, when the elenients of
are slightly changed, the matrix © can generically not be adjusted
so that the reduced rank is preserved. Stability is usually expected
for arank r > ¢(n) because, if ¥ is a matrix for which there exists a
matrix © such that £ — T satisfies the Frisch scheme requirements
and is of rank r > ¢(n), then the whole neighbourhood of ©
is reducible to rank r [22]. The Wilson-Ledermann bound arose
in the works of Wilson [24] and Ledermann [18]. It was derived
by simply counting the number of unknown parameters and the
number of equations for a fixed corank, while stating that ‘any
scientific theory must be overdetermined by the data’ [18]. In
order to obtain real solutions for the Frisch scheme, the corank q
should satisfy the inequality :

din,g)=n-gq(g+1)/220

When d(n,q) = 0, there is a zero dimension solution (i.e. only
distinct points) for the so-called communalities (the diagonal ele-
ments d; of £). For example, d(3,2) = 0, hence there is a unique
solution, which in this case, consists of one point in the parame-
terspace of the &; (as is the case in the example of section 4.7).
Wilson [24] gives an example d(6,3) = 0, where there are 2 distinct
numerical solutions.

6 Conclusions

In this paper, a conceptually new approach for the identification
of linear relations from noisy data was proposed. A rigorous and
consistent definition of noise and linear relations resulted in a fun-
damental uncertainty principle of mathematical modelling. The
uncertainty inherent in the initial data reveals itself in a geomet-
rical way in the convex polyhedral cones that characterize the
uncertainty of the solution set. Future work will concentrate on
a further investigation of the conditions of allowedness within the
geometrical framework of section 4. Although the diagonality of
the noise matrix T is required for the Frisch scheme, there ex-
ist applications in the domain of identification under feedback, in
which one can allow noise matrices & with non-zero off-diagonal
elements. This will be the subject of future research.
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