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1 Introduction

Inferring models from observations and measurements, and studying their properties, is one
of the central issues in all scientific disciplines. System identification deals with the problem of
building mathematical models of dynamical systems based on observed data from these sys-
tems. A system is an object in which variables of different kinds interact. These variables can
be divided in inputs, outputs, disturbances and states. Typically, inputs are those variahles
that can be manipulated by the modeller and affect the system as external stimuli. Quiputs
are the direct observations. The disturbances can be divided into those that are directly mea-
surable and those that are only observed through their influence on the output. Disturbances
include measurement noise, uncontrollable inputs, etc.... The stale of a system is the min-
imal information that is needed to determine the output, once the inputs and disturbances
are known. This paper is organised as follows: In section 2, we discuss in general terms a
possible classification of mathematical models and the models that are very well suited for
identification. A general discussion on the system identification methodology may be found
in section 3, where some practical guidelines are given concerning setting up an identification
experiment. Input-output models are discussed in section 4. Their identification is analysed
in some detail in section 5. In section 6, the most important properties of state space models
are summarized and the identification of state space models is surveyed in section 7. Finally,
in section 8, several succesful applications of the reviewed identification schemes on industrial
plants are presented. The conclusions and references to some interesting books can be found
in section 9.

2 The Models.

Mathematical models may be phrased with varying degrees of mathematical formalism. A
rough classification can be obtained from the following list of qualifications: time-invariant /
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Figure 1: Cross section of a feeder

time-varying, discrete/continuous, linear/non-linear, lumped /distributed,

In this survey, we shall employ only
lumped linear discrete time time-invariant system.
The preference for this model class is dictated by several reasons:

o The lumpedness arises from the fact that in most cases, the sensors only collect local
measurements that represent the situation of the system only in the immediate neigh-
bourhood of the sensor. As an example, consider the temperature measurement in a
glass feeder by using several sensors. What one really models is the transfer of the
inputs (e.g. heating-ventilation) to the outputs, which are the temperatures at the very
location of each sensor. Observe that the real system is certainly a distributed parameter
system, the mathematical model of which is in terms of partial differential equations,
when derived from physical laws. Yet, the several sensors represent a spatial discretiza-
tion of the system by a 3-dimensional grid of temperature measurements. Hence the
corfesponding mathematical model becomes {umped.

¢ While for most physical systems it is most natural to work with a continuous time
representation (e.g. differential equations), the increasing use of digital measurement
and computational equipment, forces the uses of discrete time models. Mathematically,
it is possible to convert any continuous time hehavior into discrete time under fairly
general conditions while the reverse is not necessarily true so that discrete time models
are slightly more general than continuous time ones. As an example, consider the first
order difference equation:

Trpr = 0.5z 4 uy

There does not exist a first order differential equation that after sampling gives this
difference equation. If however the discrete time system matrix A (see section 6) has
no eigenvalues on the negative real axis, there exists always a corresponding continuous




time system, which by appropriate sampling, gives the discrete time model. For more
details, the interested reader is referred to {1, p.36].

¢ For non-linear systems, we shall exploit the idea of local linearization, The behavior
is considered to originate in a linear system, within the observation window of finite
length. Obviously, the quality and reliability of the derived model will depend upon
the relation between the length of the finite window, the number of observations (the
sampling rate) and the time constants that characterize the time-variance within this
finite window. Observe that the restriction to linearityis a self-imposed limitation to the
kind of mathematical operations and devices that will be used. Not only is the theory
of linear models well developed, the algebraic and numerical tools that are needed are
abundantly avalaible and frequently reduce to the solution of a set of (overdetermined)
linear equations, or to (generalized) eigenvalue problems.

¢ For time varying systems, we adopt the point of view of quasi-stationarity: Since in
most practical situations, the observation-window is of finite length and the number of
observations is finite as well, the behavior of the system can be approximated sufficiently
well within this finite window by a time invariant system. An adaptive strategy will be
developed, which aims at updating the model from one time window to another with
minimization of the necessary additional computational complexity. The time variance
is then revealed within the observed changes of one model with respect to a previous
obtained one.

Mathematical models are derived and applied for several reasons:

Simulation: One may wish to analyse the behavior of a system via simulations under those
circumstances where experiments on the real system are too dangerous (nuclear power
plants, ...), too expensive (loss of production, ...}, too time consuming (very slow
processes,. .. }, too complicated or simply impossible (ecological systems, ...)

Prediction: In some situations, one is interested in predicting over a certain time horizon,
the future behavior of a system, possibly under several different scenarios on the input
and disturbance variables. Other applications include so-called predictive control.

Optimal Filtering: An appropriate mathematical model may be useful in obtaining infor-
mation concerning variables that are not directly accessible or observable. This includes
estimation of state variables via Luenberger or Kalmam filters.

Control Applications: Once a mathematical model (e.g. a state space model) of a sys-
tem is available, one can develop controllers for such systems that achieve a certain
task in an optimal way: one may for instance require that a certain action is to be
performed in minimal time or with a minimal consumption of energy. Such problems
can be translated in a mathematical framework and then solved by exploiting certain
theories that are explicitly based upon the available mathematical models. Besides the
optimality of certain control actions, automatic control may also be applied from the
point of view of robustness. In these applications, one is interested in decoupling as
much as possible the perturbing action of undesired disturbances from the output or
the states. A mathematical model is unavoidable in order to perform the necessary
computations. The most simple approach to the design of an automatic control system
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Figure 2: Certainty Equivalence Control Law

is to combine a certain parameter estimation or system identification approach with any
control law, This approach of using the estimated model as if it were the true system for
the purpose of design, is called the certainty equivalence principle. With this approach,
one can conceive of generating a wide spectrum of algorithms, depending on which pa-
rameter estimation scheme is chosen and which control law is used, Perhaps the.best
known certainty equivalence stochastic adaptive control law is the self-tuning requlator
of Astrom and Wittenmark [1}. It combines a least squares procedure for parameter
estimation with a one-step ahead minimum variance certainty equivalence controller,
The theoretical analysis of such certainty equivalence controllers though is very compli-
cated, due to the strong non-linear action of the parameter estimation scheme.
Finally, control may also be achieved in terms of a so-called reference model [1, p.352}.
The desired input-output behavior is here modelled via a prespecified mathematical
model and the controller tries to adapt the system in order to follow this desired he-
havior. System identification methods may be applied in order to find an appropriate
model for the reference model.

3 The System Identification Methodology
The construction of a model from data involves three basic steps:
1. The data.
2. A set of models.

3. A criterion.

3.1 The Data

It is a conditio sine qua non, to have an abundant amount of ohservations in order to be able
to identify a mathematical model from data. However, the acquisition of ‘good’ data, is not
at all a trivial task. The following issues should be kept in mind:



Determination of inputs and outputs: One of the first questions to he solved is the
determination of the variables that will he measured in order to obtain a mathematical
model of the system under study. The appropriate choice may be determined by the
ultimate goal of the model. Another important problem is the determination of inputs
and outputs and the question of ceusal dependency. The question here concerns the
problem of which variable influences or causes another one.

Chosing the appropriate measurement equipment: This includes the choice of ap-
propriate sensors, the specification of the required and sufficient acecuracy, time com-
stants, the reproducability of the sensor, its drift and offset, the analysis of possible 50
Hz interference ete. .,

The sampling time and the data storage: The procedure of sampling the data that are
produced hy the system is inherent in computer based data acquisition systems. It is
unavoidable that sampling as such leads to information losses and it is important to
select the sampling instances so, that these losses are insignificant. Typically (and most
effectively indeed), sampling is carried out at equidistant sampling instants, One can
prove mathematically that, if one is sampling at a sampling frequency f,, no information
is ‘lost’ about frequency components in the signals, which are lower than the so-called
Nyquist frequency, which is f,/2. Hence, in order to avoid distortion by the so-called
folding effect, one should employ anti-aliasing presampling filters to the analog signals,
in order to eliminate from the signals all frequency components higher than the Nyquist
frequency f,/2. Reversely, the sampling rate should be chosen in principle twice the
highest frequency of interest. However, in practical cases, one advocates a sampling
rate which is 4 to 10 times higher than the minimal frequency of interest. Observe that
anti-aliasing filtering at the same time induces a considerable noise reduction, since
typically, the energy of the noise has important high frequency contents. A detailed
analysis and practical guidelines for appropriate determination of the sampling rate,
may be found in [1, p.29, p.71] 10, p.385-386).

The data preprocessing: In a lot of applications, especially in industrial environments,
it is absolutely necessary to ‘clean’ the data hefore any identification approach can be
applied. This preprocessing includes the elimination of occasional bursts and outliers,
‘peak shaving’, trend removal, estimation of drift and offset, periodical interference, the
analysis of disturbances, such as day-night phenomena etc. . . Some useful guidelines and
algorithms may be found in {2].

The Estimation of time delays: ‘Time delays are common in mathematical models of in-
dustrial processes. As an example, consider the measurement of the tube wall thickness
of a glass tube. This can only be measured with suffucient accuracy if the tube itself is
sufficiently cooled. This introduces a considerable time delay. While a continuous time
system with a time delay is in essence infinite dimensional, the corresponding sampled
discrete time system is finite dimensional and can be treated by the infroduction of
controllable-observable poles in the origin. Details can be found in {1, p.42]. Delays can
be estimated via a physical investigation of the origin of the delays, via cross-correlation
techniques or from inspection of the impulse responses,

Experimental Design: An important issue which is an explicit part of any identification
scheme, is the a priori determination, if possible of the input sequences that will be




applied. In some cases, experimentation on the real plant is impossible and data should
be obtained from normal operating records. In other cases, the modeller is free to
chose his own input sequences. In any case, for a reliable identification, the inputs
should satisfy necessary conditions of persistancy of excitation. This means, that their
excitation of the system, should be sufficiently rich such that all modes of the system
are present in the output sequence, so that they can be identified. If for instants, the
inputs are all constant, the behavior will soon look as being modelled by a static linear
relationship. Another important issue concerns the frequency contents of the input
sequence. Considerations on sampling rates, proper excitation and data record lengths
strongly suggest that one should not aim at covering more than three decades of time
constants in one experiment. For a high frequency model, low frequency dynamics look
like integrators while high frequency dynamics for a low frequency model look like static
instantaneous direct transmission terms [10].

3.2 The set of Models.

A set of candidate models is obtained by specifying within which collection of models we are
going to look for a suitable one. This is no doubt the most important and, at the same time,
the most difficult choice of any identification procedure. As much as possible, any a priori
available information on the system, should be reflected in the choice of a certain model, If
for instance, certain physical laws are known to hold true for the system, one could impose
a certain equation structure and identify some unknwon physical parameters. In other cases,
standard linear models may be employed, without reference to the physical background (the
black boz approach). In this paper, we shall review two possible black box models: input-
output models (section 4 and 5) and state space models (section 6 and 7).

3.3 The criterion

Having determined the set of models, one should determine within this set, that model that is
the ‘best’ approximation or provides the ‘best’ explanation of the observed data. The assess-
ment of model quality is typically based upon how the models perform when they attempt to
reproduce the measured data. One then has to fix a certain criterion which is to be optimized
over all possible models within the model set. The determination of such a criterion is how-
ever not a trivial task: Typically, it is the modeller’s desire to have models that are as simple
as possible, i.e. of the least possible complexity, yet that at the same time explain as nuch
as possible of the observed data, i.e. that minimize the misfit. These two requirements are
in & certain sense conflicting: Intuitively, it is obvious that a simple model will not be able
to explain or simulate complex behaviors while a complex model will explain a lot but will
be difficult to identify or to use appropriately. We shall review several possible complezity
determination criteria and misfit quantifications.

While the system identification procedure has the logical flow just described (collect data, fix
a model set, pick out the best model), it is possible that the model does not pass the validation
test and that one has to go back and revise several steps of the identification procedure. Hence
one naturally arrives at a system identification loop.

For this reason, good interactive software is an important tool for handling the interactive
character of the problem. The qualification ‘good’ implies the availibility of graphic possibili-



Prior
Knowiedge

1

Experiment
Design -

i

Data

Choose

Model Set {
Choose
Criterion  pat
of Fit

1
Caleulate Model
Validate Not OK:
Model Revise
lOK: Use {14

Figure 3: The system identification loop.

ties, the guarantee of numerical reliablitity and acceptable levels of computational speed and
memory requirements. As an example of such software packages, one may consider MATLAB
[11) and SIMNON (1], Matriz-X, Control C, etc...besides the more classical ones like NAG,
LINPACK, EISPACK which are of course less interactive.

4 Input-output Models

The basic description of a single input, single output linear system with one additive distur-
bance is:

¥ = Glg)ue + H(g)er

where the following notations are applied:

o The output at time k is yp, while the input is ue. ey is a sequence of independent
random variables with zero mean.

¢ ¢ is the forward shift operator: qup = wupy,.
g~ ! is the backward shift operator: gt = up_q.

* G(q) is the transfer function of the linear system. It is a rational function of the shift
operator ¢~ 1:
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G(q)} describes the dynamic relation between the input sequence u; and the output
sequence y.

Glq)

» H(qg) is a rational function of ¢ as well:
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H{q) represents the transfer function from the unobserved sequence e, to the output
Yr.

The rationale behind this model is the following: The output sequence Y is being thought
as originating in the parallel connection of two systems: The first system models the causal,
dynamic dependence of the outputs on the observed or predetermined inputs. Everything
what can not he explained by a regression of these output observations on these inputs
observations is then contributed to the second system. Obviously, several special cases may
arise:

ng = np = ng = 0,n, £0: The general input-output equation reduces to:

Y+ i1t . F CnYhon, = €k

It is easily seen that the output variables are essentially regressed on themselves, except
for one residual terin e, per time instant. Hence the name aufo-regressive model for this
special case, abbreviated as AR-model.

Ng — 1y = n, = 0,ng # 0t The output can be written as:
yp=cp+diep_1 +... 4+ N _p,

The output at each time instant is described as a weighted average of present and past
values of the sequence ey, hence the name moving average model (M A-1model).

Ny = 1y = 0,n. # 0,ng # 0: This is a comhination of the two previous cases and is called
an auto-regressive moving average model ARMA-model.

na # 0,1y # 0,7, = ng = 0:  This model represents a system without unobserved distur-
bances. It is a linear difference equation.

Na 7 0,y £ 0,n. £ 0,ng £ 0 and C(g) = A(q): In addition to the auto-regressive, moving
average term, one has also a term describing the dynamic tranfer between the prede-
termined inputs uy and the observed outputs with the same poles. This model is called
ARMAX: an auto-regressive moving average model with eXogeneous inputs. Observe
that there is a close connection with the so-called Wold Decomposition from the theory
of stationary stochastic processes {7, p.265], which reduces to the observation that a sta-
tionary stochastic process may be decomposed into the sum of a deterministic (linearly
predictable) and nondeterministic component, which is the output of a linear system
driven by white noise.

ng # 0,1y # 0,7, # 0,14 # 0: This is one of the most general cases. This model is called
the Boe-Jenkins Model Structure [10].

The presented models can be generalized towards multivariable systemn representations (sys-
tems with several inputs and outputs). However, the corresponding necessary parametriza-
tions are not very elegant and require a lot of notationally complex calculations. Instead of
using rational functions, one now should employ rational matrices, i.e. matrices of which the
elements are rational functions of the shift operator ¢. While these models can be embedded
in a generalizing approach 7] [10], they lead frequently to numerically unstable behavior he-
cause of the bad conditioning of certain canonical parametrizations. This obviously represents
a serious disadvantage for the use of input-output model for multivariable systems.



5 Identification of input-output models.

Assume that the system description is given in the form:

we = Glo)us + H(q)ex

and assume that only observations on the variables u; and y, are available. The identification
problem then reduces to the determination of appropriate transfer functions G(q) and H (¢)
and an appropriate sequence ey, i.e. one should find appropriate orders of the polynomials
of numerator and denominator of the transfer functions G{q) and H(g) and then compute
coeflicients a;, by, ¢, di, such that the model sufficiently well approximates the input-output
data.

5.1 Identifying the parameters.

We shall now derive an identification procedure for the case of a SISO systemn, described by
the equation:

It is assumed that ‘suitable’ orders for the polynomials A(q), B(g), C(g), D(q) have been
determined. This question will be discussed in section 5.2.
It is convenient to introduce the auxiliary variables:

B(q)
Wi ({2
A(q)
Ve = Yk — Wi
It is starightforward to verify that:
wp = byug_y + ...+ bubukfnb S OIWE_ — e T By Wh g,

From the definition of vg it follows that the unobserved input e can be written as:

Clg) B(q)
e = 28y - Ay,
D(q) A(g)
_ Yo,
D(q) ™
Hence:
e, =t +ev 3+ + CnV—n, — dlek~1 Teee dndekwud
Now introduce the following ‘state’ vector:
Gl = (Uket v Ukopy — Wh1 e e~ Whop, €y .. '€kong — Vk—1---— Uk—p,)

and the parameter vector:

GL = (bl---bub g ...dy, dl--'dnd C]---Cnc)



Observe that the ‘state’ vector contains only variables up to time & — 1. It is also called the
regression vector. One then arrives at the following expression for e

er = yr — 0 ¢y

Observe that e; has become a prediction error now. Hence it is natural to try to minimize
in some sense this prediction error over all possible parameter vectors 8. This results in the
following least squares criterion:

N
. 1 2
MINIMIZCoper all § = Z €

2N

t=1
where
o N is the finite length observation horizon.
o ¢ = y; — 0'¢; is the predicition error.

Its optimal solution § is a tedious though straightforward calculation (which may for instance
be done via some elementary matrix algebra):

T A L.
0 = [E; > edt]” N > i
t=1 t=1

Statistical properties of this (classical) estimation procedure such as conwvergence behavior,
consistency properties, asymptolic variance and covariance expressions for the parameters
estimates and efficiency are thouroughly investigated and analysed in [1] [7] [10] [12).

5.2 Determination of the model order.

The choice of an appropriate model structure is a difficult question but is most crucial for a
succesful identification application. One may start with an inspection of the spectral contents
of the transfer function. The resonance peaks and high frequency roll-off and phase shifts may
contain useful information concerning the dynamic complexity. Another tool is the analysis
of the rank of certain covariance matrices. Here, one tries to determine the order of the
polynomials via the rank estimation of certain matrices. Other recently developed statistical
order determination tests include Akaike’s Information Theovetic Criterion, Akaike’s Final
Predicition Error Criterion, Rissanen’s Minimal Description Length fromalism, all of which
are discussed in [10, p.417-423] and in the references cited therein.

One may also test for the whiteness of the disturbance sequence e;. Discrete time white noise
is a random process of independent identically distributed random variables with a covariance
function given by:

7(t) o2 =0
= t#£0

Its spectral density is given by:



and is thus constant for all frequencies, which explains the naine from analogy with the spec-
tral properties of white light.

Having explained as much ‘energy’ as possible of the output sequence y; in terms of the input
sequence u, hy an appropriate choice of the orders n, and 15, one now turns ones attention to
the residual sequence yp — G'(¢)us. This residual sequence is now explained by thinking that
it originates in the output of another linear system, that is driven by white noise. One mau
thus proceed as follows: Choose certain orders n. and ny and compute a possible sequence e,
that may have caused the residual sequence y;, — G{¢)uy. If this sequence e, is not sufficiently
white, one may decide to increase the complexity of the disturbance term, taking into account
some threshold for the finite length of the observation window, by modifying the orders n,
and ng, until the resulting sequence e is ‘sufficiently white’. Numerical whiteness tests are
e.g. included in MATLAB [11]. This idea of describing stochastic disturbances as linearly
filtered white noise goes back to Wold (1938) [9]. However, in practice there will always exist
a certain arbitraryness in the decision for what is to be contributed to the sequence u; and
what is to be explained in terms of a disturbance sequence, because of the noise that perturbs
the observation and the finite number of observations.

In general, data-aided model structure selection is a largely underdeveloped research field for
the input-output models. The cited tests form a serious drawback for a flexible application
of the identification strategy based upon the input-output models. Indeed, this identification
strategy is very well suited for updating time-variant models. One of its main advantages is
its minimal computational complexity, especially in a recursive least squares implementation.
The complexity determination tests however are rather time consuming and in some sense,
destroy the computational elegancy of this input-output identification scheme. Yet, an appro-
priate order selection is unavoidable in order to guarantee the numerical stability of the least
squares scheme. This can be seen from the expression for the least squares estimate of the
parameter vector . A necessary condition is the non-singularity of the ‘normal’ equations’
matrix R:

1y,
Rzﬁgétgbt

If this matrix R is singular or close to a singular matrix, the inversion can not be done in
a numerical reliable way. A possible remedy is then a decrease of the order such that the
matrix becomes well-conditioned or inserting an additional random signal of limited energy,
that sufficiently excites the system, such that the matrix R is non-singular. In any case,
strategies to preserve a sufficient degree of persistancy of ezcitation in this input-output
identification framework are the subject of vivid research up to date {1] [7]} [10].

5.3 Recursive Least Squares Estimation.

In many cases, it is necessary or useful to have a model of the system available while the sys-
tem is in operation, typically when the system to be modelled is non-linear or time-varying.
In these applications, one will perform an on-line adjustment of the model each time a new
measurement hecomes available. The on-line computation of such a model must be done
in such a way that the processing of the measurements from one sample can be completed
during one sampling interval. Identification techniques that comply with this requirement

11



are called recursive: They exploit in the adjustment of the model, as mych as possible the
already obtained model and update the new one by a minimal modification. An interesting
feature of the least squares methodology we have been discussing for input-output models is
the fact that they are very well suited for a recursive implementation. Instead of giving a
complete derivation, we shall restrict ourselves to mentioning only the final recursive scheme.
For details, the interested reader is referred to [10] [1] {7].

A recursive linear least squares estimate of the parameter vector 8, of the input-output model
that minimizes the weighted least squares criterion:

N
gk = minouer all 8 Z/\k—z(y', o ¢56)2

izl

is provided by the following recursive scheme:

O = 6y + Li(y — dx0r1)

Ly = Pr_1¢y,
At ¢LP 10
1 Pi_1¢d} Py
Py = ~(Ppy — k1PkPeTho1
k A( TNT ¢ Pre1 i

These expressions contain the following information:

6

s [t can be seen that the parameter vector is updated in an additive way. The modification

is determined by the gain Lj, which weights the amount by which the prediction error
will affect the update.

The covariance matrix P of the parameter vector, that reflects the confidence in the
parameter estimation, can be determined recursively from the previous estimation of
the covariance matrix, taking into account a ‘new’ regression vector ¢y.

A is a forgetting factor, which is chosen as 0 < A < 1. It represents an ezponential
weighting, by which older measuretnents are discounted. If A is close to 1, the estimation
will be noise insensitive, while if it is close to 0, the estimation of parameters will adopt
itself much faster to modifications of the system but at the same time, it will of course he
much more sensitive to perturbations and disturbances. Hence, an appropriate choice of
A will always he a matter of compromis between fast adaptivity and noise insensilivily,
An example is given in figure 4. The first figure represents the identification of two
parameters {one constant and one time varying)} with no forgetting. For the second
figure, the forgetting factor is A = 0.9.

State Space models

A lumped linear time invariant discrete time system may be represented via the state space
equations:

a1 = Awy + Buy +wy
e = Czp+ Du + vy,

12
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Figure 4: Adaptivity and forgetting factor

"The first equation is referred to as the state equation while the second one is called the output
equation. uy is a vector with m components, that contains the m input observations at time
k. The vector y; contains the ! outputs. The vector 24 contains the n states at time &. The
vectors v, and wy both represent disturbances. v, is referred to as measurement noise while
wy is called the process noise, which acts on the states. In some applications, typical variables
that can be chosen as states are:

systemn state 1 state 2 state 3
mechanical position velocity

electrical voltage current

hydraulic levels flows

thermal temperatures pressures densities

Observe however that a state space model is not unique with respect to an observed input-
output behavior. Indeed, it is easily verified that an ‘equivalent’ state space model is obtained
by inserting a non-singular matrix T as follows:

Tzrpr = (TAT ")WT2r) + (T'B)uy + Twy
Yi (CT—l)(T:Z!k) + Duy, + v

i

It can be observed that the matrices have been changed but that the input-output pairs were
not affected. This implies that only for very specific choices of coordinate systems in the
vector space of states, the components of the state vectors have physical meaning. However,
in most applications. it is not reaily important whether a state vector component has a real
physical meaning,

State space models have certain advantages with respect to input-output models.

» Conceptual problems are most easily studied within the state space framework. Exam-
ples include the investigation of properties such as observability, controllabilily, stabiliz-
ability, etc.... [8].

13




+ Optimal control and fltering is completely solvable in ferms of state space models
(Kalman filter, the linear quadratic regulator, etc...)} [8], more specifically, optimal
control requires state feedback, which on its turn necessitates the optimal estimation of
the state vector.

e In the direct identification of a state space model one may expect to be able to identify
ohservable but non-controllable phenomena such as periodical interference, drift, offsets
etc.... Such autonomous phenoma are not identifiable with input-output models. Of
particular interest is the definition of observable excited dimension:

Definition 1 Observable excited dimension
Assume that over a certain time horizon N the slales are aggregated in an n X N matriz
X:

X =(ok 2h41 o BryeN—1)
The observable excited dimension, denoted by n,. is then simply the algebraic rank of
the matriz X.

A more intuitive interpretation is that the observable excited dimension is nothing else
than the numbers of {complex} modes of the system that has been excited and that is
observable {and hence may be measured) in the output sequence.

o At the cost of a higher computational complexity, the identification of state space models
is numerically more robust than that of input-output models and problems such as
peristancy of excitation of the inpul signals are easier to assess. As a matter of fact,
recently it has been shown that it is even not needed fto know a priori which of the
variables are to be considered as inputs and which of them are outputs [3].

7 Identification techniques for state space models.

A trivial way to obtain state space models from input-output measurement could consist
of a transformation of an obtained input-output model into a state space form. It can be
demonstrated that input-output models can be converted into state space models and vice
versa [8] via so-called canonical parametrizations of state space models. However, an essential
drawback of this procedure is the numerical instability of these state space canonical forms:
small perturbations in one of the parameters, may influence the quality of the model in a
dramatic way. Hereto, state space models should be identified directly instead of indirectly.
At the cost of a higher computational complexity, state space modelling is characterized hy
a better numerical behavior from the application of numerically robust techniques. Recall
that also the order determination of an input-output model was not a trivial task. It will be
shown how this problem is relatively easier for state space identification methods, by using
the singular value decomposition. Finally, let’s mention that adaptive versions of this state
space identification may be derived though they are still subject to further research [4].

The direct identification of state space models from input-output measurements essentially
exploits three hasic techniques from numerical linear algebra:

1. The solution of a set of linear equations
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2. The eigenvalue decomposition
3. The singular value decomposition

While the first two of themn may be qualified as classical, the third one was introduced only
recently as a practical numerical tool by the development of an efficient algorithm ({6} and
the references therein).

7.1 The Singular Value Decomposition.

The singular value decomposition (SVD) is a matrix factorization technique, in which a px ¢
matrix X can be factorized as the product of three matrices U, 5, V, each of which has some
interesting features:

X =Usvt

In this factorization:

¢ §isa p x ¢ diagonal matrix, containing the singular values of the matrix X:

51 0 ... ... 0
0 39 0

§= 0 Sy
¢ ... ... ... O
¢ ... ... ... 0

By convention, the singular values are ordered in non-decreasing order:
851> 822 ... 8, >0

The smallest non-singular value s, reveals the algebraic renk of the matrix X. This
is equivalent with the number of linearly independent rows (columns) in the matrix
X. (Recall the a row (column) is linearly independent of all other rows (columns) if it
cannot be written as a linear combination of these other rows {columns}).

e The matrix U is a p x p orthonormal matrix:
Ut =1, = Uyt
Its columms u',i = 1,...,p are called the left singular vectors.
e The matrix V is a ¢ x g orthonormal matrix:
VIV = I, =VV!
Its columns v',i = 1,...,q are called the right singular vectors.

Denoting by Uy the p x r submatrix of U consisting of its r first colunms and by ¥; the g xr
submatrix of ¥ formed by its first » columns and by §; the r x r right upper part of 9, one
may write down a reduced singular value decomposition of the form:

X = U5,V
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where now §; is square diagonal and Uy and V; satisfy the ‘reduced’ orthonormality conditions:
Uity = I, = W

It is easy to demonstrate that this factorization may also be converted into the following sum,
which is called the dyedic decomposition:

X =ulsi(o) 4. s (07)

Observe that this decomposes the matrix X of rank » in r rank one matrices of decreasing
importance hecause s; > s;+1. This observation is a crucial one for the succesful application of
the singular value decomposition in data reduction applications. In a lot of these applications,
one needs only some of the first terms of the dyadic decomposition in order to approxrimate
the matrix X. An important optimality property is the following. Denote by {|X l|% the so
called Frobeniusnorm of a matrix, which is the sum of its elements squared, then the SVD
provides the solution to the following optimization problem:

Ininl.{, ”.'Y — .(Y“?F‘
subject to the constraint that
rank(X) = rank(X) -1

If the dyadic decomposition of the matrix X is given as above, the solution is stmply:

r—1
X = Z w'si(v')!
i=1

One of the most interesting properties of the singular values is there extreme insensitivity to
additive perturbations, This implies that, when the data in the matrix are noisy, the singular
values will still reveal the rank of the unperturbed matrix if of course the signal-to-noise ratio
is not too bad. As an example, consider the following 50 x 5 matrix:

1 50 51 -1062 52
2 49 51 -102 B3
X = 3 48 5H1 102 54

50 1 51 -102 101
Tt is easy to verify that the third column is the sum of the first two columns, the 4-th one
is 2 times the 3-th one, the last one is the sum of the first and the third colummn. Hence the
algebraic rank of the matrix X is 2. Now random noise is added to this matrix. Each element

is corrupted by normally distributed zero mean random noise with variance 1. The singular
values of the exact and the perturbed matrix are:

exact | noisy
1005.5 | 1004.7
167.7 1 167.7
0.6E-14 6.57
0.3E-14 6.23
0.5E-33 5.51

[m.-hub:n—t
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The numerical precision equals 0.1£ — 15. Hence, from the ‘gap’ in the singular spectrum,
one ay still conclude that the perturbed noisy version is close to a matrix of rank 2. Typical
is the so-called noise threshold: The smallest singular values are caused only by the noise and
are all of the same order of magnitude.

These properties and more details and algorithms may be found in [6] [3]. This observation
together with the data reduction property will be exploited in the identification of state space
models.

7.2 Some essential matrix properties for dynamic systems.

The direct identification approach for state space models will be based upon three basic prop-
erties. The first one allows to estimate the number of necessary states of the system while
the second property allows to obtain a state sequence. The third property then shows how
the system matrices and the disturbance vectors w;, and vy follow from the solution of a set
of linear equations.

Consider the vectors w;, that are constructed from input-output pairs by simple concatenation:

Uy,
Wy =

Second, construct 2 so-called block Hankel matrices with these input-output pairs:

W Wgey Wiy Weyz 0n o Whyj-1

Wetr Whpe Whyz Wepg -0 oo Wiy

H, = Witz Weed Whyd Wreys ... .. Wt j+1
W3

Weyi-3 Wt . sre e e Whyagg g

The block dimensions i and j are user determined dimensions which should be chosen ‘suffi-
ciently large’ (for more detail, {3]). Observe that the block Hankel structure reveals itself in
the repetition of the same vector along the anti-diagonals of the matrix. Since the dimensions
of the vectors wy, are ({4 m) x 1, the dimensions of the block Hankel matrix are ({ + m)i x j.
A second block Hankel matrix is constructed from subsequent observations:

Weyi Wegity Wegigr Wepigz -0 o0 Wrpitjoa

Whtitl  Whpitz Weiigd Whepitd -0 oo Whtitj

H, = Wetits Wepiss Whiipd Whpigs -0+ o0 Whpipigr
Whti+3

Whi2i—1 Wt 2q e S R /N & TR )

The block Hankel matrix H, is called the past input-oufput block Hankel mairiz while H, is
called the future input-output block Hankel matriz. They are hoth submatrices of the ‘hig’
inpul-oulpul block Hankel matriz H:
H,
H =
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7.3 Estimation of the observable excited dimension

The following theorem allows to estimate the order of the system from the singular values of
the input-output block Hankel matrices.

Theorem 1 The rank property
Under fairly general conclusions, it holds that:

rank(H,) = rank(Hy) = mi + nge

and
rank(H) = 2mi + nee

where n,. is the excited observable dimension of the slate sequence:
X = (Zrpi Brpits o0 Thobitjo1)
For a proof and a detailed analysis of the necessary conditions, the reader is referred to [3].

Observe that the singular value decomposition of for instance the matrix H; allows to obtain
an estimate of the ohservable excited dimension n,. from a simple counting of the non-zero
singular values. Moreover, in the presence of additive noise, the noise insensitivity of these
singular values will stifl allow to ‘recognize’ the order of the system. An important result is the
property that, when linear static state variable feedback is applied, this will cause a decrease
of the observable excited dimension. Recall that linear static state veriable feedback consists
of the determination of the inputs as a linear static function of the states. This implies that
the inputs (or better, those variables that are considered to be inputs) are no longer inde-
pendent variables, but have become completely dependent on other variables of the system.
This contradicts the intuitive appreciation of an input as being a completely free variable.
That this property is not merely intiution is revealed in the decrease of the observable excited
dimension. Hence, when operating under linear static {partial} state variable feedback, the
number of non-zero singular values of the input-output block Hankel matrix will be less than
when the system operates in open loop.

Example

This examples aims at illustrating the several possible situations that may influence the rank
input-output block Hankel matrix. Hereto consider the following system with 2 inputs, 1
output and 3 states:

V)2 —1/2 0 1 0

A= /2 JB)/2 0 B=1}2 0

0 0 —0.92 0 -3
C=(111) D=(00)

The initial state equals g = [0 0 0 ]'. The block Hankel parameters are i = 6 and j = 19.
Hence Uy is a 12 x 19 while ¥}, is a 6 x 19 block Hankel matrix. The system is identified
adaptively by a gliding window approach. The window is 24 time steps long: e.g. the first
window extends from time 1 to 24, the second from 2 to 25, etc .... In each window the
system is considered to be time invariant. The first identification result is obtained at time
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step 24. If we refer to a certain time step, this corresponds to the time step at with the
identification is obtained, For instance, the identification at time 33, uses data from k = 10
to k = 33. The history of the system is the {ollowing:

Time step 24 - 40 : The first input is zero. The second one is a random signal, Gaussian
distributed with mean zero and variance 1. The rank of the input block Hankel matrix
is 6. The observable excited dimension is 1.

Time step 41 - 80 : A defect sensor changes the matrix C into ¢ = [ 11 0] at time 41,
This makes the third state unobservable. Between timestep 41 - G4, the rank of the
input-output block Hankel matrix reaches a maximum of 11. The reason is that the
gliding window identification tries to model the timevariance of the system, by a linear
time-invariant system but of higher complexity. Remarkable enough, for this example,
it succeeds succesfully: The singular values indicate that the behavior could be modelled
by a linear time-invariant system of order 6. The transient phenomenon disappears from
time step 64 on, because from then on, the data in the gliding window were generated by
the non-observable time invariant system, Observe that the emerging and disappearing
of the singular values proceeds rapidly.

Time step 81 - 120 : The second input is activated into a step-signal of amplitude 1 at
time 81. This excites the states 1 and 2. Because the corresponding eigenvalues are
on the unit circle, the step response is a linear oscillation. Observe that between time
steps 81 and 86 the rank of the block input Hankel matrix increases up to its maximum,
which is 12. The reason is that the step response gradually moves in into the input
block Hankel as the window proceeds. This maximal rank persists until time step 99.
At time 100, the rank starts to decrease again because of the constant first input. At
time 105, the rank of the input block Hankel equals 7. Meanwhile, it is easily derived
that the observable excited dimension equals 2.

Time step 121 - 160 : Because a new sensor has been installed and activated, the system
has again become observable at time step 121. However, the new sensor is not of high
quality -despite its price!) : it shows drift which happens to be (for this cheap sensor)
a first order automous unstable behavior with a pole at 1.01. The identified rank
hetween 121 and 143 reflects the attempt of the identification algerithm to model the
time variance (transition from unobservability to observability) by a higher complexity.
However, this transient behavior disappears from time step 144 on. Between time
124 and 160, the rank of the concatenated input-output block Hankel matrix equals
11, which can be explained as follows: Rank 1 from the first input (a constant), rank 6
from the second input (random signal},observable excifed dimension 2 of the oscillation,
observable excited dimension 1 from the third state, which becaine observable again (the
new sensor) and observable excited dimension 1 of the sensor’s drift.

Time step 161 - 200 : In an attempt to stop the oscillation, an operator closes the open
loop system with a static state variable feedback controller of the form u, = —Fazy,
applied to the first 2 states and the first input, where F = { —0.25 0.5 ). The controller
succeeds in damping the oscillation. Again, between 161 and 183, there is a transient
rank increase and decrease due to time variance. From 184 on, the rank stabilizes again.
The input is no longer independent. Observe that the drift is now very well recognizable
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in the output. The input-output rank now equals 10 = 6 {second input) + 2 (first input})
+ 4 (ohservable excited dimension) - 2 (dependency of the input).

7.4 Computation of a state sequence.

Tt will now be demonstrated how a appropriate state sequence can be computed from the past
and future input-output block Hankel matrices.

Theorem 2 The state as intersection of past and future.
If the observable excited dimension of the stale sequence X equals n,e, where:

X = (Zr4i Thtit1 Thotiti-1)
then there exist mairices Py and Py, both of rank n,., such that:
X =PH;= P,H,

For a detailed proof, the reader is again referred to [3]. However, observe that the matrix 2
makes linear combinations of the rows of the past input-output block Hankel matrix H; while
the matrix P, does the same with the rows of the future input-output block Hankel matrix.
These two matrices P; and P, can be computed from the singular value decomposition of the
input-output block Hankel matrix H from the following observation:

(Pl—Pz)(fg)zo

PH =1

which can bhe written as:

with an obvious definition of the matrix P. From this observation, it is seen that the matrix
P can be constructed from the left singular vectors of the matrix H, that correspond to zero
singular values. It can be shown that a second singular value decomposition then provides
the matrices Py and P, and the state sequence X [3].

7.5 From the state sequence to the model.

By a repeated application of the model equations, it is easy to derive that:

Tryl Ttz oo C[lk_‘,p.{.] _ A B T Tpgr o0 Thyp + Wy Wiy

Yk Ykt1 --- Yktp ¢ D Uk Ukpt o-- Ukgp U Vgl
In these equations p is a user defined parameter which is again ‘sufficiently large’. Both
input and output variables are known, and in the previous section it was outlined how a state
sequence may he obtained. The disturbances v, and wj are unknown. One may however

obtain an estimation by exploiting the least squares idea as was the case with the input-
output models: Hereto, one simply solves in a least squares sense the system of equations:

Thit Thiz oo Zheptr | _ [ A B T Trpr - Thip
Ye Yky1 .- Yietp ¢ D U Uppr -0 Ukip
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Figure 5: The inputs, the states, the outputs and singular values 7 to 18 of the input-output
block Hankel matrix as a function of time for the timevarying 4-th order system.

21




where the " denotes the obtained estimates. The residuals:

(o) (& 5) (%)

are then considered to be estimates of the disturbances. In this way, one has obtained a
complete identification of the system matrices and the disturbances. Additional properties,
more sophisticated approaches based upon the (generalized) singular value decomposition and
possible adaptive implementations are derived and analysed in [3] {4].

8 Model Validation

Model validation is concerned with the question whether the model is ‘good enough’ for its
purpose. Good performance will develop a certain confidence in the model: For instance, if the
analysed system is known to be time-invariant and approximatively linear, then one expects
at least that the model will sufficiently well predict the behavior when inputs are applied.
Hence a validation criterion could be the energy in the difference between the observed and
the simulated output. Other measures could be formulated in terms of frequency behavior,
as for instance the accuracy of the amplitude and the phase spectrum of the simulations
compared to the observed ones (see also {10] [1] [7]). We shall only present here 3 examples
of a succesful identification and corresponding validation.

8.1 A power plant

Input-output measurements on a 120 MW power plant of Pont-Sur-Sambre in France were
obtained. The available input data were samples obtained under normal operaling circum-
stances of the gas flow, the turbine valves openings, the super heater spray flow, the gas
dampers and the air flow. The 3 outputs are the steam pressure, the main steam temperature
and the rcheat steam temperature. Inputs and outputs are depicted in figure 6. The sampling
titne was 120 seconds. Using a refinement of the matrix algebra technique presented above
[3, p.300], 4 different models were derived with an increasing complexity. it can be concluded
from figure 7 that the quality of the model ameliorates as the complexity increases. The block
dimensions used were i = 5,j = 90.

8.2 A glass production installation

A feeder is the final part of a process installation that is used for melting glass. Its main
task is to realize a homogeneous temperature distribution. The reader is invited to consult
(2, p.193] for an in depth discussion of the data acquisition and preprocessing procedures.
Input 1 is the gas input of the first feeder, input 2 is a cooling air input while input 3 is
the gas input of the second feeder, Pseudo-random binary sequences were applied as inputs,
enstiring almost surely a sufficient degree of persistancy of excitation. The first 300 samples
of these inputs are depicted in figure 8. As outputs of the process, the glass temperature at
6 different locations in a cross section of the feeder was measured. The block dimensions of
the input-output block Hankel matrix used, were i = 10,5 = 300, The singular spectrum of
the 2(m +1)i x j (=180 x 300) input output block Hankel matrix is depicted in figure 8. The
singular values from the {2mi+ 1) = 61-th on are depicted in the right hand side of figure 8.
They allow to determine an approximate order, which for this example was fixed as 4. Results
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Figure 6: Inputs and outputs of a power plant
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of simulations based on the 300 used input-output pairs can be found in figure 9. In figure 9,
one also finds a prediction of the first and the 4-th output from time step 800 to 1000. The
prediction of output 1 was the worst, while that of output 4 was the hest of all predictions.
Obviosuly, the model is rather good despite an offset in simulation of the first output.

8.3 A simulated example and the importance of scaling.

Consider the simulated input-output behavior (with PC-Matlab [11}) of a 4-th order system
as depicted in figure 10. Observe that the amplitude of the output is at least one order of
magnitude larger than this of the input.  The singular values of a block Hankel matrix
with the input-output vector pairs are depicted in figure 11 from the mi-th singular value on.
Figure 11.a represents the singular values from the input-output block Hankel matrix without
any scaling. In figure 11.h, the data were scaled such that all rows of the block Hankel matrix
have equal energy. In figure 11.c, the data were scaled such that the variance of the noise on
input and output is equal. As can be concluded, scaling considerably influences the singular
spectrum.

Then the system was identified with the recursive input-output least squares identification
scheme of section 5. The phase and amplitude plots of the transfer function of the impulse
response for increasing order, can be found in figures 12 (a), (b}, (¢}, (d).

9 Conclusions

In this survey, we have presented an introduction to the identification of linear models from
input-output data. First, we have paid attention to the several possible types of models and
their respective properties. Next, attention was paid to some practical issues concerning iden-
tification experiments and data acquisition. We have also summarized the main features of
two basic identification approaches: one was based on input-output models and least squares
algorithms, the other was based upon state space models and matrix algebra. Finally we have
provided several examples of identification applications in an industrial environment.

The author is indebted to Mare M. oonen, Jan Swevers, Lieven Vandenberghe and Joos Vande-
walle for the many interesting discussions and stimulating suggestions and for the preparation
of some of the figures.
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