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Abstract

In this paper, two concepts are introduced : the oriented energy distribution of one
vector sequence and the oriented signal-to-signal ratio concept of two vector sequences. It
is shown how both concepts can be characterized numerically via the (generalized) singu-
lar value decomposition and how they allow to formalize factor-analysis-like (subspace-)
methods. Several applications are described, including Total Linear Least Squares, real-
ization theory and source separation.

1 Introduction

In a wide variety of systems and signal processing applications, vector sequences are measured
or computed. Such a situation naturally arises whenever multivarjable signals are measured
in time at fixed locations in a measurement set up. For the analysis of such data sequences,
a wide variety of multivariate analysis tools are available, The underlying theme of much
multivariate analysis is simplification and explanation of the observed phenomena. In this
paper, the problem of analysis of one or two m X n data matrices A and B is addressed.
Usually n 3> m, where m denotes the number of measured channels while n denotes the
number of measurements. It has occurred to some researchers in hoth signal processing and
control systems that the singular value decomposition of matrices formed from ohserved data
could be used to improve methods of signal parameter estimation and system identification.
However, rationales for these methods have heen very heuristic and in almost all cases are
based upon the well-posedness of the algorithm, in casu the SVD. One purpose of this paper
is to present a more convincing framework which is intended both to unify existing techniques
and widen the area of applications.

The results obtained in this work, bear a lot of similarity with existing (statistical) tech-
niques, such as principal component analysis, factor analysis, analysis of variance etc... Prin-
cipal component analysis, originating in some work by Karl Pearson around tle turn of the



century and further developed in the 1930s hy Harold Hotelling, consists of finding an or-
thogonal transformation of the original - stochastic - variables to a new set of uncorrelated
variables, which are derived in non-increasing order of importance. These so-called principal
components are linear combinations of the original variables and it is the analysist’s hope
that the first few components will account for most of the variation in the original data so
that the effective dimensionality of the data can be reduced [3]. The concept of oriented
energy defined and studied in this work, is closely related to principal component analysis,
The concept of oriented signal-to-signal ratio is closely related to factor-analysis like methods
(in 'modern’ approaches so-called subspace methods ) in which the used metric is imposed
by the noise covariance matrix, acting as a prewhitener of the measurements via a so-called
Mahalanobis transformation.

it witl he shown how the framework of oriented signal-to-signal ratio provides a rationale
for linear modeling problems where :

L. the complexity of the model is the rank of a certain matrix, Hence, the decision for the
complexity essentially reduces to the meaningful determination of the rank of certain
(prewhitened) matrices.

2. the model parameters are linked in one way or another to the subspaces and their
properties, that are associated to the determined rank.

Several new aspects are emphasised throughout this paper. They constitute its main contri-
hution: '

* A general framework is derived, explicitly based upon the properties of the singular and
generalized singular value decomposition. No statistical a priori assumptions {about
e.g. probability distributions) are imposed. However, when such a priori information is
available, it can be easily taken into account.

* The conceptual derivations based upon the (generalized) singular value decomposition
are at the same time constructive: The very use of these factorizations delivers algo-
rithms, that may be implemented in numerically robust and reliable software.

* Whereas the singular value decomposition is one of the tools in the analysis of a single
vector sequence, it will be shown how the generalized singular value decomposition is
the technique to be used in analyzing the mutual relation of two vector sequences.

Several examples will be presented that lend themselves to a translation and interpretation
in the novel framework : total linear least squares with specified admissible complexity or
tolerated misfit, high resolution location of narrowband sources, separation of maternal from
fetal ECG and linear dynamical realization theory,

This paper is organized as follows: In section 2, the basic definitions and theorems of the
concept of oriented energy and signal-to-signal ratio are defined and derjved. The numerical
tool to analyse the spatial activity of one vector sequence is the singular value deconiposition
as is demonstrated in section 3. When two vector sequences are to he studied relatively to
each other, the generalized singular value decomposition applies. It is shown in section 4 how
there exists a strong similarity between the singular value decomposition for the analysis of
one vector sequence and the generalized singular value decomposition for the analysis of two
vectorsequences. In section 5, the results are illustrated with some clarifying examples. The



conclusions can be found in section 6.

Nolations and abbreviations:

All matrices and vectors are assumed to be real (although the concepts defined in this
paper readily generalize to the complex field). Column vectors are denoted by small letters.
Row vectors are denoted as the transpose of columnvectors. Capitals represent matrices. The
letters ¢, 7, k, I, m,n and r are integers (used e.g. for indexing} while real nunbers are denoted

R"™ : n dimensional vectorspace of real n-tuples

Amxn t matrix with m rows and n columns

A' ¢ transpose of the matrix A

A* : pseudo-inverse of the matrix 4

anxi ¢ real vector with n real components. Also called an n-vector
a‘- b : Euclidean inner product of two n-vectors : Tihiar-b;

€; : unit vector with 1 as i-th component and other components 0

llallz + 2-norm of a vector V{a*-a). A vector with norm 1 is called a unit vector

ll4ll= : Frobenius norm of a matrix V(2 af;) where the double sum extends over all rows
and columns

E,[A] : oriented energy of the column vector sequence of the matrix A4 in the direction of the
vector ¢ (definition 2)

R,[A, B] : Oriented signal-to-signal ratio of the vectorsequences A and B (definition 3)

MmR(A, B,r]) : The maximal minimal signal-to-signal ratio over all r-dimensional subspaces
of the vector sequences {ay}, {bx} (definition 5)

mMR(4, B, r] : The minimal maximal signal-to-signal ratio over all r-dimensional subspaces
of the vector sequences {ak}, {b+} (definition 5)

rank(A) ¢ algebraic rank of the matrix 4
spanpow(A) ¢ vectorspace generated by the rowvectors of the matrix A
spancq)(4) ¢ vectorspace generated by the columnvectors of the matrix A

spancol[ul,...,u,} i if w; are linearly independent m-vectors this denotes the r-dimensional
subspace generated by the vectors u;,. TS

spanéoi[ul, c+o3t%] t denotes the m — r-dimensional orthogonal compleiment

Q"CR™: Q% isa r-dimensional subspace of R™




int(a) : integer truncation of the real number o
SVD : Singular Value Decomposition {Section 3.1)
GSVD : Generalized Singular Value Decomposition (Section 4.1)

UB : The unit hall UB = {ge R™ | ¢* . g = 1}

2 Oriented energy and oriented signal-to-signal ratio con-
cepts of a set of vectors

In this section, the basic definitions of oriented energy are given . The column vectors of an
m X n matrix A are considered to form an indexed set of m-vectors, denoted by {ay},k =
l,...,n. Anm-vector ¢ and the direction it represents in a vector space, are used as synonyins.

Definition 1 Energy of a vector sequence.
Consider a sequence of m-vectors {ax}, k = 1,...,n and associated m X n matriz A. Its total
energy E{A] is defined via the Frobeniusnorm of the m X n matriz A:

B = 4= 303 a W

i=1 j=1

Definition 2 Oriented energy.

Let A be a m x n matriz and denote its n columnvectors as ar, k= 1,...,n. (n is possibly
infinite ) For ihe indezed vectorset {ax} of m-vectors ay € R™ and for any unit veclorg € R™
the energy E,, measured in the direction g, is defined as:

Efd] = 3¢ - a)? @)
k=1

A geometric visualisation is represented in fig.1.
More generally, the energy Eg measured in a subspace @ C R™, is defined as:

Eq(A] = 3 [[Po(a)ii® (3)
k=1
where Po(ay) denotes the orthogonal projection of ay into the subspace Q and || - || denotes

the Fuclidean norm.

Of course, the summations in (1) and (2) require {2-type convergence conditions on the
set {ar} when n is infinite. In words, the oriented energy of a vector sequence {a,}, measured
in the direction ¢ (subspace Q) is nothing else than the energy of the signal, orthogonally
projected on the vector ¢ (subspace Q).

In order to sharpen the geometric intuition on the above interpretations, the oriented
energy distribution and the square root of this distribution is shown in fig.2 for a 3-vector
sequence which is nearly singular. The physical significance of the definition becomes clear,
wlien one considers the unit vector ¢ (subspace Q) to he variable and to “sense” in all
directions of the vectorspace R™. For a sequence of 3-vectors, we have plotted in each



Figure 1: Mustration of oriented energy measurement

“sensing” direction ¢ of the 3-dimensjonal vectorspace, a vector of length E,. All points lie on
a smooth surface (fig.2). In fig.3 a quarter of the surface has been cut out to show the fypical
(“sharp”) narrowing that may occur in some directions. In three dimensions, the surfaces of
oriented energy exhibit one direction of maximal oriented energy, one of minimal energy an
a direction with a saddle point. This can readily be generalized to more dimensions.

Let us now consider two vector sequences {ax} and {6y}

Definition 3 Oriented signal-to-signal ratio
The oriented signal-to-signal ratio Ro[A, B] for two sets of m-vectors {ar} and {b},k =
L,...,n {n possibly infinite), measured in the direction of a unit vector g € R™, is defined by:

E,[4]

B} = 2
More generally, the oriented signal-to-signal ratio Rg(A, B] for two vector sequences {ai} and
{bx}, measured in a subspace Q@ C R™, is defined as:

- Eold]
Rq[4, B] BolB] (5)
In words, the signal-to-signal ratio of two vector séquences, measured in a direction g or
subspace Q, is simply the ratio of the two oriented energies of the involved signal sequences
in that direction or subspace. Remark that when 8 is rankdeficient, there exist directions
in which the oriented energy E4(B] = 0, possibly making the signal-to-signal ratio infinite if
E,[A] # 0. .
The oriented energy distribution of course shows a more than coincidental relationship
with the ellipsoid, described by the nonnegative definjte quadratic lorm of A - A';
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Figure 2: Oriented energy distribution in 3 dimensjons
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Figure 3: Oriented energy distribution in 3 dimensions

Theorem 1 Consider the mx n matriz A and the vector sequence {ar} of its column vectors.
Then, any m-vector r of the ellipsoid {r|rt A .47 = 1}, associated with the quadratic
form of the matriz A - A* and the oriented energy of the vector sequence {ay} in the direction
rflir]| are related by:

el - 2, ppoyl4] = 1 (6)
Proof: Trivial ]

In words, the energy distribution of a sequence of vectors {a,} can be constructed from the
ellipsoid of the quadratic form of A4+ A* by scaling any vector r on the ellipsoid until its length
is 1/[r}|>. Hence, the matrix A - A' characterizes the quadratic form ellipsoid as well as the
oriented energy distribution.

This correspondance implies that the oriented energy is everywhere continuous on the
unit sphere and also everywhere differentiable. The relationship (5) directly implies that
directions of extremal energy coincide with the principal axes of the ellipsoid, hence are
orthogonal. This observation really invites to use the oriented energy concept in the analysis
of the spatial activity of vector signals.

The importance of the new notion of oriented energy, with its close relation to the 'classical’
quadratic form, will follow from both the conceptual as the numerical arguments developed
in the remainder of this paper. It will he demonstrated how the oriented energy concept is
indeed a powerful tool to separate signals from different sources, to filter’ signals from noise
and {o select subspaces of maximal signal activity and integrity.

An important observation is that the range of values of the oriented energy distribution
of a vector sequence, depends upon the choice of basis to which the vector coordinates refer,
Moreover, the directions of extremal oriented etergy are not preserved and the shape and
values of the oriented cnergy distribution tay totally change wnder non-orthonornud hasis



transformations. This indicates that the notion of oriented energy is a workable concept only
if the choice of basis for the representation of the vector set {ay} is fixed by external or physical
arguments. A similar observation holds for the oriented signal-to-signal ratio Ry[4, B} of two
vector sequences {a;} and {b;} in a fixed direction q. However, the range of the values of
R,[A, B} considered over all unit directions ¢, is independent of the choice of hasis. This
implies that they have a wider physical significance. This important invariance property is
stated more precisely as follows,

Theorem 2 Invariance property of the signal-to-signal ratio

Consider 2 sequences of m-vectors {ar}, {br}, k = L,...,n. For every unit veclor ¢ € B™ and
for every non-singular m x m matriz T' that transforms {ar}, {by} into {T-ap}, {T- b} there
exists an associated vector ¢' such that

Ry[A, B) = Ry(T - A,T - B) (7
Proof: Verify that (7) is satisfied for ¢' = oridy. o

The message of theorem 2 is the following: Although the measurements of oriented energy
ratios in a fixed direction depend on the choice of basis, the existence of a ratio with a certain
value is independent of the chosen basis. Stated otherwise : if the oriented signal-to-signal
ratio has a certain value with respect to a certain basis, it will have the same value in some
direction for all possible choices of basis. Note that theorem 2 is constructive in the sense
that it allows to compute this specific direction in the new basis.

3 The oriented energy concept and the singular value de-
composition

In section 2, attention was paid to the basic concepts and properties of the oriented energy
distribution . In this section, the tools will be studied which allow to characterize numerically
the oriented energy concept. In section 3.1, results about the singular value decomposition
are summarized, More conceptual relations hetween the §VD and the oriented energy prop-
erties of a vector sequence are established in section 3.2. In section 3.3, some numerical
considerations are discussed.

3.1 The singular value decomposition (SVD)

For conceptusdl, nunerical, algebraic and computational reasons, the singular value decom-
position {SVD) is receiving more and more attention {6]. The SVD for real matrices is based
upon the following theorem [6] which we name after its most important contributors:

Theorem 3 The Autonne-Eckart-Young theorem (restricted to real matrices)
For any real m x n matrir A, there ezist a real faclorization :

4 = U . 5 .
mx m mxn nxn

(8)

in which the matrices U and V are real orthonormal, and the matriz § is rea! pseudo-diagonal
with nonnegative diagonal elements.



The diagonal entries ¢; of § are called the singular values of the matrix A. It is assumed
that they are sorted in non-increasing order of magnitude. The set of singular values {o;)
is called the singular spectrum of the matrix A. The columns ui(v;} of U(V) are called the
left (right} singular vectors of the matrix A. The space Sp = span;gu, ..., 4] is called
the r-th left principal subspace. In a simitar way, the r-th right singular subspace is defined.
The triple (u;, oy, ;) is called the i-th singular triplet of the matrix A. Remark that the
singular value decomposition of a real matrix js not unique. However, the singular values
are uniquely determined. If the non-zero singular values are distinct, the corresponding
singular vectors are unique up to the sign. If r singular values (zero or non-zero} coincide, the
corresponding singular vectors are arbifrary as long as they generate an orthonormal bhasis
for the corresponding r-dimensional subspace which is unique.

Proofs of the above classical existence and uniqueness theorems are found in [6] and the
references therein. Some more properties of the singular value decomposition are mentioned
here without proof.

Lemma 1 The number of singular values, different from zero, equals the algebraic rank of
the matriz A.

In fact, the SVD is one of the most reliable tools to estimate in a numerically sound way
the algebraic rank of a matrix.

Lemma 2 Dyadic decomposition
Via the SVD , any matriz A can be written as the sum of r = rank(A) rank one matrices

A:Zu;-a;-vf (9)
i=1

where (u;, 04, v} is the i-th singular triplet of the matriz A.

Lemma 3 Frobenius norm of m X n matrix 4 of rank r

4lF =3 3 af = 3ot (10)
k=1

i=1j=1
where the o), are the singular values of A,

In words, the total energy in a vector sequence {ar} with associated matrix A as defined in
definition 1, is equal to the energy in the singular spectrum.

The smallest non-zero singular value corresponds to the distance in Frobeniusnorm, of
the matrix to the closest matrix of lower rank. This well known property makes the SVD
attractive for approximation and data reduction purposes. There exists an important well-
known relation between the singular value decomposition and the eigenvalue decomposition:

Lemma 4 Let the m x n matriz A have an SVD as in (8). Then the columns of U are the
eigenvectors of the Grammian A - At The rows of V are the eigenvectors of the Grammian
At - A. The positive real number o; is a non-zero singular value of A iff ¢ is a non-zero
eigenvalue of both A- A* and A*. A.



3.2 Conceptual relations between SVD and oriented energy

We are now in the position to establish the link between the singular value decomposition
and the concept of oriented cnergy distribution.
Define the unit ball UB in R™ as UB = {¢ ¢ R™ | |lqf}; = 1}

Theorem 4 Consider a sequence of m-vectors {ar},k = 1,...,n and the associated m x n
matriz A with SVD as defined in (8) with n > m. Then:

EylA] = o} ()
Vge UB: ifg =32 7w, then
EA) =+l o} (12)
i=I
wiv.-re UB is the unit ball,
Proof: Trivial from theorem 3. O

In words, the oriented energy measured in the direction of the i-th left singular vector of the
matrix A, is equal to the i-th singular value squared. The energy in an arbitrary direction ¢
can be reconstructed additively as a suin of ’orthogonal’ oriented energies associated to the
left singular directions, as soon as the coordinates ; of the vector ¢ with respect to the left
singular vectors are known. If the matrix A is rankdeficient, then there exist directions in
R™ that contain no energy at all.

It should be cbserved that the singular values and vectors are generally critically depen-
dent upon the scales used to measure the variables. This scaling could be the result of data
acquisition requirements such as amplification, A/D conversion etc... Hence, additional phys-
ical motivitation is required to choose those scalings for the different measurement channels
for which it is meaningful to ‘compare’ via the oriented energy concept. In the sequel it is
assumed that this question has been resolved in advance,

With the aid of theorem 4, one can easily obtain, using the SVD, the directions and spaces
of extremal energy, as follows.

Corollary 1 Under the assumptions of theorem {:

1. max .yp EqlA] = Ey, (4] = of (13)
2. min_oyp E,[4] = By, [4] = o2, (14)
3. maxqrcrm Eqr[A] = Esp (A} = T 0} (15)
{. mingrcrm Egr[A4] = E(S;_-;-").t{A] = Y itmors1 OF (16)
5. maxgrcrm {mingegr Eg[A]} = minges;, Bo[A] = o? (17)
6. mingrcrm{max,eqr £,[A)} = MaX, ¢ sm-r)s EA}=a?_, (18)

where ‘maz’ and ‘min’ denole operalors, mazimizing or minimizing over all r-dimensional
subspaces Q" of the ambient range space R"™. S, is the r-dimensional principal subspace of

the matriz A while (S;777)1 denotes the r-dimensional orthogonal complement of Sg".
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Proof: Property (13), (14), (15), (16) follow immediately from the SVD theorem 3 and
from theorem 4 . Property (17) and (18) are nothing else then the classical Courant-Fischer
minimax and maximin characterizations of the eigenvalues {6] 3

In words, properties (13) and (14) relate the SVD to the mimima and maxima of the oriented
energy distribution. In fact, it can be shown that extrema occur at each left singular direction.
The r-th principal subspace S, is, among all r-dimensional subspaces of R™, the one that
senses a maximal oriented energy (property 15). Properties (15) and (16) show that the
orthogonal decomposition of the energy via the singular value decomposition is canonical in
the sense that it allows to find subspaces of dimension r where the sequence has minimal
and maximal energy. This decomposition of the ambient space, as a direct sum of a space
of maximal and minimal energy for a given vector sequence, leads to very interesting rank
considerations, which will be exploited furtheron. Properties (17) and (18) characterize the
min-max properties of the vectorsequence if this is restricted to p-dimensional subspaces. For
a fixed subspace Q, the minjimum energy is achieved for a certain direction ¢. When all
minima are considered for all possible r-dimensional subspaces Q, then there is at least one
maximum. This maximum of all minima can be interpreted as the best of all worst cases., Its
algorithmic computation and the determination of the corresponding maximizing subspace,
is closely related to the singular value decomposition, as is demonstrated in (17). A similar
interpretation can be given for (18).

In signal processing, one often encounters long sequences of m-vectors ar. This means
that the corresponding m X n matrix will be largely overdetermined with much more columns
n thanrows m: n>» m. The singular value decomposition allows to compact such sequences
into sequences with equivalent oriented energy properties:

Theorem 5 Consider a sequence of m-vectors {ap}, k= 1,. <y N and the associated m x n
matriz A with SVD as defined in (8) with n > m,
Then the sequence of m-vectors

- Awmon w209, o) (19)
has the same oriented energy distribution as that of {a;}.

Proof: Straightforward, o

One of the main applications of this theorem concerns vector stochastic processes: Ergodic
vector stochastic processes can be characterized by an equivalent vector signal U - I, closely
related to the second-order joint moment matrix of the process. This implies that from
the point of view of oriented energy,the sequence should not be known by an actual time
realization. Only the knowledge of the equivalent sequence (19) with identical oriented energy
distribution is required. An example will be considered in section 5.1.

Definition 4 Isotropy
The oriented energy distribution of a sequence of m-veclors {ar} will be called tsolropic if the
singular values of the corresponding matriz A are all equal to each other.

3.3 Numerical considerations

The practical value of theorem 5 is that jt allows to compact a large amount of data without
algebraic or numerical degeneracies. In this context, one should clearly distinguish theorem
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4 from the compaction obtained by the computation of A+ A* described in theorem 1, and
this especially concerning the numerical caveats. Indeed, all properties have been stated in
terins of energies. This implies the summing of squares, which, in the presence of numerical
round off errors caused by the limited machine precision, can lead to numerical disasters. The
strength of the approach is that all computations can be performed without explicitly using
these squares. The singular value decomposition obtains the decomposition of the vector
sequence as a sum of orthogonal dyadic terms, weighted with singular values that can be
computed within full machine precision. Numerically stable and reliable algorithms for the
singular value decomposition are by now well known [6], fully tested and documented and
available in reliable standard softwarepackages (e.g. Matlab, Eispack,NAG,...)

Another crucial issue concerns the computational cost of the singular value decomposition.
Typically, in signal processing applications, the number of vectors n in a m-vectorsequence
{ar} is much larger than the number of components m. This implies that the associated
m X n matrix 4 is largely overdetermined (n 3> m) and hence the SVD of a ‘very rectangular’
matrix is required. Fortunately, there exists a simple ‘trick’ which allows to stably compute
such SVD’s. Without going into technical detail, it suffices to mention that first the R-Q
factorization of the overdetermined matrix is computed , followed by the SVD of the lower
triangular matrix R. This results an a considerable computational saving. Moreoever, since
it is ‘easy’ and ‘cheap’ to compute a rank one update of the R-Q factorization (necessary
when one extra column is added), this opens interesting perspectives for an algorithm that is
adaptive in the number of measurements (updating and downdating strategies).

4 Signal-to-signal ratios and the generalized singular value
decomposition

While in the previous section, the link between the oriented energy distribution of one vector
sequence with the SVD of the associated matrix was established, in this section the relation
of the signal-to-signal ratio of two vector sequences with the generalized singular value de-
composition will be studied. The use of the generalized singular value decomposition allows
to develop a highly instrumental parallellism between the concept of oriented energy distri-
bution and the signal-to-signal ratio of two vector sequences. In section 4.1, the theorem
stating the existence of the generalized singular value decomposition is given together with
its main properties. In section 4.2., it is shown how to apply the GSVD in order to compute
the maximal minimal signal-to-signal ratio of two vectorsequences. In section 4.3., attention
is paid to the numerical implications of the GSVD.

4.1 The Generalized Singular Value Decomposition [GSVD)]

Theorem 8 GSVD
Let A be a mxXn(n 2 m) and B a m X p maltriz, then there ezist orthogonal matrices U (nx n)
and V (p X p) and a nori-singular m X m matriz X such that

A = X V.Dg.Ut (20)
B = X '.pg-v (21)

where
Dy = diag(ay,...,am), ai 20,

12



is a reclangular diagonal m X n matriz, and
Dp = diag(B,...,8,) ,Bi >0, q = min(m,p),
is a rectangular diagonal m X p matriz and
Prz 2B > By == =0 r=rank(B)

Proof: see e.g. [6] a

The elements of the set o(A, B) = {a,/f1,...,a,/B,} are referred to as the generalized
singular values of A and B. The theorem is a generalization of the SVD since o(4, B) equals
the singular spectrum of the matrix 4 if B = I,. In this paper, the case where n > m and
p > m will be of interest. In that case, remark that if U and V are partitioned as U = [U; Us}
and V = [V V3] where Uy, Uz, W1, V3 are m X n,m X (n — m),p X m,p x (p — m) matrices,
the GSVD of A and B can be written as

A=X"1.D,4.-U

B=X".Dp.v} (22)

where D, and D, are now square diagonal. This notation will be used from here on.
There exists an intimate theoretical link between the generalized singular value decompo-
sition of the matrix pair {A, B} and the generalized symmetric eigenvalue problem:

Lemma & : Let A and B be as in theorem 6. Then the generalized singular values are the
square roots of the generalized eigenvalues ¥ of the symmeltric eigenvalue problem :

A-A'.z2=+4B.B'.z.

The matriz X of theorem 6 contains the generalized eigenvectors and diagonalizes simuliane-
ously A.A* and B.B*.

For imore interesting properties, the reader is referred to [6].

4.2 Conceptual relations between the signal-to-signal ratio and GSVD

In this section, it will be demonstrated how the Generalized Singular Value Decomposi-
tion allows to characterize the signal-to-signal ratio of two given sequences of m-vectors
{ar}, {be}, k = 1,...,n with associated m X n matrices 4 and B. It is assumed that n > m
as is the case in signal processing applications. Often, one of the signals, say {ay} can be con-
sidered as the desired signal while the second one {b;} represents the undesired signal that in
some sense corrupts the desired one. The problem of interest then clearly consists in separat-
ing the desired part from the undesired signal. In quite some applications, examples of which
will be presented in section 5, the associated m x n matrix A is rankdeficient: rank(4) < m.
In this case, one has a physical motivation to restrict the attention to r-dimnensional sub-
spaces of the ambient space ( a recent rationale is developed in [12]; the literature covering
such rank-decision tests is enormous, including maxitum likelihood eigenvalue ratio tests {2},
Akaike’s Information Criterion ({1]), Rissanen’s Minimum Description Length Criterion {9},
Willems® recent results on complexity/misfit approximate wodeling [18] etc....) Once the rank
r has been fixed, the question of interest is to find the optimal r-dimensional subspace, in
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which the desired signal sequence {ax} can be optimally distinguished from the corrupting
sequence {bs}. It will be shown that this is equivalent to determining the maximal minimal
signal-to-signal ratio of the two vectorsequences. In order to avoid unnecessary complication,
caused by possible rank deficiency of B, it is assumed from now on that B is of full row rank
i.e. rank(B) = m. If B is rank deficient with rank(B) = r < m, the vector sequence {bx}
has no energy in the orthogonal complement of the r-th left principal subspace of B. For
every direction ¢ in this orthogonal complement, the signal-to-signal ratio R[4, B} is infinite
if EJ[A] # 0. Such directions can easily be dealt with in advance by some kind of deflation-
orthogonalisation procedure applied to the column spaces of the matrices A and B. In-a signal
processing context however, the full row rank situation is the generic one. For these reasons,
the possible rank deficiency of B will not be considered in detail in our further discussion.
Two eleinents will be used : The invariance of the signal-to signal ratio distribution under
non-singular transformations (theorem 2) and the generalized singular value decomposition
of the nair of m X n matrices 4 and B,

eacem T Given two sequences of m-vectors {ag} and {bp}, k = 1,...,n with associated
m X n matrices A and B (n > m) where rank(B) = m. Consider the GSVD of A and B as
in (22):

A=X"1.Dy U}

B=Xx"! -Dpg. V]‘

Define the linear transformation:
T=Dg-X : (23)

and the transformed vector sequence {ck} via ¢x = T .ax with associated m X n malriz C' =
T - A. Then:
Eq‘[C] = RQ[A’ Bl (24)

where (1)
' *q
T TR (25)
I(T=1) - gli
Proof: This theorem is an immediate consequence of the invariance theorem 2 for the signal-
to-signal ratio. Indeed, with ¢’ given by (25), we have:

RQ[A, B] = Rqr{T <A, T Bj
= Rq'[DBl Dy 'Uztavlt]
= Eg{Dg'-D4-Uj)

because the oriented energy distribution of the sequence V{ is isotropic : Eg (V] = 1. O
E 1 N RS

Theorem 7 links the signal-to-signal ratio with the oriented energy distribution in the following
way. A linear transformation 7' transforins the vectorsequence {b.} into an isotropic sequence
with unit energy distribution. By the invariance theorem 2, it is guaranteed that the signal-
to-signal ratio distribution is preserved . Moreover, all information on the signal-to-signal
ratio Is now available in the oriented energy distribution of the transforimed sequence T+ 4 =
D' - Da- U{. The sequence T - B has become isotropic. Hence, the linear transformation
T could be considered as some kind of ‘whitening’ operator, an idea which is conunonly
applied in statistics (in e.g. minimum variance and Markov-type estimators) [7}. But, the
most important observation is that, by the very choice of the linear transformation T as

14



T = Dg'+ X , the resulting sequence Dgl - D4 - U} has precisely the form of a singular value
decomposition, in which the left singular matrix equals the identity matrix, This allows to
adapt theorem 4 and corollary 1 directly to the properties of the signal-to-signal ratios in a
straightforward way:

Corollary 2 Consider the GSVD of the matriz pair A and B as in (22). Assume that
the generalized singular values are ordered in non-increasing order of magnitude: (a;/B;) >
{qit1/Pis+1). Denole by & the i-th row of the matriz T = DBIX and by z} the i-th row of the
matriz X. (Clearly t; = (1/8;)2¢). UB is the unit ball. Under the assumptions and notations
of theorem 7:

1. For q = tif||ti}f, R{A, B] = (ai/B:)? (26)
2. Ifq= 3" i t}, then

Ry(A, B} = Yy - aifBi)?

e e
3. max  yp R[4, B] = By gy i[4,: B] = {ar/B1)? (28)
4. ll‘lianUB = RQ[A,B] = R;m/“gm”{fi;B} = (am/ﬂm)2 (29)

Proof: Properties 1/ and 2/ follow by straightforward substitution while properties 3/ and
4/ are special cases of property 2 and of the extremal relationships between oriented energy
and the singular value decomposition (theorem 4 and corollary 1). n]

First remark that &;/[}t:]] = zi/|lz:ll. As is expressed in property (26), the GSVD not only
provides the extrema of the signal-to-signal ratio but also the directions in which those ex-
trema occur; These are simply the rows of the matrix X . Hence the extreme directions of
oriented signal-to-signal ratio need not to be orthogonal. The minimal and maximal signal-
to-signal ratios and direction can be found in properties (28) and (29). If the coordinates of
a vector ¢ are known with respect to the basis generated by the rows of the matrix T, then
the signal-to-signal ratio follows immediately from the generalized singular values (property
(27} } Let us now consider some optimal and worst case signal-to-signal ratios.

Definition 5 Maximal minimal and minimal maximal signal-to-signal ratio
The mazimal minimal signal-to-signal ratio of two m-vector sequences {a} and {b } k =
L,...,n over all r-dimensional subspaces (r < m < n), denoted by MmR[A, B, r], is defined
as:

MmR{4, B,r| = Jnax qrggt R,(A, B (30)
The minimal mazimal signal-to-signal ratio, mMR(A, B, ] over all r-dimensional subspaces,
is defined as:

mMR[4, B, | = Qig.l;{lm max R,[A, B) (31)

The idea behind these definitions is the following: For a given subspace Qr, there is a certain
direction ¢ in Q" for which the signal-to-signal ratio of the two vector sequences {a;} and
{bx} is minimal. This direction corresponds to the worst direction g in the subspace Q" in
the sense that the energy of 4 is difficult to distinguish from the energy of B. This worst case
of course depends upon the subspace Q.. Among all r-dimensional subspaces, there must he
at least one subspace where the worst case is better than all other worst cases. Hence the
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maximal minimal signal-to-signal ratio is in some sense the best of all worst cases : In the
corresponding maximizing subspace, it can be guaranteed for all directions that the energy of
A is at least MmR[A, B, r] times larger than that of B. A similar explanation can be derived
for the minimal maximal signal-to-signal ratio: it is the worst of all best cases considered
over the r-dimensional subspaces. Remark that 3 elements are involved in the definition of
MmR{A, B, r|(resp. mMR[A, B, r}}:

¢ Some motivation must be available to determine a suitable r.

e In each possible r-dimensional subspace, there is a worst (best) direction g that mini-
mizes {maximizes) R (4, B]

¢ That r-dimensional subspace is selected in the ambient space R™ where the worst (hest)
case is best (worst).

"The results of theorem 7 and corollary 2, lead immediately to a computational procedure to
compute MmR[A, B, r] and mMR[4, B, r}, based upon the GSVD of the matrix pair 4, B and
the fact that the signal-to-signal ratio of two signals is invariant under linear transformations
(invariance theorem 2).

Corollary 3 Consider two m-vector sequences {ax},{bx} *k = 1,...,n, associaled m X n
mairices A and B and integer number 0 < r < m < n Consider the GSVD of A and B as in
(22):

A=X1.D,.U}

B = X_I-Db-Vlt

Let {a;/B;) be the generalized singular values of A and B, arranged in non-increasing order.
Denote by z} the i-th row vector of X. Then :

MmR|[A, B,r} = a. /8, The corresponding subspace is generated by the first r row-vectors
fe1:-2,] of X. ' '

mMR[A4, B, r] = dmeci1/Bm-ry1 The corresponding subspace is generated by the last r row-
vectors {Tom-rp1 - 2m) of X.

Proof: Define the linear transformation T' = Dgl « X. Use the invariance theorem 2 and
theorem 7, relating the signal-to-signal ratio to the oriented energy, in order to find that:
MmR|A4, B,r] = i ED3Y.-D. - UL vt
PR B )= R pe g PrlPB D Ui T
and

MmR{4, B,r| = Eg[Dg'- D4 U, V{
q B 1

min nmin
(T‘”'Q"C'R"‘ Q'E(T_')'Q'
From the Courant-Fischer minimax and maximin characterization properties (Corollary {, 5/
and 6/), the result follows after back transformation with 7! = X~'. Dp. O
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4,3 Numerical considerations

Given an m x n matrix A with n > m and a px n matrix B, it can be proven that there exists
a non-singular n X n matrix X such that both X -(4-A%)-X* and X -(B-B')- X" are diagonal i6,
p. 314). The great value of the GSVD is that these diagonalizations can be achieved without
forming the Granunians 4- A® and B. B, hence avoiding the numerically dangerous implicit
squaring, which can lead to a loss of accuracy caused by the limited machine precision. As
ohserved in [6], the proof of the GSVD theorem, which makes use of the C-§ decomposition,
is constructive since it can be shown how to stably compute the C-S decomposition [16]).
Another possible implementation is considered in [8].

Moroever, the GSVD provides a structured algorithm to analyse the oriented signal-to-
signal distribution of two vector sequences. It computes directly the several extrema {the
generalized singular values) but also the corresponding extremal directions (the rows of the
matrix X). Of course, any strategy that first orthonormalises the vector sequence {5} via
a linear transformation T and then considers the oriented energy distribution of the matrix
T- A will work for well conditioned vectorsequences {h;} As an example, consider first the R-Q
factorization of the matrix B, define T = R~! and then study the oriented energy distribution
of R™!. A by computing its singular value decomposition . This requires a R-Q factorization,
a matrix inversion and a singular value decomposition. Moreover, several additional ma-
trix matrix multiplications are necessary in the backsubstitution., The big advantage of the
GSVD is that it replaces these three algorithms and matrix multiplications by one, which is
numerically reliable and can more easily handle the near-singularity case, where B is ”almost"”
rankdeficient. '

5 Applications and examples

In this section, several examples are presented in order to illustrate the practical significance of
the above derived framework of oriented energy and oriented signal-to-signal ratio. In section
5.1., the oriented energy distribution and the technique of prewithening are considered. In
section 5.2., the concept of total linear least squares is formalized using the complexity fmisfit
approximative modeling framework of [18] and the oriented energy concept. In section 5.3.,
it is shown how a lot of factor analysis like modeling problems lend themselves very naturally
to a formulation in terms of oriented signal-to-signal ratios.

5.1 The oriented energy distribution of stochastic vector sequences.

Consider a stochastic process, consisting of a m-vector sequence {bx},k = 1,...,n. The
process is assumed to be ergodic and the elements b;; of the associated matrix B are inde-
pendenlty distributed. Under these assumptions, the Grammian B . B /n is an estimate for
the second-order joint moment matrix of the vector stochastic process and for increasing n ,
it will tend to become a synunetric Toeplitz matrix: By applying theorem 5, one can replace
the actual time realization contained in the matrix B, by a sequence of m m-vectors having
the same oriented energy distribution. As a special case, assume that the components of
the vector process are independently and identically distributed with first and second order
woments my and m2. Then the covariance matrix will have the following specific synunetric
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Toeplitz structure :

ng mf ﬂ'lf e 'HI%

22 2 ?

B. Bt =~ n my my My ... Yy
X TR TR
m; mj my ... my

The nice fact about this matrix is that its eigenstructure is straightforward to compute: There

are m — 1 eigenvalues n-(m?% —m?2). There is one largest eigenvalue 7y = n-((m—1)-m{ + m}]

with corresponding eigenvector v, = 1/y/m(1 1---1)'. Via the equivalence theorem 5, a

compact presentation of a stochastic sequence with the above mentioned characteristics, is

the vector-sequence: ’
w0y Up-0p Ui+ O

where u; = 1//m(1 1.++1) and the vectors uj, j = 2,. .., m are an arbitrary orthonormal set

of vectors orthogonal to u;. Moreover, oy = \/n[(m - )m} 4+ m}] and o; = y/n(m} — m}),
j = 2,...,m. In words, the oriented energy distribution of a stochastic sequence which is
ergodic and which has identically independently distributed elemenents, is isotropic except for
one principal direction along the direction (11 ... 1) in the first orthant in which the energy
is larger. Clearly, it is in this direction that this stochastic disturbance sequence will have the
largest corrupting influence on any 'exact’ signal sequence. A special case is of course obtained
if the first moment m; = 0. In this case, the second order joint moment matrix reduces to
a diagonal matrix and the oriented energy distribution is isotropic. This is the case in a lot
of engineering applications, where it is assumed that the noisy vector sequence consists of
independent identically normally distributed zero mean random variables. This assumption
is quite natural if the central limit theorem is invoked to argue that the macroscopic effect of
noise is due to the superposition of a lot of independent microscopic causes, and if all offsets
are eliminated a priori.

Now consider the situation of an ’exact’ m-vector signal contained in the m x n matrix
A, which is of rank r < m < n and assume that only the m x n matrix ¢ = A+ B is
observable, where B is some stochastic noisy sequence, with a priori known (for instance from
experiments) second order statistics, that are summarized in an equivalent m-vector sequence
of m vectors, that are the columns of the matrix Uy.5;, where Uy is m x m orthonormal
and Sy is m X m positive definite diagonal. Moreover, assume that the row spaces of A and
B are orthogonal (which under mild conditions {5] is the case for large overdetermination
n/m). Then, it is not difficult to see that the generalized singular value decomposition of
the matrix pair {4, U;.5) or equivalently the singular value decomposition of the matrix
Sy '.U§.A will provide the subspaces of maximal minimal signal-to-signal ratio, which are the
subspaces in ‘which the vector sequence 4 can hest be distinguished (in the average) from the
perturbing influence of the fuzzy sequence B. The generalized singular values are appropriate
tools to make meaningful decisions for the correct dimension, hecause the transformation
5;1.U¢ has (under mild conditions) caused a noise threshold in the singular values equal
to 1. It can be shown in a straightforward way that this technique is nothing else than
the ’classical’ prewhitening technique, in which the data are transformed via a so-called
Mahalanobis transformation [10] in such a way that the noise covariance matrix equals the
identity matrix. Hereto, assume that . is the measurement sample covariance matrix and
that £, is the noise covariance matrix. Then, the problem to be solved is the generalized
symmetric eigenvalue problem

det(T, — 7.53) =0
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The whitening transformation then consists in converting this expression into the eigenvalue
problem, under the assumption that ¥ is non-singular :

_L 1
det(%, 2.5.8, 2 —yI) =0

i
where Ef is any symumetric square root of £;. Via lemma 5 this establishes of course the
link with the oriented signal-to-signal ratio framework and the generalized singular value
decomposition. In a certain sense, these are even more general, since even {alinost) rank
deficient %y can be allowed without numerical complications.
Another example is the use of GSVD in prewhitening the data for the estimation of
parameters in a general Gauss-Markov linear model (7]

5.2 Total Linear Least Squares

In [18] a conceptual framework is developed in which the modeling problem is translated into
an approximation context based upon the paradigm of low complexity and high accuracy
models. The key concepts in this approach are the complexity of a model and the misfit
between a model and the observations. Approximate modeling then consists of implementing
the principle that either the desired optimal model is the least complex one in a given model
class which approximates the observed data up to a preassigned tolerated misfit, or that it
is the most accurate model within a preassigned tolerated complexity level. A particularly
simple example is the total linear least squares approach {6,15] which consists of fitting a linear
subspace to a finite number of points . Consider an m X n matrix A { n > m } containing n
measurements on a m-vector signal. Denote by qa; its i-th column. Let Q" he a r-dimensional
subspace of R™ then, the complexity is defined as :

c(r): Q" - C=[0,1):¢(r) = dim(Q")/m = r/m

Suppose that we are looking for linear relations among the m measurement channels of the
form z*.A = 0 Define the error between the data and the law zt.4 = 0 as:

(3 Zii(2ta:)?)
lizi

and the misfit associated with the r-dimensional subspace Q" as:

d(4,z) =

€(4,Q") = ﬁagsd(A't)

Then, we have the following theorem [18] :

Theorem 8 Let ;};A = U.L.V* be the SVD of the m X n matriz A of rank s (s < m < n)
with singular values oy > --- > o, > 0 and left singular vectors ui,i = 1,...,m. The unique

r

optimal approzimate model Q" with complezity ¢(Q") = = and misfit (A, Q") = 0,41 is an
r-dimensional subspace where :

¢ If c,qm is the mazimal admissible complezity, then :
= ifint{m.cygul =0, r=0and Q" = 0.
- ifintfmec gl 2 5,0 =5,Q" = span o {A]
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; — I r _ ok
- ifoy > aillt[m.cadlni-ﬂ’r =kQ = SU

e If € ts the mazimal tolerated misfit, then :
- if gl Z O T = Qand QT =0
~ if o) < 0T = 8,Q7 = span (4]
~ if ok > €o) 2 Okp1, T =k and Q7 = Sk
Proof : see [18] 0

In this framework of approximate modeling, the appropriate rank r is determined from either
an a priori fixed admissible complexity or a maximal tolerable misfit, Observe that these
concepts readily reduce to the framework of oriented energy in that :

{d(A,z)]z = E.{A]

€ A,Q")F = minmax Ej[4

(4, Q) = myinmax Bol4]
where p = m — r. Hence the misfit is nothing else than a subspace of minimal maximal
oriented energy . The authors conjecture that also the dynamical case for the identification

of state space models developed in (18] can be translated in the oriented signal-to-signal ratio
framework.

5.3 Factor-analysis like subspace methods

A lot of identification and modeling problems can be formulated in a factor-analysis like
framework: A

Given noisy measurements of an m-vector process which can be modeled as :

z(t) = Q&) . s(t) + ~n(t) r<m

mxl1 mxr rxl mx1

where Q(8) contains the r linear independent so-called factor loadings, s(t) are the source
signals and n(t) are the corrupting noise signals. The subspace generated by the columns
of Q(8) is called the factor loading subspace which is in one sense or another parametrized
by unknown parameters 6. The task is then to estimate the parameters @, given a priori
knowledge of the second order statistics of the measurement noise and varying degrees of
knowledge concerning the sensor response function.

Factor analysis is not that well reputed in the statistical community. The reason is that the
loadings are undetermined and that only the subspace that they generate is well determined
under appropriate conditions on the noise. Classically, attempts were undertaken to resolve
this problem by fixing so-called structural zeroes, which corresponds to fixing a coordinate
system in the loading subspace. The determination of the remaining non-zero components
however frequently leads to an ill-conditioned parameter estimation problem, which explains
(at least heuristically) the bad reputation of factor analysis. However, in modern applications
(so-called subspace methods), the indeterminancy is immaterial hecause the properties (the
parameters 8) are in a one-to-one correspondence with the generated subspace : Any set of
vectors that generates a basis for this subspace, will allow to determine the parameters 8 : a
precise choice of a basis in that space is not important.

We will now present 3 applications : high resolution spectral analysis and sensor array
processing techniques, the separation of fetal ECG and maternal ECG and realization of
dynamical systems.
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5.3.1 High resolution sensor array processing.

As is derived in [10,11] a factor analysis model can he used to model the arrival of narrowband
signals impinging on an array consisting of sensor pairs that are separated by a fixed distance
4. With m sensor pairs and when the signals from sensor pair i are zi{t) and y;(t), the
following madel is appropriate when d < m narrowband sources s;(t) are present [10,11}:

zt) = A . s(E) 4 nl(t)
mx1 m X d dx 1 mx1
y(t) = A - st ny(e)
mx 1 m X d dx d dx1 mx i

The d-dimensional columnspace of 4 is generated by the so-called steering vectors while
the matrix { is a complex diagonal shift matrix that contains information on the phase
shifts between the pairs of sensors from which the direction of arrival can be estimated.
Schematically, this can be achieved as follows : Define z{t) as

#(t) = { fa ] (0 + na(e)

Now store n consecutive samples 2(i),i = 1,...,nin a 2m X n matrix Z, n consecutive samnples
(i) in a d X n matrix § and the noise in a 2m X n matrix N

A
s[4 ]sem

If the second order noise statistics of n,(t} are known, one can obtain an equivalent m-vector
sequence of m vectors U,,,.Z,, from the SVD of the sample covariance N.Nt,

Using the insights of {10,11], one can then prove that the best approximation for the
loading subspace follows from the maximal minimal signal-to-signal ratio and corresponding
subspace that can be estimated from the GSVD of the matrix pair {Z,UnZm] The nunber
of sources can be estimated from the generalized singular values via rank determination
tests [1,2,9,10,12] while the imposed shift-structure of the corresponding subspace of maximal
minimal signal-to-signal ratio can be exploited to determine the angles of arrival of the signals,
hence the location of the sources. :

5.3.2 Realization of dynamical systems.

Realization theory of dynamical systems reduces to the determination of the matrices of
a state space model for a linear finite dimensional systems starting from {possibly noisy)
measurements of its Markov parameters. As it is well known, the relation between the state
space model with states z;, inputs u; and outputs y

Tppr = A . y + B .oy,

nxl nxn nxi nxm x1
w = ¢ .

Ix1 Ixn nxl

and its Markov - parameters, is H, = C.A%"1, B, Classically, the realization of the model
from the H} proceeds by the following algorithin (there are several variants {4] and references
therein) :
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e Construct a sufficiently large block Hankel matrix with the Hy.

e Determine its rank via SVD. The rank decision results in an estimate of the minimal
state ditnension n

¢ The matrices 4, B , C are then realized up to a similarity transformation:

— B and € can be read off from certain block- and column rows in the SVD

— The matrix A follows from the shift invariant structure of the column space of the
block Hankel matrix.

When the measurements are noisy, the following novel realization framework, based upon the
oriented signal-to-signal ratio concept, is appropriate to determine an estimate of the matrix
A up to a similarity transformation.

Construct a sufficiently large block Hankel matrix H and partition it in two

blocks Hy and H»
_ | |
u= )

The reader may now wish to verify that the best approximation for the appropriate shift
invariant subspace follows from the GSVD of the matrix pair |H1, Ha2] . The generalized
singular values allow to estimate the minimal order n. The corresponding subspace of maximal
minimal signal to signal ratio contains information on the minimal poles of the system via an
imposed shift structure [4] '

5.3.3 The separation of fetal ECG from maternal ECG.

In this hiomedical application, the cutaneous measurements (typically 6 to 9 channels) are
contained in a vector m(t) which is modeled as :

m(t) = T.s(t) + n(t)

where the signal s(t) corresponds to the sources (electrical activity of the heart of mother and
fetus), n(t) is the noise, and the columns of T are the so-called lead vectors (typically 2 for
the fetus, 3 for the mother)(14,19]. Under certain conditions (orthogonality of source signals,
certain statistical conditions on the noise, placement of electrodes}, it can be verified that one
singular value decompasition suffices to determine the factor loading subspace generated by
the Jead vectors of the fetus. This allows to project the measurements into this subspace, hence
eliminating almost completely the maternal ECG. The conceptual framework is provided by
the oriented energy distribution of the vector signal m(t). In {17), the same problen is solved
using an approach that can be interpreted in the oriented signal-to-signal framework. By
visual inspection, two matrices A and B are constructed from the measurements m{t). A
window in time is selected visually so that A contains only fetal ECG complexes. Another
window is chosen so that B contains only maternal ECG complexes. The loading subspace
generated by the fetal lead vectors is then nothing else than the subspace of maximal minimal
oriented signal-to-signal ratio. This subspace and its dimension can he computed from the
GSVD of the matrix pair {4, B].
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6 Conclusions

Two important concepts have been defined : The oriented energy distribution of a vector
sequence and the oriented signal-to-signal ratio of two vector sequences. For the fornmer, the
singular value decomposition is the appropriate quantification tool while for the latter the
general singular value decomposition applies. Both allow a numerically robust implementa-
tion. Conceptually important properties have been analysed. With some clarifying examples,
the practical significance of the framework in the formalization of so-called subspace methods
has been demonstrated. Future work will concentrate around a further theoretical develop-
ment of the concepts and research for fast algorithms for the required factorisations including
up - and down - dating,
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