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Abstract
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1 Introduction

In recent years, the {generalized) singular value decomposition has become an extremely valu-
able instrument in the analysis and the solution of problems in mathematical engineering. In
most applications, the SVD provides a unifying framework, in which the conceptual formula-
tion of the problem, the practical application and an explicit solution that js guaranteed to be
numerically robust, are derived at once. In this way, the SVD has become a fundamental tool
for the formulation and derivation of new concepts such as angles hetween subspaces, oriented
signal-fo-signal ratio’s , canonical correlation analysis,... and for the reliable computation of
the solutions to problems such as total linear least squares, realization and identification of
linear state space models, source separation by subspace methods etc.. In this article, a sur-
vey will be presented containing the main results of still on-going research activities at the
ESAT - laboratory of the Katholieke Universiteit Leuven during the past decennium. Several
colleagues have contributed to the results reported in this paper. Besides the authors, let us
mention Dr.Ir.Jan Staar, Dr.Ir.Sabine Van Huffel, Ir. Jan Vanderschoot, Ir.Dirk Callaerts,
Ir. Marc Moonen, Ir. Jan Swevers, Ir. Lieven Vandenberghe and Ir. Piet Van Mieghem .
References io the work of each can be found in a chronological list at the end.

In a first part of this article, several fundamental concepts are defined and their properties
discussed in terms of the (generalized) singular value decomposition : Besides the technique of
Total Linear Least Squares, a fundamental framework is swinumarized which allows to formalize
'factor-analysis-like’ problems in terms of oriented signal- to-signal ratios. The computational
toolis the generalized SVD which is also the appropriate instrument to quantify the concept of
canonical correlation analysis and the notion of angles between subspaces. In this article, well
known properties of the (G)SVD will only briefly be sununarized, were it only for notational
convenience. However, we present also a survey of several useful original insights in the
singular value decomposition structure with respect to backward error analysis, condition
numbers, sensitivity and the influence of noise.



In a second part of the survey, a wide variety of applications from a broad spectrum of
scientific disciplines will be cited and illustrated : mechanics (Moments of inertia) , electrical
network analysis (the conditioning of reference node choice), bio-medical engineering (signal
source separation of maternal and fetal ECG), realization of systems from impulse response
measurements, identification of industrial processes, etc....

Only the main concepts and insights will be emphasized throughout without paying atten-
tion to details, for which the interested reader is referred to a chronological list of references
at the end.

Notations and abbreviations

R™ vector space of real m-tuples.

Amxn matrix 4 with m rows and n columns
A' matrix transpose

A matrix 4 with first Tow omitted

A matrix A with last row omitted

A* first omit, then transpose

A = diag(ay,.. o ¢p) If Ais a m x n matrix and p = min(m,n) then 4 = {ai;) is diagonal
and a;; = q; for i = 1, vy P

R(A) Range of A : R(A) = {yly = Az for some = }

N(A) Null space of 4 : N(A)={z| Az =0}

r(4) rank of A; r(A) = dim|R(4)]

span{vy,...,v,} vecior space generated by linear combinations of the vectors v;,i = 1,..,7
{l A% Frobeniusnorm of 4 = Yt X af; w.here Ais an m X n real matrix
Il All2 2-norm of 4 = maxXy(i=1 || Az |} where 2 is an n x 1 real vector

fz]lf = 3%, 2? where z is an n x 1 real vector

A ® B Kronecker product (section 5.6)

ADB Khatri-Rao product (section 5.6)

SVD singular value decomposition

GSVD generalized singular value decomposition

TLLS total linear least squares

LLS linear least squares

All numbers, vectors and matrices are real unless explicitly stated otherwise, Coluinn vectors
are denoted by {possibly indexed) small letters while row vectors are denoted as the transpose
of a columin vector. An m x n watrix ¢ is called orthonormal (m - n) ittty =p,.



2 The (Generalized) Singular Value Decomposition

In this section, the theoreins stating the existence of the singular value decomposition are
presented for notational convenience only. For a proof and computational requirements, the
reader is referred to literature [63]. Moreover some well known classical results that constitute
part of the fundaments of the applications to be reported, are summarized.

2.1 The Singular Value Decomposition and its properties

Theorem 1 The singular value decomposition for real matrices.
If Ais am x n real matriz, then there ezist real orthogonal matrices

U:[UI Ug + ‘L!m]
and
V=1{v vy -+ vy
such that
U'-4.V = diag(oy, 03, -, 0,)
where

p = min{m,n)
Gi> 0120 i=1,.,p

The o; are the singular values of A and the vectors u; and Vi are respectively the { — th lefi
and the i — th right singular vector,

The set {u;, 01, v;} is called the i — ¢4 singular triplet. The singular vectors (triplets) corre-
sponding to large (small) singular values are called large (small) singular vectors (triplets).

The SVD reveals a great deal about the structure of a matrix as evidenced by the following
well known corollaries :

Corollary 1 Let the SVD of A be given as in theorei I and
O1 203220, >0, =ee=0p, =10
then
(1)- Rank property
r(A)=r and g((:)): ;f’;:{{;’;ﬁl':.‘,;: }“n}
(2). Dyadic decomposition

,

¢

A= Zu;-o;-vi
=1

{3). Norms
I AllE=of +--- 4 o
A flz= o



The rank property is one of the most valuable aspects of the SVD. The singular values can
he considered as quantitative measures of the qualitative notion of rank : Algebraically, a
matrix has a well-determined rank that js a nonnegative integer. However, in practice, the
eflects of rounding errors and fuzzy noisy data make numerical rank determination a non-
trivial exercise. The dyadic decomposition provides a canonical description of a matrix as a
sum of r(A) rank-one matrices of decreasing importance, as measured by the singular values.
The dyadic decomposition is in a lot of applications a rationale for data reduction, The
three preceding results-combine in the following (by now classical) quantification of near rank
deficiency of a matrix, for a proof of which the reader is referred to [53] :

Corollary 2 Let the SVD of the m x n real matriz A be as in theorem I with r = r(d) <
p = min{m,n} and define :

k
Aj :Zu;-a;-vf with k< »
=1

then
min || A= B =l A - A4y o= opsy
r(B) =k
min | A= B =l A= Ay o= of bt o
r{B) =1k

This important result is the basis of a lot of concepts and applications such as total linear least
squares, data reduction, image enhancement, dynamical system realization theory and in all
possible problems where the heart of the solution is the approximation, measured in 2-norm
or Frobeniusnorm, of a matrix by one of a lower rank, Many more valuable properties of the
SVD, including existence proofs, computational requirements and numerical considerations,
sensitivity results, conditioning etc.. can be found in the modern bible of numerical analysis
[53] and the references therein. We also refer to section 5 for some additional useful insights
into the SVD structure.

2.2 The Generalized Singular Value Decomposition

Theorem 2 The generalized singular value decomposition for real matriz pairs.
If A is a m X n matriz with n c2mand Bisamxp matriz, then there ezist orthogonal
matrices U (n X n) and V (p x p) and an invertible X (m x m} such that -

X-A.U=Dy = diag{a;) o; >0 i = 1,.,m

and
X-B.V =Dy = diag(f;) B; >0 i = L,..,¢ = min(m, p)

where
Br2pB: 2> >8, 2 Pryr = =0 =0 r=rank(B)

For au existence proof that is at the sawe time constructive, we reler to [53,p.319]. Obviously,
the generalized singular value decomposition (GSVD) is for a pair of matrices what the SVD
is for one matrix. Remark that the GSVD reduces to the SV in the case that B = [,.. The
elements of the set

a{A, B) = {a, /54, cee /3,

o]



are referred to as the generalized singular values of A and B . In some applications, it is neces-
sary to order the GSVD in a different way, namely in non-increasing order of the generalized
singular values. The generalized singular values corresponding to the Bi = 0 are infinite.
They are considered to be equal and come first. This alternative makes a lot of sense in the
oriented signal-to-signal framework of section 4.1.

Tor inore details concerning the GSVD, the reader is referred to [53] [54] and the references
therein.

3 SVD and GSVD algorithm

Since there exists an intimate relationship between the SVD and the symmetric eigenvalue
problem, at first sight, eigenvalue algorithms could be used in order to compute the SVD, How-
ever, the explicit squaring which is the first step when converting the SVD computation into
a symmetric eigenvalue problem , can cause a considerable loss of numerical precision, (worst
case half of the machine precision) especially when the matrices involved are ill-conditioned.
An engineering example of this effect, which can have serious implications, is provided in
section 6.1. The first fully reliable SVD routine to circumvent this numerical caveat , was the
resulf of the pioneering work in the sixties of Gene Golub at Stanford University, who applied
orthogonal transformations in a by now standard SVD algorithm, readily available in most
nunerical software packages. Other possible approaches include the Lanczos method, espe-
cially for large sparse matrices, all of which is described in the modern bible of numerically
robust linear algebra [53] and the references therein. In recent years, quite some effort has
been spent to one-sided and two sided Jacobi methods, because they are serious candidates for
parallel implementation . Recently, there has been an increasing interest to the computation
of the generalized singular value decomposition. As an analogy with the SVD, there is an
intimate relation between the Generalized Singular Value Decomposition and the generalized
symunetric eigenvalue problem. Numerically reliable software will avoid the explicit squaring
of the matrices in converting the GSVD problem into a symmetric generalized eigenvector
problem. As an example, consider the following small GSVD problem [51]

1 u 0 e 1 ~1
A = B =
[ 1 0 p } { ¢ 1 1 J
with ¢ > ¢, > 4? and ¢ > €m > € where ¢, is the machine precision. By some straightfor-
ward calculations, one can show that the generalized singular values of the matrix pair [ A,

B ] are given by :
a = (4 24-p )1/2 B :__( 2{1+4¢%) )1/2

+§!’ +2¢2 44 p? 4262
— 1o /2 — 2 1/2
Qg = (2_{_”2) / ﬁz — (2_’_“2} /

However, when the Grammian products A.A* and B.B* are explicitely computed as a first
step in the computation of the GSVD, already a lot of information is tost, and the result will
even depend upon the ordering of the terms in the computation of the inner product;

14 pu? 1

¢ _
AA—[ 1 14 4t

. b3 . . 1
} finite machine precision { ) : }



For the inner products in B.B!, one has to compute the inner product
I p

[e L et -1 =(*+1)-1=0 (casel)
=+ (1-1)me® (case2)

Then :

2 0 2 €
. B e 8. B!
cascI.BB~[0 2} case2.BB~[62 2]

This leads to the generalized singular values, both for case 1 and case 2:

ay = \/2/2 ﬁ)_ = \/2/2
ay =0 ﬂle

The use of orthogonal transformations is advocated everywhere as much as possible. How-
ever, the implementation of reliable software for GSVD is presently still under investigation
although several results have already appeared in lterature. [53) [61]

At the ESAT lab in Leuven, several alternatives to the above mentioned algorithms have
been investigated. The main motivation is that in a lot of engineering applications, the general
purpose SVD algorithm (complete decomposition, full machine precision) could be replaced
by other algorithms with less stringent specifications. : '

- A lot of applications only require the computation of part of the singular spectrum
(realization theory and data reduction : dominant singular triplets, source separation :
intermediate triplet, total linear least squares, Pisarenko-type spectral estimation : smallest
singular triplets ). The storage reduction obtained by storing only the dominant triplets
instead of the full matrix can be considerable e.g. in image processing despite the relatively
heavy computational requirements.
- Moreover, very frequently the available data are noisy (industrial environment typically 10
o 1), indicating that a full precision SVD makes no sense.
- A third specification is the adaptive computation of the SVD of matrices that are
time-varying, either elementwise or by adding and deleting coluinns and/or rows.
- Finally, in a lot of applications the matrices are very structured ( (block-) Hankel or -
Toeplitz, circulant, ... ) so that it could be hoped that structure expoiting algorithms
perform better (faster) than the standard full size SVD algorithm, Moreover, considerahle
storage gain can be achieved if the elements of the structured matrix could be stored
without redundancy, hence requiring matrix-vector multiplication based algortihms.

Descriptions of the following alternatives can be found in the indicated references:

1/ Results on the power niethod and the Chebyshev method for the SVD can be found in {15}
[21]. One of the important observations ( at least from didactical reasons ) is that the
Chebyshev method is nothing else than the eigenvalue power method applied to a certain
matrix, constructed from the original one. This allows to translate all results that were
derived for the SVD power method in (15] to the Chebyshev algoritlun in (21), including
convergence criteria, deflation strategies, accelerations algorithms and convergence level
control rules that allow to compute the SVD up to the required nuwerical precision.

2/ An adaptation of Golub’s full size SVD for the case that only the smallest singular
triplets are needed, is described in (36] [49]. By a careful analysis Lhe computational
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requirements can be reduced in such a way that the PSVD algorithn (partial SVD) can
be 3 times faster than the classical one, while obtaining the same accuracy., Moreover, in
(49] a comparison can be found between 4 different methods to compute the null space
of an approximation of a given mpatrix in the sense of total linear least squares {section
4.2) . Chebyshev iteration [21}, inverse iteration , Rayleigh quotient iteration and the
Lanczos method have been compared with respect to their computational efficiency in
total linear least squares computations. The conclusion is that inverse iteration is the
most promising iterative technique for solving generic TLLS problems of known rank.
Moreover, the direct methods (Golub’s SVD and PSVD) have also been compared
with the iterative ones and several potential applications have been investigated [49]
(parameter estimation, subset selection, discrete deconvolution).

3/ Finally, the one-sided Jacobi method has been studied in relation to_ the problem of
adaptive computation of the SVD of a matrix containing measurements on the fetal
and the mother ECG [22] [23] [29] [43]. As the measurements (6 to 9 channels) enter
at a frequency of 250 Hz, the SVD is updated with orthogonal Given’s rotations as to
minimize the Frobeniusnorm of the off-diagonal elements. Convergence and speed of a
possible implementation are studied . Also the implementation on a TMS-320 signal
processor has been tested and has been shown to be feasible for real time applications,

4 Some fundamental geometric concepts based on (G)SVD

In this section, we pay some attention to results that are important from the conceptual
as well as from the application point of view. First, we summarize the results on a frame-
work that is suited to study factor-analysis-like (subspace) methods (section 4.1). In section
4.2., we summarize the rationale behind the total linear least squares approach for solving
overdetermined sets of linear equations while in section 4.3. the relation between canoiical
correlation , principal angles between subspaces and the generalized SVD is established.

4.1 Oriented energy and oriented signal to signal ratios

In a wide variety of systems and signal processing applications, vector sequences are mea-
sured and analysed. Whenever linear models are used to ’explain® the measurements, one
is interested in their fundamental characteristics, which are their complexity (the rank of
certain matrices) and the parameters describing the model. These parameters can often be
extracted from certain subspaces, of which the dimension is a measure for the complexify of
the model. Hence in identifying linear models from noisy data, one is confronted with two
basic non-trivial problems :

- the meaningful estimation of a rank
- the reliable computation of a corresponding subspace.

It is obvious that the technique of the (generalized) singular value decomposition is very ap-
propriate to describe and compute both ranks and subspaces. Examples can be found in a
wide variety of applications : Sets of linear equations (total linear least squares [49] [53] (sec-
tion 4.2) ), the identification of factor-analysis-like models (rotational invariance techniques
[63] , separation of MECG/FECG [29] [43] {50} {65] (section 6.3) ), realization of linear state
space models from impulse responses [1] {3] [17] [40] [48] (section 6.4) and identification of



state space models from noisy input-output measurements via canonical correlation analysis
[47] (section 6.5.)

The recent introduction of the fundamental concepts of oriented energy and oriented signal
- to -signal ratio [45] (48] has provided a rational framework in which both the estimation of
ranks and subspaces can be formalized in a rigorous way.

Let A and B be two m X n matrices with n > m, both containing measurement vector
sequences (typically n consecutive sample vectors from m measurements channels). The
columns of A and B are denoted by ar, by £ =1,..n

Definition 1 The oriented energy of the matriz A, measured in a direction q is defined as :
Eq{A] = Z(qtak)z
k=1

Definition 2 The oriented signal-to-signal ratio of the two vector sequences 4 and B in the

direction q is defined as :
Eq{A’B] = Eq{A]/Eq[BJ

There are straightforward generalizations of these definitions to oriented energy and signal-to-
signal ratios in subspaces Q" . In [45) it is shown that the analysis tool for the oriented energy
distribution of a matrix A is the singular value decomposition, while the analysis tool of the
oriented signal-to-signal ratio of two vector sequences A and B is the generalized singular
value decomposition of the mairix pair [A, B). These well understood maftrix factorizations
allow to characterize the directions of extremal oriented energy and oriented signal-to-signal
ratio ;

Theorem 3 Eztremal directions of oriented energy .

Let A be a m x n matriz (n > m) with SVD A = USV* where 5 — diag{ci}. Then
each direction of eztremal oriented energy is generated by a left singular vector with exztremal
energy equal fo the corresponding singular value squared,

This theorem is illustrated for three dimensions in figure 1. Observe the maximum and
minimum corresponding to the largest resp. smallest singular vectors while the saddle point
corresponds to the intermediate singular vector.

Theorem 4 FEztremal directions of oriented signal-to-signal ratio.
Let A and B be m x n malrices, with GSVD :

A=X"1D,.U D, = diag{a;}
B = JY_I.Db.V‘ Dy = diag{ﬁ;}

where the generalized singular values (possible infinite) are ordered such thai {ar/By) >
(a2/B2) > ... > 0. Then each direction of extremal signal - to -signal ralio is generated by a
row of the matriz X and the corresponding extremal signal-fo-signal ratio is the generalized
singular value squared.

Observe that the exiremal directions of oriented energy arc orthogonal while this is not
necessarily the case for the signal-to-signal ratio. The underlying tool for the proof of these
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IFigure 1: Oriented energy distribution of a 3-vector sequence
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theorems is nothing else than the Courant-Fisher minimax characterization of the eigenvalues
of symuuetric operators [45] [63].

Now one can proceed by investigating in which directions of the ambient space the vector
signal in the matrix A can be best distinguished from the vector signal in the matrix B. This
leads to the definition of maximal minimal and minimal maximal signal to signal ratios of
two vector sequences [45] [48)

Definition 3 Mazimal minimal and minimal mazimal signal-to-signal ratio.
The mazimal minimal signal-to-signal ratio of two m-vector sequences contained in the
m X n malrices A and B over all posstble r-dimensional subspaces (r < m < n) is defined as:

MmR[A, B, r] = Maz Min  E,[4, B)
Qr C R™ g€ Qr

Similarly, the minimal mazimal signal-to-signal ratio is defined as:

mMR{A, B,7] = Min Maz E|[A, B
Qr c Bm g€ Qr .

The idea behind these definitions js the following : For a given subspace QT of the m-
dimensional ambient space (r < m < n) there is a certain direction ¢ € Q" for which
the signal-to-signal ratio of the two vectorsequences A and B is minimal. This direction
corresponds to the worst direction ¢ in the sense that in this direction the energy of A is
difficult to distinguish from the energy of B. This worst case of course depends upon the
precise choice of the subspace Q7. Among all r-dimensional subspaces, there must exist at
least one r—dinlension_a.l subspace where the worst case is better that all other worst cases.
This subspace is the r-dimensional stbspace of maximal minimal signal-to-signal ratio. It _
comes as no surprise that the GSVD allows to quantify this subspace: It is the r-dimensional
subspace generated by the first r rows of X, when the generalized singular values are ordered
as in theorem 4,

Hence, the concept of orjented signal-to-signal ratio and the GSVD allow to formalize all
model identification approaches, in which

- the determination of a suitable rank r provides the complexity of the model. This can
be estimated from the generalized singular values and can be translated in reliable
‘automatic’ rank estimation procedures, based on a well motivated criterion.

- the model parameters follow from the corresponding subspace of maximal minimal signal-
to-signal ratio.

Moreover, it can be shown that when the vector sequence B consists of an unohservable
stochastic vector signal with known first and second order statistics (as is the case in most
engineering applications), the GSVD solution corresponds precisely to the ’classical’ Maha-
lanobis transformation that is commonly used in statistical estimators as a kind of prewhiten-
ing filter [45).

Ior more detail, the reader is referred (o [45] [48]. Nice applications of the oriented signal-
to-signal ratio concept include source separation techniques for fetal BCG extraction [14] {16)
[20] [65], subspace methods to detect narrowband sources {63] and system identification [31)
[46] [48} [51]. In general, it is expected that the framework of oriented signal-to-signal ratio
will become a powerful analysis tool in what could be called factor-analysis-like modeling and
identification methods of which a biomedical exaniple will he presented in section 6,3,
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4.2 Total linear least squares (TLLS)

Many problems in mathematical engineering, can he solved via a reconversion of the problem
into the problem of solving a full rank overdetermined set of (conflicting) linear equations of
the form A -z = . It is straightforward to derive the algebraic condition that guarantees the
existence of at least one solution :

rank{A b] = rank[4)

However, often this condition is not satisfied due to measurement inaccuracies, limited ma-
chine precision , simplification or approximation of the original problem, non-linearities etc...
The usual technique then is to extract a least squares solution (historically attributed to
Gauss and Legendre) 2/ from the following minimization procedure :

2| A2 = b= min || A-c—bY
i

Several efficient algorithins have been studied and are summarized in (53] [59} and the
references therein. An important result js the well known orthogonal projection interpretation,
in which 2’ is the exact solution of A . z* ~ b’ where &' is the orthogonal projection of y into
R{A). So the least squares solution of the problem is nothing else than the solutjon to a
different problem, in which the right hand side b is altered (as little as possible) in order
to reduce the original (conflicting) problein into one that has an exact solution. The point
that we want to make now is, that this modification is completely imposed on the right hand
side b, while in a lot of engineering applications, not only this right hand side b is noisy, but
the data collected in the matrix 4 are equally well perturbed by noise (mostly even by the
same noise generating mechanism ! ). So, when there is no reason to assume the entries in the
matrix 4 to be more accurate than the entries in the right hand side b, there is no motivation
whatsoever to keep the columns in A unchanged. This reasoning is the origin of the so-called
total linear least squares problem formulation [49][53]:

Find 2’ such that A’z' = ' where

14" &[4 8] o= Min HiB 2} -(4 o] ||r
B, z;rank|B :] = rank|B)

Stated in this way, its solution is straightforward using the rank-reduction result of corol-
lary 1.2, The total linear least squares solution is obtained from the SVD of the matrix
{4 8]:

Let {[A b] = U . 3. V', then the vector [z* —1)*is parallel to the smallest right singular
vector of [A b] so that obtaining the solution 2 is merely a matter of scaling ( in the generic
case this poses no problem, however solutions to the non-generic case require some more
attention and are discussed in [49] ). Hence, once more the Singular Value Decomposition
provides a fundamental tool in the analysis and numerically reliable solution of one of the most
frequently occurring engineering problems. This approach was first discussed by Golub {53
and the references therein] though a conpletely independent problem formulation and solution
was obtained at the same time by Staar (18] and VanHuffel [13}[49]. In statistics, the problem
is called orthogonal regression and it was rediscovered many times, often indepenclently . In
addition to the evident reason of balance, there is also a very practical argument (o spread the
modificalion effort on hoth A and b, which is the following : The total effort to modify hoth A
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and b into A’ and &' corresponding to an exactly solvable set of equations can he shown to he
never larger and usually much smaller than the effort necessary to perform this modification
using b only [44] [49]. In [49) one can find a complete survey of the principle, algebraic and
statistical properties, computational requiremments and sensitivity results of the total linear
least squares approach, including several practical examples and a survey of applications in

SISO systemn, modal structural analysis, etc...] These results are also reported in a
papers [13][19][28][32][35][36][39][44].

In [26){27]{33]{42] one can find a unifying framework wherein it is shown that least squares
and fotal least squares are both particular cases of a general identification scheme, that
consists of a rank one modification of the sample covariance matrix of the data.

Let us now present an extreme example illustrating the difference between linear and total
linear least squares. The example is taken from [48] :

Example :
[N-1 -1 -1 [ 2, [ -1
-1 N-1 _1 ~1 25 -1
~1 -1 -1 N-—1 N
-1 -1 -1 ~1 N -1
-1 -1 1 1 f | en, ] 1 ]

which is denoted as A:z = bwhere disa N x (N - 2)matrix and bisa N x 1 vector. It can
be verified easily that the rank of the matrix {A 6] is N ~ 1 . This means that the vector b
can not be written as a linear combination of the columns of the matrix 4 y indicating that
the problem is not solvable exactly.

The preceding geometrical properties are depicted for the case N —
easy exercise to derive following results:

Linear Least Squares solution:

4 in fig. 2. It is an

2’ = —0.5{1...1..1]" and b’ = 0.5-2 —2..-2 N_2 N _ 2}

b—¥'=1/200 0..N - N}t

and hence :

Te=1/1b0= VNN =1)) — 1/\/3 forN — oo
Total Linear Least Squares solution:

1

U818 = (" -1 =1 m1 M1y

N

= —[1 1--- 1] and hence :

No—oli/lel=1/(n -1y

which for ¥ - oo goes to 0! Comparing the required modification energies, results in :
e =12 /I 6~ (4 i) 3= N2
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Figure 2: Geometric illustration of the difference hetween LLS and TLLS in the solution of
A.z = b where A has 2 colunns a; and a3. In the LLS solution the vector b is projected
orthogonally onto R(A). In the TLLS solution, e, , ay and b are bent to each other, resulting
in a new a,, &3,(; such that rank {(11 Qs i)] = 2.

Hence, the conclusion is that this ratio of energies for the linear least squares approach
with respect to the total least squares approach, increases linearly with V. The linear least
squares approach always requires more modifcation energy than the total linear least squares
approach. Moreover in this example it is clear that if only the right hand side is allowed to
vary , it has to be modified over approximately 70 %. If the matrix 4 is allowed to vary
also , a small change of 1/(N — 1) is sufficient. If for instance the data in the example had
been obtained by measurements and both the entries of A and b had been measured with a
same absolute precision ¢, then the right hand side and each of the columns of A are available
with a relative precision €/ /(N — 1) and a solution in the classical least squares sense will be
merely a meaningless, purely formal approximation, whereas in the total linear least squares
sense, it is still possible to find a quite accurate approximate solution in a well defined and
meaningful sense.

4.3 Canonical correlation and angles between subspaces

The (generalized) SVD provides an important tool in the generalization and characterization
of important geometrical concepts. One of these is the notion of angles between subspaces,
which is a generalization of the angle between two vectors.

Definition 4 Let F and ¢ be stubspaces in '™ whose dimensions saiis )
I} Y

p=dim(F} > dim{(G) = ¢q > |



The principal angles 01, 0s,..,0, € [0, 7 /2] between F and G are defined recursively by:

cos(Ok) = mar mar wlv - uj vy,
uCl ved@
subject to
lffu I=lfvfl=1;

wauy=0i=1,.., k-1
vhoy =0 i=1,. k1

The vectors {w;}, {w;},i = 1, 14 are called the principal vectors of the subspace pair (F,Gf

If the columns of P (m x p) and Q (m X g) define orthonormal hases for the subspaces F
and G respectively, then it follows from the minimax characterization of singular values [53]

that ;
[ul,---,up]:P-Y

{Ul:"'ivql =Q-Z
cos(Ox) = oy k = 1,--+,q
where the SVD of the ( ‘generalized inner’ ) product
PQ=Y. diag(ay,..,a,) - Z*

From this, it is not difficult to devise an algorithm to compute the intersection of subspaces
that are for instance the ranges of two given matrices A (mxp)and B (mx p) [53,p.430] This
is precisely the idea behind the technique of canonical correlation, which appears to be very
{ruitful in the identification of linear dynamical state space models from noisy input-output
measurements [46] [51) and will be sumunarized in section 6.5.

There are several vays to compute the canonical correlation structure of a matrix pair
A\B (roughly all possible ways of computing an orthonormal basis for the row spaces) :
two QR decompositions, two singular value decompositions, one generalized singular value
decomposition, all of which are followed by an SVD of the generalized inner product of the
orthonormal bases matrices. Another method is the computation of the right null space of
the concatenated matrix

A
5]

However, it is expected that depending on the application at hand, one method could be
prefarable with respect to the others. Experiences with these several alternatives will be
reported in some future work,

Finally, let us remark that there exists an intimate relation between total linear least
squares and canonical correlation analysis: Let A be an mxn (m > n)and B an mx p{m > p)
matrix and consider the problem of solving X from A.X = B One can then study the canonical
correlation analysis applied to the column spaces of A and B and investigate the solutions to
A.X = BY, which is nothing else than a (generalized) total linear least squares problem.

5 Important properties of SVD for identification and signal
processing applications
In this section, an overview is presented of some useful insights and results obtained at IESAT

in the last decennium. They form the cornerstone of a lot of applications, a survey of which
will be presented in section 6.



5.1 Distance from non-genericity

A nice interpretation (discussed in [561]) of the SVD is that the smallest singular value of a
full (column- or row-} rank matrix measures the distance of that matrix from non-genericity.
Indeed, a randomly specified mxn matrix will generically be of fuil rank. In the (m - n)-
dimensional space of all possible elements of the matrix, the set of rank-deficient matrices are
represented by hypersurfaces of which the equation is determined by zeroing conditions on
the determinants of all possible minors of the matrix [67). These hypersurfaces can look quite
complicated. The union of these ‘thin’ sets is a ‘thin’ set which represents the non-generic
situation. The smallest singular value measures nothing else than the distance of a matrix to
this thin set of non-generic hypersurfaces (without computing their equation ! ).

5.2 A backward error theorem

In the convergence analysis of SVD algorithms,like in [15) [21], the following little known
backward error’ theorem applies . It is a generalization of a similar result for the symmetric
eigenvalue problem [62] and was obtained in (21} :

Theorem 6 Let [u, s, v] be an ezact singular triplet of the matriz A and let [z, p, ¥} be an
approzimation. Define the generalized Rayleigh quotient p = 2t A-y =yt A'z and the residus
ro=A2—p.y and ry=A-y—p-z Then, z and ¥ are left and right singular vectors of a
modified malriz of the form A — M where M s defined via its SVD as :

e[ 02 [0

This theorem can be applied in the computation of the SVD of noisy matrices by iterative
algorithms (Power method [15], Chebyshev method [21], Lanczos [49) [53), Jacobi (30] [43]
(62]) in the following way :

Assume that at a certain moment in the iteration an approximation [z, p,y] for the k-th
triplet [uy, 0%, ve] of a matrix A is available where p = z'. Ay = y'. A2, We exploit the
following lemina [53] :

Lemma 1 Given two matrices m x n matrices A and B with singular valves {a;}, {b;} then
lai — bl <]l A - B

One can choose for B the matrix 4 — M where M is given as in the theorem, so that :
B=A-M

Hence :
lox = pl <ITA = (A~ M) ||=|| M ||= maz({| ro ||, | ry II)

The error in the approximation p of the singular value ¢y is bounded by the norm of the
backward error matrix M. If this norm of M becomes smaller than the uncertainty level
of the noise that corrupts the data, further improvement of the estimate is useless. As an
exanple, consider the uncertainty level in a matrix A of which the entrjes are perturbed by
independent identically distributed noise of zero mean with variance o2 . Then it is casy
to show (section 5.7) that the uncertainty level of every singular value equals maz(m, n).o?.
Hence the iteration can stop when I M ||< maz(m, n).a?
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5.3 A sensitivity theorem

Sensitivity results on the singular value decomposition are by now well known. Both the
sensitivity of the singular spectruun and the sensitivity of the singular subspaces have been
the subject of exiensive study [53] (59] [62] [66]. A lot of these results are quite elaborate
and at the same time not so casy for infuitive interpretation. A simpler but more suggestive
approach is summarized in the following theorem, in which :

- the effects related to the singular spectrun are separated from those related to singular
subspaces.

- it is described how the singular values and spaces can be forced away as far as possible
while perturbing the matrix A4 as little as possible .

Theorem 6 On rotations of mazimal sensitivity. Let the SVD of the m x n matriz A be
A=U-3.V7¢,

If A4 dA =U- (24 dB). V* then | dA ||l p=|l dE l|<

fA+dA=(U-G)- 2. (H- V) where i,3,G, H and z are related by :

- ; iom
10 . . . o0
01 0
0 cos(z) - sin(z} 0 - o] 2
G = 0 . .
0 —sin{z) - cos(z) - . .| j
0 .
0 01 0
6 0 0 1| m
_ ) j n
10 . 0
¢ 1 . 0
0 g cos(z) - ~sin(z) 0 - 0] ¢
0 sin(z) - cos(z) . . .|
0 .
0 - . . . . 0 1 0
0 0 . . . . -0 I_J n

then || dA ||p= (o, - aj)/‘/;- sin( z)

For a proof , the reader is referred to [48]. The interpretation of this theorem is simple
and elegant : For strictly spectrum related effects, variations in the singular spectrum and
on the matrix 4 have exactly the same level. The proof of this classical result is hased on
the Frobeniusnorm preserving property of orthonormal matrices. When two singular vectors
are rotated simultaneously over an angle z, within their own span, one obtains the maximal

forward eflect on the matrices (7 and V, for a minimal effect in .4 The cflort,, HOCUSSATY in

1



matrix 4, to modify one singular vector, can be decomposed into elementary rotations in
2-dimensional singular planes, spanned by the considered singular vector and any remaining
one. The cffort, hecessary to rotate a singular vector in such a plane, is proportional to
the separation between the two involved singular values. Bending a singular vector in the
direction of another one, is much easier when the involved singular values are close. The
fact that the singular vectors becone less well conditioned when their corresponding singular
values are closer, is of course well known in numerical analysis [53), but it is very convenient
indeed that this phenomenon can be established via the straightforward insight provided by
the preceding theoren.

Let us conclude that a first order perturbation analysis for the singular value decomposi-
tion has been derived in {61], which is perfectly similar to the first order perturbation analysis
of the eigenvalue decomposition in the pioneering work of Wilkinson |66)

5.4 Condition numbers
5.4.1 The 2-norm condition number

In many applications, appropriate measures of the sensitivity of the solution are useful. One
of the matrix related measures is the so-called condition number of a matrix, which applies for
linear system sensitivity problems among others [53]. The precise definition of the condition
number depends on the used norm., The 2-norm condition number of a mxn matrix A plays
an important role in a lot of applications. If the singular values of A are denoted by o}, then
the condition number is defined as :

K5(4) = 0y /a, where p = min(m,n)

If K»(A) is large, then 4 is said to be ill-conditioned, otherwise it s well-conditioned. In
2-norm, orthonormal matrices are perfectly conditioned : K, = 1, a property that guarantees
numerical reliability in many ’'modern’ algorithms, including SVD methods. A geometrical
interpretation of this condition number can be given via the hyper-ellipsoid that is associated
with every matrix A {45) [48][53).

5.4.2 A restricted condition number

Condition numbers arise naturally in describing the sensitivity of solutions of sets of linear
equations to inaccuracies in the data, Consider hereto the following two problems.

Problem 1: Fora given m X n matrix A(m > n), how much is the maximal increase in
relative inaccuracy, that may occur when solving z from A -z = ¥, for the worst position of
the right hand side y and the unluckiest position of the error dy. This is a question to which
the condition number as derived above gives the answer :

A - w2
I&(A) = Afaaly‘ dym = 0’}/0‘,,

Problem 2 : For a given m X n matrix A (m > n}) and fixed right hand side y |, how 1uch
is the maximal increase in relative inaccuracy that may occur when solving x from A.x — i,
for the untuckiest position of the error dy.

18
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Figure 3: Norm amplification || = {[ / || v || as a function of 8, (angle between x and largest
right singular vector) and 6, (angle between y and largest left singular vector) for a 2 x 2
example. In fig. 3.a. the condition number is 10. In fig.3.h. it is 100.

The singular value decomposition allows for a direct answer via a kind of ‘restricted’
condition number :

s Leeli/li=0_ Wyl
1) = Mezannestde=srir gy g ) = o

The first condition number only gives information about the matrix A, not taking into account
the relative position of the right hand side y. The second condition number takes into account
the actual position of y, which may drastically reduce the estimation of the solution sensitivity.
First consider the norm amplification || z [} / || ¥ || as a {unction of the angle 8, between x
and the largest right singular vector and the angle @, hetween y and the largest left singular
vector for a simple 2 X 2 example. Two typical patterns of normy amplification are depicted in
fig. 3 for a condition number K(A)=10 and for K{A)=100. One can observe that Lhe property
of ‘heing usually close’ Lo either the ntaximum or the minimum significantly increases with
increasing condition number. The minimum in all curves corresponds to the inverse of the
largest singular value while the maximum equals the inverse of the smallest one. -
Somne important conclusions, which are general, can he drawn {rowm these observations:

- T a lot of applications, the orientation of the error dy is unknown hut vne has an idea
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about the magnitude of the norn I} dy l|. Hence, it is meaningful to assume the effect
on x most probably to be of a level of (1/e:). || dy ||, where o, is the smallest singular
value of A.

- If each angle 8, is equally probable, then x will have most probably a length equal to
/oy || y |- One can verify that this is the case in discrete deconvolution problems,
where the impulse response samples are computed from input-output measurements {48].
The error || d2 || will most probably be in these applications of the level K(A) |} dy ||,
which can be rather bad.

- If each angle 6y is equally probable, then x will have most probably a length close to
/o, || y [|. This is the case in applications such as polynomial fitting via Vandermonde
matrices [48]. The error || dz | will be probably of the level Ky(A). ]l dy ).

Now consider the sensitivity measure m, , which is the error amplification

e
S EAVIEL

for all possible orientations of X, dx, y, dy . For a fixed ¥, m. varies from Ky (A)/K(A)
to K,(A4) depending on the orientation of dy. The worst case result for dy for fixed y is
me = Ky(A). Over all possible orientations of ¥, Ky(A) varies from 1 to K(A). Moreover, if
dy has a uniform distribution elementwise, then m, is usually close to its upperbound K v(A).
If dx has a uniform distribution elementwise, then m, is usually much smaller than k& w{A).
One can conclude that the linear least squares solution x and the error dx tend to be:

- dy-insensitive if y is independent of A (polynomial smoothing)

- dy-sensitive if y is dependent on A (like in deconvolution)

5.5 On the condition of a linearly extended matrix

The following useful result was obtained in [7], in the analysis of the numerical cond; tioning
of electrical network descriptions, However, it is believed that this result might also be useful
in other applications. Moreover, the result js important enough in its own right to state it
here as follows.

Theorem 7 For any two pairs of matrices A and B — [A A-z] with finite condition numbers,
where z is an arbitrary vector, the ratio of the condition numbers K(A)/K(B) is bounded

(U4l 42ll2) ™2 < R(A)/K(B) < (14 | Az )1/
For a proof, the reader is referred to {7]. Observe that an analoguous theorem and proof
can be given for the addition or deletion of a linearly dependent row.
5.6  Properties of the SVD of structured matrices

A p x q Hankel matrix fy, constructed from the elements of an array of real numbers i —
{fud b = 1, K (K > (p+q - 1)) is a matrix with elements Hpo(6,7) = hiy;y. Rank
deficient Hankel matrices of rank r < min{p,q) play an important role jn e analysis and
realization of state space models from linear systems. Since the introduction of the by now
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Figure 4: Error amplification (|| dz W/H=)

uniform distribution in y and dy (4.a.)

Htdy L/ 1l v ) fora2x2 exatuple for a
» ¥ and dx (4.h.), x and dy (4.c) and x and dx {4.d).
The angles are with respect to the largest right ( for x and dx) and largest left (for y and dy)
singular vectors.



well understood realization theory of Ho-Kalman [55] , their system theoretic interpretation
has been established. An important step was the introduction in the realization context of
the singular value decomposition of the Hankel matrix, containing (possibly noise corrupted
(section 6.4) ) Markov paraweters [57] [58). Moreover there exists a close connection hetween
the singular value decomposition and the concept of balanced realization [60). It can be
shown that the singular values can be used as quantitative measures of controllability and
ohservability. In (38}, some intriguing results have heen obtained about the relation hetween
the structure of rank deficient Hankel matrices and their singular value decomposition. Hereto,
use is made of the matrix calculus of Kronecker and Khatri-Rao product. We will briefiy
summarize here the main results. Tor more information, the background material and the
appropriate literature, the reader js referred to {38).

Definition 5 Kronecker product,
The Kronecker product of apxq matriz A and a m x n maltriz B, denoted by A @ B, is
defined as the (pm) x (gn) matriz :

au.B 2.8 ... alq.B]

a21.B agz.B Tt Qg B
A@B=| : ’

ap1- 3 ap B ... ape. B

Definition 6 Khatri-Rao product
The Khatri-Rao product of 2 matrices A (p x q) end B (m x ¢} (same numbers of columns
1), denoted by ADRB is the (pm) x ¢ matriz, defined by:

ADB = [a) ® by...a, ® b,

where a;, b; are the i-th column of A, resp. B.
So the Khatri-Rao product of two matrices is nothing else than their Kronecker product
columnuwise.

Now let us introduce some notation. The symbol vec(A) refers to a vector formed by stacking
the columms of the matrix A in a long column vector. vecd(A) is also a column vector
construction but only with the diagonal elements of A, If A is an mxn matrix , then A(4)
is an (;m — 1) X n matrix obtained from A by omission of its frst (last) row. {4 A)is an
(m — 1) X 2n concatenated matrix.

By exploiting the properties of the Kronecker and Khatri-Rao products, one can prove
very easily the following theorems:

Theorem 8 If Gpq is a p X ¢ matriz with SVD: Gy = U.S.V! then Gpq is a Hankel matriz
if and only if : :

UV = sy
This result is a special case of a more general factorisation result stated in [38]. The Khatri-

Rao product provides an important new insight into (he structure of the SVD of rank deficient
Haunkel matrices :
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Theorem 9 Let G,y be a matriz of rank n < min(p,q) with SVD :

Gy = U .m v
pXgq PXn nxXxn nxgqg

Then Gpq is a Hankel matriz if and only if the singular values are the solution {o the set of
linear equations :

[VOU - VOU}.vecd(E) = 0

(YOU - VOU] is a n2 x n matrix which is generically of rank n® x n — 1. So generically the
set of linear equations has only one solution (up to a scalar) ! Once the singular vectors of
a rank deficient Hankel matrix are known, the structure of the Hankel matrix restricts the
number of allowable singular values.

Theorem 16 Let Ur(p X n) and V (g X n) contain the n left and right singular vectors of «
p X ¢ Hankelmatriz of rank n < min(p,q). Then :

ranklV@U -V eU]=n*—n
The matrix (V@ U —-VeU ) and vectors lying in its null space appear in the following ;

Theorem 11 Let U (p x n) and V {q x n) conlain the n left and right singular vectors of
a p X g Hankelmatriz Hyy of rank n < min(p,q) Let vec(X) be a vector in the null space of
Vel-vel: )
VeU- V@ Ulvec(X)=0
where X is a n X n matriz., Then the matriz H = U.X.V' is o Hankel matriz. If the SVD of
X is given by
X =U..n.V}
then the SVD of that Hankel matriz H is given by :
H = (UU.).2,.(V.V)!

An additional result in [38] is that the system poles associated with H are a subset of those
associated with Hpe. The last theorem provides a parametrization of all rank deficient Hankel
matrices of dimensions p X ¢ of which the system poles come from a specified set of system
poles. It is conjectured that this theorem can be used in the optimization of the joint con-
trollability and obser\;abiljty of a system over a finite time horizon.

Example : Consider a second order linear system with state space matrices

SRR H S

Its Markov parameters are the scalars hy = C.A-L B b= L,2,.. Construct any p X ¢
Hankel matrix (min(p, ¢) > 2) with these scalars, say a 4 x 3 Hankel matrix with elements
[2; 1.7, 1.45; 1.241; 1.0657; 0.9182] and compute its SVD.

Hy= U DI & with singular values o, = 4.8808 )
4x2 2x2 2x%3 oy = G.0142

The reader may now wish to vert{y that any 4 X 1 vector vec{X), where X is a 2 x 2 matrix,
of the null space ( which is two dimensional ) of the 6 x 4 malrix Veol-Ve /], gives rise
to a Hankel mateix /. X V1,



5.7 The SVD of the sum of rectangular matrices with mutual orthogonal
rowspaces

In a lot of mathematical engineering applications, tmatrices from measured data are con-
structed. Very often these matrices are rectangular, i.c. they have {say) many more columns
than rows. For instance, there are as many rows as measurements channels and each time
a measurement on all channels is done, an additional column is added to the matrix. The
available data are very frequently rather noisy, i.e. they are perturbed by unobservable errors,
of which (in the best case) the statistical properties are known. Morcover, almost always the
‘exact data’ mathematical model is such (at least in linear applications) that the data matrix
would be rank-deficient if the data were noisefree, and that the crucial information about the
desired model is contained in the null space of the exact data matrix. Think for instance of
the solution of overdetermined linear equations {section 4.2}, or dynamical realization of im-
pulse responses from (block)-Hankel matrices (section 6.5) or the identification of dynamical
state space models from noisy input-output data with canonical correlation analysis (section
6.6). More specifically, we are confrontated with the following situation :

C o A + B with m < n where r(4) = » < m
mxn mxn mxn

where A represents the exact data matrix of rank r and B represents the matrix containing
the perturbations (measurement errors, model mismatch), which are assumed to be additive.
A and B as such are unobservable but the entries of their sum C are the measured data.
Generically, the matrix B will be of full (row) rank while the matrix A is assumed to be
rank-deficient : The crucial model information (in all cited examples) is contained within the
orthogonal complement of its columnspace.

The problem that will now be investigated is-the following : How is the SVD of A mmodified
by the perturbing influence of B and how can properties of A (rank and null spaces) he
estimated from computations on C only. The crucial observation to make is contained in
the following statement : Under mild conditions, the canonical angles between the
row space of the matrix A and the row space of the matrix B, approach 90°
(orthogonality) as the overdetermination n / m increases . A general discussion
and proof of this statement and the conditions under which it is valid can be found in [61].
An illustration can be found in the following figures, where the probability distribution is
computed of the angle between a vector and several subspaces in an ambient space of varying
dimension. The elements of the vector are independently identically normally distributed
with zero mean. It’s the authors® belief that this observation is really at the heart of a lot of
identication and estimation schemes such as ( total) linear least squares, instrumental variables
methods, dynamic identification, briefly in all those applications in which

- the estimation of the rank of an exact data matrix through computations on a noisy matrix
makes sense.

- the information on the model is contained in the null space of the measurement watrix.

In {26] [27] [33] this statement is even taken to be an axiomatic basis for a new conceptual
identification framework.

Let us demonstrate how the preceding statement can be applied to the modification anal-
ysis of the SVD of A and C . We will derive the conditions under which the coluu space
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Figure 5: 5.a. Probability distribution of the angle between an arbitrary direction in R’
(uniformly distributed) and a fixed 2-dimensional plane for j=4 (1}, j=10 (2), j=20 (3),
i=50 (4), j=100 (5) . Remark the increasing probability that the direction is orthogonal to
the plane. 5.b. Probability that an arbitrary uniformly distributed direction in R'® makes an
angle of more than 45 (1}, 50 (2), ..., 85 (9) degrees with a fixed subspace §' for i=1,2,...,10.



of the matrix A , including its dimension (rank) can exactly be recovered from a subspace of

the columnspace of the matrix C .
Let A and B have the SVD’s :

o t
A = U, T, W
mxn mx xr v Xr r¥xn
_ 3
B = Uy L v,
m X mn mxm mxXxm mxn

where r < m < n. Denote by U} any m x (m — r) orthogonal matrix satisfying
UtLul =g

and assume that the row spaces of A and B are orthogonal :
Vi, =0

Then, it is easy to show that the matrix C can be written as :

Pt = S,V 4 ULUp B3V

o oul P
¢ = U Ual[Pzt with P = (UH) Uy 8.

Let Pf and P} have the SVD's :
’ Pf:—“‘zYi'Sl'Y}t
P, =X,.8,-Y]

then we have the result that C can be written as :

U r - S 0 )-"t
¢ =[U.. X, Uai.,xg]{ 0‘ s } [ - ]
- 2

which is (up to a reordening of the singular values in §, and § 2) a singular value decomposition
if :
Ylt.Yz = 0

or equivalently :
PLPy =0

Because V.V, = 0 this is true iff :
ULfUs (. S UHUL = 0

The factor between square brackets can be recognized to he the sample covariance matrix of
the vector signal contained in the matrix B. Now let @ and @5 be such that :

Uy = Uy.Q, UJL = Uy.Q2

then the following set of matrix equations is to be satisfied :

Qtl'Ql = Ir
QtZ'QZ - Im—r
0L.Q2 =0
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This poses no problem if (2;.5{} is a multiple of the identity matrix. This is then equivalent
with the fact that the oriented energy of the matrix B is isotropic. For general (Zp.Z}} it is
not so difficult to see that a solution looks as follows : @4 tnay contain any set of r different
columns of the identity matrix I,, (or a linear combination of these) while @; may contain
the remaining m-r columns (or a linear combination of them) Hence, @; and @, must have
a complementary zero pattern. The conclusion is that U, must be generated by r singular
vectors of U/;.

Hence, we have demonstrated that under the orthogonality condition of the row spaces of
A and B, the subspace spanned by the vectors of U, is not mixed with vectors of the subspace
spanned by U2 if either the oriented energy distribution of B is isotropic or if the subspace U,
is generated by r left singular vectors of the matrix B. However, it can only be recognized as
such from the singular values, if one has a priori information about the relative magnitude of
the singular values contained in §y and §;. If one knows for instance a priori that all singular
values in 5, are larger than those in S, , then the first r left singular vectors of C generate
the subspace spanned by the vectors of U, . As an illustration consider the following:

Example : If the entries of B are identically normally distributed with zero mean and
variance g%, then with increasing probability for increasing overdetermination nfm the SVD
of C will approach the following ‘limit’ SVD : :
. U (B2 + n.oL)/? 0 (22 4 no?L) VB VE 4 o V)
@ Tak 0 Vo dm . v}

where 11 = BL.U./(y/no} and V; = BLUL [(\/no).

Note that the noise covariance matrix is a multiple of the identity matrix E(B.B*) =
no?.I,. Moreoever, remark the Pythagoras-like squaring of the scaled orthogonal matrices
in the upper part of the right singular matrix. This implies that one imay not hope to
recover approximately the row space of the matrix A from the analysis of the matrix C. The
colunnspace of A however can be recovered, by inspecting the the singular values of C : As is
obvious, a ‘noise treshold’ 1/fi will be recognized in the singular values (for sufficiently large
overdetermination n/m).

6 The (Generalized) Singular Value Decomposition in math-
ematical engineering applications

6.1 Moments of inertia

This section establishes the close connection between the SVD and the Principal Axes and
Moments of Inertia (PAMI) of a rigid body as described in [48, p-81-90]. Only the discretized
case will be considered. Consider a rigid body consisiting of & point masses m{&), descibed
with coordinates z;(£) in a N-dimensional Buclidean space. With respect to a certain reference
O ( often the center of gravity), one defines the moment of rotational inertia Iy around an
axis ¢ as :

K

It = Z rtz,m{k)n!'(k)

k=1



Figure 6: An example of a numerically critical PAMI problem

where Ttn(k) s the distance from the k-th point mass to the axis . J; is a positive func-
tion of the orientation ¢, with one minimum [y, one maximum I,y and N — 2 saddle points
Liayene, Iyn_1). The orientations £y,..,¢x of extremal rotational inertia form a set of orthog-
onal directions in the N-dimensional Euclidean space and are called the principal axis (PA)
of the rigid body and the associated moments of inertia are called the principal moments of
inertia (MI) with respect to O. Classically, the PAMI are obtained as the right eigenstructure
of a so-called inertia tensor T, i.e. the PA are the right eigenvectors and the MI are the
eigenvalues of T', where :

tn ~tp 813 .- —fy
—{ - R
T = 21 {ag t23 N
~iNt —tn2 ~Inz oo+ INN
with
K N
ti =y mk) (Y z2(k)] i=1,--,N
k=1 n=}
n#t
K i,j=1,, N
tij = Y mlk) zi(k)-z;(k) i#;
k=1

T is easy to obtain from the mass distribution of the considered body, described with respect
to a chosen basis. It is a symunetric, positive semi-definite matrix. However, the crucial point
we want to emphasize is that in forming T explicitly, important numerical accuracy may he
fost! Computing the PAMI via the eigenstructure of the inertia tensor T requires ¢? precision
computations in order to handle properly e-precision data. This statement can be illustrated
with the following example :

Example: Consider arigid body with 2 point masses m(1}) = L at [x,(1), zo(1)] = (1/ 2,1/ /2
and m(2) = 1 at [2((2), 22(2)] = {4t/ V2, =1t/ VZ)(Fig.6). The associated inertia tensor is

l+;t2 —i+;tz

T=1/2
! / ~1 + 4 4 42



The PAMI follow from the eigenstructure of 7: principal axes: [1 —1]* and {1 1], associated

moments : I and g
Now let us investigate how this classical approach behaves numerically when only finite
precision arithmetic is possible and/or only finite precision measurements are available.

- I the measurements are exact, but only finite precision computation is possible, then the
inertia tensor T' is represented in the machine by a matrix in which m(2) does not even
appear, if the machine precision € is larger than p? which means that one will find the
PAMI of a body in which the mass m(2} is not present anymore.

- Second consider inaccuracies ; on the measurements of the coordinates with an absolute
level y (all measurements are performed with the same absolute precision), satisfying
the following bounds :

1> p»y>

Such measurement errors however will affect the inertia tensor 7' more than the effect p? of
mass m(2):

1 -1 nou? 272 —m-m 1-1 2:12  —m- T2
T = + + e~ +
[ -1 1] [#2 I -7-7  2'm ~1 1 -7 2'm
In the general case, both types of inaccuracy will combine and possibly affect the results of
the computation in a severe way. However, the following observation is crucial : The observed
degeneration of precision is not essential to the PAMI problem itself, but to its formulation
as an eigenstructure problem. The loss of accuracy is caused by the mere fact of using the

tensor T'. It is again the SVD that allows to solve the problem in such a way that guarantees
€ + 7 accurate results with € precision arithmetic on 7 accurate data.

Theorem 12 On the relation between SVD and PAMI .

Consider a rigid body B of K discrete point masses m(k), located at z(k) = {x1(k),+++, z,.(k)]¢
in a N -dimensional coordinate system with reference Q. For such a rigid body, a N x K matriz
M is consiructed with elements M(i,j) = \/1_1:(:17 z:(7).

- Then a rigid body B' can be constructed with identicel PAMI with N unit poinimasses,
located at
oiru; t=1,--- N

where o; and u; are the i-th singular value and i-th left singular vector in the SVD of
M.

- The principal azis of inertia of B are the left singular vectors of M

- The principal moments of inertia are obtained from the singular values of M as :

N
[f.‘ = ZG',Z‘

LIRS

n#il

For a simple proof , see {48 ,p.84].

Remark I: The interested reader is encouraged to investigate the benelits of this relation
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between SVD and the computation of the PAMI of a rigid body, by applying this result to the
previous discussion where the tensor T was used instead of the matrix M. For this example,
the matrix M equals:
1 u
M=1//2

IV { 1 —u }
Computing the SVD of M in € machine precision, delivers now the second singular value pu
with a precision of ¢/s.

Remark 2 : A useful interpretation of this theorem js that any rigid body consisting of K
point masses in N-dimensions, can be replaced by a rigid body with at most N point masses
and moments of inertia as in the theorem.

Remark 3 : As a useful intermediate result, it is not difficult to verify that the Af and T
matrices of any rigid body are related by :

M M =||M||% Ixy-T

Moreover, the computation of the PAMI of a composite object consisting of two sub-bodies
By and By is facilitated by the following corollary :

Corollary 3 If a body is composed of two subbodies By and By with equivalent PAMI decom-
positions Uy < 2y and U, - B4, then en M -matriz for B is obtained as:

Mp = [Uy-5, Uy 1)
and its associated equivalent PAMI structure is U - X where the SVDof M =U -5 .V,

Remark 2 and the corollary are illustrated in figure 7:

6.2 The conditioning of the reference node choice in an electrical network

The existence and algebraic properties of singular matrix representations for N-terminal cir-
cuits have been described during nearly 60 years. Surprisingly enough, almost no attention
was focussed on their numerical properties, which will be the subject of this section. It will
be shown how from a practical point of view certain network descriptions are better suited
when the accuracy of the computations, the tolerances of the components or the precision
on the variables is pushed to extreme values. The subsequent statements apply to admit-
tance, impedance and hybrid matrix representations but to fix ideas, consider the case of an
admittance matrix representation of an N-terminal circuit -

V¥ (o} o ooof o rup)t = (i it if )t or YOut =0
Yi{vy vy vppr o]t = (i i fopro-in)t or Y. v =4

The first equation is the indefinite representation, in which all terminal potentials vy and
currents 7; occur. The second equation is the definite representation for which node voltage
v has been chosen as a reference voltage and the Kirchoff Current Law equation al node
s has heen dropped. Usually, s = {. Y is obtained by simply deleting row s and coluinn
tin Y . Alse ¥7* can be constructed from Y by invoking the so-called zero row sum and

30



Xy

uni} masscs

I T

%

) X3

i

Figure 7: The discrete mass rigid body of the left upper corner is the sum of two rigid hodies.
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Figure 8: 8.a and 8.b Resistive circuils as extreme examples

zero column sum properties of ¥'* [48] These trivial algebraic relationships can be invoked to
qualify both descriptions as equivalent. However, we will now demonstrate that numerically,
this statement is incorrect. It turns out that , even for surprisingly simple circuits, one of
the matrices Y or ¥* may be ill-conditionned, whereas the other is well conditionned. This
is stated formally in the following

Theorem 13 On the.conditioning of reference node choice
The condition number ratio of the definite and indefinite admittance matrices Y and ¥*
satisfies :

1/N < K(Y)/K(Y')<N

The proof is an inunediate consequence of the theorem on the condition number of linearly
extended matrices, presented in section 4. and can be found in {7) and [48]) . This theorem
generate bounds on the variation of the condition number by adding or deleting a row or a
column. These bounds are however tight as is shown in the following examples :

Example : Consider the resistive network of figure 8a with a complete graph, with N nodes
(N > 2) and all resistances equal to R .The indefinite matrix description is given by:

N-1 -1 -1 .. -1 v} it

-1 N-1 -1 .- -1 v i
UR| P : ANESE

-1 oo N -1 ~1i

e T P B S N R Y i

The condition number of Y'* here is one : all singular values are equal to NN = L)/ 1.
Hlence this description is perfectly well conditioned. Now in order to obtain a definite de-
scription one might choose vy, as a reference voltage and delete the associated k-th equation,
The matrix Y, which is the matrix ¥'* with any row k and colunn k deleted, has a condilion
uwinber equal Lo N, hence the upperbound of the theorem is reached. For large N, obviously

32



it is better to use the indefinite circuit description for this network topology.

Example : Consider now the network of figure 8b. Its indefinite matrix description as given
by :

;] 0 0 -0 -1 vt i

o 1 0 -0 -1 3 it
I/RY: 1 : : : =1

0 . . e 1 -1

1 -1 1 - =1 N—-1]{ vy it

The condition number of ¥* is N . Hence in this case, the indefinite description is ill-
conditioned for large N. Obviously, by chosing ux as the reference voltage, and dropping
the N-th equation, the resulting definite matrix Y is perfectly well conditioned (It is the unit
matrix ! } . This example shows that the lower bound of the theorem is tight

6.3 Fetal ECG extraction

The examples reported in this section are nice practical applications of the factor-analysis-like
formalism that was explained in section 4.1.

The measurements are obtained from cutaneous electrodes placed at the heart and the
abdomen of the mother. If there are p measurement channels (typically 6 to 8), the sampled
data are stored in a pxq matrix M,, where q denotes the number of consecutive samples that
are processed. The p observed signals m;(¢) (the rows of M,,) are modeled as unknown linear
combinations (modeled by a static p X r matrix T } of r source signals s;(t), corrupted by
additive noise signals n;{f) with known (or experimentally verified ) second order statistics.
Hence the model has the well known factor-analysis-like structure :

Mpq = Tpr.Srq + Npq

where the rows of S, are the source signals . The problem now consists of a rank decision
to estimate r and of a subspace determination problem to determine the subspace generated
by the columns of the matrix T, which are the so-called lead vectors. Since the second order
statistics are assumed known, the conceptual framework of oriented signal-to-signal ratio
(Mahalanobis transformation [45]) could be applied. However, it has been verified (14} {50]
(and there exists a physical explanation) for this specific application that with an appropriate
positioning of the electrodes, the subspace spanned by the lead vectors of the mother heart
is three dimensional and orthogonal to the three-dimensional subspace generated by the tead
vectors of the fetal heart transfer. Moreover, the source signals of mother and fetal are
orthogonal vectors if considered over a sufficiently long time wherein the energy of the mother
heart signals exceeds considerably that of the fetal heart. For all this reasons, one single
SVD suffices to identify the subspace corresponding to the fetal ECG and by projecting the
measurements on this subspace, the MECG can be eliminated almost completely. For more
details, the reader is referred to a series of publications [14] [16] {18] {20} (22} [23] [29] {30] |43)
150] :

Besides the single SVD approach for FECG/MECG separation, which is based on some
restrictive source orthogonality requirements {though fulfilled under mild conditions} it is
interesting to note that another SVD based method , described in [65], for the same problem,
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Figure 9: Simulation results for FECG separation The source signals s,,...,s4 are from
the mother and from the fetus. In the measurements my,...,mg, the sources appear to
be mixed. One can notice the relatively weak FECG contribution. Applying SVD to the
neasurements matrix allows under mild condition to retrieve the subspace of maximal minimal
signal-to-signal ratio in which the fetus can best be distinguished from the mother. When
the measurements are projected into this subspace. a nice separation of Maternal (&, &) and
fetal BOG (33, 34) and noise (3g) is achieved.



lends itsell very naturally to an inferpretation and computation in terms of oriented signal-
to—signal ratioc and GSVD, as described in section 4.1. Basically, the method consists of
constructing (by visual inspection) 2 matrices. The first one contains only FECG complexes
while the second one is built from maternal ECG complexes. The method then reduces to the
determination of that subspace in which the FECG signal can best be distinguished (from
the point of view of oriented energy), from the mother ECG. This is equivalent with the
determination of the maximal minimal signal-to-signal ratio subspace of a fixed dimension
(for instance dimension 3 for the FECG, a choice which can be based upon a physical electro-
magnetic model). The measurements are then projected into this subspace, which results in
a maternal ECG filtering effect.

It is interesting to note that recently high resolution subspace methods have been in-
troduced and analysed [63]to detect the number and the location of narrowband sources .
Essentially, these methods reduce to the oriented signal-to-signal ratio framework of section
4.1

6.4 Realization and exponential fitting

The problem of realization of state space models is the following (stated here for discrete time
systems) : :

Given (possibly noise corrupted) Markov parameters of a linear system. Find a minimal
state space representation of the form

T = Az + By,
yi = Cozg

As is well known, the Markov parameters satisfy Hy = C.A*"L.B.

The problem was solved in its full generality by Ho-Kalman [55] and the SVD was intro-
duced in its solution in {68] in 1974 and in [58] in 1978 . The algorithm is by now almost
classical :

- construct the (block) Hankel matrix H of Markov parameters H}, and choose its dimensions
sufficiently large.

- Factorize it using SVD : H = U.Z.V*! This allows to estimate the order of the system from
inspection of the rank. Moreover, C and B can be read off immediately from certain
(block) rows and (block) columns respectively.

- Exploit the so-called shift structure of the (block) Hankel matrix in order to estimate the
state transition matrix A. This reduces to the solution of an overdetermined set of linear
equations in [58], in which it differs from {68) where an additional (block) Hankel matrix
is to be constructed.

The use of the SVD in these has the almost ’classical’ advantages : robust rank estimation,
noise insensitivity, high resolution and accuracy . This solution is applied to the estimation
of amplitudes, dampings, frequencies and phases in a series of papers [1] [3} [6] [17] [40]
Furthermiore, it has been applied for high resolution speciral analysis in the separation and
localisation of narrow-band sources , the analysis and classification of electromyograms and
as a second step in a two step identification procedure, in which first the impulse response is
estimated using TLLS deconvolution . These results can be found in a series of master theses
at the ESAT laboratory . Several practical problems have heen studied :
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the relation between the number of measurements to be used and the accuracy of the

estimated paramaters {poles, ..) is studied in [48] . As an example, consider fig. 10

It is obvious that the rank decision becomes casier and the accuracy ameliorates con-
siderably as the number of measurements is increased.

the behavior of the singular values of noise free Hankel matrices for first order degenerated

impulse responses of the form f; = a.k#1.aF as a function of the pole multiplicity and
the pole a is depicted in fig 11 for a two different sample sizes. More details can he
found in {1] {48]

In [17), one can find some results on the application of Hankel - SVD hased methods for high

resolution spectral analysis. It has been verified with some simple experiments that the
method is extremely robust and perforins as well as algorithms that are claimed to be
optimal.

In [40] , the sensitivity of the method is investigated for the estimation of coefficients ¢; and

exponents b; from noisy observations f{t):
n
f(t) = ZC,-.eJ:p(b;.t) + n(t}
i=1

As a result, it is shown that, under mild conditions, the error in the computed exponents
is of the order ;

O(U,1+1/(O'n — Tntl ))

the quotient of the largest *noise’ singular value and the gap between the smallest *signal’
and the largest 'noise’ singular value. This error estimate is much better than Kung’s
[58], since the constant in the order term does not contain the (rather large) norm of the
pseudo-inverse of the Hankel matrix as in (58] . The result is a rigorous demonstration
of some facts that are already intuitively obvious: The more the measurements are
corrupted by noise, the smaller will be the gap between o, and ¢y 41 and hence the less
accurate will be the estimates. Moreover, there is a onec-to-one relation between the
exponents and the subspace that is spanned by ’corresponding’ singular vectors {38].
When singular values get close, the corresponding singular vectors are no longer well
conditioned and noise’ and signal’ subspaces get mixed. In (40 ] one can find also some
experimental verification of the fact that *square’ Hankel matrix are best suited for the
estimation of the rank (the number of exponentials).

6.5 Identification of state space models from noisy input-output mea-

surements

Starting from the mid-seventies, the SVD and GSVD have made their appearance in the sys-

tems and control literature , where they have become the cornerstone of numerically reliable
implementation of algorithms for Kalman decomposition {52] , controllability and observabil-

ity questions {57] , the concept of balanced realization {66}, realization theory [58] [68] and
numericaltly reliable computation of the generalized eigenstructure of matrices [64}.

The use of SVD and GSVD in identification and modeling problems starting from noisy

input-output measurements of linear systems, has heen and still is the subject of intensive
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research at the ESAT laboratory. Considerable experience has been gained by applying the
derived methods to several data sets from industrial processes [2] {8] [10] [11] {24] [25] [31]
{34] [37] [41] [48] [51).

The first results concerned a ‘brute force’ approach, that consisted of a deconvolution
algorithm (TLLS) for the computation of the multivariable impulse response. This was then
realized info a state space model using an SVD based realization algorithin. Finally, a certain
tail correction iteration procedure was applied in order to ameliorate the estimates. Results
are reported in ref. {1]- (6], [8] [10] [11] {48] . Some examples of the deconvolution of abruptly
changing linear systems, are shown in fig 13.

However, in [31] [37) [41] (46] [51], a fundamental structured matrix input - output equation
is derived, which provides a much more elegant framework for the formulation and solution of
the multivariable identification problern. Moreover, the new approach fits perfectly well into
the conceptual framework of oriented signal-to-signal ratio (section 4.1) {45] and canonical
correlation analysis.

If a linear system , with m inputs and 1 outputs is described by the state space equations:

Thy1 = Azy + By,
e = Cozp + Doy,
then by straightforward substitutions, the following input-output matrix equation can he

derived:
4= 0N+ IR,

Here, ¥, {U),) is a block Hankel matrix with block dimensions ¢ x j, containing i4j-1 con-
secutive oubpul {input) veclors . There are several good reasons Lo choose these dimensions
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Fig.13.a. Inversion of the impulse response; Fig.13.b. Doubled eigenfrequency; Fig.13.c. Same
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in such a way that maz(li,mi) < j . Ty is the extended observability matrix. X contains
j consecutive state space vectors and H is a lower triangular block Toeplitz matrix contain-
ing Markov parameters [31] . In a realistic identification enviromment, only (possibly noise
corrupted) input-output observations are available. Hence, only the matrices ¥}, and Uy are
known, up to additive noise.” In a series of papers [31} {37) [41] [46] , the following results
have been obtained from the geometrical representation of this input output equation :

rank [ Y ] = rank(Up} + n
Un

where n is the dimension of the {excited) observable part of state space. Hence, under
mild conditions [31] [41] , one can estimate n from the singular value decomposition of
the concatenation of the input and output block Hankel matrix.

- The singular values of U, serve as quantitative measures for the degree of persistency
of excitation of the input sequence. Loosely speaking, the input sequence has to he
persistently exciting in order to 'excite’ all modes of the systems. When the matrix U,
is (nearly) rank deficient {some singular values are small) the input sequence is *poor’ in
that it (almost) consists of a finite number of complex exponentials. When the singular
values are all (alimost) equal, the input sequence tends to he *white’ noisc . Also for
an impulsive input, the singular values are all equal {SISO}. For more details of the
relation between singular values and suitable input sequences, the reader is referred to
(48] (51]

Three diflferent identification approaches can now be derived {rom this input-output equa-
tion : a linear least squares (section 6.6.1) and a total lincar least squares {scction 6.6.2)

approach and finally a cavonical correlation approach (section 6.6.3).
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6.56.1 Linear least squares identification

Let Ut be any j x (mi — rank(Uy,)} matrix satisfying U,,.U* = 0. Consider the SVD of
%UL = P.5.Q" . Under mild conditions [31], rank(S) = n and there exists a non-singular

n X n matrix R such that:
P=I.R

This implies that a realization of the state transition matrix and the output matrix of the
form R"1.A.R,C.R can be performed in a similar way as in Kung's realization algorithun.
The matrices R~'.B and D follow from a set of linear equations [31] [37]. In [31] [51] it
is shown that this identification approach corresponds to a linear least squares version for
identification problems where the input is noisefree while the output is noisy. The row space
of the output block Hankel matrix is orthogonalized with respect to the input block Hankel
row space . Examples can be found in [31] [37] [41] [51]

6.5.2 Total linear least squares identification

Let the SVD of

Yo | _ | Pu Fr2 Sy 0 0

Un Po1 Po ¢ 0
where rank(S1) = rank(U,) + n and the partitioning of the left singular matrix is such that
P1y is a ({i) x (mi+ n) matrix. Then, there exists a non-singular nxn matrix T such that :

Pu.Pz'ji = F,’.T

where Pj} is any (mi+ n) x n matrix satisfying Pyy. P = 0. This implies that a realization of
the state transition matrix and the output matrix of the form T-1. AT, C.T can be performed
in a similar way as in Kung’s realization algorithm. The matrices T~!.B and D follow from
a set of linear equations [31j[37] Contrary to the previous versions, this corresponds to a
total linear least squares approximation of the multivariable identification problem , which
applies when both input and output are corrupted by the same amount of noise. Considerable
insight has been gained into the behavior of the algorithm in noisy industrial applications.
More details are found in (31] [37] [41] [51].

6.5.3 Canonical correlation identification

The canonical correlation approach to the identification of a state space model, is based upon
the following fundamental observation {46] [51]: |

Let ¥y,U; be a output - input block Hankel pair ( block dimensions i X 7) containing
output- input measurements on a linear dynamical system up to time k and let Yy, U5 be
another output input block Hankel pair of block dimensions i X j, containing measurements
from time k+1 on. If the rows of the matrix Z {with j columnns) form a hasis for the intersection

of the row spaces of :
¥ Y3 -
[ U, ] and [ U, ]

- dim(row space Z) = rank(Z) = n

then:
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- there exists a non-singular n x n matrix R such that
Z = R.{aﬁk+] 2}&*_2...2’&_‘.)‘]

Hence, the matrix Z is nothing but a state vector sequence realization. Once such
a sequence is available, the model matrices A, B ,C ,D follow from the set of linear

equations :
Lht1 _ A B T
Yk | C D u

that can be solved with TLLS or one of its variations.

Hence, the *difficult’ problem of identification of a linear state space model has now
been reduced to 2 SVD steps, that may be implemented in a very streamlined identi-
fication algorithm.Adaptive versions for updating and downdating the QR- and SVD
factorizations via a gliding window appraoch are actually being implemented, taking
into account the specific structure of the matrices. For more detail, the reader may
wish to consult [46] [61]

The above summarized identification algorithms have been tested with success on a lot of
industrial processes including glass furnaces, power plants, chemical reactors, biological sys-
tems, heating and ventilation of confined spaces, and the identification of a flexible arm.
These are described in [24][25][31]{34][37][41][46){51]. An example of the identification of a
chemical destillation column with 5 inputs (left) and three outputs (right) is depicted in fig
14.

7 Conclusions

In this paper, a survey was presented of typical engineering applications of the singular
value decomposition and the generalized singular value decomposition. Several examples were
presented or referred to. The benefits of using the (generalized) singular value decomposition
are most pronounced in those applications:

- where essentially rank decisions and the computation of the corresponding subspaces de-
termine the complexity and parameters of the model

- where numerical reliability is of primordial importance and the potential loss of numerical
accuracy {(as the squaring of matrices) is to be avoided.

- where a conceptual framework, such as the notion of oriented signal-to-signal ratio, may
provide unrevealed additional insight, such as in factor-analysis-like problews.

- where the problem can be stated in terms of the {generalized) singular value decomposi-
tion, which leads inunediately to a reliable and rohbust solution, such as in a canonical
correlation analysis environment.

- where robustness analysis, conditioning and sensitivity optimization are crucial, linked to-
gether with geometrical insight and interpretation , for which the GSVD may provide
meaningful quantifications. (condition numbers, principal angles,...}



Moreover, in most engineering applications the number of measureimnents or the data acquisi-
tion poses only minor organisational problems (although the design of a measurement set up
causes considerable efforts). The cost of the sensors however increases with higher accuracy
and signal-to-noise requirements. In this environment the {generalized) singular value decom-
position is the optimal bridge hbetween limited measurement precision and robust modeling.

As to the computational requirements, the SVD of large matrices poses no considerahle
difficulties when employing a mainframe computer (matrix size order of magnitude a few
hundred). Moderately sized SVD’s {order of magnitude 50..70} are nowadays feasible on
niini-computers and PC’s. However, it can be expected that the intensive on-going research
for parallellized and vectorized algorithms may result in real fast SVD solvers, possibly ex-
ploiting the matrix structure which is present in a lot of engineering applications by so-called
displacement rank concepts.
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