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Abstract

The link between the Linear Complementarity Problem (LCP)
and piecewise-linear (PWL) resistive circuits is extended by
allowing a generalized form of the LCP. Using this gencralized
LCP (GLCP) a very broad class of circuits can he described
ad analyzed. We also give an algorithm to find all solutions of
this GLCP and hence of a PWL circuit. The same technique
can be applied to driving-point and transfer characteristics.

1 Introduction

The geometry of the solution set of PWL resistive circuits can
be very complicated. The circuit can have multiple solutions,
the solution set can be continuous or unhounded. Except for
enumerative techniques, no algorithm is known for finding the
complete solution of a PWL circuit.

A related problem is to trace driving point or transfer char-
acteristics. Here the main difficulty lies in the detection of
multiple branches of the curve,

In [1] and (2] the PWL circuits were solved by first synthe-
sizing these as diode-resistor networks. The nelwork equations
of this diode-resistor network constitute a Linear Complemen-
tarity Problem (LCP), a mathemalical programuning problem
well known as a unified description of a large class of problems
‘n applied mathematics [3], Most of the algorithms for solving
JCP's (iterative methods, homotopy methods, optimization-
based methods ... ), have in commumon (lLiat they can only deul
with a restricted class of problems and that they can find only
one solution at the same time. This limits the applicability of
complementarity theory lo certain PWI, resistive circuits. In
this paper, the connection between PWL cireuits and comple-
mentarity problems is extended hy allowing a generalized forin
of the LCP. The application of a recent algorithm for solving
this GLCP will also he discussed,

2 Description of piecewise-linear circuit
elements

The cirenits under study may contain the following elements

Lo all possible linear resistive elemonts,

2. piecewise linear two terminal resistors (we do not require

the resistors to he cither voltage- or current-controlled),

Figure 1: Parametrization of a PWI, curve

4. piecewise lincar controlled sources (all four types) with
one conlrolling variable (the characteristics may he multi-
valued).

The basic technique for the formulation of the GLCP associated
lo a circuit, is the parametrization given helow.

A one-dimensional PWL curve in ™ (fig.1), characterized
by a sel of n + 1 hreakpoints vg, x, .. .2, and two directions
¥_oo and 24 o, can be described as

T = @ oA o (2~ 2g) AT
+ D (= 204y b ag ) (A~ k + nt
k=2
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where A is a parameler running from —oo (o 4+oo. We have
used the following notation for a real number & :

a2t = max(r,0), @7 = max(—2x,0).

The same notation can be used for an n-vector ¢ when all
operations are assumed to be performed componentwise. An
equivalent definition is:
t_a-

2T >0,

# =3
et >0
€ T =10
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Upon intraducing the auxiliary variables

,\1 = ,\— 1
A=A=-2

= (2)
A= N =—n,

the equations (1) and (2) can be written in miteix lorm -
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AT >0, AY >0 (3}
(A ')'.r\" =0
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Figure 2: Extraction of the nonlinear resistors

where A7 = [A7 A7 A0 AY = [AF A LA
Multiterminal resistors can be described by using more gen-
eral complementarity conditions EL, Flren, A1 = 0, where the
Ar are nonnegalive variables and each B is an arbilrary in-
dex set. This may be incorporated in our analysis, but will be

omitted here for the sake of clarity.

3 Determination of the operating points
of PWL circuits

The circuit equations can be wrilten in standard form hy first
extracting all nonlinear resistors (fig.2). Let N he the number
of nonlinear resistors. The N-port left behind can always he
described by its constraint matrix ¢ ;

Cliv vy ip va-evin vl =0 (4}

where (' is a matrix with 2V columns and an arbitrary number
of rows. The k-th PWL resistor can be parametrized by two
complementary vectors A} and Ap asin {1). Substituting these
parametrizations in {4) leads to a set of equations

AF Ay
M + N =q

x\j{, Ay (5}
A7 =0, A} Zffor =1L N

(J\})’.J'\i_ =0 for i=t... A

Solving this GLCP will yield the complete solation set.

4 Driving-point and transfer character-
istics

The analysis given in the previous section can easily be ex-

tended to the determination of a driving point plot {f;y vs.

vy} asin fig. 3. In order o obtain the standard form we only

have to split the unconstrained varialles i;y and vy as the
difference of twe complementary variables
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Figure 3: Deteernination of a driving-point plot

Together with the PWI description of the nonlinear resistors
this again yvields a GLCP (5). It is important to note that this
GLCP will in general be rectangular (i.e. Af and N will have
more columns than rows).

A similar analysis can be carried ou! to obtain transfer char-
acleristics.

5 The generalized linear complementar-
ity problem

In the previous sections the circuit equalions have been written
in the standard form (5). The term Generalized Linear Com-
plementarity Problem for this set of equations is justified by a
munber of differences with the classical formulation.

The linear complementarity problem :
Given N ¢ R™™ and ¢ € R", find all solutions
we f"and - € A" to

w4 Nz=gq
w>d, :=>0 (6)
wh==10

where the shorthand notation » - @ for vector in-
equalities holds componentwise.

A generalization of this problem was given in [4]. For our
present purposes, the following form will he sufficient :

The generalized linear complementarity prob-

lem (GLCP)

Given M ¢ ", N ¢ R™*", g € A", find all
we R, 2 e B and o € R such that

Mw+ Nz = q.0a,
w,z2 8, a2 (7)
whz =0

There are three distinet differences between this formulation
and {4} :

o GLCP (7) allows rectangular LCP's (m < n}. We have
secen how these occur in the determination of driving-
point and transfer characteristics.

» even if m = n, we do not exclide cases where no reorden-
ing of the variables w and = provides an invertible matrix

A

« Llie nonnegative scalar a has been added to allow for so-
hations at infinily, Le. directions where the solution set is
unthounded. The normalized solution sel is the intersee-
tion of the solution set of (7) and the hyperplane a = 1.




6 The solution set of linear systems of
constrained equalities and the GLCP

Tn this section the geometric and algebraic properties of the
solution sel, and an algorithm fo obiain the complete solution
set are shortly described.

Consider first the set of linear equations with nonnegativity
consiraints

Aax =0 with a given 4 € RM*®
£ >0 (8)
The polyhedral cone £4 = {2 > O0jAdx = 0} can be defined

completely by all positive linear combinations of its the extreme
rays {v!,e?, ... 01}

Theorem 1 A necessary and suflicient comdition for a solu-
tion v € L4 fo be an exireme vay iz that no other solutions

possess zseros al the same positions as v,

Theorem 2 A neccssary and sufficicnt comdition for fuwn ep-
treme solutions v and w to be adjucent s that there erist no
other extreme solutions with zeros al the same posilions as the
common seros of v and w.

We are now ready to return to the GLCP (7}, which will be
treated as a set of linear equations

uw
M N —9q]| = }1=0, w>0,:208az0 (9)
4]
with extra constraints (w'.z = 8). The solution set of {9} is

then normalized, taking the intersection with the hypeeplane
a = 1. This intersection is & generalized polylope determined
by the set of vertices v = [{w')! ('} a'f, with o' = 1 for a
finite vertex or with a’ = @ for a vertex at infinity, where the
polytope becomes unbounded.

Theorem § The solution set of the GLCP (7} consists of all

nonnegative combinations af vertices determined by (1) with the
following restrictions :

o all vertices that are not complementary ((wi,sf # 0)
should be discarded, -

e only convex combinations of cross-complementary vevtices
are alfowed fuertices o' and o¥ with (w2 = (w

o).

In 1953 Motzkin et al. {5] proposed an algorithm for the
solution of sets of linear inequalities that can he adapted for
the solution of the GLCP {4.6]. We fiest describe the induciive
algorithun for the solution of (8). '

Call a! = the ith row of A, then we denote with LN el AL

the matrix fermed by the ¢ extreme ravs of the solution set of

alr =0, i=1l...k

¥ >0 {10)

o §% = I, the initial set of extreme rays generales the first
orthant in R".

o . . R AN . e
o The iteration deseribes ow §% is updated into ' when
a new equality

dpy 1 =1 {11)

k)i‘_:' _ -

is added. Pul (s*¥1} = ol ,.5% a1 x g matrix. For
cach element in (¥ 1) three possibilities exist :

case 1 sjf'H = 1), indicating that Sf (7-th colunuy in 57

lies in the hyperplane u{_‘]_lar =0,
case 2 and 3 sj?'““ > 0 or 5;3"'1 < 0, indicating that
§% les in efther of the two halfspaces defined by
Gp ¥ = f.
"The construction of the extreme rays $5+1, can then pro-
ceed as follows :

case 1 il an extreme ray in §*% lies in the hyperplane
(11), it is also an extreme ray of §*+1,

case 2 and 3 any two adjacent extreme rays, lying on
either side of hyperplane {11}, define an extreme
face, intersecting the hyperplane. This intersection
is an extreme ray of 5$¥+!
if si‘f“ < 0 and 5y > 0 and 5}' and S} are adja-
cent, then }sf"”i.S{" + (.sf““[..?j-" € 51 The adja-
cency test is described in theorem 2,

The GLCP algerithun is now obvious from a combination of the
inductive algorithm for the solution ol {8), and theorem 3.

7 Example
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Figure 4: Series connection of two PWL tunnel diodes




We compute the driving-point characteristic for the series con-
nection of two tunnel-diodes (fig.4}, whose paramcirization is
indicated in the figure. The algoritluns returns 11 solutions :

1 z 3 4 5 8 H 8 o 18 11
- PeTT 0 0 0 6 0 0 i 0 o 0
[ 0 o 0 0 0 0 ¢ 0 0 0
Ao 10 ] [ 0 ¢ 0 033 o0
Ay oz 2 ) 0 D6 ) 06 1 1,33 §
#1019 1 025 0.8 9 o o 0 0 0 0

fy | 948 2 125 1.8% 1 [ 0 6 o 0.5
oo 03 0.5 4 2 029 2 32 3
vt |0 0 25 325 12 0 L[.48 58 T 467 d
At e 0 0 t 45 25 020 064 0 0O o
Ao 9 0 0 35 15 020 ¢ 0 o o

nrlo s 0 0 0 1 0.20 | 21 0.5
urlo 0 0 ] 0 ] 6.20 0 1 0 0
a |0 1 1 1 1 1 ¢ i 1 i 1
i |-064 0 3 050 4 2 0,28 2 3 2 3
p | -077 0 25 325 12 10 148 58 7 467 4

Verifying cross-complcmeﬁ!arity conditions allows Lo trace the
complete DP-plot which consists of two pieces : 1 -2 -8 —4—
6-6—-7and 8 -9 -10-11 -8 (fig. 5).
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Figure 5: Driving-point plot of the circuit in ﬁgtr

8 Conclusions

The wost prominent advantages of this method are as follows :

* a complete description of the solution set is given, even
when a continnmum of solutions aceurs, or when the sola-
tion set is unbounded in sonie direction,

* no restrictions are imposed on the lincar part of the cir-
cuit, or on the existence of any hybrid representation.

+ we allow nonlinear resistors which are neither voltage nor
current-controlled,

General statements on computational complexity are difficult
hecause much is dependent on Lhe order in which Lhe equations
are processed.  Turther practical experience is needed hefore
guidelines can be formulated.
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