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AN. ADAPTIVE SINGULAR VALUE DECOMPOSITION ALGORITHM BASED ON
GENERALIZED CHEBYSHEV RECURSIONS

8. De Moor* and J. Vandewalle
{ESAT, Electrical Engineering Department,
Katholieke Universiteit Leuven, Belgium)

ABSTRACT

In this paper, two algorithms for singular value
decomposition are studied in a unifying framework: the power
method and the Chebyshev iteration method.

They allow to compute adaptively the partial SvD (dominant,
smallest or intermediate triplets) of matrices that are slowly
time varying and perturbed by noise. The only routines used
are matrix vector multiplication and orthogonalization
procedures. Some original convergence expressions are derived
and convergence rates of both methods are compared. Some
backward error theorems permit the control of the convergence level
with respect to the noise level.

1. INTRODUCIION: SCOPE OF THE PAPER

Over the past few years, the singular value decomposition of
matrices has become a very reliable and numerically robust tool
in the analysis and design of algorithms in numerical linear
algebra and is used, as an efficient matrix decomposition
method, in the solution of many numerical problems (linear
equations, identification and realization, model reduction,
algorithm analysis, image and signal processing, ...).

In this paper the power method for the singular value
decomposition is studied followed by a modification of this
classical technique, which is based upon the properties of
Chebyshev polynomials. It will be demonstrated that this
algorithm is very well suited for a special class of
applications, where other algorithms are likely to perform
less efficiently, A geometric and numerical convergence
analysis of both power and Chebyshev method will be presented

* Sponsored by the IWONL.




608 DE MOOR AND VANDEWALLE

in a unifying approach, since it will be demonstrated that

the Chebyshev method is nothing else than the power methed,
applied to an extended matrix. This leads to completely
similar convergence expressions for both methods. Furthermore,
some attention will be paid to a backward error analysis based
upon the Rayleigh quotient. This will permit the estimation of
the necessary convergence level of the approximating vector in
the iteration.

Finally, it should be mentioned that the scope of this
paper is not to provide a general, complete algorithm for the
SVD.

This paper only summarizes some simple but original results
and some new viewpoints on rather classical techniques,

Also in [ pe Moor, 1984] some similar results are obtained,
and demonstrated in more detail, but only for the power method.

2. THE SINGULAR VALUE DECOMPOSITION

In this section, the main theoretic and well known results
on the singular value decomposition are summarized for
notational convenience. Also, some historical background is
provided together with an overview of existing algorithms,
Finally, we summarize the main specifications for the adaptive
SVD strategy to be developed here.

2.1 The Autonne-Eckart-Younqg theorem (restricted to real
matrices)

Every real rectangular mxn matrix A can be decomposed as

a=u . © . vt

MmN  mxn mxn mxn
t t t
vhere U & V are orthogonal U .U = Im = U.U and V .V = In = V.V

and I is diagonal rectangular: E = diag (ol, g e Ur' O, ... O}

2‘
20,02 ... 02 o > 0 and r = algebraic

where by convention Ol 2 9,

rank of A.

The columns ui(vi) of B {V) are the left (right) singular
vectors and the real positive numbers Ui are the singular

values,
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From the theorem it follows immediately that:

1. Every matrix A can be written as a direct sum of r rank one
matrices (dyadic decomposition)

T
A = ¥k u .o . v,

. i i i
XTI i=1 *

t
2. The singular values squared are the eigenvalues of A.A  and

t 2

t t t t
(A .A) because A,A = U.Z . % . U and hence {A.A ). ui = Gi .ui.

These facts will be used in the development of the Chebyshev
algorithm. Of course, there are many more extremely interesting
properties of the SVD, that can be found in excellent textbooks
e.qg. [ Golub (1984), Hansen (1985) ).

2.2 Algorithms for the SvD

Of course, it is straight forward to compute the SVD of A
: t t
via the eigendecomposition of A.A or A .A. However, the
t
explicit computation of A,A & At.n introduces numerical errors
that halve the numerical precision achievable with this
technique, compared to operating with the matrix A itself.
Especially, the small singular wvalues are sensitive to the
implicit squaring (Klema & Laub, 1978).

One of the most reliable and efficient algorithms for the
SVD of an arbitrary matrix is of course that of Golub (1965) .
It uses orthonormal transformations to bidiagonalize the matrix,
whereafter the QR iteration is used to compute the singular
values.

However, this algorithm is very costly with respect to memory

and computational requirements {0(n3)) and since it operates

on the matrix entries itself, it deletes completely a possible
structure of the matrix (Hankel, Toeplitz, Sparse...). However,
no adaptive version has been developed where a priori
information can be used {for instance SVD of a previous time
step) .

These drawbacks are not shared by the Lanczos algorithm,
which was studied extensively in [ Paige (1972)] and is nowadays
considered as a very promising algorithm for large, structured
and preferable sparse eigenvalue problems,
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Ancther class of algorithms is the Jacobi methods, an
approach that will probably lead to parallel computerx
implementation [ Hari, 1984]. 1In this paper we give some
promising results for another algorithm that may possibly
perform better in a number of applications, that are
characterized by the following specifications.

2.3 Specifications
1 Partial SVD

In many applications, only few singular values of the
singular spectrum are needed. Let us mention some examples:

~¥n the solution of overdetermined sets of linear eguations,
corrupted by white noise, the solution vector is given by the
right singular vector, corresponding to the smallest singular
value (De Moor, 1985 b}. In Pisarenko's line spectrum
estimation method, the minimal eigenvector of the symmetric
covariance matrix is needed (Furhmann, 1984).

-~In linear system theory, a minimal realization is obtained
via the SVD of a block Rankel matrix. Here only some few
dominant triplets are needed, (Kung, Zeiger Mc Ewen)
similarly in image compression applications and algebraic
image restoration technigues (Shlien, 1982},

~In order to extract a fetal ECG, noisy measurements are
projected on line onto a subspace spanned by an intermediate
singular vector of the measurement matrix, that can be shown to
correspond to the fetal heart, where the dominant singular
values correspond to the mother heart (Vanderschoot, 1983).
Other applications where intermediate eigen-and singularvalues
are needed are mentioned in Jensen {1972). 1In all those
examples, only a partial SVD is needed.

2 Large and/or structured matrices

There are a lot of applications where the matrix dimensions
are large (say a few hundred) and the matrix itself can be
highly structured ({block)Hankel, - Toeplitz, ...). To avoid
excessive memory and computation requirements, one should not
operate on the matrix entries itself, as the Golub algorithm
does, hence deleting the possible structure.

For those cases, it is much more convenient to access the
data indirectly, via a matrix vector multiplication subroutine,
which does not alter the matrix entries.
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This matrix-vector access concept will also be exploited in
the following specification.
3 Adaptive computation of SVD
Two types of time varying sequences of matrices are possible:

-adding a new column or row and omitting one (for instance,
when new data become available and old data are to be
neglected).

-Another possibility is time variance element-wise when all
elements change slowly in each timestep.

For those cases the SVD's on two subseguent timesteps are
related and hence, the 5VD on timestep T could be used as
initfial guess for the SVD on T + 1 in an iterative algorithm.

The algorithm that will be described here is perfectly well
suited for this, since it uses a matrix vector subroutine and
since it is iterative. Golub's algorithm makes no use of an
a priori available first initial gquess,

4 Convergence level control

Measured data are always corrupted by noise. Also the matrix
singular value decomposition is perturbed by the noise although
the singular values are themselves perfectly well conditioned
{(Golub, 1983). But, since the data are noisy, a full 7 or 14
{or more) digit accuracy is of no use and in most cases only a
limited number of accurate digits will suffice, especially ~
when only few singular vectors are to be computed. In this
paper, some original results are obtained that permit one to
control the level of convergence. Together with the backward
error analysis, this is a powerful tool in the analysis of the
gsvp of noisy matrices.

3. THE CLASSICAL POWER METHOD

Because the Chebyshev algorithm is related to the power
method {in Wilkinson it is considered as an acceleration of the
power method}, we first present briefly some results on the
power method for the SVD. iore details can be found in
[ De Moor, 1985 al. )

3.1 Algorithm

Suppose already p-1 singular triplets have been computed :
(ui, O vi), i=1, {(p-1}
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k k .
let ep . 5 . fp be the k-th iteration approximation for
0 .
u, ¢, v ;ilet e be an initial guess for u_, then step X in
p 14 P P
the iteration for the triplet is:

step k

1. Oxthonormalize epknl with respect to (ul ‘e up_l) so that

|I:e;_1t| = 1 (beflation step)}
2. Compute K " k
£ =A .e
p P
k t k
= A .
2% - late |
fR_gkp K
P P P

3. Test for convergence |prk - fpk—l‘! < TOL
If so, convergence in triplet p

If not, go to 4

k k
4. C© t = A. £
ompute 5 fp / |la b i

5. Set k = k+1, go to 1.

The properties of this simple iteration scheme and possible
refinements are extensively studied in De Moor (1983).
(Omission of normalization, orthogonalization, acceleration
algorithm, optimal initial guesses, deflation techniques, ...).

Before proving the convergence of the iteration scheme, we
first need the following
Definition: The internal coordinates of an iteration vectoxr
epk(fpk) are the coordinates of epk(fpk) in the left (right)

singular base, given by Ut.epk(vt.fpk).
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Convergence
3.2.1 Infinite precision arithmetic

Theorem: If epo is not orthogonal to up then

Yim e k: u , lim f k= v , lim s k =g .
Proof: Suppose in the algorithm, each orthogonalization

and normalization step is omitted, then

k times A.At
t t t
and AA = U.(E.Et)U where U .U = 1

so that (Utepk) = (z.Hk, (Ut.epo)

Here, Utepk and Ut.epo are the internal coordinates
k
of e and e 0.
P P

0
Since e is orthonormalized to (u r oes. 1 }, the
p 1 p-1

internal coordinates have the form

<
[
i1

t
b (G, ..., 0, gp, gp+l' ‘e gn)

Eod k 2k 2k t
u .eP (0, ..., o, (?p) gp'(;p+l) gp+1 ved)

and after normalizing and taking the limit and with

the generic assumption that ¢ > g > .. >0
g ssumption P ptl m
we have for the i-th component
lim 0_2kg,
k—> @ S =8,
ip

/\/Odk 2, &3
r % ptt pan T oo

where 6ip is the Kronecker delta.
Hence r1im Ut.e k
k— = P

t k .
[o%e X1 !
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but these are nothing else than the internal
coordinates of u .

p
The same technique can be used in proving the

k
convergence of f k to v and s to ¢_.
P P P P

3.2.1 Finite precision arithmetic
Finite precision arithmetic is always characterized by the
so called machine precision € = sup {e]fF11 + &) = 1} where

£1{.) denotes the floating point operator (Wilkinson 1965).
The effect of finite machine precision on the addition of two

b b
real numbers a,b can be seen from (ath) = a{l + g}. If gv< Em'

b
then f1 {1 + ;):l and fl{a+b) = a. Hence, if two numbers a and

b differ more than {~log. € } decimal digits, addition has no
10 m
effect.

This finite precision causes the internal coordinates of
4] k

t
be of . = ' .
ep to of the form fl{U ep } (el € ' Ep—l' qp,

gp+l' e qm) where the €, are of the order of magnitude of €

Now, if we suppose that the orthogonalization keeps the
first p-1 internal cooxdinates small (%em), then it is not

difficult to see that numerically, gecmetric convergence occurs
when the p-th internal ccordinate dominates all others by more
than | -log Em] decimal digits. Since for a "good™ initial
guess for the p-th left singular vector up, the internal
coordinates satisfy gp > gp+l > gi ; 1 = p+2,m convergence

occurs if

5 2 I
p %
1ody6 . & tog) 68
' ptl gp+ll
~ g,
or after - log10 ﬂm - loglo -
igp+l’
k = - —
4]
21 b
°90 .
ptl
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matrix vector multiplications with A.At. under the assumption
that the First (p-1)} are kept to machine precision level with
orthogonalization. The derived formula is of course very
interesting since it shows clearly the three different effects
that influence the number of iterations.

1.

G

loglo _E_EL,, the larger the gap between the computed
p+l
value ¢ and the subsequent cne ¢ , the faster the
P ptl
convergence. For clustered singular values, Gp Gp+l L

convergence will be very slow, For those cases of slow
convergence, acceleration algorithms have been developed
and described in (De Moor, 1983}).

1Oglo(gp/gp+l) : the better the guality of the initial
guess, the smaller the number of iterations. For a very

good initial vector, the internal coordinates of epo satisfy
>> .
gp gp+l

("10910 em) : This quantity measures the number of desired

correct digits in the iteration vector. Hence if for
instance only t correct digits are necessary, one puts

-t
—loglolo = £ instead of (-log em), which is equivalent to

a full machine precision result.

Hence, the numerator [ -log t -log (qpﬂgp+l)] measures the
number of digits that have to be modified in order to obtain
the singular vector up to the desired precision t = - 1og1010_
decimal digits.
g
It is important to mention that the factors log gE:% and
o

P
Lo
g5

p+l

can be estimated dynamically from the convergence

pattern {De Moor, 1983}.

Using this numerical analysis in internal coordinates, not
only the number of iterations for t digit precision can be
estimated during the iteration. In [De Moor, 1984 ], one can
find results on the determination of the optimal moment for
fixing the initial guess for the next triplet and on the
estimation of the critical deflation-orthogonalisation
frequency.
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4. THE CHEBYSHEV ALGORITHM
4.1 The Chebyshev polynomials

Orthogonal polynomials in general, and Chebyshev polynomials
in particular, play an important role in numerical linear
algebra (Stiefel (1955), Fox (1968}, Rivlin (1976}, ... ).

The application of Chebyshev polynomials in the eigenvalue
problem is studied for the symmetric case in Parlett (1980),
Stewart (1969) and for the non symmetric case in Wilkinson
(1965) , Saad (1982, 1984) and Manteuffel {(1977). These
references show that the idea of using Chebyshev polynomials
in order to accelerate iterative eigenvalue algorithms is
certainly not new.

Chebyshev polynomials belong to the class of polynomials
that are orthogonal with respect to a given density function
{stiefel, 1955). They can be defined in several ways {(Rivlin,
1976) but we only need here some important, well known
properties,

4.1.1 Recurrence relation

All orthogonal polynomials satisfy a three term recurrence
relation. For the Chebyshev polynomials, this becomes

To(x) = 1

Tl(x) = x

Thtl (x) = 2% (x) -~ T (%)
X—an n_lx

4.1.2 Behaviour of the Chebyshev polynomials

An important property is ¥n, x€[-1,11 : ]Tn(x) 1 €1
x ¢ [-1,11 : l'rn(x) | > 1

This follows of course from the definition

Tn(x) cos {n Bgcos x), } x | g1

Tn(x) cosh (n Bgcosh x), | X i z 1

This means that in [-1,1 }, the Chebyshev polyncmials show
an equiripple oscillation with turning points and zeros
symmetrically disposed about x=0.
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For x ¢ [ -1,L ], the behaviour is characterized by

[t 0 12 L el

n+l

It (x +8x) | > | T ) |, (8 x0)
n n

and by the following original theorem
Theorem

For dl > do > 1 the Chebyshev polynomials satisfy

Tn-r—l (dl) - Tn+l(d0)

Tn(dl) - Tn(do)

Proof

Can be easily proved by induction.

The following theorem is extremely important for the 5VD
algorithm that will be developed.

The proof can be found in Rivlin (1976).

Theorem

The Chebyshev polynomial 2;—n.Tn(s) is always the largest

possible polynomial of degree n with leading coefficient
1, outside [ -1,1] . For every pn(x), polynomial of degree

n with leading coeff. 1 and if M = max |pn(x)], x [ ~1,1},
then for |y| > 1

l-~n
lp, | & .27 (0]

It will turn out further on that this theorem shows that
the Chebyshev algorithm is the best possible strategy.

4.1.3 Asymptotic behaviour for large n
For large n, the following expressions hold (Parlett, 1980)

1
T (1 + 2e)% G (142/¢ + 2¢)" for 0 ¢ € £ 0.1

mLe(szE) for n /e > 1
2
It is this rapid growth of Tn(l+2.e) for small £ that makes

the Chebyshev polynomials attractive for computation of the SVD.
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4,2 The Chebyshev algorithm
4.2.1 Computation of the dominant triplet

Suppose one wants to compute the dominant triplet
{tu., 0., v.}) of A (m<n) with o {(ay > 1L and O < o, {A) < 1
1 1 1 1 i

i=2, m and the 5VD of A = U.E.Vt.

. k t
Let © be an initial guess for u, and define e = Tk(A.A ).e o

°1 3
Since polynomials are analytic functions one has

ko Tk(E.Et).(Ut.e %

€ t t t
Tk(A.A ) = U.Tk(Z.E y.0 and U .el 1

t k £
(U ey } and (U elo) are the internal coordinates of the k-th

. k Cs
iteration vector el and the initial guess el

t O

Let U el = (gl,gz,...,gm) then
t k 2 2 2

U e = (Tk(cl )gl, Tk(02 }g2"”'Tk(cm )gm)

RBecause of the conditions on the singular values of A and
the properties of the Chebyshev polynomials, one has

2 2
Iy 0,0 1> Imee ] >

lTk(Gizll 1 i=2,m

Hence, the first internal coordinate grows for increasing
k while all other ccordinates are bounded by 1.

In the next section the convergence will be proved
analytically but first, the vector iteration scheme is

deduced.

By the recurrence relation of the Chebyshev polynomials

t t t t
7, (A%) = 2T (AR =T, o (AR

so that

k t k
e, = 2 A.(A ey ) - e,

. 1 t 0
with el = A. (A .el }

this is the fundamental iteration scheme of the SVD Chebyshev
iteration method.
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4.2.2 Convergence

Under the assumption Gl(A} > 1 and O < oi(A) <1, i=2,m

numerical convergence of t={-log €} digits will be reached if
the first internal coordinate dominates the other by t
decimal digits.

Hence, numerical convergence occurs if

2
!T(U)gf
log A—fE——l————%~ = - log ¢
Tax ]Tk(ui }gif
i=2,m

Since lTk(oiz)gii < 1, i=2,m this becomes for the worst case
2
log l’l‘k(ol )|

This eguation determines the number of iterations k

{multiplications with A.At) necessary for numerical
convergence of t=-loge{decimal digits). Of course, cl is

unknown, hence Tk (012), but the number of multiplications
can be estimated by considering the asymptotic convergence
behaviour as follows:

In iteration step k, the number of correct decimal digits

. 2
is log [Tk(cl ).gl/'max gi[.
i=2,m

In iteration step k+l, this becomes log [Tk+l(012)|.g1/ max gif
i=2,m

Hence, from k to k+l the gain in number of correct digits is

2 2 M1 (012) [
log ITk+l(0l )f— logi'l‘k(ol )[ = loglmk—%—i——T—u
Tk (dl H

For “large" k, we now prove the following

Theorem
T {a)
£ d»> 1, then 1im X _ 44 /4% -1 -1

Kva T, (@)
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Proof
From Tk+l (dQ)y = 2di(d) - Tk_l(d) it follows that
Trar T @
=24 -
Tk () Tk (a)

-1
T
kil (a) K (@}
L= lim = lim
T, (d)
— —> m T
k k k kel (d)
1 2 : .
and hence I, = 2d - E-or L” - 2dL + 1 =0 with solutions

2
L=da+ /-1

But since for d > 1, @ | > |Tk(d}! also L > 1 and

L
/.2
hence L = @ + ¥d - 1 is the only acceptable solution.
t
From this theorem, it follows that for each iteration with A.A ,

/ 4
log (012 + Yo, - 1) decimal digits converge.

From section 3.2, it then follows that the number of matrix

multiplications with AAt is approximated by

- log £ - log (gl/max gi)
i=2,m

2 4
log { 9y + ng - 1)

The expression in the numerator is asymptotically correct.
One can show numerically that it is an overestimation of
the true value

which however, converges rather fast to the correct limit.
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The interpretation of the convergence expression is cuite
similar to the case of the power method. Only the

. . 2 4
numerator is changed into the expression (log (ol + ng -1},

which is the pumber of left multiplications with A.At
{Chebyshev iteration) per decimal digit of convergence. Asg
we shall derive further on, this factor can be estimated
from the convergence pattern. To conclude this section,
let us mention that some similar expression of the form

2
d+ %i -1 in the convergence behaviour can be found in a very
interestinq paper on Chebyshev iteration in Saad (1984),

4.2.3 Spectrum transformation

Till now, we only considered the case where dl(A) > 1,
0 < Ui(A) <1, 1 =2,mand proved that in this case, the

algorithm converges to the dominant triplet. In order to
compute the dominant, smallest or some intermediate triplets,
of a general matrix, some more information is needed in the
form of upper~ and lower bounds on the desired singular
value(s).

4.2.3.1 Dpominant triplet,

2

Suppose one knows real numbers a and b such that 022 £ acg 0l

and 0 ¢ b g o 2.
m

Then the linear function

2x — {a+h)

£ (x) = b

satisfies f(a) = 1, f(b) = -1

f(ch) > 1, [f(oin] £1 i=2,nm

such that
L, 2 t a+b
f{a.a7) = o A.A ah b3
=v [—2 r. pt - ath IJ vt
a-b a-
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is a matrix satisfying the conditions of §4.2.1, with

eigenvalues

2012 - (atb) 2012 - (a+b)
la, | =1 —— | > 1 ana la | = | - | <1
i=2,m.

s . [
Only the singular values (eigenvalues of A.A°} are changed
but the singular vectors are conserved.

This means that the following Chebyshev matrix vector
iteration scheme will converge to the dominant singular

triplet.

Iteration scheme

1. Determine a,b

2. Choose elo
t 0

)3
compute ey = A. (A, ey )

4 t k
3. e =5 A. (A el) -2 5 % "¢
4. Test for convergence

Sk k
1 °1

He ™01 e || ° ™

If so, stop.
If not, go back to 3

or alternatively

4' Estimation of gquantities in convergence expression.
If conv., stop
If not go to 3

Of course, the convergence rate is now proportional to

2
1 + Ya -1
/ log (dl 1 )
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2012 - f{atb}

where d = ————————— > 1

1 a-b
Now, from the properties of the Chebyshev polynomials,
converge is optimal if ]dl—li is as large as possible. It

is not difficult to prove that this corresponds to o-timal

2
choices of a and b as a = 0? and b = Um .

Hence, the best possible convergence is determined by the
. _ 2 2 _ 2 2
ratio Klz = 0, / 9, and sz =0 / a,

The smaller K,, and the larger K the better the

12 2m’
convergence rate. From the theorem of optimality of
Chebyshev polynomials, it follows that this strategy is the
best possible using only matrix polynomials.

4.3.2 Smallest triplet

2

The necessary bounds a and b must now satisfy : a > Ul

2

2
g <b<ug
m m-1

and the spectrum transformation function is here

t
2.An
t a+b
fla.a7) = b-a  b-a
since
2
f{a) = -1 f(o 7) > 1
m
2 .
f(b) =1 ]f(ci 1 <1 i=1, (m-1)

The Chebyshev iteration now becomes

and the convergence rate is determined hy

2
1/ log {dm + dm - 1) iterations per decimal digit with
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2

d =1 o ~ (atb) 1/ (b-a)
m m
Optimal convergence condition occurs for a = 01? and
2
b = 91 "

4,2.3.3 Intermediate triplet {(u.,, 0., v }.
i i i
Now, 4 bounds are needed for triplet i

2
A>a (with 1 < i < m)

o <b <o 2 <a<g
i i i+l

and define Ma = A-a, Mb = h-B, D= a-b, M = max (Ma, Nb)

The following strategy is optimal for the symmetric case
where MaﬁMbﬂM.

Instead of a linear spectrum transformation spectrum, now a
parabola is used

-2

2 . _
f{x) = px + qgx + t with p = M) !

q = —-{ath) p
t =1+ ab.p

For more details about the deviation, omitted here for
brevity, we refer to De Moor {1985a).

The Chebyshev iteration now becomes

y + L6 5] 4 2te ko_ e_k_l
P i i i

k+l

t t k
e, =2paAafn (A(Aei

Each iteration now demands 4 matrix vector multiplications.

; 2 +
Optimal convergence occurs when oi = EE—b—-and then

a. = f(o.z} =1 + !
1 1

M M
2(60 (B'+ 1)
2
while the optimal convergence factor is then: 1/logy (di+ di -1}

iterations per decimal digit.
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From this it follows that, the smaller M/D, the faster will

be the convergence. Unfortunately the M/D ratio is usually
large in practical situations. A possible strategy then would
consist in allowing more iteration vectors and hence perform
a kind of subspace iteration (De Moor 1985a) .

In the case where the interval b is located asymmetrically
(Ma<<h% or vice versa), the ratio M/D can be "preprocessed"

in order to obtain attractive convergences rates (De Moor
1985a) .

To conclude this section, let us illustrate the computation
of an intermediate triplet by a simple example.

Let A.At = diag (10;9;6;4;1) and given bounds B=0, A=11l, a=8,
b=5 then p=-0.05; q=0.65- £=-1,

Then E(AAtJ = diag (0.5; 0.8; 1.1; 0.8; -0.4) and hence
there are needed

1 1

log (d, + /dlz - 1) log (1.1 + /(1.2 - )

]
%23
o]

iterations per desired digit of precision. This is eqguivalent
with 5.2 x 4 = 21 matrix vector multiplications per digit.

4.3 Relation Chebyshev-power iteration
4.3.1 Number of iterations B
For identical initial guess vector and machine precision,
it follows from the convergence expression that the ratio of

matfix~multiplications of the dominant triplet for the
Chebyshev method compared to the power methed, is given har

2 log (01/02)

8 = n(Chebgshev) _

n
(power method) log (dl + dl2 -y

2

2 —

o {a+b) 2
L

where 4. = with b<g 2 and o 2.< a<g
1 m 2

-b + a

When 5 < 1, then the Chebyshev method is faster than the
power mathod.
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Now take b=0, a = a/ 022 and ¥ = Ul/ 02

2
leg ¢

then S =

log (2 (rz/a) -1 + //(Qrz/u - 1)2 - 1)

This convergence speed ratioc is plotted in Fig. 1 for
different values of u and r.

r=10/8 r=1017

r=10/5

i
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2
0%  20%  do% 70% 100% 120%  140% 160%  180% [foo.(n-Hu:(f'T“”)Joo]
2

Fig. 1 r is the singular value ratio, For values of §
smaller than 1, the Chebyshev method is faster than
the power method., For small values of r, it is
hecessary to estimate the lower bound a of Gl

accurately (optimally a=02).
From this it immediately follows that the closer the
singular values are (r —*1) the larger the gain in speed of

the Chebyshev iteration in comparison with the power method
but of course, the more difficult it will be to estimate a

2
satisfying 02 <a< 012. For correct ang optimal estimation of

a (= o, !y S, as a Function of r is given in Fig. 2.
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1 1 I I 1 I
G0 02 0.6 1.0 1.4 1.8 2.2
log(e

Fig., 2 If the bound a is estimated accurately, the Chebyshev
method is almost always faster than the power method.
The more the singular values are clustered, the
larger the difference in iterations batween Chebyshev
and power method, but the more difficult it is to
estimate a,

From this it is clear that, the more clustered cl and 02

are, (log r—— O}, the better is the convergence rate of the
Chebyshev iteration compared to the power method,

In some forthcoming work, the application of acceleration
algorithms will be investigated for the case of clustered
singular values (see De Moor 1985 a),

4.3.2 PRelation with power method

¢ The following statement considerably simplifies the
study of the scmetimes rather complicated looking Chebyshev
schemes.

Theorem

The Chebyshev iteration scheme

1 t o]
el = F(A.A )e1

n-1
1

n+l t n
el = 2 F(AA )el - e

is conmpletely equivalent with the eigenvalue power method
applied to the matrix
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-1 2 £(aah)

2ema 4 rmahH ) -

8]
€1
with initial vector
o 1
[l
Proof
From eln+l =2 f(AAt)eln - eln~l
it follows that
n+2 t n+l n
e, = 2 F(AA )el - el

n-1
1 .

i

[alfmaty ) 1le,” - 2 £t e

which can be written as

e -I Zf(AAt) [é n-l
¢ 2
e 22e(anY)  armab) o1 e

This is nothing else than the eigenvalue power iteration
method., Moreover, the eigenvalue spectrum of this matrix is
easily obtained as follows:

t
Since f(AA} = VE{(I Et)vt the eigenvalues of B follow from

v o -1 26¢8 %) 1 vt o |
B =
' t
o v ~2fF (L zt) 4 f£(x Et)]2 -1 0 v
t

b
=t
o
=
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and by putting det {D-A) = O it is easily computed that
t 2 t 2
R I L K ST L /Ol L L
2 .
Now put f(ol )y = di then the eigenvalues are real for di>l
and imaginary for di<l'

Suppose for simplicity of explanation that only d1>l and alil
other di<l.

Then

) ~ 2 2
- fox d; > 1 Ap =247 -1+ 2 4, aal 1

a2 /a2
Ay =24 -1-2a /a1

and one can prove that

Ay > Land o< | A |<1
1
and that A = —
-1 by
1
- d, <1
for N
A, = 25.2 -1+ 2d.j“€—d.2 where j2 = -1
i i i i
A =2a.2 -1 -2a4/-a?2
-1 i i i
ana [A ] =1l =1

The desired part of the spectrum (di>l) is mapped on the real

axis and split into two eigenvalues Ai> 1 and A = %—— for each
. i

singular valve and the rest of the spectrum is mapped on the

unit circle !!

The convergence pattern can now be predicted with the
techniques of §3 for the power method.

The internal coordinate corresponding to the dominant
eigenvalue A, will grow every iteration by a factor (worst
case)}
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X —
1 2 Jy 2
——— = ~142 -
log o f [ log | 2dl 1+ dl dl 1 I
i»2 Tad

But one step of the eigenvalue power method corresponds to
2 Chebyshev recursions. Hence one Chebyshev recursion step
is equivalent to a growth determined by

{2d12hl + 2dl|/dl2 - 1) L ((d1 + /élz - 1)2)%

2
dl + Jél -1

vhich is precisely the quantity computed asymptotically in
§4.4,

]

5. BACKWARD ERROR MODIFICATION

In many practical cases, the matrix A for which the SVD is
desired, is perturbed by noise and uncertainties in the data,
It is a well known result that the sincular values are very well
conditioned [ Golub, 1983] and that the condition of the
singular vectors depends on the relative spread of the
singular values.

The methods we discuss here, apply at every moment in the
iteration, to an approximation of both left and right singular
vectors, N

Since obviously it is useless to require a higher accuracy
in the results than can be guaranteed by the data, some tools
must be constructed in order to check the relative accuracy to
the data accuracy level. The theorems developed further on are
straightforward generalizations of those in { parlett 1980].

Let A be mxn, X an m-vector approximation to the left
singular vector Uy and ¥ an n-vector approximation to the

right singular vector Vi with || x || = Il y Il = 1.

Define the generalized Rayleigh quotient as p = xt.A.y =

t .t
¥ A .X. It can be proved that p is the best possible
approximation for Uk' using x and y only.

: . t
Define the residues r,. = A.x - p.y and ry =AYy - p.x

nxl mxl
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then the following theorems have very practical implications,
Theorem

The residues r and ry are orthogonal to the approximations

x and y.

t t
r vy =0 r X =0
X Y

Proof : Trivial
Thecrem Backward error modification.

The vectors x and y are left and right singular vectors of a
modified matrix A - M with corresponding singular value s where

t
M= x.r + r .yt
x Yy
Proof it is easy to show that

(A - My =5 .x
€
{p -~ Mt).x =85 ,¥y

Theorem The singular value decomposition of M is given as

N “
e dl o e ]
- r
o SRT T
r }| : t
- (o]
y ||ryH_ v
Proof Trivial
From this, the norms of M are given as !E M || = maxf l]rxfi,
2 2 2
gl Vana [lael{ " = e 115+ The 117

Now, one can prove that for two matrices A,B with singular
values a; and bi' |ai - bi|<||A - Bfl. Then put B=A-M, which

has a singular value s, |o, - s|<||a - (A—M)]l = IIM!E = max

k
{|Erxll,!ry1|). This means that the error in the approximation

of a singular value is bounded by the norm of the backward
error matrix M.
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If this norm !EMEI becomes smaller than the estimated
uncertainty level in one singular value, further iteration is
useless,

As an example, consider the uncertainty level in a matrix A
which is perturbed by white noise with standard deviation G.
Then the uncertainty level on one singular value is proportional

2 .
to max{m,n}.o" (De Moor 1985b}. Hence iteration can stop

2 :
when IIM||< max(m,n}o . However, this backward error
modification expression has to be linked with the convergence
expressions derived earlier.

6. AN ADAPTIVE STRATEGY AND PERSPECTIVES

In this section, we briefly summarize some ideas and
perspectives to implement the Chebyshev iteration scheme in an
adaptive environment. The data are not modified during
computation and may be accessible for instance only in secondary
menory.

The data themselves are assumed to be slowly time varying
either in a way that at each time step a new line of information
is added or such that minor changes occur elementwise.

Moreover, some noise level characteristics are assumed to be
known., The initial guess for each triplet can be obtained from
the SVD of a previous time step or from a previous obtained
triplet., The number of iterations for convergence is
detexrmined with respect to the desired accuracy level, that in
its turn is determined by the noise level,

In the near future, the adaptive estimation of optimal
singular value bounds is to be studied, for which interesting
. ideas can already be found in the work of Saad (1984) and
Manteuffel (1977), The operation count is to be optimized
by acceleration algorithms and optimal orthogonalization
(deflation) strategies {De Moor 1985a),

A main problem of course is the resclution of closely
spaced singular values, But also other methods such as the
Lanczos method, where the relative spread of singular values
equally well determines the convergence rate (Parlett, 1980},
suffer from this problem,

In the case of the Lanczos algorithm some block versions
have "been developed for this purpose (Golub, 198l1), and
extensions of cur Chebyshev method to the subspace iterxation
case are straight-forward (Parlett, 1980). Moreover, there
is a large parallelism between this Chebyshev iteration and the
Lanczos method. Both use only matrix vectors subroutines,
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need initial guesses Lo start up the iteration, need some
deflation technigues such as selective orthogonalization, and
convergence 1s governed by the condition and spread of the
singular spectrum,

Hlowever, a direct comparison is not straight-forward and it
would be very interesting to set up one.

7. CONCEUSIONS

In this paper two 5VD algorithms, the power metheod and the
Chebyshev iteration method, were studied in a unifying framework.
Convergence expressions were obtained and it was proven that
the Chebyshev method is also a power methed. Comparisons in
convergence speed were made. It was demonstrated that the
typical applications for these algorithms are those where the
SVD of a slowly time varying sequence of matrices is to be
computed. The matrices are large and/or structured, and
accessible only via matrix vector products. Knowledge of the
characteristics of the noise on the data can be used to
estimate the number of desired digits in the results or to
follow the convergence via the backward error modification
technique.
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