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Abstract

Tn this paper, some geometrically inspired concepls are studied for
the identification of models for multivariable linear time invariant
systems from noisy inpul-oulpul observations. Starting from a
fundamental highly structured input-ouiput matrix equation, it
is shown how the singular value decomposition atlows Lo estimale
the arder of the observable part of the system and its state space
model matrices. Moreover, conditions for persistency of excitation
of the inputs and the behavior of the algorithm when the data are
pecturbed by noise, can easily be studied from a geometrical point
of view. The singular values allow to quantify these concepts. An
example with an industrial plant identification is presented.

Keywords : Linear and Total linear least squares, canonical cor-

relation identification.

1 Introduction

Selection and identification of appropriate mathematical repre-
sentations are of central importance in the analysis, design and
control of multivariable systems. With access only to the external
“linput-outputhehavior of a multivariable dynamical process, the in-
ternal structure (other than a priori assmmed time invariance and
lincarily) being unknown, the problem of constructing a model
is a highly non-trivial task. Because of this complexity, reliable
and robust general purpose identification schemes have not yet be-
come a standard tool. In most cases, {experimental} observations
on the input-output behavior of the system under normal operat-
ing conditlions are readily available, The most obvious choice for a
mathiematical model is in a lot of cases a state space representation
since the major part of modern system and control theory, such

as the design of observers, filters and optimal controllers regards

this very eflicient and compact representation.
In this paper, new geometrically inspired identification schemnes

will be presented. They make use of the numerically reliable key’

technique of the singular value decomposition and allow lo es-
timate the order of the syslem under study and Lo identify s
state space model matrices, from possibly noise corrupted multiple
input-output wmeasurements. No a priori parametrization, which
may he ill-conditioned with respect to identilication, is required.

In seclion 2, some general propesties ol dynamic systems are
stated, including the fundamental input-output equation, where-
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from in section 3 three different identification approaches are de-
duced : a linear least squares (section 3.1) and a total linear least

squares (section 3.2} approach and finally & canonical correlation
approach (section 3.3). Finally section 4 gives an example ol an

industrial plant identification,

2 Dynamic systems

We now stale some general properties that will e used throughout
the sequel,

2.1 State space model

We consider linear, discrete time, time-invariant systems with m
inputs and 1 oulputs, with state space representlalion :

Axfk] + Boufk] (1
Coz{k] + D.ufk] {2)

zlk + 1)
ylk]

Vectors ulk], y[k] and z]k] denote the input,output and state at
time k, the dimension of z{k| being the minimal system order n.
A, B,C and D are the unknown system matrices to be identified.
making use oy of measured 1/0-sequences ufk],ulk +1],... and

gk [k + 1], -

1

H

2.2 Input-output equation

Equation { 2) can easily be extended to a general structured I/0-
equalion : .

% =o X + He Uy {3)
13, is a block Hankel matrix (i block rows, j columins) containing

the consecutive outputs :
{y[k} is a I % 1 vector, where [ is the number of outputs)

ylki ik + 1 ylk +j - 1]
ylk + 1] vik+2f ... ylk+ 5
Vi o= | sf+2 vik+3) .. ylk+it i}

ylk 4 i— 1} glk + ] ylk 4 j+i-12]
I'; is an extended observability matrix :

¢
Ca
CcA?

Ca!
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X contains consecutive state veelors

No=[rlkfelbt )zl 2] 2y j— 1))

Iy is a lower triangular Toeplitz matrix conlainmg the Markov
paramelers :

D 0 It [H
cB 2] 1 0
"o | €48 cB D 0
! CATB  CAR cB 6
CATIB CATB CA™'B ... D

Finatly Uy, is a block Hankel matrix with the same block dimen-
sions as ¥}, but now containing the consecutive inputs. (ufk] is a
m X t vector, where m is the number of inputs)

ulk] ufk + 1} ulk + j —1]
ulk + 1} ulk + 2] ufk + jj

Up = | ufk+ 2] ulk 4 3] ulk +j+ 1)
N R S R S

Proofl : siraightforward by repeated substitution.
]

Instead of going inlo details, we loosely state thal { and j
should be chosen "sufliciently large” so as to satisfy cerlain condi-
tions, and in particular j 3> max(mi, {i) ("very rectangular® block
Hankel Matrices).

2.3 Rank property

Let {I denote the concatenation of ¥y, and [, :

_| ¥
"[v,.}

then, generically (see below), the following theorem holls.

Theorem 1

rank{ H ) = rank({y) + n {4)

where n is the system order {observable part]. Or, when U, has
fell row rank :
rank{H} = mi+»n (5)

For a proof see [1).

2.4 DPersistent excitation

The singular values of U} serve as quaniitalive measures for the
degree of persistency of excitation of the input sequence. Loosely
speaking, the inputl sequence has to be persistently exciting,in
order to 'excite’ all modes of the systems. When the matrix [/}, is
(nearty} rank deficient {some singular values are small) the input
sequence is 'poor’ in that it (almost) consists of a finite nwmber of
complex exponentiats, When the singular values are all {almost)
equal, the input sequence tends to be *while' noise . Also for an
impulsive input, the singular values are all equal {51S0).

3 Identification strategies

Fhree dilterent identificalion approaches can now be derived from
the input-output eguation 3 : a linear least squares (section 3.1}
and a total linear least squares (section 3.2) appreach and finally
a canonical correlation appsoach (section 3.3).

3.1 Linear least squares identification

Let &+ he any j x (mi —~ rank({Uy)) matrix satislying Up.UL = 0.
1/0-equation 3, postmultiplied by U, then reveals

Wit =Kot

Consider the SVD of Y,,.U' = P.5.Q' . Under mild conditions,
rank{S) = n and there exists a non-singular n x n matrix i such
that: P = T';.R. This implies that a realization of the state tran-
silion matrix and the output matrix of the form RV AR, C.R
can be performied in a similar way as in Kung's realization algo-
rithm by exploiting the so-called shift structure {5,1]. ‘The matrices
#7'.8 and I follow from a set of linear equations [1,6]. In [1] it
is shown that this identification approach correspends to a linear
least squares version for identification problems where the input
is noisefree while the output is neisy. The row space of the output
block Hankel matrix is orthogonalized with respect to the input
block Hankel row space . Examples can be found in [1,6,2).

3.2  Total linear least squares identification

In a very similar way (the [/O-equation should now be premuhi-
plied by T's orthogonal complentent j the following result can he
oblained {proof emitted for brevity), Let the SV of

Yo | _ | Pn P S0 0"
Uy Py Pn o ¢
where rank(S$;) = rank(U,) + n and the partitioning of the left

singular matrix is such that Py, is a {{i} x (mi + n} matrix. Then,
there exists a non-singuwlar nxn matrix T such that :

P.PL =TT

where P is any {mi + n} x n matrix satislying PP} = 0.
This implies that a realization of the state transition matrix and
the output matrix of the form T-' AT, C.T can be performed in
a similar way as in Kung's realization algoritiun. The matrices
T-1.B and D follow from a set of linear equations [1,6}. Contrary
to the previous versions, this corresponds Lo a total linear least
squares approximation of the multivariable identification problem,
which applies when both input and output are corrupted by the
same amount of noise {3,1}. Considerable insight has been gained
into the behavior of the algorithm in noisy industrial applications.
Meore details are found in [1,6,2].

3.3 Canonical correlation identification

The canonical correlalion approach to the identification of a state
space model, is based upon the {ollowing lundamental ebservation
readily deduced from the I/Q-equation {for a proof sce [2,7]). Let
Y1,y he a output - input block Hankel pair ( block dimensions
i X J) containing output- input measurements on a linear dynamic
systemn up Lo lime k and let Y2, {f; be another outputl input block
Hankel pair of block dimensions f X §, containing measurements
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from titwe & + 1 on. If the rows of the matrix Z (with j columns)
form a hasis for the inlersection of 1he row spaces of

o] o {3

dim(spangyy 2} = rank(Z) = n

then:

¢ there exists a non-singular n x n matrix K such that

Z=Rizlk+ 1} 2k +2} ... =k + ]

Hence, the matrix % is nothing but a state veclor sequence
realization. Once such a sequence is availalile, the model
matrices A, B, D fellow from the set of linecar equations :

{:[k“]}ﬁ[,i B][r[k}]
ylk] e p

ulk}
that can be solved with TLILS or one of its variations.

Hence, the 'difficult’ problem of identification of a linear
state space model has now heen reduced to 2 SVD steps,
that may be implemented in a very streamlined identification
algorithm. Adaptive versions {or updating and downdating
the QR- and SVD [lactorizations via a gliding window ap-
proach are actually being implemented, taking into account
the specific structure of the mairices. For more detail, the
reader may wish to consult [2].

4 Real life example

The perlorniance of the algorithm has been evaluated on both sim-
ulated and industrial data sets. The following example is due to
Profl. R.Guidorzi (University of Bologna, {4]). The I/0-sequence
was obtained under normal operating conditions of a 120 MW
power plant (Pont sur Sambre - France}, a systemn with § inputs
and 3 outputs. The identified models (lor different system order
estimates) were evaluated by comparing original and simulated
outputls, using the original input signals and the identified modet
{sce Figures}). These simulations demonstrale the reinarkable ro-
bustness of the identificalion scheme with respect 1o over- and
underestimation of the system order.

5 Conclusions

In this paper, a survey was given of geomelrical concepts for a
new identification strategy. The properties of the singular value
decomposition are exploited to compule a state space model from
noisy input-output observations. It is shown how the condition of
persistent excitation can be translated in a geometrical [ramework.

Puture work will be directed to a complete geometrical {reat-
ment of the identification scheme and to efficient numerical imple-
nmentation of adaptive versions of Lhe singular value decomposition
for structured matrices.
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Fifth input, Q. (Air flow).
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Figure 1 : Identification of a power plant : original and reconstructed outputs for dilferent

system order es(imates.
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